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Abstract 

Nowadays, we are witnesses to the noticeable success in the development of a 

new class of chemical and biological sensors – microfabricated cantilever sensor arrays 

actuated at their resonance frequencies and functionalized by polymer coatings. The 

major advantages of such miniature sensors are their small size, fast response, remarkably 

high sensitivity, and the endless possibilities of reaching high selectivity via customized 

combination of polymer coatings. These devices are inexpensive, portable, and have the 

ability to operate in various environments, such as vacuum, air and liquids. The areas of 

applications of microfabricated cantilever sensor arrays are almost countless, including a 

variety of scientific research in physics, chemistry, biochemistry, biology, and genetics, 

food and beverage industry, perfume industry, pharmacology, medicine, environmental 

monitoring, and most recently, related to the national security due to a high risk of 

terrorist attacks. 

However, despite the remarkable achievements in fabrication of microcantilever 

sensor arrays, creating an accurate and reliable pattern recognition algorithm as a part of 

the sensory system is still an essential and not yet completely solved problem. Most 

pattern analysis algorithms that have been used with the cantilever sensor arrays today 

are highly customized, ad hoc algorithms. They often lack generality and cannot be easily 

carried from one set of experimental data to another. Therefore, the main goal of the 

current work was developing a pattern recognition algorithm that can be highly effective 

on a given set of sensory data and easily adjustable to any new set of data. 



ii 

 

Acknowledgments 

I would like to take this opportunity to express my most sincere gratitude to my 

research advisor at the University of Nevada, Reno, Dr. Monica Nicolescu for giving me 

the opportunity to work in her research group, for her guidance, constant support, and 

help. 

I greatly thank Dr. Joseph Cline for helping me with my research project and 

Dr. Mircea Nicolescu for helping me with my thesis. I also thank both Dr. Joseph Cline 

and Dr. Mircea Nicolescu for spending their valuable time to read my thesis. 

Thanks to Dr. Carl Looney for exposing me to fuzzy systems and neural 

networks. I also thank Dr. Jesse Adams and Ben Rogers from Nevada Nanotech System, 

Inc. for giving me the opportunity to work in their lab and for their help with the 

experimental part of the project.  

Thanks to our research group members: Chris King, Sebastian Smith, and Austin 

Stanhope for their help. Also thanks to Jihyo Chong for helping me to collect the 

experimental data. 

Financial support by an NSF-EPSCoR Sensors fellowship is greatly 

acknowledged. 

 



iii 

 

1  Introduction ......................................................................................................................... 1 

2  Related Work ...................................................................................................................... 6 

3  Experimental Setup ........................................................................................................... 14 

3.1 Experimental Setup ....................................................................................................... 14 

3.2 Experiment Protocol Description .................................................................................. 18 

3.3 Data Collection Results ................................................................................................. 22 

3.4 Feature Extraction ......................................................................................................... 26 

4  Theory and Algorithms Details ......................................................................................... 31 

4.1 Extended Classifier System (XCS) ............................................................................... 33 

4.2 Kernel-Based Pattern Recognition Methods ................................................................. 51 

5  Experimental Results ........................................................................................................ 88 

5.1 Extended Classifier System (XCS) ............................................................................... 91 

5.2 Radial Basis Function Neural Network (RBF NN) ...................................................... 92 

5.3 Support Vector Machines (SVMs) ................................................................................ 93 

5.4 Fuzzy Neural Network (FNN) ...................................................................................... 96 

5.5 Fuzzy Classifier based on Fuzzy C-Means Clustering (FCM-based) ........................... 98 

5.6 Fuzzy Classifier based on Fuzzy Connectivity Clustering (FCC-based) .................... 100 

6  Conclusion and Future Work .......................................................................................... 103 

7  Appendices ...................................................................................................................... 108 

7.1 Appendix A – Implementation Details of XCS Algorithm ........................................ 108 

7.2 Appendix B – Implementation Details of FCC Algorithm ......................................... 111 

8  References ....................................................................................................................... 112 



iv 

 

Table  1. Results of classification accuracy obtained by using the constant exploration rate 

……………………………...……………………………………………………………47 

Table  2. Adjusting gradient exploration rate scheme ...…………………………..……..….47 

Table  3. Results of classification accuracy obtained for different niche mutation rates……49 

Table  4. Results for classification accuracy with and without action mutation ……………49 

Table  5. Results of classification accuracy for different deletion schemes …………..........50  

Table  6. The results of classification accuracy of RBF NN algorithm on the Wisconsin data 

set using 7-fold cross validation ………………………………………………...……....57 

Table  7. The results of classification accuracy of SVM algorithm on the Wisconsin data set 

using 7-fold cross validation …………………………………………………………....61 

Table  8. The results of classification accuracy of FNN algorithm on the Wisconsin data set 

using 7-fold cross validation .……………………………………………...…................66 

Table  9. The results of classification accuracy of FCM-based algorithm on the Wisconsin 

data set using 7-fold cross validation ………………………………………..………….80  

Table  10. The results of classification accuracy of FCC-based algorithm on the Wisconsin 

data set using 7-fold cross validation …………………………...……….……………...86 

Table  11. Class labels according to the presence of the specified concentration of different 

chemical vapors in the analyzed gaseous mixture and the number of feature vectors in 

each class …………………………………..…………….……………………………...88 

Table  12. Information about training/testing set pairs for algorithm's accuracy evaluation..90 

Table  13. The results of classification accuracy of the XCS algorithm using the cantilever 

sensor array data ………………………………………………………………….……..91 



v 

 

Table  14. The results of classification accuracy of the RBF NN algorithm using the 

cantilever sensor array data ………………………………………………………….…..93 

Table  15. The results of classification accuracy of the SVM algorithm with the Gaussian 

kernel using the cantilever sensor array data ………………………………………..…..94 

Table  16. The results of classification accuracy of the SVM algorithm with the linear kernel 

using the cantilever sensor array data …………………………………………………...95 

Table  17. The results of classification accuracy of the SVM algorithm with the polynomial 

of degree 3 kernel using the cantilever sensor array data …………..….………………..96 

Table  18. The results of classification accuracy of the FNN algorithm with the discriminant 

function f 1 using the cantilever sensor array data ………….……….…………………..97 

Table  19. The results of classification accuracy of the FNN algorithm with the discriminant 

function f 2 using the cantilever sensor array data ……..……………………………..…98 

Table  20. The results of classification accuracy of the fuzzy classifier based on FCM-based 

algorithm with the discriminant function f 1 using the cantilever sensor array data …....99 

Table  21. The results of classification accuracy of the fuzzy classifier based on FCM-based 

algorithm with the discriminant function f 2 using the cantilever sensor array data …..100 

Table  22. The results of classification accuracy of the semi-supervised version of the FCC-

based algorithm using the cantilever sensor array data .……..……...………………....101 

Table  23. The results of classification accuracy of the full version of the FCC-based 

algorithm that clustered labeled vectors separately from unlabeled ones using the 

cantilever sensor array data …………………………………….……………...…….....102 



vi 

 

Table  24. A list of important parameters and their values used in the current implementation 

……………………………………………………………...…………………………...109 

 



vii 

 

Figure 1. Basic experimental setup. ........................................................................................ 14 

Figure 2. Flow rate control system for controlling the desired concentration of the chemical 

vapors. ............................................................................................................................... 15 

Figure 3. Temperature adjustment box for controlling the temperature of the array cell. ...... 16 

Figure 4. The location of the M10 cantilever array within the system. .................................. 16 

Figure 5. The figure shows a snapshot of all ten resonance frequencies. ............................... 18 

Figure 6. Temperature calibration curve (all cantilevers on the same graph). ....................... 20 

Figure 7. Resonance frequency shifts of all cantilevers during exposure of the array to 18% 

of acetone. ......................................................................................................................... 23 

Figure 8. Heights of resonance frequency peaks of all cantilevers during exposure of the 

array to 18% of acetone. ................................................................................................... 23 

Figure 9. Resonance frequency shifts of all cantilevers during exposure of the array to 7% of 

ethanol. .............................................................................................................................. 24 

Figure 10. Heights of resonance frequency peaks of all cantilevers during exposure of the 

array to 7% of ethanol. ...................................................................................................... 24 

Figure 11. Resonance frequency shifts of all cantilevers during exposure of the array to 26% 

of toluene. ......................................................................................................................... 25 

Figure 12. Heights of resonance frequency peaks of all cantilevers during exposure of the 

array to 26% of toluene. .................................................................................................... 25 

Figure 13. The figure shows the measurements for resonance frequency of the cantilever 

coated with OV275 polymer. ............................................................................................ 27 



viii 

 

Figure 14. The figure shows the measurements for resonance frequency of the cantilever 

coated with BSP3 polymer. ............................................................................................... 28 

Figure 15. The figure shows the measurements for resonance frequency of the cantilever 

coated with PBM polymer. ............................................................................................... 29 

Figure 16. Schematic illustration of XCS's performance cycle. ............................................. 36 

Figure 17. New flexible scheme for action selection that can be finely adjusted to each 

specific problem space. ..................................................................................................... 38 

Figure 18. The classifier’s accuracy as a function of the classifier prediction error εj. .......... 40 

Figure 19. The radial basis function neural network (RBF NN) architecture. ....................... 54 

Figure 20. Separating hyperplane, margins, and support vectors. .......................................... 60 

Figure 21. Representation of a fuzzy classifier as a fuzzy neural network. ............................ 63 

Figure 22. Class diagram of the OOP implementation of the FCC algorithms. ................... 111 

 

 



1 

 

1 Introduction 

There always has been a high interest in developing micromechanical devices for 

analyte detection for various applications such as quality and process control in industry, 

disposal diagnostics for biomedical analyses, pharmacological screening, gas sensing 

devices for environmental and health-related agencies, forensic investigations, fragrance 

design, and many others. Recently, the new threat of international terrorism brought the 

urgency for developing such sensor devices to a new high level. The new demand 

brought new requirements: now not only should sensors be highly sensitive to a wide 

range of target analytes, but they should also be miniaturized, automated, cost effective, 

reliable and robust. 

The concept of chemical and biochemical sensors has been a subject of extensive 

research efforts for a long time. The conventional approach to chemical sensors 

traditionally uses an approach called “lock-and-key” design, where a specific receptor is 

synthesized for each analyte of interest. This type of sensors is extremely selective, but 

usually quite expensive and has limited potential to meet today’s real-life demand for 

detection of a broad range of analytes with the same sensor device. 

A new revolutionary approach to chemical and biochemical sensors is closer 

conceptually to our own sense of olfaction. In this approach, instead of the strict “lock-

and-key” single sensor design architecture, an array of different sensors, each of which 

responds to different chemicals or even different classes of chemicals is used [1], [2], [3]. 

The idea behind this design is that the sensors of this array should contain as much 
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detection diversity as possible, so the array itself responds to the largest range of analytes. 

It is important to stress that in this design often none of the sensors that comprise the 

array is able to identify any analyte on its own, as a single element; only a specific pattern 

of responses from all sensors in the array provides the information that allows 

classification and identification of that particular analyte. 

Today, the emerging new technology based on microfabricated cantilever sensor 

arrays represents an ideal sensor technology that offers potential solutions to 

exponentially growing real-life problems regarding the fast and reliable detection of 

small concentration of target analytes in the air and solutions. Such miniaturized 

cantilever sensor arrays have already proven to be highly useful and appropriate as 

chemical and biological sensors for detecting traces of target analytes in both gaseous and 

liquid media [4], [5], [6], [7]. 

In order to be used as chemical and biochemical sensors, one side of the 

cantilevers is often coated with some functional layer that might be either highly specific 

or partially specific. The layer is considered to be highly specific if it is designed to 

recognize some particular target analyte normally by irreversibly reacting with it; the 

layer is considered to be partially specific if it adsorbs (and later releases) a broad range 

of target analytes at different rates. In the latter case, it is possible to recognize individual 

analytes from a list of numerous target analytes with the same cantilever sensor array. 

Thus, arrays offer greater selectivity than single sensors, since the response patterns of an 

array of semiselective sensors contain much more information than the responses of any 

single sensor. Needless to say, the selection of the coating materials for different 
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cantilevers in the array, in order to increase the sensor array’s ability to detect a larger 

number of individual analytes or to analyze mixtures, is yet another challenge that this 

sensor technology faces today [8].  

The response of the cantilever array has to be analyzed via some pattern 

recognition technique, which aims to facilitate the application of the device as a reliable 

and inexpensive sensing system. Today, pattern recognition is a critical part of the 

development of the micromechanical cantilever arrays of sensors capable of detecting, 

identifying and sometimes quantifying the target chemical and biological substances. The 

successful design process involves a careful consideration of a lot of different issues, 

such as signal preprocessing, feature extraction, feature filtering and selection, designing 

of the pattern analysis system, training the system, and finally performing recognition of 

future (unseen before) samples and assessing the results of system’s classification 

accuracy [9]. 

There were several objectives of the current work. 

The first objective was to design and conduct a series of experiments with a 

microfabricated cantilever sensor array by exposing it to a set of target analytes. During 

this stage of the research, we explored the effects of different coating materials, heating 

and cooling the array cell, and the different concentrations of the analytes in the air on the 

collected sensory data. 

The second objective of our work was to develop the process of feature extraction 

and selection. In order to create a successfully functioning detection system, we had to 
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carefully choose the adequate number of features and ensure that those features are both 

unique and sufficient to characterize each collected sample during the experiment. 

The final and most important objective of the current work was to develop a 

number of suitable pattern recognition algorithms for our specific sensory data, test those 

algorithms using the benchmark data sets and data collected within framework of the 

current research, compare their efficiency and accuracy, and make necessary assessment 

of their power and suitability for the detection of the target analytes with a 

microcantilever sensor array in the real-life situations. 

This thesis is structured as follows: 

 Chapter 2 − Related Work: presents a review of the current progress in the field 

of the microcantilever sensor array technology. It also describes the types of 

pattern recognition algorithms that are often used in combination with 

microcantilever sensor arrays for the detection and qualitative and quantitative 

identification of a wide range of the target analytes. 

 Chapter 3 − Experimental Setup: describes the details of the experiments 

conducted with a microcantilever sensor array, shows some pictures of the array’s 

responses, and explains the strategy of the feature extraction procedure. 

 Chapter 4 − Theory and Algorithms Details: presents a theoretical background 

and detailed description of all pattern recognition algorithms that were designed 

and implemented in the current research. It also shows the testing results of 

classification accuracy for each algorithm using a benchmark data set (the 

Wisconsin breast cancer data set). 
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 Chapter 5 − Experimental Results: contains the results of each algorithm’s 

performance on the experimental sensory data collected in the Nevada Nanotech 

System, Inc. (NNTS) laboratory using a microfabricated cantilever sensor array. 

 Chapter 6 − Conclusion and Future Work: summarizes the performance results 

of all pattern recognition algorithms on the given sensory data set and provides 

some suggestions for future work in the most promising directions. 
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2 Related Work 

Microcantilevers constitute a special class of sensors – mechanical sensors, also 

called deflection sensors, meaning that those sensors respond to changes of external 

parameters, such as temperature changes or molecule adsorption, by a mechanical 

response, e.g., by bending or deflection. 

The term cantilever means a microfabricated rectangular bar-shaped structure, 

whose length is much greater than its width, and thickness is much smaller than both its 

lengths and width. Cantilever beams have been used to measure interatomic forces in the 

piconewton range using a technique called scanning force microscopy (SFM) or atomic 

force microscopy (AFM) since the mid 1980’s [10]. It turned out that microcantilevers 

were exceptionally sensitive to extremely low external forces or remarkably small mass 

displacements, that is, they were found to be very sensitive to external physical and 

chemical influence. Microcantilevers can operate in several modes, the most often used 

modes are static and dynamic modes, and potentially provide mass detection at the single 

molecule level. 

In static mode [11], [12], [13], the cantilever surface (or a coating material of the 

upper surface of a cantilever) adsorbs molecules from the environment and the surface 

stress occurring during the adsorption results in a static bending of the cantilever and can 

be measured. 

In dynamic mode [11], [14], [15], [16], each cantilever in the array is driven into 

oscillation externally at its unique resonance frequency. The cantilevers may be coated as 
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well. On the adsorption of the molecules from the surrounding medium, the resonance 

frequencies of each cantilever decrease due to the adsorbed mass. Those resonance 

frequency shifts can be measured and the adsorbed mass on the cantilever can be 

calculated. 

The key to the high sensitivity of the microcantilevers is the very large surface-to-

volume ratio, which leads to amplified surface stress. 

The ability to use the arrays of sensors functionalized differently adds to the list of 

their advantages even more, by providing high selectivity toward certain classes of 

chemical and biological analytes. Arrays provide more useful and reliable information, 

since using many cantilevers in the same experiment opens up the possibility of exposing 

several differently functionalized cantilevers and reference cantilevers under identical 

conditions, i.e., several experiments can be performed at the same time. Additionally, 

none of the sensors in the array has specific selectivity to a given analyte, while it is often 

the case that the collective response from all sensors in the array provides the unique 

pattern that allows classification and identification of that particular analyte. 

As was said before, in dynamic mode, the cantilever oscillates at a resonance 

frequency (the cantilever is driven into oscillation by some external circuitry). Analyte 

molecules adsorb to the active layer on the cantilever, increasing the mass of the 

vibrating cantilever and therefore, causing a light shift in the cantilever vibration 

frequency, very well measurable by external means. By measuring the resonance 

frequency sifts, the cantilever array can register a wide range of analyte concentrations in 

the surroundings. 
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In order to recognize a variety of analytes, or the different individual components 

in the mixture of analytes, each cantilever in the array should be coated with a different 

material that shows specific response (selectivity) to a particular class of analytes. 

Therefore, when arrays are used, it is preferable to use several different coating materials, 

each with somewhat different selectivity toward different classes of analytes. This 

approach maximizes the collection of the relevant sensor information for detecting and 

recognizing the analytes of interest. Due to this, there is high need of polymers suitable as 

coating materials for microcantilever sensors, with good physical and chemical properties 

for rapid and reversible analyte adsorption. 

Both physical and chemical properties of coating polymers are equally important 

in making a good sensor. While the chemical properties determine the selectivity of the 

sensor to a particular analyte (or a class of analytes), the physical properties play an 

important role in other aspects of the performance, such as response time or refreshment 

time [8]. 

A wide variety of polymers has been studied and employed as suitable coating 

materials for microcantilever sensors to modify their sensitivity and selectivity to the 

target analytes. Some of the commercially available polymers that have been used in the 

current work are the following [8], [17], [18]: 

1) PDMS (polydimethylsiloxane) –  nonpolar polymer: 

Si

Me

Me

O

n  

It is known to be useful for adsorbing aliphatic hydrocarbons or for 

distinguishing between members of a homologous series. 
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2) BSP3 (phenolic and trifluoromethyl groups added to dimethylsiloxy-polymer chain) – 

strong hydrogen bond acidic polymer: 

Si

Me

Me

O Si

Me

Me

O Si

Me

Me

OH OH

CF3

CF3

n  

This type of material is useful in detection of basic vapors including organophosphorus 

compounds (some nerve agents are in that category). 

3) OV-275 (poly(biscyanoallyl)siloxane) – dipolar moderately basic polymer: 

SiO

CN

CN
n  

This polymer helps to distinguish vapors with a large dipole 

moment. 

 

4) PECH (poly(epichlorohydrin)) – moderate dipolar polymer, contains moderate 

hydrogen-bonds: 

O

Cl

n  

This coating material appears to be good at detecting aromatic 

hydrocarbons, such as benzene and toluene. 

 

In addition to the demand of using different coating materials for different 

cantilevers within an array, normally at least one cantilever should be left uncoated to 
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serve as internal reference. All these factors and an extremely small size of the 

cantilevers themselves constitute a great challenge to functionalize cantilevers in the 

array individually [19]. There are not many suitable technologies available to do that. 

Among the most successful ones are coating the cantilevers using electrospray [20], [21] 

and inkjet printing [22]. The latter method was used in the process of functionalization of 

the cantilever sensor array used and tested in the current work (coating of the array 

cantilevers was performed by the Nevada Nanotech System, Inc. (NNTS) staff). 

Several methods to monitor cantilever deflection have been successfully used in a 

measurement setup for cantilever arrays. These methods include optical (external laser) 

detection [23], [24], integrated piezoresistive detection [25], [26], integrated capacitive 

sensing [27], [28], and piezoelectric methods [29], [30], [31]. Piezoelectric cantilevers are 

ideal for resonance, frequency-based approaches – they do not require external optics or 

actuators, have low-power consumption, and allow actuating each cantilever in the array 

independently and directly. Therefore, the piezoelectric cantilever sensor array was used 

in the current work [32]. 

Creating sensitive, selective, reliable, robust, low-power and low-cost 

microcantilever sensor arrays is only a part of the solution to the global problem of 

detection of the target chemical and biological substances. Without dependable, fast, and 

accurate pattern recognition algorithms we would not be able to use such devices for the 

detection of any analytes of interest. Thus, the most important and crucial part in the 

development of a sensor array capable of detecting, identifying, and measuring the target 

analytes remains the development of a suitable pattern recognition algorithm. 
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The goal of a pattern recognition algorithm is to generate a class label prediction 

for a previously unseen sample from a set of class labels learned during the training phase 

of the algorithm. Obviously, in order to be able to recognize an analyte, the pattern 

recognition algorithm should be trained on a sufficiently large set of data. By data here 

we mean the output of any observation or measurement recorded by the cantilever sensor 

array under exposure to the target analyte (or a mixture of analytes) and by sufficient data 

we mean that in general, it is desirable that the algorithm be introduced to samples from 

all possible classes or categories. Then, by exploiting the knowledge extracted from the 

training data, the learning algorithm should be capable of adapting itself to infer a 

solution to the task of recognizing a new sample as belonging to some previously seen 

class (or several classes). 

Perhaps the most widely exploited pattern recognition algorithms used in 

combination with cantilever sensor arrays are principal component analysis (PCA) [33], 

[34], [35], [36], [37] and a variety of neural networks (ANNs) [34], [36], [38], [39], [40]. 

In all cases satisfactory classification results were reported. 

Principal component analysis extracts features from the observed data that exhibit 

the most dominant deviations in responses to various analytes. This procedure is aimed at 

maximum distinction performance between analytes. PCA in combination with cantilever 

sensor arrays was used, for example, to detect primary alcohols in gaseous mixtures [34], 

to detect and recognize vapors of dichloromethane, ethanol, toluene, and water in the air, 

and also perfume essences and beverage flavor [35], to detect different individual 

components such as methanol and 2-propanol in their binary mixtures [36]. PCA was also 
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used to find the best coating materials (out of 27) to successfully recognize one out of 14 

analytes [37] – it has been found that only 7 different coating materials are required to 

discriminate among those 14 analytes. 

For more complex measurements, e.g. to analyze multicomponent mixtures of 

gaseous analytes such as natural flavors, a different strategy involving artificial neural 

networks is pursued. Whereas PCA extracts most-dominant differences in the fingerprint 

pattern, neural network analysis considers all components of the fingerprints. Among the 

most interesting examples of the use of artificial neural networks are the detection and 

identification of different odorants (organic vapors such as amyl acetate, acetoin, 

menthone, and some aliphatic alcohols) [39], the identification of organic solvents in 

binary mixtures (n-octane − chloroform, n-octane − n-propanol, chloroform − 

n-propanol) [40]. The results for classification accuracy obtained by neural networks vary 

greatly, between 70% and 100%.  

Among other pattern recognition techniques reported to be used in combination 

with cantilever sensor arrays is principal component regression (PCR) that was used, for 

example, for the quantitative prediction of organic vapors of octane, toluene, ethanol, and 

butylamine in the binary mixtures; the prediction error of 11.8%−12.5% is reported [41] 

and for quantitative and qualitative analysis of organic vapors of n-octane, 1-butanol, and 

toluene in binary mixtures high accuracy of the detection is reported [42]. 

The fuzzy c-means clustering algorithm (FCM) was used for the discrimination of 

organic compounds (14 different analytes total) [43]. The fuzzy c-means algorithm has 
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been found to perform better than PCA in discriminating analytes with similar structure, 

such as benzene and toluene, homologous alcohols, and acyclic aliphatic hydrocarbons. 

Some modifications of PCA for multivariate data for the application to sensor 

arrays, such as Independent Component Analysis (ICA) – for the detection of different 

concentration of propanol and ethanol [44] and for identifying the concentration of 

carbon dioxide and hydrogen in the mixture [45], and Principal Discriminant Analysis 

(PDA) – for the discrimination among five varieties of roasted coffee beans are also 

reported [46]. The results of classification accuracy for ICA were reported as satisfactory, 

whereas PDA performed only with 64% of classification rate on coffee beans. 
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3 Experimental Setup 

3.1 Experimental Setup 

The experimental part of the current work was performed in the laboratory of 

Nevada Nanotech Systems, Inc. (NNTS). 

Figure 1 shows the basic experimental setup for collecting sensory data during 

exposure of the microcantilever sensor array to the gaseous mixture containing an 

analyte. 

 

 

 
Figure 1. Basic experimental setup.

Flow rate controller Flask with an analyte Cell temperature controller 
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The flow rate control system allows us to create and maintain the desirable 

concentration of an analyte in the gaseous mixture (Figure 1, Figure 2) that the 

microcantilever sensor array (Figure 4) has to be exposed to. The dry air was forced to 

flow under excess pressure through a flask with an organic solvent (the chemical analyte) 

and the gaseous mixture of the dry air highly saturated with vapors of the given analyte 

was subsequently diluted several times until the needed concentration of an analyte in the 

air was reached. 

 

 

 

During the experiments some heating of the microcantilever array cell was 

applied as well. For heating (Figure 3), a different amount of electrical current was 

applied to the entire array of the cantilevers (all microcantilever sensors were heated and 

cooled simultaneously) 

Figure 2. Flow rate control system for controlling the desired concentration

of the chemical vapors. 
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For the current work, we used a new generation array chip, called M10, for 

collection all data for our experiments (Figure 4). 

 

 

Figure 3. Temperature adjustment box for controlling the temperature of the

array cell. 

M10 cantilever sensor array is located 

between these metal plates 

Figure 4. The location of the M10 cantilever array within the

system. 
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Theoretically, this array has a large number of cantilevers, but only one row of 

them (ten cantilevers total) was wire-bonded and seven out of these ten cantilevers were 

coated with seven different coating materials. The remaining cantilevers were left 

uncoated.  

The polymers that were used for coating the cantilevers and their respective 

chemical properties are: 

 OV275  dipolar, moderately basic polymer 

 PDMAEMC strong basic polymer 

 PBM  dipolar, basic polymer 

 PDPZ  polarizable polymer, contains phenyl groups 

 PECH  moderate dipolar polymer, contains moderate hydrogen-bonds 

 PDMS  nonpolar polymer 

 BSP3  strong hydrogen-bond acidic polymer 

All cantilevers in the array are driven into oscillation by an external circuitry and 

the resulting resonance frequencies were recorded. Figure 5 shows a snapshot of a 

graphical representation of resonance frequencies of all ten cantilever sensors in the array 

on an acquisition software application screen. The acquisition software application was 

tuned in such a way that seven different windows with all ten resonance frequencies 

(from all wired cantilevers) were set for monitoring gathered resonance frequency data 

simultaneously on the same screen: 
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Figure 5. The figure shows a snapshot of all ten resonance frequencies: window 1 – OV275, span 45 

kHz; window 2 – uncoated cantilever, span 40 kHz; window 3 – BSP3, span 60 kHz; window 4 – 

uncoated, uncoated, PBM, PDMAEMC, span 135 kHz; window 5 – PDPZ, span 45 kHz; window 6 – 

PECH, span 45 kHz; window 7 – PDMS, span 50 kHz. 

 

3.2 Experiment Protocol Description 

To calibrate our system, we ran a series of temperature experiments. The data 

were collected at five different temperatures: room temperature, 24, 28, 32, and 36°C (the 

thermo caps were set at the front and at the back of the array cell, so the temperature was 

measured with high precision). 

In order to control the temperature during the experiment, special hardware 

consisting of a heater and fan was developed. The fan is automatically activated and the 
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heater is automatically set off if the temperature goes higher than desired; likewise, the 

heater is automatically set on and the fan is automatically set off if the temperature goes 

below the settings. 

The objectives of the temperature experiments were the following: 

 get stable and reproducible response of all cantilever at each temperature; 

 make sure that the entire array is kept at designated temperature during the entire 

experiment (hardware issues); 

 find the temperature–resonance frequency shift dependence for all cantilevers (so 

that we can use this information in the future to estimate how much the high 

temperature contributes to resonance frequency shifts of different cantilevers in 

some ambiguous situations). 

This series of experiments resulted in the temperatures calibration curves shown 

in Figure 6: 
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Since all cantilevers demonstrated very good stability and all hardware issues 

were resolved, it has been decided to run our experiments at 24°C instead of room 

temperature. This choice insures a unified protocol for all experiments and overcomes the 

problem with so-called “ambient temperature” which is different not only during 

different seasons, but even during the same day and is very sensitive to many 

uncontrollable factors (such as an air conditioner, a room heater, the number of people 

around, an amount of different electric circuitries around, etc.). 

After a series of experiments, the unified protocol described below was designed 

and implemented for automatic data collection by data acquisition software. 

The base temperature of the array cell was 24°C. The flow rate of gaseous 

mixture was set to 400 ml/min. Each experimental run started with collecting data of dry 

air (at 24°C). The first 60 measurements were made with a rate approximately 2 scans per 
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Figure 6. Temperature calibration curve (all cantilevers on the same graph). 
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minute; the remaining 240 measurements were taken without any delay (approximately 2 

scans per second). Between the 11th and 12th scans, the chemical vapors were introduced 

into the gaseous mixture (we used only three different concentrations of the chemical 

vapors: 7%, 18%, and 26%). Approximately 40-42 measurements were taken at very high 

temperature (the electrical impulse was applied to cantilevers between scans 121-123 and 

164-166, estimated temperature was 100-150°C); after removing the heat, the remaining 

approximately 135 measurements were taken while the array was cooling to 24°C. 

After a cycle of the experiment with the chemical vapors was over, the next cycle 

was a “refreshment run.” During this refreshment run the protocol was almost the same 

except that halfway between the 11th and 12th scans the chemical vapor gaseous mixture 

was replaced by the dry air and the entire array was heated at 55°C to speed up the 

desorption process of the analyte molecules from the polymer layers (during the 

refreshment cycle data were collected as well). 

The protocol of the experiments with chemical vapors was designed in such a way 

so that we collect as much versatile information as possible: 

 how fast different cantilevers start reacting with the introducing of a specified 

concentration of the specified chemical vapors; 

 how fast the cantilevers get into the “steady” state (the resonance frequency is not 

changing any more); 

 what happens during heating, cooling down, etc.  

Besides impedance and resonance frequency shifts, we also measured the peak 

heights of each frequency during each scan (we assumed that it might be a valuable 

feature as well for our feature vectors). 
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Another positive characteristic of the above protocol was that the data did not 

depend on the baseline information, which might be recorded under slightly different 

conditions every time it was needed. In our experiments, we used the very first scan in 

each run as a baseline for the remaining 299 scans. By doing so, we measured only the 

relative changes during each experiment (we didn’t have an impact of a so-called 

“accumulation” factor, when the baseline was getting further and further from the current 

plot, since the array never had a chance to be completely refreshed during the entire day 

of the experiments and it didn’t completely release everything it accumulated during each 

run). 

3.3 Data Collection Results 

For the current work, we conducted experiments using vapors of different 

concentration (7%, 18% and 26%) of three different chemicals: acetone, toluene and 

ethanol. Figure 7 − Figure 12 show the responses of the cantilever array from some of 

these experiments. 
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Figure 7. Resonance frequency shifts of all cantilevers during exposure of the array to 18% of 

acetone. 

 

 

Figure 8. Heights of resonance frequency peaks of all cantilevers during exposure of the array to 

18% of acetone. 
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Figure 9. Resonance frequency shifts of all cantilevers during exposure of the array to 7% of 

ethanol. 

 

 

Figure 10. Heights of resonance frequency peaks of all cantilevers during exposure of the array 

to 7% of ethanol. 
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Figure 11. Resonance frequency shifts of all cantilevers during exposure of the array to 26% of 

toluene. 

 

 

Figure 12. Heights of resonance frequency peaks of all cantilevers during exposure of the array 

to 26% of toluene. 

 



 26

3.4 Feature Extraction 

While running the experiment, our system takes different measurements 

according to the protocol described above (such as resonance frequency, impedance) and 

saves them into an output file. After processing this file using a peak finding routine (this 

program was created by Dr. Jesse Adams from NNTS), a file consisting of almost 7000 

different measurements is created. For each cantilever there are 300 values of the 

resonance frequency shifts measured at specified time points, 300 values for the peak 

heights of each resonance frequency peak, and the rest of the data is impedance 

information, which has been measured in several chosen points along the baseline of 

several cantilevers. 

In order to reduce the amount of information to be processed, we extracted a 

subset of values from the total of 7000 pieces of data by applying our knowledge of the 

input domain (will be explained shortly), which helps create a feature vector that fully 

characterizes the gaseous mixture along with the conditions of the experiment. 

In the current work we used data recorded for the following cantilevers: 

cantilevers coated with OV275, BSP3, uncoated cantilever # 3, cantilevers coated with 

PBM, PDPZ, PECH, and PDMS. Thus, we used the information obtained by only seven 

out of ten cantilevers. We left out the data collected by the cantilever coated with 

PDMAEMC and the remaining two out of three uncoated cantilevers, because these three 

sensors provided very inconsistent information. Possibly, that could be due to some 

physical defects of these three cantilevers, such as some foreign body like a piece of fiber 

lying on the sensor, or in the case of PDMAEMC, the uneven coating or the unknown 
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properties of this polymer that easily accumulates but not so easily releases the molecules 

of certain chemicals. 

Figure 13 − Figure 15 illustrate the strategy that we used to extract the most 

prominent features from the resonance frequency responses of the cantilever sensors in 

the array. 

 

 

Figure 13. The figure shows the measurements for resonance frequency of the cantilever coated with 

OV275 polymer taken according to the protocol (described above). Red bidirectional arrows 

represent the difference taken before and after some conditions were changed, red curly braces 

indicate the areas on the graph where the row data as an average over 10-20 points were used. 
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Figure 14. The figure shows the measurements for resonance frequency of the cantilever coated with 

BSP3 polymer taken according to our protocol. Red bidirectional arrows represent the difference 

taken before and after some conditions were changed, red curly braces indicate the areas on the 

graph where the row data as an average over 10-20 points were used. 
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Figure 15. The figure shows the measurements for resonance frequency of the cantilever coated with 

PBM polymer taken according to our protocol. Red bidirectional arrows represent the difference 

taken before and after some conditions were changed, red curly braces indicate the areas on the 

graph where the row data as an average over 10-20 points were used. 

 

By extracting the features for our exemplar data vectors in the fashion shown 

above, we created a data set consisting of feature vectors with 49 different features. 

However, during the early stage of testing the pattern recognition algorithms on the given 

sensory data we realized that some of the extracted features had not been consistent 

throughout the entire experimental data set. After thorough consideration, 15 out 49 

features had been removed and 34-dimensional feature vectors were used for the further 

testing. 
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We also made several attempts to include more features in our vectors, such as 

polynomial coefficients given by a curve fitting procedure and height values of resonance 

frequency peaks. As we can see from the provided graphs, there are some areas that 

correspond to changing the temperature of the array cell (points 123-130, 165-175 – both 

parts of the curves fit nicely into polynomial of degree 3) or to introducing the chemical 

vapors in the air (points 12-20 – this part of the graph fits into polynomial of degree 2) 

that could be used as features in our feature vectors. We hoped that by adding more 

unique features to the feature vectors, we might significantly improve the classification 

accuracy of our algorithms. However, it turned out that those features (polynomial 

coefficients and peak heights) were inconsistent and unreliable from the experiment to 

experiment and instead of adding the additional distinctive characteristic, those features 

added more ambiguity and uncertainty. 

In the end we kept the features that most closely described a variety of states that 

the cantilevers went through during the experimental run. Among the features we kept in 

our feature vectors were: 1) changes of the resonance frequency values after introducing 

an analyte into the air and after applying and removing the heat, and 2) the resonance 

frequency shifts of the cantilevers, averaged over several measurements during the steady 

states of the cantilever array before applying the heat, during the heating process, and at 

the end of the experiment when the array was cooled down to 24°C. 
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4 Theory and Algorithms Details 

The ultimate goal of our research was to create a reliable algorithm that after 

training on a limited set of labeled feature vectors from various classes can recognize any 

unseen feature vector as belonging to one of these classes (or even more than one class, 

but with a different degree of confidence). 

Therefore, we needed to create a reliable classifier system that could use a 

learning algorithm (or some combination of various learning algorithms) to gain enough 

knowledge about the problem domain to be able to correctly recognize any unseen 

sample afterwards. Thus, we had to successfully solve two separate problems: (1) to 

make our system learn from a limited pool of labeled pieces of data and (2) to teach our 

system to correctly label any number of new, unseen and therefore unlabeled samples 

from the same problem domain. Sometimes an algorithm includes solutions to both 

problems (learning and classification) at once; sometimes we have to seek different 

algorithms for each problem independently. 

Machine learning and classification methods for pattern recognition are extremely 

versatile. Among them we can mention the most popular ones, such as Principal 

Component Analysis (PCA) [47], [48], and Multiple Discriminant Analysis (MDA) [49], 

probabilistic neural networks (PNNs) [50], [51], [52], [53], [54], radial basis function 

neural networks (RBFNNs) [55], [56], [57], [58], [59], crisp and fuzzy clustering [60], 

[61], [62], [63], [64], Support Vector Machines (SVMs) [65], [66], [67], [68], [69] and 

genetic algorithms (GAs) [70], [71], [72], [73], [74]. 
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Below are some definitions and notations that will be used throughout the rest of 

this work. 

A feature vector (pattern, object) xr  is a single data item in the data set under 

observation. Typically, it is a vector in the N-dimensional vector space Nℜ : 

),...,,( 21 Nxxxx =
r . Each individual scalar component ix  of vector xr  is called a feature 

(attribute, dimension, or variable). A data set of Q feature vectors is denoted 

},...,,{ 21 QxxxX rrr
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r . A class is a certain category of the objects (feature 

vectors) that has some unique or distinctive characteristics that easily distinguish it from 

other classes in the set. A feature vector can be labeled, meaning that we are provided 

with the information to which class the particular feature vector belongs, or unlabeled, 

meaning that we do not know this type of information. 

The notion of a feature vector proximity measure is fundamental for all 

algorithms we used in the current research. We used the Euclidean distance as a measure 

of similarity between two feature vectors drawn from the same feature space: 
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In order to find the best possible solution to our problem of classifying specific 

sensory data, we implemented several learning and classification methods and tested 

them on a well-known benchmark data set, the Wisconsin Breast Cancer Database that 

contains 699 9-dimensional feature vectors (instances of two classes − malignant and 

benign) [75]. The feature vectors of the entire data set have been standardized 
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independently for each feature, so that they belong to the hypercube [0,1]N (N is 

dimension of the feature space), which permits each feature to have the same influence 

on the classifier systems. 7-Fold cross validation of the Wisconsin Breast Cancer Data 

Set has been used to tune the parameters and evaluate classification accuracy for all 

algorithms we used in the current work. Thus, this data set has been divided into seven 

training/testing set pairs (six pairs of sets containing 599 feature vectors in the training set 

and 100 feature vectors in the testing set and one pair of sets containing 600 feature 

vectors in the training set and 99 feature vectors in the testing set). 

4.1 Extended Classifier System (XCS) 

XCS, a recently developed classifier system in the context of Evolutionary 

Computing [74], bases its fitness function on classification accuracy and implements so-

called reinforcement learning. XCS creates and maintains the population of classifiers, 

each of those classifiers maintains its own prediction of the expected reinforcement 

(“payoff,” “reward”) from the environment. XCS executes the genetic algorithm (GA) in 

the environmental niches defined by the match to the given input sent by the 

environment, instead of using random mating and mutation within the entire population 

of classifiers. As a result, XCS tends to evolve the classifiers that are not only highly 

accurate, but also are maximally general. By "general classifier," we mean a classifier 

that considers inputs that have the same consequences on the environment as identical. 

With this, a general classifier captures regularity in the environment and by incorporating 

"don't care" symbols is capable of matching more than one input vector. [76], [77]. 

There are several main aspects of XCS that should be emphasized. 
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First, XCS is a learning machine, that is, a learning program within a computer. 

Its behavior significantly improves over time through interaction with the environment 

that constantly sends feedback on XCS’s performance. 

Second, XCS learns on-line, meaning that it cannot collect a lot of experience in 

some temporary storage and then process all the collected information. Instead, it learns 

as it goes along – it extracts the implication of every single experience as it occurs. 

Third, XCS tries to capture regularities of the environment. This means that XCS 

tries to create not only accurate classifiers, but also general ones. By generality of the 

classifier we mean that it holds the knowledge about some part of the problem space (not 

only about a single representative of that space) being maximally accurate at the same 

time. A machine with even a small number of sensors will encounter an enormous 

number of sensory states in any reasonably complicated environment. Thus, it is 

extremely important for the learning algorithm to be able to capture the similar behavior 

of the environment and group the states of the environment having the same implication 

for its behavior. Thus, generalization is a core of XCS. Because of generalization, XCS 

has an intrinsic tendency to evolve accurate, maximally general classifiers [77]. 

Furthermore, XCS learns to get reinforcements, in other words, it learn to act in 

such a way that it always receives maximally possible rewards from the environment. 

Often, it is very difficult to “explain” to the machine what it should do in order to achieve 

some goals that we set for it. Instead, it is much easier to establish the framework of 

reinforcement learning – every time the machine does something that we want we give it 

a reward. This way, we are leaving for the machine to figure out by itself what exactly it 

should do in order to be rewarded. 
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Thus, XCS acts as a reinforcement learning agent: it receives an input that 

describes the current state of the environment and reacts on the given input by emitting 

some actions, which are immediately sent back to the environment. This action can affect 

the environment and may result in some payoff. For this work, we restrict inputs from the 

environment to binary strings. The input space is denoted by LS }1,0{⊆ , where L is the 

length of the input string. XCS’s knowledge is contained in a set of condition-action rules 

called classifiers. Each classifier consists of a condition part, an action part, and a 

prediction part. The condition LC }#,1,0{∈  specifies which input states Ss ∈  the 

classifier can match (“#” is a “don’t care” symbol). The action a specifies the action that 

the classifier has chosen and expected a payoff. Classifier’s prediction p can be defined 

as an average of the payoff received (internal or external, or some combination of both) 

when the classifier’s action controls the system. Among other important XCS’s attributes 

are the following: prediction error ε (an average of a measure of the error in the 

prediction parameter) and fitness F, which estimates the accuracy of the payoff 

prediction p (normally, F is some inverse function of the prediction error that basically 

represents the classifier’s accuracy; therefore, the XCS’s fitness calculation is entirely 

based on its classification accuracy). 

Since there are many classifiers within the system at any time (perhaps, 

hundreds), after XCS has been trained for a while, it will contain the classifiers that 

accumulate the knowledge about all parts of the input and action space that it has 

experienced so far. This ability to accumulate the meaningful knowledge in some limited 

set of classifiers makes XCS unique compared to other types of learning machines. In 



 36

XCS, the knowledge about some chunk (could be very considerable) of the problem 

space is contained in individual classifiers (sometimes, even in only one of them). We 

can take a classifier out of the context of the entire system and learn a lot about some 

particular subspace of the problem space. In contrast, the knowledge about some problem 

in the neural network, for example, is distributed over the whole network, all its nodes 

and node’s weights, and nothing in this network taken separately can tell us anything 

useful about the problem it has learned. 

4.1.1 Performance of XCS 

For the following discussion, we assume that the population [P] of the classifiers 

is not empty. XCS interacts with the environment as follows. 

 

Figure 16. Schematic illustration of XCS's performance cycle (the scheme was taken from [74]). 

When the system receives an input from the environment it forms a match set [M] 

of classifiers whose conditions are satisfied by the current input. If the match set is empty 
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or it contains less than some specified number θmna of classifiers with different actions, 

covering classifiers are created with a condition that matches the current input and some 

random action. Specifically, each attribute in the condition of a covering classifier is set 

to “#” with a probability P# and to the corresponding input symbol, otherwise. For each 

action aj in [M], XCS computes the system prediction array P(aj), which is an estimate of 

the payoff that the system expects when action aj is performed. The prediction array is 

computed by the fitness-weighted average of all matching classifiers that specify action 

aj. 

XCS often selects an action with respect to the values in the prediction array. 

Even though it seems that XCS should always pick an action that has the highest 

prediction in the prediction array, XCS must sometimes choose apparently sub-optimal 

actions, in order to be sure that the apparently optimal classifiers are in fact optimal. This 

is an example of the explore/exploit dilemma. The system would like to choose the best 

action all the time in order to maximize the payoff, but it cannot determine the best action 

without sampling other actions as well. The system may simply pick the action with the 

largest prediction (deterministic action selection). Alternatively, the action may be 

selected probabilistically, with the probability of selection proportional to P(ai) (roulette-

wheel action selection). In some cases the action may be selected completely at random 

(from actions with non-null predictions). 

In the current work, we have implemented an advanced scheme of action 

selection – the gradient change of the explore/exploit rate during the training phase. For 

this purpose, the entire training set was divided into four (uneven) partitions so that the 

different explore/exploit rates could be applied to meet the needs of the classifier system 
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(e.g., at the beginning of the training phase, when there are none of experienced 

classifiers, the higher explore rate should be used, and so on). Exploration experience 

(EE) parameter also could be viewed as the number of inputs from the training set 

processed so far. 

rate 1rate 2rate 3rate 4

Exploration Experience (EE)

Training Set

EE/n1 EE/n2

1 Q

 

Figure 17. New flexible scheme for action selection that can be finely adjusted to each specific 

problem space. 

Once the action is selected, the system forms an action set [A] consisting of the 

classifiers in [M] advocating the chosen action. An immediate reward R may (or may not) 

be returned by the environment. 

4.1.2 Reinforcement Component 

XCS’s reinforcement component consists in updating the p (prediction), 

ε  (prediction error), and F (fitness) parameters of classifiers once the reward R is 

obtained from the environment. 

In the literature, there are a lot of discrepancies and confusion about how exactly 

(and in what order) all the classifier’s parameters should be updated. We had performed 

several experiments that vary the order of the updates, and some different schemes of 

calculating the updated parameters and came up with the solution that we think is the 

best. The following approach in executing the reinforcement component of XCS has been 
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established and confirmed by the experiments (our scheme mostly agrees with the order 

of updates listed in [77]; but in contrast we update the parameters of those classifiers, 

which have not been tested a particular number of times, differently compare to the 

conventional way): 

1. The current prediction error is calculated: 

|| jj pP −=ε          ( 2 ) 

where jε  is a prediction error of the j-th classifier, P is a payoff from the environment, pj 

is a prediction of j-th classifier. 

2.  The prediction error is updated based on the classifier experience (the number of time 

the classifier has been selected to be in [A]). If its experience is less than some 

specified threshold, then εj is an average of all previous values of this classifier’s 

prediction errors and the current one. Otherwise: 

)|(| jjjj pP εβεε −−×+←       ( 3 )  

where β (0 < β < 1) is the learning rate. 

3. Classifier’s accuracy kj is computed. There are several popular functions for 

computing classifier’s accuracy. We had tried the following three functions in our 

experiments: 
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(c) νε −= jjk , if εj > ε0 

  νε −= 0jk , otherwise 

 

where α  (0 < α < 1), ε0 , and ν (ν ≈ 5) are special constants set by the programmer. 

From our tests, we observed that function (a) outperformed the other two. Thus, we 

successfully used that function (Eq. 4) in our implementation. 

4. The classifier’s relative accuracy is computed for each classifier by dividing its 

accuracy by the total accuracies in the set [A]: 

∑
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k
k '          ( 5 ) 

5. The relative accuracy is used to adjust the classifier’s fitness Fj. Fitness is updated 

differently based on classifier’s experience in [A]. If this classifier has been adjusted 

Figure 18. The classifier’s accuracy as a function of the classifier prediction error εj (Eq. 4) (the graph 

was taken from [77]). 
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for a  specified number of times (i.e., its experience exceeds the threshold value), 

then: 

 )( '
jjjj FkFF −×+← β        ( 6 ) 

Otherwise, Fj  is set to the average of the current and previous values of '
jk . 

6.  Prediction itself is updated (again, based on classifier’s experience); if the classifier is 

not experienced enough, pj is calculated as an average of all previous values of this 

classifier’s  prediction and the current one. Otherwise: 

)( jjj pPpp −×+← β        ( 7 ) 

where β (0 < β < 1) is the learning rate. 

The idea behind the accuracy calculation is visualized in Figure 18: ε0 is a 

threshold measuring the extent to which errors are accepted, α causes a strong distinction 

between accurate and not quite accurate classifiers, and the steepness of the succeeding 

slope is influenced by ν, as well as ε0. Thus, in XCS the classifier fitness is an estimate of 

the classifier’s accuracy relative to other classifiers and behaves inverse proportional to 

the reward prediction error. Errors below the threshold are regarded as having equal 

accuracy. 

4.1.3 Discovery Component 

From time to time (not always!) a genetic algorithm (GA) is applied to the 

classifiers in the current action set [A]. From the beginning, XCS performs the GA in a 

niche (first introduced by Booker in 1982 [78]), and it does not use the entire population 

of classifiers as many other classifier systems do. The basic idea of a niche GA instead of 
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using the entire population is that it eliminates the undesirable competition that otherwise 

occurs between classifiers in different match sets. In addition, crossovers within a niche 

are more likely to yield useful classifiers than crossovers between potentially unrelated 

classifiers that match in different niches. 

The GA selects two parental classifiers with probability proportional to their 

fitness; two children are generated by reproducing, crossing, and mutating the parents. In 

the current implementation of XCS, we used a simple single-point crossover and two 

types of mutation: free mutation [74] and niche mutation [79]. In free mutation, each bit 

of the classifier condition is mutated to the other two possibilities with equal probability. 

In niche mutation, a classifier condition is mutated so that it still matches the current 

input, i.e., a don’t-care symbol is mutated to the corresponding input value, while 0 or 1 

is mutated to don’t-care. Niche mutation generally results in a faster convergence time, 

whereas free mutation causes broader exploratory behavior, faster knowledge transfer 

and, thus, higher robustness. In the current work, we have added one feature to the free 

mutation implementation. While testing our implementation, we have noticed that the 

system often chooses the very accurate classifiers with a wrong action. To address this 

issue, we have modified free mutation in such a way that action is allowed (with some 

small probability) be mutated as well. Thus, in the current work, when performing free 

mutation, the system can choose from the pool of all available actions, except the one that 

the classifier currently posses. 

After new classifiers have been created by the GA, they are inserted into the 

population [P]. As happens in all the other models of classifier systems, parents stay in 

the population competing with their offspring. 
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4.1.4 Deletion Schemes 

Since XCS maintains the size of its population of classifiers constant, every time 

new classifiers have to be added to the population [P], XCS faces a problem of deletion. 

The importance of deletion in XCS used to be underestimated considerably. If in a 

standard GA a chromosome can be evaluated (assigned a reasonable fitness value) 

immediately, in XCS, however, a chromosome can only be fully evaluated after many 

interactions with the environment (when a classifier has considerable experience of being 

in [A]). 

Because a new classifier must normally be tested on many trials before XCS can 

be certain of its fitness, it is a good idea to set its initial fitness to a low default value and 

increase it slightly each time it proves itself useful. This way accurate classifiers 

gradually increase their chances of participating in reproduction. Bad classifiers (i.e., 

classifiers that are inaccurate or have low accuracy) tend not to increase in fitness and so 

tend not to participate in reproduction. 

But since all classifiers initially have a low fitness, a bias against low fitness 

classifiers is also a bias against new classifiers, both good and bad (accurate and not). 

The stronger the bias, the more the system will tend to delete useful new classifiers 

before it has the possibility to test them and evaluate how good they are. 

To address this problem, we used the advanced deletion approach proposed by 

Kovacs in 1999 [80]. This approach considers the probability of deletion of each 

classifier to be proportional to the estimate of size [A] (one more parameter that each 

classifier updates every time it gets into [A]) until a classifier has been used on some 

specified number of trials. After that, the probability of deletion of each classifier is 
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multiplied by the mean fitness over the current population set [P] and is divided by the 

classifier’s fitness if and only if its fitness is less than a small fraction δ (specified by a 

programmer) of the population mean fitness. This scheme helps to maintain 

approximately the same number of classifiers in each niche and to eliminate inaccurate 

classifiers that proved to be bad through numerous interactions with the environment. In 

addition to using this advanced scheme of deletion in our work, we have added one 

additional feature to protect inexperienced classifiers from deletion before they have been 

given a chance to be evaluated; which is to start the processing XCS with a fraction of 

maximally possible population of classifiers (100 or 200 out of 500, for example). 

The presence in the population of accurate, but unnecessarily specialized 

classifiers is an undesirable feature of the classifier system. To address this problem, a so-

called subsumption deletion scheme has been implemented in the current work as well. 

The approach can be describes as follows:  every time a new classifier is created (by 

either the GA or by covering), the entire population is scanned to see if there exists a 

classifier whose condition logically subsumes the condition of the new classifier, has the 

same action and at least the same accuracy. If the test is satisfied, the new classifier is not 

injected into the population, but the numerosity (another important parameter of the 

classifier) of the classifier that subsumed that is incremented by one. 

In order to implement subsumption deletion, we always insert the most general 

classifier into the population [P] first. This approach guarantees that less general 

classifiers would be subsumed during the insertion into [P] if the possibility arises. 

The mention of numerosity parameter brings another important feature of XCS 

into light – the notion of macroclassifiers. 
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4.1.5 Macroclassifiers 

In XCS, a macroclassifier technique is used to speed processing of matching [P] 

against the input vector and provides a clearer and more unambiguous view of population 

contents. Macroclassifiers represent a set of classifiers with the same condition and the 

same action by means of the numerosity parameter mentioned above. Thanks to the use 

of macroclassifiers, the resulting population [P] consists entirely of structurally unique 

classifiers, each with numerosity greater than or equal to 1. If a classifier is chosen for 

deletion, its numerosity is decremented by 1, unless the result would be 0, in which case 

the classifier is removed from [P]. 

In order to be sure that the system still behaves as though it consists of N regular 

classifiers, the functions are written so as to be sensitive to the numerosities, if that is 

relevant. For example, in calculating the relative accuracy, the probability of to be deleted 

or selected for mating, and so on, a macroclassifier with numerosity n will be treated as 

though it represents n separate classifiers. 

Thus, the population as a whole is always treated as though it contains N regular 

classifiers, though the actual number of macroclassifiers in [P] may be substantially less 

than N, which gives a significant computational advantage. 

4.1.6 Test Results 

Implementation details of the current algorithm are given in Appendix A. 

Since XCS intensively uses the random generated numbers, we run each test 

using 30 different seeds to randomize the srand() function. Therefore, each result has 

been obtained by 210 program runs (7-fold cross validation by using 30 different seeds). 
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For all tests in each category we used the same set of parameters that have been 

optimized in the previous testing procedures. For each test we used the same set of seeds: 

for i = 0 to i = 29 

 seedi = 111×i + 17×i 

In order to prove the benefits of our advanced gradient exploration rate scheme, 

we performed tests using different constant exploration rates first and then we run a series 

of tests that uses our gradient exploration rate scheme. Although these are just 

preliminary results and the parameters for the gradient exploration rate scheme could be 

adjusted even better, we can see that the average result for the best values of 

classification accuracy has been improved. 
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Table 1. Results of classification accuracy obtained by using the constant exploration rate. 

 

PARAMETERS: 

constant exploration rate 

Classification Accuracy (%) 

average of max values for 
each set of tests (over 30 

runs) 

average over 210 program 
runs 

“Choosing the action 
randomly” option is turned off 90.171 77.397 

2 92.026 81.871 

4 92.134 79.702 

10 90.749 78.671 

15 92.294 78.110 

20 92.264 77.920 

 

 

Table 2. Adjusting gradient exploration rate scheme (see Figure 17). 

PARAMETERS: 

explore rate (gradient) 

EE; rate1; rate2; rate3; 
rate4 

 

Partition of 

Training Set 

Classification Accuracy (%) 

average of max 
values for each 

set of tests (over 
30 runs) 

average over 
210 program 

runs 

200; 20; 10; 5; 2 

1-1/4×EE (rate4); 

1/4×EE-1/2×EE (rate3); 

1/2×EE-EE (rate2); 

EE-Q (rate1) 

92.266 77.887 

400; 20; 10; 5; 2 

1-1/4×EE (rate4); 

1/4×EE-1/2×EE (rate3); 

1/2×EE-EE (rate2); 

EE-Q (rate1) 

92.266 77.830 
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600; 20; 10; 5; 2 

1-1/4×EE (rate4); 

1/4×EE-1/2×EE (rate3); 

1/2×EE-EE (rate2); 

EE-Q (rate1) 

92.266 77.992 

600; 50; 10; 5; 2 

1-1/4×EE (rate4); 

1/4×EE-1/2×EE (rate3); 

1/2×EE-EE (rate2); 

EE-Q (rate1) 

92.635 76.804 

600; 50; 5; 4; 2 

1-1/4×EE (rate4); 

1/4×EE-1/2×EE (rate3); 

1/2×EE-EE (rate2); 

EE-Q (rate1) 

92.635 76.813 

600; 50; 5; 4; 3 

1-1/10×EE (rate4); 

1/10×EE-1/5×EE (rate3); 

1/5×EE-EE (rate2); 

EE-Q (rate1) 

92.635 76.837 

1200; 50; 5; 2; 1 

1-1/10×EE (rate4); 

1/10×EE-1/2×EE (rate3); 

1/2×EE-EE (rate2); 

EE-Q (rate1) 

92.635 76.737 

600; 50; 5; 2; 1 

1-1/8×EE (rate4); 

1/8×EE-7/8×EE (rate3); 

7/8×EE-EE (rate2); 

EE-Q (rate1) 

92.635 76.823 

600; 50; 5; 2; 5 

1-1/8×EE (rate4); 

1/8×EE-7/8×EE (rate3); 

7/8×EE-EE (rate2); 

EE-Q (rate1) 

92.810 77.342 
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The next set of tests was created to adjust the niche mutation rate and demonstrate 

that allowing the action to be mutated as well during execution of the free mutation 

algorithm improves the results of classification accuracy. 

 

Table 3. Results of classification accuracy obtained for different niche mutation rates. 

PARAMETERS: 

niche mutation (NM) rate 

(probability of mutation = 4%; 

action mutation is ON) 

Classification Accuracy (%) 

average of max values 
for each set of tests 

(over 30 runs) 

average over 210 
program runs 

NM OFF 89.553 78.365 

NM = 2 91.866 77.863 

NM = 4 90.540 77.298 

NM = 8 92.635 76.813 

 

Table 4. Results for classification accuracy with and without action mutation. 

PARAMETERS: 

(niche mutation (NM) rate = 8) 

probability of mutation (%); 
action mutation (ON/OFF) 

Classification Accuracy (%) 

average of max 
values for each 
seed (over 30 

runs) 

average over 
210 program 

runs 

2; OFF 89.980 77.082 

2; ON 91.312 79.764 

8; OFF 91.495 75.596 

8; ON 92.635 76.813 
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Finally, we run a set of tests to experiment with different deletion schemes and 

demonstrate an advantage of the scheme we have been using in our implementation of 

XCS. Thus, Deletion Scheme 1 refers to having the probability of deletion of each 

classifier be proportional to the estimate of size [A]; Deletion Scheme 2 refers to having 

the probability of deletion of each classifier be as in Deletion Scheme 1 and multiplied by 

the mean fitness over the current population set [P] and divided by the classifier’s fitness; 

and Deletion Scheme 3 refers to the combination of the previous two that could be 

adjusted using the deletion experience (DE) parameter and using a fraction of maximum 

population size as an initial population of classifiers. In addition, to enhance the 

advantage of the advanced deletion scheme listed above, we also implemented and used 

subsumption deletion (see the description of XCS algorithm). 

Table 5. Results of classification accuracy for different deletion schemes. 

PARAMETERS: 

Deletion Scheme; 

Initial Population Size 

(Deletion Experience= 15) 

Classification Accuracy (%) 

average of max 
values for each 
seed (over 30 

runs) 

average over 
210 program 

runs 

1; 500 77.965 68.408 

2; 500 79.110 68.939 

3; 500 78.226 68.585 

3; 300 87.048 73.101 

3; 100 92.635 76.813 
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4.2 Kernel-Based Pattern Recognition Methods 

After the noticeable success of Support Vector Machines (SVMs), a classification 

algorithm, that was introduced in 1995 by Vapnic [65] and which performs better than 

other classification algorithms in a wide range of problems, the usage of kernel methods 

has been extended into other areas of machine learning and pattern recognition as well: 

Kernel Fisher discriminant (KFD) [81], [82], kernel principal component analysis 

(KPCA) [83], and most recently, kernel-based hard and fuzzy clustering [84], [85], [86], 

[87]. 

The philosophy behind the versatile family of kernel methods is that the kernel 

functions, or just kernels, implicitly define nonlinear transformations that map linearly 

inseparable input data from the original input space Nℜ  into a higher dimensional 

feature space F, where the relations among the feature vectors can be represented in a 

linear form, and therefore, the data can be linearly separated. 

Kernels are a special type of mathematical functions with specific properties. 

Each kernel )(⋅k computes the inner product of the images of the two data points in F and 

can be expressed as follows: 

>ΦΦ=<Φ⋅Φ= )(),()()(),( yxyxyxk rrrrrr      ( 8 ) 

where FN →ℜΦ : performs a mapping from the original input space Nℜ  into 

the feature space F, such that the image of any feature vector xr  in the feature space F 

becomes )(xrΦ . 
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The important aspect of this kind of nonlinear mapping is that it is possible to 

compute Euclidean distance in the feature F without even knowing Φ  explicitly through 

the distance kernel trick [67], [88]: 

))()(())()((||)()(|| 2 yxyxyx rrrrrr
Φ−Φ⋅Φ−Φ=Φ−Φ  

       )()()()(2)()( yyyxxx rrrrrr
Φ⋅Φ+Φ⋅Φ−Φ⋅Φ=  

         ),(2),(),( yxkyykxxk rrrrrr
−+=     ( 9 ) 

Examples of the mostly often-used kernels are: 

Linear kernel: 

yxyxk l rrrr
⋅=),()(       ( 10 ) 

Polynomial kernel of degree p: 

pp yxyxk )(),()( rrrr
⋅+= α , p ∈ ℕ    ( 11 ) 

Gaussian kernel: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2
)(

2
||||exp),(

σ
yxyxk g
rr

rr
, σ ∈ ℝ   ( 12 ) 

Sigmoid kernel: 

))(tanh(),()( βα +⋅×= yxyxk s rrrr
    ( 13 ) 

In our work, we consistently used the Gaussian kernel, when it was applicable, as 

a kernel-induced metric for measuring distances between feature vectors or a feature 

vector and a center of a cluster in the feature space F. Gaussian functions have a long 

history of being used in machine learning and pattern recognition and proved themselves 

to be efficient and simple in computations and to be robust to noise and outliers in 

classification tasks. 
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Since the Gaussian kernel functions form the hidden units of a Radial Basis 

Function Network; therefore, they are often called the RBF kernels. For the Gaussian 

kernel the images of all feature vectors in F have norm 1, since 1)0exp(),( ==xxk rr . The 

parameter σ controls the flexibility of the kernel. As the Gaussian kernel of two points 

becomes bigger, the closer those two points are in the input space. 

Even though a kernel component of any kernel method is data specific, it can be 

combined with different algorithms to solve a wide range of tasks. Nowadays, more and 

more scientists and engineers, who are working in the different fields of machine learning 

and pattern recognition, embrace a new powerful paradigm of kernel methods and tend to 

view many traditional machine learning and pattern analysis algorithms from the 

standpoint of this new methodology. From this viewpoint, any algorithm that uses a 

kernel function to process the data and builds its discriminant function (also called a 

pattern function, which is used to process unseen examples in order to classify or label 

them) using kernels can be (and should be) considered as a kernel-based algorithm. 

4.2.1 Radial Basis Function Neural Network (RBF NN) 

Radial basis function neural networks (RBF NNs) are one of many powerful 

examples of kernel methods for pattern analysis. RBF NNs have been successfully used 

in a wide variety of applications and their learning and generalization abilities are well 

documented [55], [56], [57], [58], [59], [89], [90]. The architecture and training 

algorithms for RBF NNs are simple and their learning is considerably faster than other 

forms of multilayer neural networks. 
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Let },...,{ )()1( QxxX rr
=  be a training data set of Q labeled feature vectors, where 

each vector )(qxr is N-dimensional (that is, it has N features): ),...,( )()(
1

)( q
N

qq xxx =
r . The 

architecture of the RBF NN can be presented as follows: 

 

The RBF NN has three layers: 

(1) an input layer of N nodes, each of which is an individual feature of the exemplar 

feature vector; 

(2) a hidden layer of M nodes (M could be equal to Q for a relatively small data set, 

otherwise, the training data set could be reduced for efficiency by any suitable 

method to M exemplar vectors (M < Q), where each node is an exemplar vector 

)(myr  that could be an individual feature vector from the training data set or a center 

of a cluster within training data set; when an input feature vector )(qxr is put through 

the m-th hidden node, the Gaussian kernel of that vector )(qxr  and vector )(myr  is 

calculated as ),( )()( mq
m yxkf rr

=  and passed further in the network; 

(3) an output layer of J nodes (J is the number of all possible labels (or classes) in the 

data set), where the inputs from all of the hidden nodes are combined in a weighted 

Input Layer Hidden Layer
(Gaussian kernels)

Output Layer Targets

f1= k(x(q),y(1))

f2= k(x(q),y(2))

fM= k(x(q),y(M))

z1

z2

zJ

t1

t2

tJ

u11

u2J

uMJ

x1

x2

xN

Figure 19. The radial basis function neural network (RBF NN) architecture. 
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average at each output node. The weights {umj} are the learned gains on the lines 

from the hidden layer to the output layers – they get adjusted during the training 

phase, so that each output will match the corresponding target (targets are the 

numerical class labels). 

The RBF NN is trained using the set of labeled feature vectors in the following 

fashion. Each labeled feature vector Qqx q ,...,1:)( =
r  is fed into the network and passed 

through all of hidden nodes where the Gaussian kernels are calculated: 

),( )()( mq
m yxkf rr

=         ( 14 ) 

where )(myr  is an m-th node exemplar feature vector and Mm ,...,1= . 

The output mf  is weighted by the corresponding weights (weights are initially set 

to some random numbers between 0 and 1 and updated at each iteration of the training 

phase) and the weighted sum is averaged over all hidden nodes at each j-th output node: 

m

M

m
mjj fu

M
z ∑

=

=
1

1
        ( 15 ) 

The objective of the RBF NN algorithm is to minimize the mean square error 

function E by adjusting the weights {umj} so that when the training phase is completed, 

the outputs should match the target vectors: 
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Thus, to minimize E over all weights JjMmumj ,...,1;,...,1: == : 
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Using the steepest descent method, we can update the weights for each feature 

vector: 
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where η  is a learning rate (or step size). 

Upon training the RBF NN over all Q labeled feature vectors from the training 

data set, each new weight umj is calculated as follows: 
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After implementing the RBF NN algorithm, it was tested by using the benchmark 

data set (the Wisconsin breast cancer data set). We used the reduced training set of 

feature vectors for the hidden nodes – we eliminated those feature vectors that were too 

close to others by using the fraction of the average distance between all pairs of vectors in 

the data set, the remaining vectors were used to form Gaussian kernels. After the network 

was trained, the testing data set was used to asset the quality of the RBF NN: 
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Table 6. The results of classification accuracy of RBF NN algorithm on the Wisconsin data set using 

7-fold cross validation. 

PARAMETERS:  th1; th2 
Classification Accuracy (%) 

max average 

0.15; 0.10 66.670 55.381 

0.08; 0.10 68.690 57.241 

0.11; 0.10 68.690 57.813 

0.10; 0.10 68.690 58.813 

0.10; 0.20 60.000 53.353 

0.10; 0.12 68.690 56.813 

0.10; 0.09 66.670 57.667 

 

4.2.2 Support Vector Machines (SVMs) 

Kernel-based learning and data classification first appeared in the form of support 

vector machines (SVMs) [65], [66], [67], [68], [69], a classification algorithm that 

overcame many computational and statistical difficulties of previously used algorithms 

such as backpropagation multilayer neural networks and decision tree learning 

algorithms, and rapidly became the most well known and probably the most extensively 

used class of algorithms based on the use of kernel methods. SVMs finally made it 

possible to analyze nonlinear relations between data items in the high-dimensional 

feature space with the efficiency of linear algorithms while avoiding the problems of 

local minima and overfitting. Techniques based on SVMs have been used to solve 

problems in different areas of applied pattern analysis including classification textual 
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documents into a number of predefined categories [91] and handwritten character 

recognition [92], [93], computer vision [94], [95], bioinformatics [96], [97], and many 

others [98] , [99]. 

One of the objectives of this thesis was to compare the performance of the several 

different types of classifiers in order to find the best possible algorithm for this type of 

task. One of the characteristics that made our pattern recognition task special was the 

high dimensionality of the feature vectors and a quite limited set of vectors for training. If 

X is a set of Q exemplar feature vectors },...,1:{ )( Qqx q =
r , where each vector has N 

features, ),...,,( )()(
2

)(
1

)( q
N

qqq xxxx =
r , then Q << N in the case of our classification problem. 

Scientific research conducted in the area of pattern recognition that deals with 

highly dimensional vector spaces and limited numbers of exemplar vectors in the data 

sets, suggests that one of the best performers for this type of classification tasks is a 

Support Vector Machine algorithm. 

Support Vector Machines (SVMs) are learning systems that “use a hypothesis 

space of linear functions in a high dimensional feature space, trained with a learning 

algorithm from optimization theory that implements a learning bias derived from 

statistical learning theory” [66]. The theory behind SVMs has a quite complex, but at the 

same time, well defined mathematical model that is built on rigorous theoretical analyses 

and therefore, guarantees computational efficiency. It is mostly based on statistical 

learning theory, notions of high dimensional vector spaces, support vectors, and kernel 

functions that can map vectors from one vector space to another. SVMs rely on 

preprocessing the data to represent patterns in a high dimensional space by mapping them 
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using the some transformation function )(xrΦ , which we don’t have to know explicitly. 

As in the case of all kernel methods, instead of computing the mapping function )(xrΦ  

explicitly, the SVMs algorithm replaces it with the kernel function 

)()(),( )()( ii sxsxk rrrr
Φ⋅Φ= , where )(isr  is an i-th support vector, and uses it for training. 

Typically, the new vector space where the data become linearly separable is much 

higher dimensional than the original input vector space. With an appropriate nonlinear 

mapping to a sufficiently high dimensional vector space, data from two (or more) 

different categories can always be separated by a hyperplane (or several hyperplanes in 

the case of multiclass environment). The objective of the SVM classifier is to create a 

separating hyperplane with the largest possible margin. The larger the margin is, the 

better the generalization of the created classifier. The margin is normally determined by 

support vectors (Figure 20). The support vectors are the exemplar vectors from the 

training data set that are the closest to the hyperplane. These vectors define the optimal 

separating hyperplane and are the most difficult patterns to classify. In the SVM 

algorithm, the support vectors are the most important and informative vectors for the 

classification purpose. Normally, after determining support vectors, the algorithm ignores 

all the rest of the training set. This is one of the reasons for the computational efficiency 

of SVMs. 
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Figure 20. Separating hyperplane, margins, and support vectors: a linear classifier is defined by a 

hyperplane’s normal vector w and margins. The margin of a linear classifier is the minimal distance 

of any training point to the hyperplane. On this figure it is the distance between the dotted lines and 

the thick line (shown by the blue bidirectional arrow). Support vectors lie on the dotted line (the 

margin) and are marked by the red circles around them. 

 

In the current work we used LIBSVM – A Library for Support Vector Machines, 

open source implementation of linear SVM classification, specifically multiclass SVM, 

which is an extension of the main library for SVMs [100]. 

Even though SVMs were originally designed for binary classification, there exist 

a number of approaches to effectively extend the SVM algorithm for multiclass 

classification. The easiest way to do it is to combine several binary classifiers. The 

algorithm used for multiclass classification in the current implementation implements a 

one-against-one classification approach. Thus, if the data set consists of feature vectors 

from the N different classes, the algorithm has to construct 
2

)1( −× NN  classifiers, where 

each one is trained on data from only two particular classes. 

Support Vectors 
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After all binary classifiers have been constructed the way to use them for the 

future testing may not be so obvious. There exist some methods for doing so, and the one 

that the LIBSVM implementation uses is based on a voting strategy. If during testing the 

algorithm has to decide for the unlabeled feature vector xr  between class i and class j and 

the discriminant function suggests that xr  is in i-th class, then the vote for class i is added 

by one, otherwise, the vote added for class j. After all classifiers have been tested, the 

class with the largest number of votes wins and xr  gets that class’ label. 

Again, we used the Wisconsin breast cancer data set as a benchmark data set to 

test the SVM algorithm in order to compare the results of classification with all pattern 

recognition algorithms developed before within the framework of the current research. 

Table 7. The results of classification accuracy of SVM algorithm on the Wisconsin data set using 

7-fold cross validation. 

Type of kernel 
Classification Accuracy (%) 

max average 

Linear: )()()( ),( iil sxsxk rrrr
⋅=  100.000 95.997 

Polynomial: 3)()()( )(),( iip sxsxk rrrr
⋅=  97.980 90.140 

Polynomial: 3)()()( )1(),( iip sxsxk rrrr
⋅+=  100.000 96.284 

Gaussian: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

9
||||exp),(

2)(
)()(

i
ig sxsxk

rr
rr  100.000 96.284 

Sigmoid: ))(
9
1tanh(),( )()()( iis sxsxk rrrr

⋅×=  85.860 75.266 

Sigmoid: )1)(
9
1tanh(),( )()()( +⋅×= iis sxsxk rrrr  78.790 65.541 
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Traditionally, the concept of fuzzy classifiers has been built around the notion of 

fuzzy set membership functions and can be vied as, for example, a fuzzy neural network 

[101], [102], or a fuzzy rule-based expert system [103]. An output value of some 

particular fuzzy set membership function applied to an unlabeled input feature vector xr  

is a fuzzy truth value which represents that this input feature vector belongs to some 

particular class with a confidence that ranges between 0 and 1. Thus, the feature vector xr  

belongs to the class with the highest fuzzy truth value. When one of fuzzy truths for the 

feature vector xr  is significantly greater than all others, then xr  belongs to that particular 

single class, otherwise it may belong to more than once class with the given relative 

fuzzy truth value in each case.  

Even though it is customary to view fuzzy classifiers as built upon a notion of 

fuzzy set membership functions, we believe that it would be more correct to consider the 

pattern recognition part of our classifier systems within the framework of kernel methods 

[88]. 

4.2.3 Fuzzy Neural Networks (FNNs) 

Viewing fuzzy classifiers as fuzzy neural networks is very intuitive and therefore 

beneficial for clear understanding and correct utilization.  
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Figure 21. Representation of a fuzzy classifier as a fuzzy neural network. 

 

In this example, there are K true classes in the data set; the hidden layer has been 

formed based on the population of labeled input feature vectors of a training data set and 

the information about classes. For any unlabeled feature vector ixr  from the population of 

a test data set of feature vectors 1xr  through Qxr , the fuzzy set membership functions 

)( ij xf  can be calculated in the term of fuzzy set membership functions, for example, as 

following: 
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where Q1, Q2,…, QK are the number of feature vectors in class 1, class 2, … class 

K respectively; )( jqxr  is q-th feature vector of class j. 

Fuzzy Neural Networks (FNNs) are the simplest class of fuzzy classifier systems: 

their nodes do not have weights and they do not require extensive training. Since we 

constructed our FNN within framework of the kernel methods, we consider our classifier 

to be based on “kernelization” of the metric for measuring distances between the centers 

of clusters that were established in the input space and the unlabeled feature vectors, as 

was shown before (Eq. 9): 

),(2),(),(||)()(|| )()()(2)( jjjj qqqq xxkxxkxxkxx rrrrrrrr
−+=Φ−Φ    ( 21 ) 

where xr is an arbitrary unlabeled feature vector from the test data set and )( jqxr  is 

a q-th feature vector of class j in the training data set. Since ),( xxk rr  and ),( )()( jj qq xxk rr  are 

both constants (and equal to 1) then, in order to find the closest labeled feature vector to 

the given unlabeled feature vector, we should look for the greatest value of the kernel – in 

our case the Gaussian kernel (Eq. 12): 
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where jσ  is a variance of the j-th class in the training data set. If the data of the 

given class has been proven not to contain outliers (feature vectors that are numerically 

distant from the rest of the data) or mislabeled feature vectors, the variance can be 
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computed as a fraction (between 
3
1  and 

2
1 ) of the average distance between every two 

labeled feature vector within class j. 

We tried two different approaches in constructing our fuzzy classifier. 

In the first approach, we construct a discriminant function as the maximum kernel 

value for the unlabeled feature vector xr  and every labeled feature vector within each 

class: 
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where )(1 xf j
r  is the first constructed discriminant function for unlabeled feature 

vector xr  over class j; ),( )( jqxxk rr  is a Gaussian kernel as in (Eq. 12); )( jqxr  is a q-th 

feature vector of class j in the training data set, jj Qq ,...,1= ; and Qj is the total number of 

feature vector in class j. 

In the second approach, instead of using the maximum kernel values for an 

individual feature vector over each class, the algorithm uses the average value of all 

possible kernel values in each class: 
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where )(2 xf j
r  is the second constructed discriminant function for unlabeled 

feature vector xr  over class j and everything else is as above. 

After evaluating the discriminant functions for all classes, the labeling procedure 

is straightforward: the unlabeled vector xr  from the test set belongs to the class for which 

the discriminant function has the largest value. 
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After testing this algorithm and using both discriminant functions, we found that 

the classifier that uses the second discriminant function provides noticeably higher 

classification accuracy: 

Table 8. The results of classification accuracy of FNN algorithm on the Wisconsin data set using 

7-fold cross validation. 

Threshold value for 

computing σ 

)(1 xf r  )(2 xf r  

max average max average 

0.09 97.000 88.179 98.000 92.709 

0.10 97.000 88.179 98.000 93.139 

0.11 97.000 88.179 98.000 93.281 

0.15 97.000 88.274 98.000 94.854 

0.20 97.000 88.274 100.000 96.140 

0.25 97.000 88.274 100.000 96.283 

0.30 97.000 88.274 100.000 96.286 

 

4.2.4 Clustering-Based Fuzzy Classifiers 

It is worth noting that the term clustering is often used with different meanings in 

different fields of science. In computer science, clustering refers to a technique or tool 

that attempts to discover an internal structure or certain patterns in a given data set 

without making any a priori assumptions. Thus, clustering is the unsupervised 

classification of unlabeled feature vectors with the objective of finding a convenient and 

valid organization of the data into classes or categories. By clustering the data we 

partition the given data set into groups or clusters in such a way that any two pieces of 
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data from the same cluster are as similar as possible and any two pieces of data from 

different clusters as dissimilar as possible.  

Although traditionally clustering deals with unlabeled data, which are data items 

that contain no class information attached to them, and is considered a method of 

unsupervised learning, clustering is very useful in implementing a “divide and conquer” 

strategy to reduce the computational complexity of various decision-making algorithms 

in pattern recognition. For example, initial clustering of the data is widely used in popular 

techniques in pattern recognition such as the nearest-neighbor decision rule [104] or for 

problem localization [105]. 

In our case, class information for a training set of feature vectors is available. It 

might seem that the use of unsupervised learning methods, such as clustering, is not 

necessary. However, we have found that having established the internal structure in our 

data set first through clustering the data helps us tremendously in finding the rules for 

assigning the unlabeled data items to correct classes. Data could be noisy, contain outliers 

or missing features, or could be labeled incorrectly. Cluster analysis, as the most 

prominent example of unsupervised learning, is very good at dealing with all these and 

many other similar cases. 

The experimental data we collected during our experiments with chemical vapors 

were sometimes slightly, sometimes noticeably different from day to day. This effect 

happened even though all formal experimental conditions (such as the concentration of 

chemical vapors in the gaseous mixture, the temperature of the array cell, etc.) were the 

same. This was mostly due to the fact that some parameters of our experimental setup and 

some experimental conditions could not be reproduced precisely or controlled completely 
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each time. One such parameter is the low precision of the settings of the device that 

creates the desirable concentration of chemical vapors in the gaseous mixture. The 

imprecision in that device’s settings resulted in sometimes considerably different real 

concentrations of chemical vapors created from one experiment to another. Thus, it 

would be quite difficult to “explain” to our algorithm how sometimes quite different 

feature vectors (that were created from the data collected on different days) can belong to 

the same class. We thought that unsupervised learning such as fuzzy clustering in our 

case might actually help us with this problem. The algorithm would naturally partition 

training vectors from the same class into several different clusters (if the necessity arises) 

and increase the chances of correct classification of the unseen exemplar vectors. 

For both our fuzzy clustering algorithms, we performed a pre-clustering 

procedure, whose goal is reducing the data set for efficiency. Pre-clusters are the result of 

preliminary partitioning of the data set and they can be considered as some sort of proto-

clusters. Pre-clusters are typically very compact and have a hyperspherical shape. We 

used an improved k-means clustering algorithm for this purpose. 

4.2.4.1 Pre-clustering by Improved K-Means Clustering 

The k-means algorithm is one of the most popular clustering methods − it is very 

simple, straightforward, and robust; therefore, it has been used in a wide spectrum of 

applications [106]. This algorithm employs the most intuitive and frequently used 

criterion function in partitional clustering – the squared error criterion: 
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where K is the number of clusters in the data set; )()1( ,..., KCC are K clusters that 

the data set has been partitioned into; Qj is the number of feature vectors in each cluster; 

)( jixr is the ith feature vector belonging to the jth cluster, )( jC ; and )( jcr  is the center of the 

cluster )( jC . 

The k-means algorithm works as following: 

(1) Select the initial K cluster centers randomly over the input domain. 

(2) Assign each feature vector to its closest cluster center and compute the new cluster 

centers as cluster prototypes. Repeat this step until convergence is achieved, e.g., 

there is no reassignment of any feature vector from one cluster to another, or the 

criterion function doesn’t change noticeably anymore. 

(3) Merge and split clusters based on some heuristic information, optionally repeating 

step (2). 

As can be deducted from the above algorithm description, the traditional k-means 

algorithm requires a priori knowledge about the number K of clusters in the data set, 

which often is unknown beforehand, and can suffer from bad or unfortunate initial cluster 

centers selection [107]. We looked for improvements of the k-means algorithm similar to 

those described in [108] and [109] that would significantly reduce the algorithm’s 

drawbacks. Since we didn’t have to deal with guessing the number of possible classes in 

the data set or handling problems that large data sets normally bring with them, our task 

became significantly easier than the typical case of partitioning of unknown data set 

within framework of unsupervised learning.  
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After a number of experimentations, we developed two modifications of the 

improved k-means algorithm. The first modification was for establishing the initial pre-

clusters in the Fuzzy C-Means (FCM) clustering algorithm: 

Calculate the test threshold as a fraction of an average distance between all 

possible pairs of feature vectors in the initial data set. 

Instead of starting with K random initial points as cluster centers or an empty set 

of centers, start with the maximally possible number of centers, Q, where Q is the number 

of all feature vectors in the set. Next, eliminate the feature vectors that are too close to 

other centers from the set of possible cluster centers using the threshold value and assign 

the eliminated feature vector to the closest center. 

On each iteration, the feature vectors that were eliminated from the set of centers 

are checked once again against the new center that is under examination: if the distance 

from some vector that was assigned to another center before to current center is less than 

the distance to its previous center, reassign this point to the current center. This newly 

added modification to the clustering procedure is very important as it eliminates the 

dependency of the clustering procedure on the order of instantiating the initial cluster 

centers and merging feature vectors in the pre-clusters. 

After the tentative number of initial cluster centers has been established, the 

algorithm calculates the number of vectors in each cluster. The clusters that contain a 

smaller number of vectors than was specified by a programmer or user are eliminated as 

well. The vectors from those clusters are assigned to the nearest neighboring clusters. 

From this point, the algorithm continues clustering using an improved k-means clustering 

algorithm: at each iteration, it keeps recalculating the cluster centers, reassigning all 
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vectors to the newly created cluster centers, and eliminating those clusters that contain 

fewer vectors than a given threshold. The algorithm repeats this processing until the set 

of the cluster centers remains unchanged. 

For our second fuzzy clustering algorithm, fuzzy connectivity clustering, we made 

further modification into the improved k-means algorithm, since we had more flexibility 

in preprocessing the training data. 

First, we wanted to automate the adjustment of the number of pre-clusters and 

make it independent from the user pre-settings. For this purpose, we chose the permitted 

range for the number of initial pre-clusters in the data set first. The number of preliminary 

clusters (or pre-clusters) should correlate with the number of true classes, which is known 

in our case. We normally use the range: NKN ×≤≤× 152 , where N is the number of 

true classes and K is the final number of pre-clusters. 

Initially, the algorithm calculates the test threshold as a fraction of an average 

distance between all possible pairs of feature vectors in the data set. After that, it 

automatically adjusts the threshold value for eliminating centers based on their proximity 

to other centers so that the final number of pre-clusters fits into the given range; that is, if 

the number of pre-clusters are greater than the maximum number in the specified range, 

the program increases the threshold value by the specified learning rate, if the number of 

pre-clusters are less than the minimum number in the specified range, it decreases the 

threshold value by the specified learning rate. 

Second, we now allow having single-point clusters, which are typically outliers. 

Thus, we do not enforce any rule in this modification of the improved k-means algorithm 
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such as that each cluster has to have at least a few feature vectors as we did before 

(normally, this number is five or more). 

Using this particular modification of the improved k-means algorithm we do not 

have to worry about the outliers; therefore, we do not have to calculate the trimmed mean 

of each pre-cluster, since the embedded requirement to the pre-clusters to be compact 

excludes the possibility of outliers to be included in any of them. 

After the desirable number of pre-clusters has been established, the program 

calculates the means of all pre-clusters and uses those means as a final set of cluster 

centers. Typically, each resulting cluster contains several pre-clusters. This permits 

resulting clusters to take their own natural shape, which is not necessarily hyperspherical. 

4.2.4.2 Fuzzy Clustering 

Since fuzzy models for pattern recognition became popular among scientists, 

engineers, and statisticians in trying to reflect vagueness and imprecision of boundaries 

between group of objects in real applications, numerous fuzzy clustering algorithms, 

whose aim is to model fuzzy, i.e., ambiguous and vague, unsupervised patterns efficiently 

have emerged [62], [63], [64]. In classical or crisp clustering analysis, any piece of data, 

i.e., feature vector, can be assigned to only one cluster. Fuzzy clustering has removed that 

constraint – it allows each feature vector in the data set to belong to more than one cluster 

with different membership degrees (between 0 and 1) and vague or fuzzy boundaries 

between clusters. Thus, fuzzy clustering offers an opportunity to deal with real-life data 

that belong to more than one group, or class, at the same time; as for the feature vector 
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membership degree – it provides a measure of degree to which the given feature vector 

fits within a particular class. 

Both our fuzzy clustering algorithms take the following input files: 

 data files – there are two files, one contains the training data set, the other  

contains the testing data set; each file contains the dimension of the feature 

vectors, the number of vectors in the current data set and vectors themselves (as a 

table of row vectors). The last field of each vector is a numerical representation of 

the class that the given vector belongs to; 

 description file – the file contains the full description of all classes presented in 

the training set, including the numerical class label used in the data sets. 

In the training phase, the program reads in the training and testing data sets and 

the description of the classes used for training. We assume that the testing data set 

contains samples from the same pool of classes, i.e. there are no feature vectors in the 

testing set that belong to the classes that are not present in the training data set 

In the next step, the program preprocesses training set into pre-clusters using the 

improved k-means algorithm described above. After the set of pre-clusters has been 

established by mean of the improved k-means algorithm, our algorithm continues 

clustering using the standard FCM algorithm with some minor modifications or the fuzzy 

connectivity clustering algorithm (FCC). 

4.2.4.3 Fuzzy Classifier based on Fuzzy C-Means Clustering (FCM-based) 

Bezdek developed a family of clustering algorithms, based on a fuzzy extension 

of the least-squared error criterion [62], [110]. The FCM algorithm is one of them – it is a 
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set-partitioning method based on Picard iteration through necessary conditions for 

optimizing a weighted sum of squared errors objective function Jm (Eq. 26) [111]. 

If },...,,{ 21 QxxxX rrr
=  is a finite set of feature vectors in N-dimensional Euclidean 

space Nℜ , then the goal of the FCM algorithm is to partition this set into C clusters 

represented as fuzzy sets )()2()1( ,...,, CFFF  by minimizing the objective function Jm(U, V) 

with respect to U, a fuzzy C-partition of the data set, and to V, a set of C cluster 

prototypes (a cluster prototype is a vector that represents its cluster; in our case it is just a 

center of a given cluster): 
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In (Eq. 26) m is any real number greater than 1 (this is weighting exponent for 

iku , or fuzzifier), the value that controls the “fuzziness”, in other words, how much 

clusters may overlap. This parameter reduces the sensitivity of the cluster centers to noise 

in the data). Variable )(kxr  is the k-th N-dimensional feature vector, )(ivr  is the prototype 

(a center) of the i-th cluster, iku  is the degree of membership of kx  in the i-th cluster, 

),( )()(2 ik vxd rr  is an inner product metric (distance between vector kx  and cluster center 

iv ), Q is the number of feature vectors, and C is the resulting number of clusters. 

The computation of the degree of membership iku  depends on the definition of the 

distance measure, ),( )()(2 ik vxd rr : 

)()(),( )()(1)()()()(2 ikTikik vxvxvxd rrrrrr
−Σ−= −      ( 27 ) 

where Σ  is an arbitrary covariance matrix. 
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In the current work we assume that the shape of all clusters is hyperspherical, so 

the covariance matrix in our case is equal to the identity matrix I. Thus, the distance 

),( )()(2 ik vxd rr  in our case is Euclidean, as was described in the beginning of the current 

chapter (Eq. 1): 
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where N is the dimension of the feature vectors. 

Typically, the FCM algorithm starts by choosing the number of clusters C and the 

value of fuzzifier m (both parameters are chosen by a user), and by randomly initializing 

the membership degree matrix U under the constraint such that 1
1

=∑
=

C

i
iku  (the sum of 

memberships for each feature vector over all clusters should be equal to 1). Next, the 

initial cluster prototypes are computed, using the following formula: 
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Following this step, using the computed cluster prototypes, the fuzzy 

memberships iku  are updated according to the equation: 
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Next, the algorithm iterates between (Eq. 29) and (Eq. 30) until the memberships 

or cluster centers for successive iteration differ by less than some termination criterion,ε , 

chosen by a programmer or user. 

It is quite obvious that the standard FCM algorithm, similarly to the standard 

k-means algorithm described before, is very sensitive to the initial choice of cluster 

centers. Different choices of cluster prototypes may lead to convergence to different local 

optima, in other words, to different partitions.  In many practical situations a priori 

knowledge of the approximate locations of the initial centers does not exist, and in order 

to achieve optimal partition unsupervised tracking of classification prototypes is required. 

That is why making a preliminary assessment of the data set structure provides 

invaluable advantages over the standard approach. Thus, we used the pre-cluster centers 

obtained by running the improved k-means algorithm as a starting point for the modified 

FCM algorithm. Therefore, we did not have to guess the fuzzy memberships iku : we 

started the main loop of the FCM algorithm by calculating those memberships (Eq. 30). 

After the algorithm converges, class labels have to be assigned to each feature 

vector. The quality of clustering is indicated by how closely the feature vectors are 

associated to the cluster centers, and the level of association or classification is measured 

by the membership functions. If the value of one of the memberships is significantly 

larger than the others’ for a particular data point, then that data point is identified as being 

a part of the subset of the data represented by the corresponding cluster center. Thus, 

larger membership values indicate higher confidence in the assignment of the feature 

vector to the particular cluster. 
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We said before that the goal of the FCM algorithm is to partition some arbitrary 

set X = {x1, x2, …, xQ}  into C clusters (subgroups) represented as fuzzy sets 

)()2()1( ,...,, CFFF . Generally speaking, in fuzzy clustering each cluster (each fuzzy set 

)(iF , Ci ≤≤1 ) is a fuzzy set of all feature vectors, that is each )(iF  includes all data 

points but with different values of fuzzy membership. 

In the current research, our goal was to assign class labels to each data point as 

one does in hard clustering, meaning that at the end, each data point should belong to one 

and only one class (but probably, with different level of confidence). Thus, in our study, 

fuzzy clustering was only an auxiliary tool for reaching the ultimate goal – to discover 

structures or certain groupings in a data set and therefore a set of rules that significantly 

facilitate the process of correct labeling of newly encountered, unseen before unlabeled 

feature vectors. 

Consequently, after the FCM algorithm converges (in our case, when either 

memberships or cluster centers for successive iteration differ by less than the termination 

criterion ε  = 0.00001), the algorithm performs “hard” partitioning, meaning that at the 

end each feature vector would belong to one and only one cluster, that is, to the cluster 

whose membership function for this vector is the largest. At this point, the algorithm 

labels the finally created clusters according to the “description file” and calculates some 

statistics. It might happen that some clusters contain vectors from the different classes. If 

that is the case, the algorithm calculates its confidence in class labeling according to the 

percentage of the vectors from the major class in that cluster. 

At this point the algorithm enters a pattern recognition phase. After the labeled 

feature vectors have been clustered and each cluster was labeled as described above, we 
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constructed the fuzzy classifier over it. Again, we consider the fuzzy classifier within 

framework of kernel methods, but this time it was built around clusters that the training 

data set was partitioned into. And as in the case of FNN, we tried two different 

approaches for designing a fuzzy classifier. 

In the first approach, for each unlabeled feature vector xr  the algorithm calculates 

the value of a Gaussian kernel of this feature vector and each center of all clusters. In 

order to assign a given feature vector to one of those clusters, we have to evaluate a 

discriminant function )(xf j
r , which is in this case just a Gaussian kernel with jσ  being 

the variance of the j-th cluster, for all C final clusters ( Cj ,...,1= ): 

),()( )(1 j
j vxkxf rrr

=         ( 31 ) 

where )(1 xf j
r  is a discriminant function of type 1 for unlabeled feature vector xr  

over cluster j; )( jvr  is a center of the j-th cluster; ),( )( jvxk rr  is a Gaussian kernel. The 

cluster that has the largest discriminant function value is considered to be the winner, and 

the unlabeled feature vector is get assigned to this cluster. 

In the second approach, instead of using only the centers of the clusters, the 

discriminant function is constructed to be equal to the maximum kernel value in each 

cluster: 
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where )(2 xf j
r  is a discriminant function of type 2 for unlabeled feature vector xr  

over cluster j; )( jqx  is a feature vectors that belongs to the j-th cluster, j = 1,…,C, 

jj Qq ,...,1= ; Qj is the total number of feature vector in the j-th cluster; and ),( )( jqxxk rr  is 
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a Gaussian kernel, calculated for the unlabeled feature vector xr  and the q-th feature 

vector of the j-th luster. As in the previous case, the unlabeled feature vector xr  gets 

assigned to the cluster that has the largest value of the discriminant function )(2 xf j
r . 

After the unlabeled feature vector has been assigned to some cluster, it also gets a 

label from the cluster. If the “winning” cluster has high confidence in its label, i.e. the 

absolute majority of the vectors in that cluster belong to the same class, we have high 

confidence in the performed classification. Otherwise, our confidence might be as low as 

the percentage of the major class in the given cluster (e.g., 80%, or even 70%, but this is 

rarely the case). 

After testing the current algorithm by using the benchmark data set (the 

Wisconsin breast cancer data set), we found that the classifier based on the discriminant 

function of type 2 gives higher accuracy of classification. 
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Table 9. The results of classification accuracy of FCM-based algorithm on the Wisconsin data set 

using 7-fold cross validation. 

PARAMETERS*: 

q; th1; th2; f 

)(1 xf r  )(2 xf r  

max average max average 

20; 0.10; 0.25; 1.2 97.980 80.140 97.000 91.137 

15; 0.10; 0.25; 1.2 94.000 80.560 99.000 92.713 

12; 0.10; 0.25; 1.2 92.000 82.839 100.000 90.706 

10; 0.10; 0.25; 1.2 92.000 84.697 100.000 92.710 

8; 0.10; 0.25; 1.2 96.970 86.996 100.000 94.143 

8; 0.11; 0.25; 1.2 96.970 85.424 100.000 95.429 

8; 0.12; 0.25; 1.2 93.000 88.974 100.000 93.989 

8; 0.08; 0.25; 1.2 96.000 81.419 100.000 90.569 

8; 0.11; 0.20; 1.2 96.970 85.424 100.000 95.429 

8; 0.11; 0.10; 1.2 96.970 85.424 100.000 95.429 

8; 0.11; 0.40; 1.2 96.970 85.424 100.000 95.429 

8; 0.11; 0.25; 1.1 96.000 89.416 98.000 93.569 

8; 0.11; 0.25; 1.3 93.000 78.264 98.900 90.557 

* q − the minimum number of vectors in each cluster; th1 −  the threshold value for the 

minimum distance between two cluster centers in order to keep both of these centers for 

further clustering; th2 −  the threshold value for cluster’s variance; f −  weighting 

component for fuzzy membership function (fuzzifier). 

4.2.4.4 Fuzzy Classifier Based on Fuzzy Connectivity Clustering (FCC-based) 

The notion of “degree of connectedness” was first introduced in the context of 

studying the topology and geometry of fuzzy subsets [112], [113]. In 1996, almost twenty 

years later after its first introduction, the concept of fuzzy connectedness, or fuzzy 
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connectivity, was fully explained and successfully applied for image segmentation [114]. 

This seminal work replaced the notion of “hanging-togetherness” for image elements 

with the concept of fuzzy connectedness between them: the closer two points are and the 

greater the similarity between them, the higher the degree of fuzzy connectivity is. This 

presented a solid theoretical framework and reliable computational tools for the theory of 

fuzzy connectedness, including the use Gaussian functions among other functions as a 

measurement of fuzzy connectivity between two image elements. 

The fuzzy connectedness methods have been extensively and successfully used 

mostly in medical imaged analysis, including Multiple Sclerosis lesion quantification 

[115], [116], brain tumor assessment [117], breast density quantification via 

mammograms [118], CT colonography [119], [120], but also in some other areas of 

image analysis and processing, such as document analysis [121], processing of color 

images [122], and handwritten character recognition [123]. This concept of fuzzy 

connectedness was successfully extended from image elements to any other arbitrary 

objects to be exploited in clustering analysis [124]. 

In this thesis we examined this concept and extended the framework of fuzzy 

connectedness, or connectivity, to create a solution to our specific pattern recognition 

problem. 

From the standpoint of kernel methods, the fuzzy connectivity clustering 

algorithm is a pure essence of the kernel methods. Not only is its final discriminant, or 

pattern, function built on a kernel function, but also the initial data have been processed 

using a kernel to create a kernel matrix (also known as a Gram matrix), which in turn is 

processed by a pattern analysis algorithm to produce the final discriminant function. The 
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discriminant function is used to process the unlabeled feature vectors with the intent of 

correctly recognizing them. Therefore, all stages of this particular algorithm are involved 

in the application of kernel methods. 

Since the intermediate step of our algorithm is to create a kernel matrix, memory 

constraints may make it impossible or inefficient to store the full kernel matrix in 

memory for relatively large data sets. If this is the case, we might want to include an 

automatic step for reducing the initial data set for efficiency into our algorithm. Again, 

we have found it very efficient to use the improved k-means clustering algorithm 

described above for the purpose of data reduction. While using the version of improved 

k-means clustering that allows us to have single-point clusters, we protect ourselves from 

outliers and mislabeled exemplar feature vectors affecting our classification accuracy. 

Moreover, by keeping the pre-clusters small, compact, and perfectly hyperspherical, we 

avoid guessing the possible shape of the final clusters, which could be completely 

arbitrary. 

After creating a set of L feature vectors },...,{ )()1( LxxS rr
= , where each vector 

Sx i ∈)(r could be either a center of one of the pre-clusters (where NLN ×≤≤× 152 , 

with N is the number of true classes in the data set) or a feature vector from the training 

data set itself (in the case of small data sets or if the given vector is an outlier), the FCC 

algorithm creates an LL ×  kernel matrix K whose entries are the inner products of the 

images of the vectors in a feature space F with a feature map Φ : 

Kij ),()(),())()(( )()()()()()( jijiji xxkxxxx rrrrrr
>=ΦΦ=<Φ⋅Φ=     ( 33 ) 
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By the intrinsic properties of the kernel functions, the matrix K is symmetric since 

Kij === ),(),( )()()()( ijji xxkxxk rrrr  Kji, that is KT = K. Furthermore, since we are using the 

Gaussian kernel, all diagonal elements of K are all 1’s and therefore, all we need to store 

in memory is the strictly upper triangular part of the kernel matrix K, thus saving the 

memory resources significantly: 
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All the information the pattern analysis algorithms can gather about the training 

data and chosen feature space is contained in the kernel matrix together with any labeling 

information [88]. Once the kernel matrix has been established, it not only provides us 

with a way to estimate the number of resulting clusters within the data set, but it also 

allows the resulting clusters to have their natural forms and shapes that are often far from 

being perfectly hyperspherical. 

The algorithm we created for this thesis automatically groups the pre-clusters 

together based on the degree of closeness (similarity, affinity, or connectedness). It is 

often the case that the resulting clusters contains several hyperspherical pre-clusters; 

sometimes the feature vectors bearing the same class label form separate resulting 

clusters (or groups), which is quite understandable considering for example the fact that 
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some important attribute (or features) that cause the vectors with the same class label be 

in some way different are subtle or failed to be captured by the feature extraction 

procedure. Sometimes the outliers could be the reason for that. The outliers can be a part 

of the data as a result of some type of errors in measurements or malfunctioning of 

reading device. 

One of the major advantages of the current algorithms is that it enables us to 

identify the outliers and mislabeled samples during the training phase and either eliminate 

them from the data set completely or significantly decrease their influence on the results 

of classification accuracy during the pattern recognition phase. 

After the algorithm groups the pre-clusters together in the resulting clusters, it 

labels each cluster (going largely to what had been previously described for other 

clustering algorithms). The advantage of this algorithm is that since we don’t force the 

resulting clusters to be hyperspherical but rather let them have their natural shape, the 

confidence in the class label is significantly higher for this particular algorithm than in 

the case of clustering by the improved k-means and fuzzy c-means algorithms described 

above. 

To process unseen before feature vectors with the intent of labeling them, the 

algorithm uses the discriminant function: 

),()( )( j
j vxkxf rrr

=         ( 36 ) 

where )(xf j
r  is a discriminant function applied to an unlabeled feature vector xr  

over cluster j; )( jvr  is a center of the j-th cluster (or just a feature vector from the training 

data set in case of outliers or small training data sets); ),( )( jvxk rr  is a Gaussian kernel, and 
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the parameter σ used in that kernel function is either a variance of cluster j or some 

fraction of the average distances between all pairs in the reduced data set. The cluster that 

produces the largest value of the discriminant function is considered to be a winner. 

Then, the unlabeled feature vector gets the same class label as the winning cluster has. 

The confidence in the assigned class labeled is solidly based on the percentage of feature 

vectors with the same label over all feature vectors that found to be fuzzy connected 

through the kernel matrix and were grouped into the same cluster. 

We implemented the fuzzy connectivity clustering (FCC) algorithm in C++ using 

the object-oriented approach (see Appendix B for implementation details). The OOP of 

FCC algorithm implementation is highly beneficial compared to the procedural approach 

that was used in our other implementations: it reduces the program’s complexity 

significantly, makes the program interface more informative and considerably increases 

the overall program’s clarity, and more importantly, it facilitates the maintainability of 

the program and substantially simplifies further modifications, changes, and extensions of 

the program.  

Next, the FCC algorithm was tested by using the Wisconsin breast cancer data set 

as a benchmark data set. While tuning the parameters of the FCC algorithm to reach out 

the highest possible classification accuracy, we found that the range of the number of 

possible pre-clusters created during the execution of the algorithm is one of the 

parameters that the current algorithm is very sensitive to. 

It has been shown that the best classification results were obtained when we set 

the number of possible pre-clusters between times 2 and times 4 of the number of 

available classes in the set. The following table shows the results for different number of 
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pre-clusters selected beforehand; the values for all other parameters have been optimized 

in previous testing runs. 

Table 10. The results of classification accuracy of FCC-based algorithm on the Wisconsin data set 

using 7-fold cross validation. 

Number of Pre-clusters L (based on the 
number of true classes N in the data set) 

Classification Accuracy (%) 

max average 

72 ≤≤× LN  99.000 94.711 

62 ≤≤× LN  99.000 95.284 

52 ≤≤× LN  100.000 95.999 

42 ≤≤× LN  100.000 96.283 

5.32 ≤≤× LN  100.000 96.427 

32 ≤≤× LN  100.000 96.713 

5.22 ≤≤× LN  100.000 96.713 

22 ≤≤× LN  100.000 96.427 

 

By relaxing constraints on the number of possible initial pre-cluster in the training 

data set, we found that it is very important to keep the ratio of two parameters: a 

threshold value for the average distance between pre-cluster centers for calculating 

variances and a threshold for interpreting the fuzzy connectivity matrix less than or equal 

to 1. If this ratio is 1.5 or greater than the classification accuracy may drop from 

99%(max)/96.141%(average) to as low as 99%(max)/85.118%(average). 

Another interesting modification of the current algorithm that we created was the 

semi-supervised version of fuzzy connectivity clustering. Instead of separating the 

training and testing sets and performing the learning phase of the algorithm using just the 
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training set, we combined both sets (leaving feature vectors from the testing set 

unlabeled) and performed initial pre-clustering followed by the linking procedure through 

the kernel matrix over the entire data set. This idea makes a lot of sense because it 

simplifies the algorithm quite significantly while keeping classification accuracy almost 

as high as in the original longer version. The results for classification accuracy for this 

version varied between 100%(max)/96.284% (average) under the constraints that the 

number of pre-clusters should be at most 3.5 times greater than the number of true classes 

in the set and 100%(max)/96.426% (average) without such a constraint. 

Interestingly, by eliminating a few feature vectors from the data set (less than 4%) 

that have been consistently misclassified or linked with feature vectors from the “wrong” 

class, we easily reached almost 100% in the classification accuracy on average (for both 

modifications of the algorithm). 
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5 Experimental Results 

For the current thesis, we collected experimental results using the same 

microfabricated cantilever sensor array. This sensor array had been extensively exploited 

for the experimental testing for nearly three months, which significantly exceeded the 

most optimistic estimate of its life expectancy. 

After removing especially noisy and inconsistent data, we obtained 85 

34-dimensional feature vectors from nine different classes: 

Table 11. Class labels according to the presence of the specified concentration of different chemical 

vapors in the analyzed gaseous mixture and the number of feature vectors in each class. 

 

Analyte 

26% 18% 7% 

Class 
Number 

Number of 
Vectors 

Class 
Number 

Number of 
Vectors 

Class 
Number 

Number of 
Vectors 

Acetone 1 11 2 29 3 6 

Ethanol 4 7 5 6 6 7 

Toluene 7 11 8 3 9 8 

 

Although we kept the experimental conditions identical throughout all 

experiments, the collected data were not of equal quality. The data gathered during the 

last month of the testing experiments revealed that the sensor array was quite worn out 

from the intensive use. Most of polymer coating materials lost some of their initial 

properties after many adsorption-desorption cycles. The best indication of the exhaustion 

of some coatings were higher baselines, which are the responses to the “empty” samples, 

i.e., the samples of the dry air that do not contain any chemical vapors, and lower 
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responses to the samples contain the target chemical vapors. We found out that some 

polymer coatings could not be completely “refreshed” (brought to the initial state) after 

the long use. The experimental data of the gaseous mixtures containing toluene vapors 

(classes 7 through 9) were collected during the last month of the testing when the quality 

of the sensor was somewhat degraded. We believe that this fact largely contributed to the 

higher rate of misclassification of the toluene containing data in some cases. Therefore, 

we did not consider the data items of class 7 through 9 to be completely reliable to make 

any judgment about the algorithm’s performance and used those data very sparsely for 

the algorithm’s performance evaluation. 

We ran a large number of tests in which feature vectors from the different 

combinations of classes were presented, but in this thesis we used only a few most typical 

combinations of classes for comparison purposes to illustrate the relative effectiveness 

and accuracy of the pattern recognition algorithms. In most cases, the complete n-fold 

cross validation technique was used to evaluate the algorithm’s accuracy. We tried to 

keep the training/testing data set pairs in each case unique as much as possible. If the 

number of feature vectors belonging to the same class in the data set was large enough, 

we created testing sets without duplicates between them; otherwise, if the duplicates were 

unavoidable, we used different combinations of unlabeled feature vectors in each testing 

set. All testing sets were created in such a way that the number of feature vectors in the 

testing data set from a specific class is directly proportional to the number of feature 

vectors with the same label in the combined data set (both training and testing data sets 

combined together) and all class labels are present in the testing data set. The order of the 
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feature vectors in both training and testing sets were randomly scrambled in all cases 

before running the pattern recognition algorithm on those data. 

Thus, the results of classification accuracy in each case were calculated as an 

average over all runs for all training/testing set pairs. In the case of the XCS algorithms, 

in addition to that, the results of classification accuracy were averaged over 30 different 

program runs (30 different seeds to randomize the pseudo-random number generator) for 

each training/testing pair of the data sets. 

Table 12 shows the information on the training/testing sets created for the testing 

experiments in this thesis: 

Table 12. Information about training/testing set pairs for algorithm's accuracy evaluation. 

Test 
Number 

Class Labels 
Presented in the Set 

Total 
Number of 

Vectors 

Number of Labeled/Unlabeled Vectors 
Used in Each Test 

1 1, 4 18 (1) 12/6; (2) 12/6; (3) 12/6 

2 1, 4, 7 29 (1) 19/10; (2) 19/10; (3) 20/9 

3 2, 4, 7 47 (1) 35/12; (2) 35/12; (3) 35/12; (4) 34/13 

4 1, 2, 4, 5 53 (1) 42/11; (2) 42/11; (3) 43/10; (4) 43/10 

5 1, 2, 3, 4, 5, 6 66 (1) 50/16; (2) 50/16; (3) 49/17; (4) 49/17 

6 1, 3, 4, 6, 7, 9 47 (1) 31/16; (2) 31/16; (3) 32/15; (4) 32/15 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 85 (1) 64/21; (2) 64/21; (3) 64/21; (4) 63/22 

. 
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5.1 Extended Classifier System (XCS) 

The poor performance of the XCS algorithm using our experimental sensory data 

came as no surprise (see Table 13). We can observe how classification accuracy has been 

constantly dropping as the number of possible classes in the data set increases. 

Table 13. The results of classification accuracy of the XCS algorithm using the cantilever sensor 

array data. 

Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

average of max average of average 

1 1, 4 75.555 64.815 

2 1, 4, 7 46.556 36.099 

3 2, 4, 7 53.184 41.309 

4 1, 2, 4, 5 43.485 29.765 

5 1, 2, 3, 4, 5, 6 28.217 22.702 

6 1, 3, 4, 6, 7, 9 31.488 21.964 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 14.286 9.470 

 

There are two main reasons for such low classification accuracy of XCS in the 

case of our sensory data. 

The first reason for that is a small number of feature vectors in the training set. 

This algorithm was originally designed to learn on a sufficiently large number of the 

input vectors. As we found out testing this algorithm on the benchmark data sets, in order 

to reach the peak of its ability to classify a new input vector highly accurate, the 

population of classifiers of XCS should contain a large number of very experienced 
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classifiers, where the number of input vectors Q should be much greater than the number 

of features N in each vector, Q >> N. This condition is obviously not possible without a 

sufficiently large training data set. 

The second reason for low classification of XCS is the way we used to encode the 

feature values into the binary numbers, that is we used only one bit to encode each 

number n: if n < 0.5, then use 0; otherwise, use 1 to encode that number. There is hope 

that by increasing of a number of bits that are used to encode each feature value into a 

binary number, we can increase the accuracy of each classifier in the system, hence 

increase the classification accuracy of the XCS algorithm as a whole. 

5.2 Radial Basis Function Neural Network (RBF NN) 

Just slightly better were the results of classification accuracy of the RBF NN 

algorithm on the cantilever sensor array experimental data (see Table 14). The reasons for 

its poor performance are similar to those of the XCS algorithm: a small number of 

training set compare to the high vector dimensionality and a relatively large number of 

different classes in the data set compared to the total number of the feature vectors. 

These results are in complete agreement with our initial assumption that the 

conventional neural network algorithms are not quite suitable for use with the cantilever 

sensor array data, when the pattern recognition algorithm should be able to extract all 

needed information about the data from a considerably small number of the exemplar 

vectors. 
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Table 14. The results of classification accuracy of the RBF NN algorithm using the cantilever sensor 

array data. 

Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 50.000 50.000 

2 1, 4, 7 55.560 41.853 

3 2, 4, 7 58.330 55.285 

4 1, 2, 4, 5 50.000 35.908 

5 1, 2, 3, 4, 5, 6 37.500 33.363 

6 1, 3, 4, 6, 7, 9 26.670 24.168 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 28.570 27.055 

 

5.3 Support Vector Machines (SVMs) 

Traditionally, the SVM algorithm is considered to be the best performer among 

other pattern recognition algorithms for the data sets that contain a small number of the 

highly dimensional feature vectors. 

However, as we can see from the testing results provided below (Table 15, Table 

16, and Table 17), the SVM algorithm performs well only on the data from the limited 

number of classes. Once the diversity of the feature vectors in the same data set increases, 

classification accuracy of the SVM algorithm drops (sometimes significantly). Even 

though the Gaussian kernel is typically considered to be the best choice for the kernel, in 

our case the best classification accuracy was obtained with the use of the simplest kernel 

function, the linear kernel. 
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Table 15. The results of classification accuracy of the SVM algorithm with the Gaussian kernel using 

the cantilever sensor array data. 
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Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 63.636 61.818 

5 1, 2, 3, 4, 5, 6 64.706 63.603 

6 1, 3, 4, 6, 7, 9 80.000 71.250 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 61.905 58.875 
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Table 16. The results of classification accuracy of the SVM algorithm with the linear kernel using the 

cantilever sensor array data. 

Linear kernel: )()()( ),( iil sxsxk rrrr
⋅=  

Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 81.818 78.409 

5 1, 2, 3, 4, 5, 6 88.235 86.397 

6 1, 3, 4, 6, 7, 9 100 98.333 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 85.714 82.413 
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Table 17. The results of classification accuracy of the SVM algorithm with the polynomial of degree 3 

kernel using the cantilever sensor array data. 

Polynomial kernel: 3)()()( )1(),( iip sxsxk rrrr
⋅+=  

Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 81.818 80.909 

5 1, 2, 3, 4, 5, 6 76.471 74.265 

6 1, 3, 4, 6, 7, 9 80.000 77.500 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 71.429 68.236 

 

Surprisingly, the SVM algorithm, despite its high reputation of being the best 

pattern recognition algorithm for the compact data sets with high dimensional feature 

vectors, did not come up to our expectations for the multi-class data. 

5.4 Fuzzy Neural Network (FNN) 

Even though the FNN algorithm is the simplest among all pattern recognition 

algorithms that had been used in the current research, it performed extremely well on our 

cantilever sensor array data (see Table 18 and Table 19). We expected this algorithm to 

be highly accurate on data that are not noisy and do not contain outliers, but the fact that 

the FNN algorithm is doing so well on quite compact data sets that contain the feature 

vectors from the large pool of different classes was quite surprising. 
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Table 18. The results of classification accuracy of the FNN algorithm with the discriminant function 

f 1 using the cantilever sensor array data. 
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Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 100.000 92.728 

5 1, 2, 3, 4, 5, 6 100.000 92.463 

6 1, 3, 4, 6, 7, 9 100.000 96.770 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 95.240 87.230 
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 Table 19. The results of classification accuracy of the FNN algorithm with the discriminant function 

f 2 using the cantilever sensor array data. 
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Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 100.000 90.228 

5 1, 2, 3, 4, 5, 6 100.000 90.993 

6 1, 3, 4, 6, 7, 9 100.000 96.770 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 95.240 88.365 

 

5.5 Fuzzy Classifier based on Fuzzy C-Means Clustering 

(FCM-based) 

As we predicted based on the benchmark data sets testing, the fuzzy classifier 

based on the FCM algorithm performed very well on our sensory data (see Table 20 and 

Table 21). Its classification accuracy is similar to our FNN algorithm. Even though this 

algorithm is more complex than FNN, we believe that it is more reliable in a broader 

range of situations, for example in the case of outliers and mislabeled samples, since it 

allows us to easily locate such data and exclude those samples from the classification 

phase. 
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Table 20. The results of classification accuracy of the fuzzy classifier based on FCM-based algorithm 

with the discriminant function f 1 using the cantilever sensor array data. 

),()( )(1 j
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Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 100.000 87.728 

5 1, 2, 3, 4, 5, 6 100.000 88.143 

6 1, 3, 4, 6, 7, 9 100.000 96.668 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 90.480 85.875 
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Table 21. The results of classification accuracy of the fuzzy classifier based on FCM-based algorithm 

with the discriminant function f 2 using the cantilever sensor array data. 
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Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 100.000 95.000 

5 1, 2, 3, 4, 5, 6 93.750 89.523 

6 1, 3, 4, 6, 7, 9 100.000 96.668 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 90.480 85.875 

 

5.6 Fuzzy Classifier based on Fuzzy Connectivity Clustering 

(FCC-based) 

Table 22 and Table 23 show the results of classification accuracy of the FCC 

algorithm. As expected, based on its intrinsic properties and recent improvements, FCC 

performed the best among all pattern recognition algorithms on our sensory data. 
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Table 22. The results of classification accuracy of the semi-supervised version of the FCC-based 

algorithm using the cantilever sensor array data. 

Semi-supervised Clustering (Short Version): 

labeled and unlabeled feature vectors are clustered together 

Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 96.667 

2 1, 4, 7 100.000 97.917 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 100.000 100.000 

5 1, 2, 3, 4, 5, 6 100.000 92.463 

6 1, 3, 4, 6, 7, 9 100.000 93.542 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 95.238 87.175 
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Table 23. The results of classification accuracy of the full version of the FCC-based algorithm that 

clustered labeled vectors separately from unlabeled ones using the cantilever sensor array data. 

Unsupervised Clustering (Full Version): 

labeled feature vectors are clustered separately from unlabeled 

Test 
Number 

Class Labels 
Presented in the Set 

Classification Accuracy (%) 

max average 

1 1, 4 100.000 100.000 

2 1, 4, 7 100.000 100.000 

3 2, 4, 7 100.000 100.000 

4 1, 2, 4, 5 100.000 100.000 

5 1, 2, 3, 4, 5, 6 100.000 97.059 

6 1, 3, 4, 6, 7, 9 100.000 95.000 

7 1, 2, 3, 4, 5, 6, 7, 8, 9 100.000 90.639 
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6 Conclusion and Future Work 

Within the framework of the current research several objectives have been 

achieved. 

It has been found that the information extracted from just the resonance frequency 

shifts of cantilever sensors in the microfabricated array during exposure of the array to 

the target analyte vapors is mostly sufficient for creating fingerprints of the analytes. The 

measured resonance frequency shift responses of the cantilevers can be used as an input 

to the variety of pattern recognition algorithms for the purpose of creating a reliable 

system that is capable of detecting and recognizing a variety of target analytes and 

quantitative estimation of the relative concentration of those analyte vapors in a gaseous 

mixture, for example in the ambient air. 

During the multiple experiments with microfabricated cantilever sensors it has 

been demonstrated that the use of the array of cantilevers with some of cantilevers being 

functionalized by coating their surface with thoroughly chosen commercial polymers has 

significantly improved the selectivity of the sensor array as a whole to the target analytes.  

As a result of experimental work, the cantilever resonance frequency responses 

during exposure of the array of cantilever sensors to the dry air and the air containing 

different concentration (high – 26%, medium – 18%, and low – 7%) of vapors of the three 

different organic solvents: acetone, ethanol, and toluene, have been collected.  

After careful examination, the procedure of extracting the most important 

information out of 7000 different measurements for each sample has been created. By 
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applying the created strategy for feature extraction, the data set of 34-dimensional feature 

vectors has been created. 

The main goal of the current research was to create pattern recognition algorithms 

that can be effectively used as a reliable detection system with the specific sensory data 

obtained during the experiments with a microfabricated cantilever sensor array and 

further feature extracting procedure. 

Five different pattern recognition algorithms have been created for the current 

research. All of those algorithms and the open source implementation of the sixth 

algorithm (multiclass SVMs) were used for testing on benchmark data sets and collected 

sensory data. It has been shown that the kernel-based algorithms have the greatest 

potential to be used with the microfabricated cantilever sensor array in the detection 

systems. Four out of six pattern recognition algorithms have produced high accuracy 

classification results upon processing the cantilever sensor array data. 

Despite the fact that the extended classifier system (XCS) algorithm showed quite 

a good performance on the benchmark data sets, it failed to produce equally good 

classification results on our sensory data. Even though we believe that XCS could be 

successfully modified to accommodate specific properties of the sensory data, especially 

a very small size of the data set and high dimensionality of the feature vectors, in order to 

increase its classification accuracy, we do not consider this algorithm as a good choice 

for the cantilever sensor array detection system. 

It has been also shown that the radial basis function neural network (RBF NN) 

algorithm is not especially effective in the case of small training data sets, high 
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dimensionality of the feature vectors, and multiclass environment. We believe that further 

attempts to employ the neural networks as a pattern recognition algorithm to be used with 

a microcantilever sensor array for detection, recognition, and quantitative estimation of 

the target analytes do not hold considerable promise. 

The SVM algorithm has a solid reputation of being the best performer in the case 

of the limited number of high dimensional feature vectors available for training. 

However, this algorithm is very sensitive to the noisy data and outliers. Since the sensory 

data are prone to suffer from noise and a variety of reading device errors, the SVM 

algorithm cannot be one hundred percent reliable in every situation that may be 

encountered during the detection process. Besides, it has been demonstrated that the 

classification accuracy of the SVM algorithm dropped significantly with the increase of 

the number of different classes in the limited experimental data. However, in many cases, 

SVM still might provide satisfying results and therefore, can be cautiously used as a part 

of the detection system. 

Fuzzy logic and the notion of fuzziness provide a useful framework for 

representing uncertainty in the sensory data. It has been shown that the fuzzy approach to 

creating a reliable classifier system is particularly relevant for the cantilever sensor array 

data. The fuzzy neural network (FNN) algorithm that is essentially the kernel-based fuzzy 

classifier has produced the excellent results on the cantilever sensor array data. This 

algorithm is very simple and asymptotically very efficient. In the case of absence of the 

outliers and mislabeled samples, it should be the first choice for the pattern recognition 

algorithm to be used with sensory data. 
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However, the noisy data and outliers are quite common among the cantilever 

sensor array data. In this thesis it has been shown that a combination of a clustering 

analysis, as a pre-processing technique, and a fuzzy classifier creates a powerful tool for 

the simultaneous, accurate, fast, more reliable and robust detection and identification of 

the target analytes in a gaseous mixture with the use of a microcantilever sensor array. 

The combination of unsupervised and semi-supervised data analysis of the labeled 

training data set allows identifying the outliers and mislabeled data and creating a basis 

for the highly precise fuzzy classifiers to be used for unseen before data samples. It has 

been determined that fuzzy classifiers based on the fuzzy c-means clustering and fuzzy 

connectivity clustering algorithms clearly outperformed the traditionally used neural 

networks and in some cases even the SVM algorithm and could be considered as the most 

promising pattern recognition algorithms to be used with the microcantilever sensor array 

as a selective and quantitative chemical detection system. 

Thus, in this thesis it has been demonstrated that a micromechanical array of 

cantilever sensors can be used in combination with the certain types of pattern 

recognition algorithms to examine the gaseous mixtures and detect target analytes with 

high accuracy (100% in most cases). A combination of a clustering analysis and fuzzy 

classifiers creates a family of powerful pattern recognition algorithms for the cantilever 

sensor array data. In the case of consistent and noiseless sensory data FNN could be the 

best choice for the pattern recognition algorithm. 

Future work needs to be focused on the further modification of the mentioned 

above kernel-based fuzzy classifier algorithms as a part of the detection systems. There 



107 

 

are some useful features that can be easily incorporated into those algorithms. For 

example, 1) the automatic detection of the noisy data and outliers and removing them 

from the training data sets, and 2) calculating the standard deviation of a cluster based on 

the density of the feature vectors in it, instead of the averaged distances between feature 

vectors and a center of the cluster.  

Another research area that should be given close attention is an analysis of the 

analyte mixtures. The preliminary test results with binary mixtures of acetone and ethanol 

vapors obtained during the current research are highly supportive of the idea that these 

pattern recognition algorithms are precisely the right method for the detection, 

identification, and quantitative estimation of every component in the complex mixtures of 

the target analytes, even in the absence of exhaustive training data. Therefore, more 

studies have to be done in that direction as well. This ability to successfully analyze 

analytes’ mixtures will greatly increase the range of classification of the detection system 

and help to meet increasing demand for such systems. 
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7 Appendices 

7.1 Appendix A – Implementation Details of XCS Algorithm 

The XCS classifier system has been fully implemented in C++ using the object-

oriented approach. For this purpose, five classes have been created: 

1. Class Counter – responsible for creating a unique identification number for each 

classifier as well as for keeping track of the total number of the GA performed. 

2. Class Clock – responsible for time stamping each classifier at birth and updating 

the time-stamp every time the classifier happens to be in [A] during the GA. This 

class also keeps track of the time when explore approach in selecting the action in 

[A] has been used. 

3. Class Input – responsible for creating input strings to send to the classifier 

systems and all operation related to the input. 

4. Class Classifier – responsible for creating classifiers, as well as for all operation 

related to the classifiers. 

5. Class XCS – responsible for creating the entire classifier system that contains 

members of both Input and Classifier classes (along with the others) and running 

the algorithm throughout the entire experiment. 
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Table 24. A list of important parameters and their values used in the current implementation. 

Parameter Value Description 

Ninit 100 Initial population size 

Nmax 500 Maximum population size 

θmna 4 Minimum number of classifiers that [M] should contain 
before forming [A]; otherwise covering occurs 

β 0.2 Learning rate for prediction, prediction error, fitness, and 
estimate of the size of [A] update 

γ 0.71 Discounting factor for calculating the total Reward (used 
only for multi-step problems) 

θga 25 Do GA if the average time since the last GA exceeds this 
threshold 

α 0.1 Parameter for calculating the error function 

ε0 5.0 Parameter for calculating the error function 

ν 4.4 Parameter for calculating the error function 

χ 0.8 Probability of Crossover 

μ 0.04 Probability of Mutation 

P# 0.33 Probability of “Don’t Care” 

δ 0.1 Value of a fraction used in the deletion scheme 

pI 100.0 Initial value of prediction (set at birth) 

εI 10.0 Initial value of prediction error (set at birth) 

FI 0.01(×1000) Initial value of fitness (set at birth) 

EE 600 Exploration experience 

rate1 50 Exploration rate 1 

rate2 10 Exploration rate 2 
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rate3 5 Exploration rate 3 

rate4 2 Exploration rate 4 

NM 8 Niche mutation rate 

DE 15 Deletion experience 

SE 20 Subsumption experience 
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7.2 Appendix B – Implementation Details of FCC Algorithm 
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Figure 22. Class diagram of the OOP implementation of the FCC algorithms. 
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