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Abstract We present an approach that allows a robot
to learn task representations from its own experiences
of interacting with a human. The robot follows a hu-
man teacher and maps its own observations of the en-
vironment into a representation of what has constituted
the human’s demonstration. The robot then builds a
representation of the experienced task in the form of a
behavior network. To enable this we introduce an archi-
tecture that extends the capabilities of behavior-based
systems by allowing the representation and execution of
complex and flexible sequences of behaviors. We demon-
strate this architecture in a set of experiments in which
a mobile robot learns representations for multiple tasks
and is able to execute the tasks, even in changing envi-
ronments.

1 Introduction

Teaching robots to perform various tasks has become a
topic of growing interest for many researchers. The ma-
jority of the approaches to this problem to date has been
limited to learning policies, collections of reactive rules
that map environmental states to actions. We are inter-
ested in developing a mechanism that would allow robots
to learn representations of high level tasks, based on the
underlying capabilities already available to the robot.
More specifically, instead of having to write, by hand,
a controller that achieves a particular task, we want to
enable a robot to automatically construct it from the
experience it had while interacting with a human. It
is especially apt to address this problem in the context
of behavior-based systems (BBS), where representation
has not been studied extensively [13], yet whose robust
and adaptive properties are suitable to the human-robot
interaction domain. Towards this goal, we have devel-
oped a behavior representation that extends the capa-
bilities of BBS and addresses some of their limitations.

In behavior-based systems [2, 14], behaviors are typ-
ically invoked by build-in reactive conditions, and as
a consequence, they are unnatural for, and thus rarely
applied to complex problems that contain temporal se-
quences. Since we seek a method that allows learning
representations of general tasks that would require the
sequential activation of the robot’s behaviors, we need a
mechanism that would allow first the representation and
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then the execution of such sequences. Attempts to ad-
dress the issue of representing and executing complex se-
quential tasks have resulted in two distinct approaches:
1) hybrid control architectures, and 2) behavior-based
architectures that only partly address the above prob-
lem. The representation that we describe in this paper
is a behavior-based solution, one that does not alter the
nature of the underlying systems or change its represen-
tation or time-scale.

Another limitation of BBS that we address is that
behaviors are typically redesigned for each task, as new
task specifics require different activation conditions for
each of the behaviors in the system. Therefore, behav-
iors have to be continuously updated and customized
for each task, even if the underlying processing remains
unchanged. Since we are interested in automating the
process of BBS generation, we have developed a behav-
ior representation that allows for flexible activation con-
ditions, without the need for behavior redesign or re-
compilation when switching to another task.

In the remainder of the paper we describe our behav-
ior representation and the behavior network construct
that uses them to represent general strategies and plans.
Next we present the concept of learning task represen-
tations from experienced interaction with humans, and
demonstrate our experimental results. We discuss the
relevant previous work in this area and conclude with a
summary and directions for future research.

2 Behavior representation

We are using a behavior-based architecture that allows
the construction of the robot task in the form of behav-
ior networks [16]. This architecture provides a simple
and natural way of representing complex sequences of
behaviors and the flexibility required to learn high-level
task representations.

In our behavior network, the links between behav-
iors represent precondition-postcondition dependencies;
thus the activation of a behavior is dependent not only
on its own preconditions (particular environmental states)
but also on the postconditions of its relevant predeces-
sors (sequential preconditions). We introduce a repre-
sentation of goals into each behavior, in the form of
abstracted environmental states. The met/not met sta-
tus of those goals is continuously updated, and com-
municated to successor behaviors through the network
connections, in a general process of activation spread-
ing. Embedding goal representations in the behavior
architecture is a key feature of our behavior networks
and, as we will see, critical aspect of learning task rep-



resentations.

We distinguish between three types of sequential pre-
conditions which determine the activation of behaviors
during the behavior network execution:

¢ Permanent preconditons: preconditions that must
be met during the entire execution of the behavior. Any
change from met to not met in the state of these precon-
ditions automatically deactivates the behavior. These
preconditions enable the representation of sequences of
the type: the effects of some actions must be perma-
nently true during the execution of this behavior.

e Enabling preconditions: preconditions that must
be met immediately before the activation of a behav-
ior. Their state can change during the behavior exe-
cution, without influencing the activation of the behav-
ior. These preconditions enable the representation of
sequences of the type: the achievement of some effects
is sufficient to trigger the execution of this behavior.

e Ordering constraints: preconditions that must
have been met at some point before the behavior is ac-
tivated. They enable the representation of sequences of
the type: some actions must have been ezecuted before
""" % Ordering precondition
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Figure 1: Example of a behaviof“;etwork
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From the perspective of a behavior whose goals are
Permanent preconditions or Enabling precondi-
tions for other behaviors, these goals are what the plan-
ning literature [17] calls goals of maintenance and of
achievement, respectively. In a network, a behavior
can have any combination of the above preconditions.
The goals of a given behavior can be of maintenance for
some successor behaviors and of achievement for others.
Thus, since in our architecture there is no unique and
consistent way of describing the conditions representing
a behavior’s goals, we distinguish them by the role they
play as preconditions for the successor behaviors. Fig-
ure 1 shows a generic behavior network and the three
types of precondition-postcondition links.

A default Init behavior initiates the network links
and detects the completion of the task; it has as prede-
cessors all the behaviors in the network. All behaviors in
the network are continuously running (i.e., performing
the computation described below), but only one behav-
ior is active (i.e., sending commands to the actuators)
at a given time.

Similar to [10], we employ a continuous mechanism
of activation spreading from the behaviors that achieve
the final goal to their predecessors (and so on), as fol-
lows: each behavior has an Activation level that repre-
sents the number of successor behaviors in the network
that require the achievement of its postconditions. Any
behavior with activation level greater than zero sends ac-
tivation messages to all the predecessor behaviors that
do not have (or have not yet had) their postconditions
met. This activation level is set to zero after each exe-
cution step, so that at the next step it could be properly
re-evaluated, in order to respond to any environmental
changes that might have occurred.

The activation spreading mechanism works together
with precondition checking to determine whether a be-
havior should be active, and thus able to execute its
actions. A behavior is activated iff:

( Activation level !=0 ) AND

( All ordering constraints = TRUE ) AND

( All permanent preconditions = TRUE ) AND

(( All enabling preconditions = TRUE ) OR

( the behavior was active in the previous step ))

The behavior network representation has the ad-
vantage that it can adapt to environmental changes,
whether they be favorable (achieving the goals of some
of the behaviors, without them being actually executed)
or unfavorable (undoing some of the already achieved
goals). Since the conditions are continuously monitored,
the system executes the behavior that should be active
according to the current environmental state.

3 Learning from human demonstrations

3.1 The demonstration process

In a demonstration, the robot follows a human teacher
and gathers observations from which it constructs a task
representation. The ability to learn from observation
is based on the robot’s ability to relate the observed
states of the environment to the known effects of its
own behaviors.

In this learning mode, the robot follows a human
teacher, while all its available behaviors are continuously
monitoring the status of their postconditions (without
executing any of their actions). Whenever a behavior
signals the achievement of its effects, this represents an
example of the robot having observed something it is
also able to do. The fact that the behavior postcondi-
tions are typically abstracted environmental states al-
lows the robot to interpret high-level effects (such as
approaching a target, a wall, or being given an object).

Thus, embedding the goals of each behavior into its
own representation enables to robot to perform a map-
ping between what it observes and what it can perform.
This provides the information needed for learning by ob-
servation. This also stands in contract with traditional
behavior-based systems, which do not involve explicit
goal representation and thus any computational reflec-
tion.

Of course, if the robot is shown actions for which it
does not have any representation, it will not be able to
observe or learn from those experiences. For the pur-
poses of our research, it is reasonable to accept this con-
straint; we are not aiming at teaching a robot new be-
haviors, but at showing the robot how to use its existing
capabilities in order to perform more complicated tasks.

Next, we present the algorithm that constructs the
task representation from the observations the robot has
gathered during the demonstration.

3.2 Building the task representation from
observations

During the demonstration, the robot acquires the sta-
tus of the postconditions for all of its behaviors, as well
as the values of the relevant behavior parameters. For
example, for a parameterizable Track behavior, which
takes as parameters a desired angle and distance to a
target, the robot continuously records the observed an-
gle and distance whenever the target is visible (i.e., the



Track behavior’s postconditions are true). The last ob-
served values are kept as learned parameters for that
behavior.

Before describing the algorithm, we present a few
notational considerations. Suppose a behavior A, whose
postconditions are true within the interval [¢14,%24] and
a behavior B, that is active within the interval [t1,t25]
(see Figure 2).

e If t1p > tl4 and tlp < t24, behavior A is a pre-
decessor of behavior B. Moreover, if t2p < t24, the
postconditions of A are permanent preconditions for B
(case 1). Else, the postconditions of A are enabling pre-
conditions for B (case 2).

e If t1p > 124, behavior A is a predecessor of behav-
ior B and the postconditions of A are ordering precon-
ditions for B (case 3).

Behavior A Behavior A Behavior A
]
Behavior B Behavior B Behavior B
— e
1, tl 2 12, tl, tlg 2, 2, tl, 12, tlp 25
case 1 case 2 case 3

Figure 2: The three precondition types

The general idea of the algorithm is to find the in-
tervals when the effects of all the behaviors have been
true and then to find, for all behaviors, if their ef-
fects have been active in overlapping intervals or in
sequence. The list of intervals is ordered temporally, so
one-directional comparisons are all that are needed; no
reverse precondition-postcondition dependencies could
exist.

Behavior network construction

1. Filter the data in order to eliminate the false indica-
tions of a behavior’s effects. These cases can be detected
as having very small durations or unreasonable values of
the behavior parameters.
2. Build a list of intervals for which the effects of any be-
havior have been true, ordered by the time these events
happened. These intervals contain information about the
behavior they belong to and the values of the parame-
ters (if any) at the end of the interval. Multiple intervals
related to the same behavior will generate different in-
stances of that behavior.
3. Initialize the behavior network as empty.
4. For each interval in the list, add to the behavior net-
work an instance of the behavior it corresponds to. Each
behavior is identified by a unique ID to differentiate be-
tween possible multiple instances of the same behavior.
5. For each interval I; in the list:

For each interval I, at its right in the list:

Compare the end-points of the interval I; with
those of all other intervals I, on its right in the list:
(we denote the behavior represented by I; as J and the
behaviors represented in turn by I with K)

o If ¢t2; > t2;, then the postconditions of J are per-
manent preconditions for K (case 1). Add this per-
manent link to behavior K in the network.

o If t2; < t2; and t1ly < t2;, then the postconditions
J are enabling preconditions for K (case 2). Add
this enabling link to behavior K in the network.

e If t2; < t1; then the postconditions of J are order-
ing preconditions for K (case 3). Add this ordering
link to behavior K in the network.

4 Experimental results

We implemented and tested our concepts on a Pioneer
2-DX mobile robot, equipped with two rings of sonars
(8 front and 8 rear), a SICK laser range-finder, a pan-
tilt-zoom color camera, a gripper, and on-board compu-
tation on a PC104 stack.

Before describing the experiments, we define the
evaluations criteria we used in order to analyze the ex-
perimental results, specifically the notions of success
and failure. We define a successful experiment to be
one for which all of the below properties hold true:

e the robot learns the correct task representation for
the demonstration,

e the robot correctly reproduces the demonstration,

e the task performance finishes within a certain period
of time (in same and also in changed environments),

e the robot’s reports on its reproduced demonstration
(ordering and characteristics of demonstrated actions)
and user observation of robot’s performance match and
represent the actual task demonstrating by the human.

We characterize an experimental as having failed if
any one of the properties below holds true:

e the robot learns an incorrect representation of the
demonstrations and thus performs incorrectly,

e the time limit allocated for the task is exceeded,

e the robot learns a correct representation but per-
forms it incorrectly.

4.1 Learning from demonstration

We have designed three different experiments which rely
on navigation and object manipulation capabilities of
the robot. Initially, the robot was given a behavior set
that allowed it to track colored targets, open doors, pick
up, drop, and push objects.

0° . 180°

a) Space coverage using b) Principle for [0, 180]° target tracking
laser-rangefinder and camera by merging vision & laser data
Figure 3: Merging laser and visual information for track-
ing

The Track behavior allows the robot to follow col-
ored targets at any distance in the [30, 200] cm range
and any angle in the [0, 180] degree range. The behavior
merges the sensory data from the color camera and the
laser range-finder in order to enable the robot to track
targets that are anywhere in the camera or the laser
field of view, thus increasing the combined field of view
of the robot (see Figure 3). The robot uses the camera to
initially detect the target and then continues to track it
with the laser after it goes out of the visual field. Aslong
as the target is visible to the camera, the robot uses its
position in the visual field (Zimage) to infer an approx-
imate angle to the target ayisivie (the “approximation”
comes from the fact that we are not using precise cali-
brated camera data and we compute it without taking
into consideration the distance to the target). We get
the real distance to the target distiarget_visivie from the



laser reading in a small neighborhood of the o isibie an-
gle. When the target disappears from the visual field,
the robot continues to track it with the laser by looking
in the neighborhood of the previous position in terms of
angle and distance which are now computed as aitracked
and diStiarget_tracked- Thus, by merging the informa-
tion from two types of sensors, camera and laser, the
Track behavior gives the robot the ability to keep track
of positions of objects around it, even if they are not
currently in the camera’s field of view.

The behaviors were implemented using AYLLU [19],
an extension of C for development of distributed control
systems for mobile robots.

We performed the three experiment sets in a 4m x
6m arena. They consisted of a demonstration phase (the
human presented a task to the robot and the robot built
a task representation) and the execution phase, when
the robot performed the learned task.

Learning to visit a number of targets in a
certain order

The goal of this experiment set was to test the model’s
ability to teach the robot to reach a set of targets in the
order indicated by the arrows in Figure 4. The robot’s
behavior set contains a Track behavior, parameteriz-
able in terms of the colors of targets that are known to
the robot. Therefore, during the demonstration phase,
different instances of the same behavior produced out-
put according to their settings.
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Figure 4: Experimental setup for the Visit targets task
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Figure 5: Task representation learned from the Visit
targets demonstration

During the five demonstration trials we performed,
the robot learned the correct representation for this task
(Figure 5). The parameters of the Track behavior (in
the order they appear in the graph) are: the observed
color of a target, the observed angle to the target (in

degrees) and the observed distance to the target (in
mm). All the precondition-postcondition dependencies
between behaviors in the network are ordering type
preconditions; this is evident in the robot’s observation
data presented in Figure 6. In all experiments the robot
met the allotted 5-minute time constraint for this task.
We also experimented with a changed environment (Fig-
ure 4(b)); in all five trials the robot correctly performed
the task it had learned in the previous setup.
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Figure 6: Observation data gathered during the demon-
stration of the Visit targets task

Learning to slalom

In this experiment set, the goal was to test the model’s
ability to teach a robot to slalom through four targets
placed in a line, as shown in Figure 7(a). We changed
the size of the arena to 2m x 6m for this task.
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Figure 9: Task representation learned from the Slalom
demonstration

During 5 different trials the robot learned the cor-
rect task representation as shown in the behavior net-
work from Figure 9. For this case, the relation between
behaviors that track consecutive targets is of enabling
precondition type, since for this environmental setup,
the robot began to detect (and therefore to track) a
new target while still being near the previous one.

We performed 20 experiments, in which the robot
correctly executed the slalom task in 85% of the cases.



The failures consisted of two types: 1) the robot, after
passing one “gate”, could not find the next one due to
the limitations of its vision system; and 2) the robot,
while searching for a gate, turned back towards the al-
ready visited “gates”.

Figure 7(b) shows the approximate trajectory of the
robot executing the slalom task on its own and Figure 8
shows the time of passing each gate averaged over five
of the successful experiments.

Learning to traverse “gates” and move ob-
jects from one place to another

This experiment set tests the model’s ability to han-
dle tasks of increased complexity, as it involves the
robot’s object manipulation capabilities and also learn-
ing higher-level behaviors such as going through a door/

gate. Moving objets and taversing gates task
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Figure 12: Task representation learned from the Object
manipulation demonstration

The setup for this experiment is presented in Fig-
ure 10. Close to the green target there is a small or-
ange box. In order to teach the robot that the task is
to pick up the orange box placed near the green tar-
get (the source), the human led the robot to the box,
then when sufficiently near it, placed the box between
the robot’s grippers. After leading the robot through
the “gate” formed by the blue and yellow target, when
reaching the orange target (the destination), the human
took the box from the robot’s gripper. During this ex-
periment, all three types of behavior preconditions were
detected, as can be seen in the learned behavior network
representation in Figure 12. The ability to track targets
within a [0, 180] degree range allows the robot to learn
to naturally execute the part of the task relative to go-
ing through a “gate”, although the robot did not have
a pre-existing behavior for this capability.

The robot built a correct task representation in 90%
of the cases (out of 10 trials). The “errors”, in fact,
represented specialized versions of the correct represen-
tation. The robot correctly executed the task in 90% of
the cases (out of 10 trials in which the robot was given
a correct task representation). The failure involved ex-
ceeding the allocated amount of time for the task. This
happened when the robot failed to pick up the box be-
cause it was too close to it and inadvertently pushed it
along (and thus kept it invisible) while it was searching
for it. Figure 11 shows the robot’s progress during the
successful execution of the task, more specifically the
instants of time or the intervals during which the post-
conditions of the behaviors in the network were true.

Discussion

The approach we presented allows a robot to automat-
ically build reliable task representations from only one
human demonstration. Furthermore, the tasks the robot
is able to learn can embed arbitrarily long sequences of
behaviors and simultaneous behaviors, which become
encoded within the behavior network representation.
Also, as is seen in the third experiment set, in the ab-
sence of a GoThroughGate behavior, the robot is able to
represent that part of the task in a more concise manner
than if the controller were to be designed by hand.

As any one-shot learning system, after seeing only a
single demonstration of the task to be learned, our sys-
tem learned a potentially overly specialized representa-
tion of the task. Additional demonstrations of the same
task would allow it to generalize at the level of the con-
structed behavior network. Standard methods for gen-
eralization can be directly applied within our framework
and we will explore them in our future work.

Another approach which we are already investigating
is to allow the human to signal the saliency of partic-
ular events or objects. While this does not eliminate
irrelevant environment state from being observed, it bi-
ases the robot to notice and (if capable) capture its key
features.

5 Discussion and related work

The work presented in this paper combines the behavior-
based systems’ (BBS) capability to operate in uncertain,
unstructured, dynamically changing environments, with
robot learning techniques, to enable robots to build flex-
ible representations of complex tasks.

The ability to represent and execute sequences is
necessary for learning the types of tasks we are inter-
ested in teaching robots. This is particularly relevant in
the behavior-based framework we work with, where se-
quential behavior is usually triggered through the world,
rather than through internal sequences [2, 14]. By aug-
menting the behaviors with representations of their goals
(abstractions of environmental states), we take advan-
tage of both the ability of the deliberative, STRIPS-like
architectures to operate at high-level of abstraction, and
the robustness of BBS. The common approach to bridg-
ing the gap between these architectures is the use of
the hybrid (or three-layer) systems (e.g., [5], [1], [3]),
which need a middle layer to solve the difference in rep-
resentation and time-scales between the physical and the
abstract levels.

An early example of embedding representation into
BBS was done by [13]. The representation was also con-
structed from behaviors, and was used exclusively for



mapping and path planning. While the approach suc-
cessfully integrates deliberative capabilities into a BBS,
it is limited to the navigation task, while our representa-
tions are meant to be task-independent and could embed
any of the robot’s capabilities: in our case, both navi-
gation and object manipulation.

In the context of behavior-based robot learning, al-
most all approaches have been at the level of learning
policies, situation-behavior mappings, at least in phys-
ical robot domains. The method, in various forms, has
been successfully applied to single-robot learning of var-
ious tasks, including hexapod waling [11], box-pushing
[12], most commonly navigation [4], and also to multi-
robot learning [15].

Another relevant approach has been in teaching
robots by demonstration. [7] demonstrated simplified
maze learning, while [18] presents a system in which a 7
DOF robot arm learns the task of balancing a pole from
a brief human demonstration. While these approaches
are focused on the level of action imitation, we are con-
cerned with representing and repeating high-level tasks
with sequential and/or concurrently executing behav-
10r'S.

Approaches to learning high-level, sequential task
representations have been presented in the domains of
navigation [6] and assembly [9, 8]. Our work differs in
that the task representations that we build are general,
not restricted to a particular domain, and also, that in
our case the environment is generally less constrained
(e.g., involves searching for targets), and the robots do
not use complex “teacher tracking” mechanisms that aid
building of task representations.

6 Conclusions

We presented an approach that allows a robot to learn
task representations from its own experiences of inter-
acting with a human. We described an architecture that
extends the capabilities of behavior-based systems by al-
lowing the representation and execution of complex be-
havioral sequences while reducing the complexity of the
mechanism required to build them. The behavior net-
works are also flexible, allowing for dynamical reconfig-
uration and avoiding the customized behavior redesign
usually required for capturing the specifics of different
tasks.

We showed how the use of our behavior representa-
tion enables a robot to relate the observed changes in
the environment with its own internal behaviors. We
presented an algorithm that uses the benefits of this
behavior representation in order to allow the robot to
learn high-level task representations, even from a single
demonstration. The experimental results demonstrate
the flexibility and robustness of the algorithm and val-
idate the reliable extensions our architecture brings to
typical BBS.
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