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ABSTRACT
Advances in robotics research bring robots closer to real
world applications. Although robots have become increas-
ingly capable, productive interaction is still restrictedto
specialists in the field. In this paper, we propose an inter-
active architecture, based on visual capabilities, which al-
lows robots to interact with people in a natural way, to deal
with multiple users, and to be constantly aware of their sur-
roundings. First, we endow our robot with visual capabili-
ties, which allow it to detect when people are requesting to
engage it in interaction. Second, we provide the robot with
flexibility in dealing with multiple users, such as to accom-
modate multiple user-requests and task interruptions, over
extended periods. The visual capabilities we propose allow
the robot to identify multiple users, with multiple postures,
in real-time and in dynamic environments, where both the
robot and human users are moving. We demonstrate our
approach on a Pioneer 3DX mobile robot, performing ser-
vice tasks in a real-world environment.
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1 Introduction

Robotics holds a tremendous potential for improving the
quality of people’s lives. In particular, robots for service
and assistive applications will soon be within reach and
would benefit a wide spectrum of users. A major challenge
in designing robots for real-world applications is to enable
natural and accessible interaction between robots and non-
technical users, while ensuring long-term, robust perfor-
mance in complex environments without the direct control
of a human operator [1].

We propose a control architecture that provides robots
with social-awareness, allowing them to monitor their sur-
roundings for other social agents (robots or people), detect
their need for interaction, and respond appropriately. Our
architecture provides means forlong-term autonomy, en-
abling robots to manage a large repertoire of tasks over ex-
tended periods. Additionally, our system is designed for
realistic assistive applications, where multiple people may
be simultaneously competing for the robot’s assistance.

Vision-based perception provides the richest informa-
tion required for effective human-robot interaction. In par-

ticular, the ability to distinguish between different people
and to identify basic human postures is essential for the
success of the interaction. While significant work has been
done in these areas [2, 3], robust recognition routines are
frequently too computationally expensive to be run in real
time, especially when a robot must identify multiple object
patterns in a dynamic, real-world environment. In this pa-
per, we describe a real-time person identification and pos-
ture recognition algorithm and we demonstrate its use in
interactive experiments using a mobile robot.

The contribution of this paper is a framework that ad-
dresses two key issues in human-robot interaction:aware-
nessof the environment and other agents, andlong-term
interactionwith multiple users.

The remainder of the paper is structured as follows:
Section 2 presents our interactive framework, Section 3 dis-
cusses our vision-based perceptual approach and Section 4
describes the experimental setup and results. We present
our conclusions in Section 5.

2 Interactive Framework

This work aims to increase a robot’s autonomy over ex-
tended periods, while providing it with the perceptual
awareness necessary for the assistive-application domain.

A service or personal robot will likely have to per-
form in the presence of multiple users, who may solicit
services during overlapping intervals (one person may re-
quest a robot that is attending to another’s task). To re-
spond accordingly, the robot must interrupt its current ac-
tivity, detect the new request, and determine which task to
perform next. Our framework enables this functionality us-
ing linkedawarenessandcontrol modules. Theawareness
moduleidentifies known users and determines their needs
by recognizing certain postures (described in Section 3). If
a posture is detected for a sufficient duration, the informa-
tion is relayed to thecontrol module, which determines the
appropriate action. Postures are associated with a list of
tasks (robot services) that users can request. These tasks
have an associated priority, such that when a posture is de-
tected, the robot will perform the associated task, only if the
priority of the new task exceeds the priority of any current
activity. The task with the lower priority will be suspended
and stored to a priority-based queue. Lower-priority tasks
will be resumed when higher-priority tasks are completed.



Prioritized task switching resembles human decision-
making behavior, and therefore, is a logical addition to the
service robot domain. This provides a predictable and use-
ful form of robot interaction that should feel natural to the
user. This sense of natural robot-interaction can be further
enhanced by using our posture-based control mechanism as
described in the next section.

3 Vision-Based Human Posture Recognition

The role of thevisual awarenessmodule is to provide the
robot with the capability of detecting the presence of hu-
mans that might be interested in interacting with the robot.
Toward this end, we developed visual capabilities that can
recognize human postures that are likely to be relevant to
the robot-human interaction. The postures are described
below and examples are shown in Fig. 1 (first row).
The Standing Posture− The most obvious posture to rec-
ognize as it is displayed frequently and is often an indica-
tion that a human is on the move or engaging in a task.
Arms-Up Posture − Humans learn at a young age that
they can attract another’s attention by raising their hand and
a robot should respond accordingly.
Kneeling Posture− Since many robots are significantly
smaller than humans are, one must crouch or kneel to pass
an object to, or take an object from the robot’s gripper. A
robot should therefore recognize a crouching human and be
able to determine if the human is holding an object.
Object Posture − Held-objects were trained indepen-
dently from the human. This increases model robustness
and allows the robot to orient itself toward the object.

3.1 Related Work in Visual Identification / Tracking

The identification and tracking of objects in a video feed
is reasonably easy when a relatively static background can
be maintained. In the simplest case, background pixels are
modeled using a single video-frame, or they can be repre-
sented using Gaussian [4] or non-parametric distributions
[5]. Models can be adaptive to slowly changing condi-
tions [5, 6, 7], and even robust to smooth and linear cam-
era movements [8]. In all these cases, pixels in subsequent
frames are compared to the background model. If the pixel
features (e.g., color, texture, motion) are inconsistent with
the model, they are grouped and segmented as foreground.

Despite the success of background modeling tech-
niques, they are unsuitable for use on a mobile robot in
an uncontrolled environment. Camera movement is usu-
ally too complex to be stabilized by motion-modeling al-
gorithms and the limitless variability of the shape, color,
and texture of background features precludes the use of
standard feature-based background models. Consequently,
robotics applications typically use foreground-modeling
techniques, which use object features to identify and track
the object. Foreground modeling traditionally requires an
offline acquisition period where values in the foreground
models are assigned or trained. The robot is then switched

Standing Kneeling Arms-up Object

Figure 1. Set of postures. First row: original images. Sec-
ond row: detected foreground. Third row: shape model.
Fourth row: color model.

to a tracking phase, where it searches each incoming image
for a region that is sufficiently similar to the model.

A foreground modeling technique commonly used in
robotic applications models an object as a colored blob.
During acquisition, users must manually select a region
of interest in the image. This process can be repeated
on the same object under different lighting conditions and
the algorithm will assign a range of values to represent
the region. Schlegelet al. [9] automates this process
by requiring users to stand directly in front of the robot’s
camera for an ’introduction’. The system then generates
a two-dimensional color histogram (in red-green chromi-
nance space) describing a rectangular region on the user’s
chest. Though this approach offers some convenience, it
requires users to stand in a specific location during training
and the resulting model can only be used to track colors
corresponding to the user’s shirt.

3.2 Overview of Approach

Our proposed method improves the convenience and speed
of previous techniques, and is particularly suitable for
robotic applications. Unlike [9], the training stage is fully
automated, by using a background modeling technique to
segment the person from the background. This allows the
subject to move freely during the training stage. We also



propose improvements to Schlegel’s color modeling ap-
proach [9]. Instead of modeling a single region of color
within the object, we identify and model multiple color-
regions. Each region is modeled in three-dimensional
RGB color-space, and is represented as a mixture of Gaus-
sians. For increased robustness, our model also incorpo-
rates shape information without sacrificing speed.

The following sections describe how models are gen-
erated during training, how these models are used to locate
and track users and their postures, and presents some im-
plementation optimizations that allow for real time opera-
tion, even while searching for multiple models.

3.3 Training

Each posture from each person is separately trained during
an off-line acquisition process, requiring about 10-20 sec-
onds per posture. Training is done on a stationary robot
and under lighting conditions that are similar to those to be
encountered in subsequent operation.

Before the object can be modeled, it must be seg-
mented from the image. Segmentation is accomplished us-
ing an adaptive background modeling technique similar to
the one described in [7]. Each pixel of the background is
modeled as a Gaussian distribution in the RGB color space,
with the mean (µr ,µg,µb) and standard deviation (σr ,σg,σb).
For each new pixel (xr ,xg,xb), the Gaussians are updated us-
ing a learning rateα, as follows:

µi = αxi +(1−α)µi (1)

σ2
i = max(σ2

min,α(xi −µi)
2 +(1−α)σ2

i ) (2)

wherei = r, g, b.

The σ2
min term is introduced to prevent the variance

from decreasing below a minimum value when the back-
ground remains constant for a long period.

Object segmentation is accomplished by comparing
new pixels to the background model. A pixel is labeled as
part of the foreground object if, for any value:

(xi −µi)
2
> (2σi)

2 (3)
wherei = r, g, b.

Segmented pixels are grouped together as connected-
components to form a blob corresponding to the target ob-
ject. Examples of a segmented image are shown in Fig. 1
(second row). As described in the next sub-sections, the
segmented objects from each frame are combined to pro-
duce shape and color models.

3.3.1 Modeling Shape

Despite the fact that a human silhouette can be highly vari-
able, there is enough regularity to warrant the inclusion of
a shape-based model. The segmented foreground region
from each frame is first normalized in terms of position and
height, then quantized into a 32×w array of square blocks,
wherew is a function of the object’s height to width ratio.

A map is then generated that contains (for each block)
the likelihood of that block being a part of the foreground.
Given N training frames, the probability at each blocki is:

pshape(i) =
1
N

N

∑
k=1

f gk(i) (4)

where f gk(i) is 1 if block i belongs to the foreground
in framek, and 0 if it belongs to the background.

High values in this map thus correspond to regions
that are likely to be foreground and low values correspond
to likely background regions. An illustration is provided
in Fig. 1 (third row), where bright red regions correspond
to foreground, blue regions correspond to background and
black regions do not strongly correspond to either region.

3.3.2 Modeling Color

A common characteristic of human figures is that color re-
mains relatively constant in the horizontal direction, while
demonstrating more variability vertically. Variability usu-
ally occurs at the transitions between the hair and face, face
and shirt, shirt and pants, and pants and shoes. It should
also be noted that the relative size and location of these re-
gions remain reasonably consistent even as a human moves.

To exploit the natural grouping of colors, our ap-
proach divides a target object into a vertical stack of hori-
zontal color bands. We use 32 bands to represent our mod-
els. This number was selected because it provides sufficient
resolution for representing the object, and because it allows
for certain optimizations on a 32-bit system. Each band is
modeled separately using a mixture of Gaussians.

During training, the foreground region is normalized
in terms of height and quantized into the 32 bands. The
pixel-values corresponding to each band are then accumu-
lated into a histogram in RGB color space. At the end of
the training period, the histogram is modeled as a mixture
of Gaussians.

To produce a more robust representation of the object,
adjacent bands are merged if their color distributions are
sufficiently similar. Grouping begins with the most similar
bands and continues with progressively less similar bands
until the model is reduced to between one and six regions.
Fig. 1 (forth row) shows the color distribution of each ob-
ject. Colors are arranged so that the most dominant values
are shown on the left and the least dominant on the right.
The red lines delineate the regions after merging.

The resulting model contains information about the
color composition, vertical location, and size of the promi-
nent regions of color within an object and can be used for
the detection and tracking of the object in a video sequence.

3.4 Detection and Tracking

Since humans tend to assume an upright posture, they will
usually occupy a larger proportion of an image in the ver-
tical direction than they will in the horizontal direction.
This property simplifies an object search because it allows



promising x-axis locations to be identified before consider-
ing y-axis locations.

Every pixel in the image is assigned a probability,
which represents the likelihood that that pixel color is
present in the foreground object. Pixels with color values
matching the most prominent colors in the target model
are assigned high probabilities, while colors not found in
the model are assigned a probability of zero. For a given
model, the probability that pixeli with color (xr ,xg,xb) be-
longs to the model is determined using all Gaussians in all
bands of the color model:

pcolor(i) =
1

Nbands
∑

bands

e
−
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The resulting probability values are then summed for
every column of pixels to form a probability distribution
with respect to the x-axis. The most prominent local max-
ima in this distribution are identified as promising x-axis
locations. An example of such a probability mapping is
shown in Fig. 2(a).

a) X-axis candidates b) Region probabilities

Figure 2. Person detection and tracking.

For each x-axis candidate, a 16-pixel wide column is
defined, centered at the x-location. Pixels in every row of
the column are assigned probability values, which repre-
sent the likelihood that the pixel’s color is present in the
corresponding object-color-region. Probabilities are deter-
mined as in Eq. 5, but with the sum computed over bands
in that region. Probabilities are summed for every row, to
find the y-axis distribution. Fig. 2(b) shows a model, which
has been divided into four prominent regions. Probability
mappings for each region are superimposed on the image.

As seen in Fig. 2(b), the probability maps tend to be
high within the areas of their corresponding colors and the
intersection between two probability mappings offer a good
estimation of the border between adjacent colors. This ef-
fectively determines the location and vertical size of each
region of color within an object.

In order to determine a final measure of similarity, the
object-shape probability map is incorporated. As described
previously, certain blocks of the shape-map will have a high

probability of falling on the figure while other areas of the
map (typically towards margins) will have a low probabil-
ity. The shape-based probabilities are used to weight the
color-based probabilities for each region, in order to pro-
duce a final similarity score.

3.5 Efficiency

It should be noted that although the model describing each
object can comprise as many as six different color regions,
each containing several Gaussian distributions, our imple-
mentation executes a one-time preprocessing step that com-
piles the Gaussians into a 3D array indexed by (R,G,B).
With a single reference to this array, a probability mea-
sure can be obtained to determine the likelihood that that
pixel is part of an object. If the probability of being present
in an object was greater than zero, up to 6 additional ar-
rays can be referenced to determine the probability that the
pixel is contained in the object’s sub-regions. These opti-
mizations allow the tracking to be performed in real-time
(20 frames/sec), even when 15 models are involved, and
on a modest 1 GHz computer. Although the probability ar-
rays require more memory than any other data structure,
the color-space is sub-sampled to minimize the demands.
The current implementation quantizes the color-space into
32×32×32 = 32,768 different colors, and requires a total of
64-bits to store the region and sub-region probability val-
ues. This requires about 262 KB of memory per model.

4 Experimental Setup and Results

We validated our approach with a Pioneer 3DX mobile
robot equipped with a SICK LMS-200 laser rangefinder,
front and rear sonar, and a pan-tilt-zoom (PTZ) camera. For
robot control we use the Player robot device interface [10].
To allow for safe maneuvering, the robot executes laser and
sonar-based obstacle avoidance routines. Our validation
consists of quantitative and qualitative evaluation for the
visual awarenessand therobot controlmodules.

4.1 Validation of Visual Awareness

Tracking and distance estimation. We tested the track-
ing component using an experiment where the robot was
programmed to pursue a person, while maintaining a fixed
distance. Computation of the person’s distance from the
robot was based on the camera calibration procedure de-
scribed in [11] and on the assumption that the floor is flat
and the person’s feet are always on the floor.

For this trial, the robot accurately pursued a human-
target, who alternated between forward and backward
movement through a 100 meter-long hallway. Frames from
the robot’s camera are shown in Table 1, where the green
rectangle and the green outline have been generated by the
detection and tracking module. In order to assess the ac-
curacy of distance estimation, the computed positions at



each displayed frame are shown together with those ob-
tained from the robot’s laser rangefinder (ground truth).

It is worth emphasizing that the experiment illustrates
the ability to perform real-time tracking and distance esti-
mation for a moving target while the robot (and its camera)
are also moving.

100 200 300 400 500 600 700 800 900

7.3 8.3 7.3 7.3 6.4 5.8 5.8 5.8 7.0
7.7 8.2 7.3 7.3 6.8 5.6 6.1 6.3 6.6

Table 1. Tracking distance estimation.Top Row: Frame
number.2nd row: Frame image.3rd row: Estimated dis-
tances (meters).4th row: Ground truth (laser) distances.

Posture recognition − qualitative validation. Fig. 3
shows the recognition of postures in the presence of mul-
tiple persons. The system was trained on postures from
3 users (which are correctly recognized), while the 2 un-
known users are (correctly) ignored. This experiment
shows that the approach can robustly detect and track mul-
tiple postures from multiple users, while ignoring irrelevant
persons in a possibly crowded environment.

Figure 3. Posture recognition− qualitative validation.
Modeled users: red, orange, blue shirt. Unknown users:
black, green shirt.

Posture recognition− quantitative validation. To quan-
titatively estimate the recognition accuracy, we trained the
system on 5 users with 3 postures each. Subjects were
asked to display each posture for about 30 seconds, while
they moved through the camera’s field of view. Measure-
ment of correct posture frequency was started 10 frames
after each change in posture and was continued for 200
frames. Table 2 shows the percentage of correctly recog-
nized postures.

User1 User2 User3 User4 User5
Standing 92.5% 91% 99.5% 100% 100%
Kneeling 97% 98% 99% 100% 100%
Arms-up 95.5% 100% 100% 99% 100%

Table 2. Posture recognition− quantitative validation.

4.2 Validation of Robot Control

We performed the robot-control experiments in the class-
room environment shown in Fig. 3, using two users. For
each user, the robot was trained to detect standing, arms-
up (AU), kneeling-without-object (Kn), and kneeling-with-
object (Ob) postures.

The robot’s tasks consist of a series of target reach-
ing and object transport duties, representative for a service
robot’s potential delivery scenarios. Each task was associ-
ated with a user-posture and was given one of three prior-
ity levels. The task-posture-associations and priority-levels
are shown in Table 3 (e.g. Task ’T5’ was associated with
Person2, PostureArms-Up, and was assigned amedium
priority). The standing posture is not associated with any
task, but rather serves as a trigger from thevisual aware-
nessmodule that a user is in vicinity. In addition to the
posture-associated tasks, the robot is also equipped with a
wandering task (T0), which has alow priority, and is exe-
cuted as long as the robot has no requests to service.

In our experiments, the two users requested services
from the robot over an extended period, in order to demon-
strate the main features of our approach: 1) awareness to
the presence of multiple people, 2) ability to handle multi-
ple requests, 3) ability to handle task interruptions and 4)
long-term robot-autonomy.

Upon starting, the robot wanders through the room,
waiting for a request from a user. If a posture is witnessed
for more than a few seconds, the robot responds with an
auditory confirmation signal, and either performs the asso-
ciated task, or queues it, depending on the task-priority. To
reduce false detection during posture-transitions, the robot
briefly ignores a person if they just requested a new task.
The robot also ignores requests for tasks that are in the
queue or are currently being executed.

We performed experiments with the task scenario
shown in Table 3, and we repeated each experiment four
times. We chose to use the same sequence of requests
in order to establish a baseline for evaluation, both from
the perspective of task execution (thecontrol module) and
from the perspective of the posture recognition (thevisual
awareness module).

In Table 3, we show the sequence of tasks that were
requested during the scenarios and, for validation, we in-
dicate the correct action. ThePosturerow lists the task-
requests that were issued. Each request requires that either
the new task, or the current task be suspended and pushed
to the queue (depending on priority). In the absence of new
requests (indicated by a ’−’), the current task is allowed to



Posture − 1 Ob 2 AU 1 Kn 2 Kn 2 Ob 1 AU − − − − − −
Task T0 T3 T5 T1 T4 T6 T2 − − − − − −
(priority) (low) (med) (med) (med) (high) (high) (high)

Action − T0→Q T5→Q T1→Q T3→Q T6→Q T2→Q Q→T6 Q→T2 Q→T3 Q→T5 Q→T1 Q→T0
Current T0 T3 T3 T3 T4 T4 T4 T6 T2 T3 T5 T1 T0
Queue − T0 T5,T0 T5,T1,

T0
T3,T5,
T1,T0

T6,T3,
T5,T1,
T0

T6,T2,
T3,T5,
T1,T0

T2,T3,
T5,T1,
T0

T3,T5,
T1,T0

T5,T1,
T0

T1,T0 T0 −

Table 3. Task requests for the task-execution scenario.Postures row: 1 & 2 indicate User 1 and User 2 respectively.Tasks row:
the tasks associated with the posture above.Actions row: ’→’ indicates pushing task to, or popping task from the queue.

proceed to completion. The suspended task with the high-
est priority is then popped from the queue and resumed.

Results.On all trials, the robot correctly identified the pos-
tures (and thus the requests), took the correct decisions re-
garding which tasks to perform, and correctly executed ev-
ery phase of each task. Each run took approximately 20
minutes. During these runs, the priority method used was
to process tasks with highest priority first; for tasks of equal
priority, a FIFO (first-in-first-out) method was used. For
these experiments, we also recorded the robot’s progress
as it completed each phase of a task. This allowed us to
demonstrate that if the robot is interrupted in the middle
of a task, upon resuming its prior-execution, the robot will
continue from the point of interruption, instead of perform-
ing it from the start.

5 Conclusion

In this paper, we proposed a framework for developing
robot assistants that addresses two key issues of human-
robot interaction:awarenessof the environment and other
agents, andlong-term interactionwith multiple users. Our
awareness mechanism is built on visual capabilities that
allow the robot to identify multiple users, with multiple
postures, in real-time, in dynamic environments in which
both the robot and human users are moving. Long-term
human-robot interaction is supported by a novel control ar-
chitecture, which enables the representation of complex,
sequential and hierarchical robot tasks. The architecture
provides the robot with flexibility in dealing with multiple
users, such as to accommodate multiple user requests and
task interruptions, over extended periods. We validated our
approach on a Pioneer 3DX mobile robot, performing ser-
vice tasks in a real-world environment. Our experimental
results demonstrate the robot’s ability to engage in interac-
tions in a natural way, to deal with multiple users, and to
be constantly aware of their surroundings, thus advancing
service robotics toward deployment of robots into the real
world.
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