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Abstract— Behavior-based control is one of the most widely
used approaches for autonomous robot control. However, in
many robot systems, there is often a disconnect between a
user’s desired task-level behavior and a robot’s preprogrammed
(innate) capabilities. Typically, the space of robot behavior
is limited to sequential performances, switching between the
robot’s available skills. Such limited expression does not neces-
sarily overlap with the space of desired robot behavior, leaving
users unable to express their true desired control policy to
the robot. To bridge this divide, a new approach is proposed,
which integrates state estimation (as a particle filter), learning by
demonstration, and behavior-based control into an approach for
robot learning. While these methods have typically been used
in different contexts, we demonstrate the ability to use state
estimation in order to learn a user’s intended control policy
from demonstration as a linear combination of innate behaviors.
Through a specific navigation task, this method demonstrates
how the same task-level behavior can be learned with different
combinations of innate behaviors.

I. INTRODUCTION

The problem of designing autonomous robot controllers
could be phrased as the ability to transfer a user’s intended
control policy onto a robot. This basic problem exists re-
gardless of whether this transfer occurs explicitly through
computer programming or implicitly from demonstration or
a reward criterion. However, the intended control policy may
not have an obvious or scalable mapping onto the basic
capabilities endowed to a robot.

This paper integrates multiple artificial intelligence tech-
niques in order to address this policy transfer problem in a
manner that facilitates task learning from demonstration. In
particular, we synthesize behavior-based control, a typical
approach to distributed robot coordination, with Bayesian
state estimation, often used for robot localization and per-
ception. The result is a novel approach to learning from
demonstration, allowing a user’s intended decision making
policy to be imparted onto a robot. This synergy is formed
by using state estimation to infer appropriate linear combi-
nations of low-level, generic robot behaviors that accord to
demonstrated human-level behavior.

A significant challenge for designing robot systems that
learn from demonstration is the interpretation of observations
gathered from the instruction. The robot must process a
continuous stream of data coming from its sensors and cast

this information onto its knowledge and control repertoire. In
most cases, this consists of segmenting the data stream into
meaningful units, and then mapping them into appropriate
skills or tasks. To match the observations of the demonstrator
to actual robot behaviors, a successful approach that has been
previously employed is based on forward models, in which
multiple behavior models compete for prediction on the
teacher’s behavior [1]. The behavior with the most accurate
prediction is the one said to match the observed action.
These approaches rely on the assumption that there exists
a unique corresponding behavior underlying any one of the
demonstrator’s actions [2]. The success of these methods is
highly dependent on the existence of a special-purpose set
of robot primitives, designed in particular for the target task.
This limits the generality of these methods, as it requires that
robot programmers have knowledge of the target task and be
able to decompose it into appropriate functional modules.

This paper aims at overcoming these limitations, by tak-
ing a different perspective on the representation of robot
controllers that can be learned by demonstration. Biological
evidence, such as the schema theory [3], suggests that motor
behavior is typically expressed in terms of concurrent control
of multiple different activities. In addition, evidence from
cognitive psychology [4] indicates the existence of a hier-
archical model of motor control, in which a willed behavior
control mechanism determines execution of activities through
concurrent activation of multiple motor primitives. This view
is also similar to the concept of basis behaviors [5], in
which a complete set of elementary primitives can generate
the entire span of behavior for a robot. Akin to the basis
behaviors, typical innate behaviors in biological systems are
known to be very simple responses to world stimuli: reflexes,
taxes, fixed-action patterns, and motivated behaviors [6].

Considering these findings, this paper proposes a novel
approach to learning a task policy from demonstration: using
a set of low-level, generic behavior primitives expressed as
schemas (or potential fields) [3], the method learns a coor-
dination policy that linearly fuses the behaviors’ combined
output in a manner that matches the teacher’s demonstration.
The learning of this coordination is phrased as a fusion
estimation problem, i.e., state estimation in the space of linear
combinations of primitive behaviors. This is performed using



a particle filter that infers fusion estimates from robot sensory
observations and motor commands. This method eliminates
the need for task-specific knowledge in choosing the behavior
primitives and it allows for increased generalization over the
primitive set. The robot experiments described below demon-
strate two significant results: 1) the behavior fusion allows
a robot to capture the intended policy of the human from
demonstration without specialized underlying behaviors and
2) the same task policy can be learned as the superposition of
different underlying sets of innate primitives. These results
validate the claim that special purpose behaviors and task
knowledge are not necessary for learning a control policy
from demonstration and also that increased robustness can
actually be achieved with low-level, generic primitives, by
providing multiple solutions to the policy learning problem.

II. RELATED WORK

Successful approaches to learning from demonstration
(LFD) [7] have demonstrated learning of reactive policies
[8], trajectories [1], and sequential task descriptions [9]. Such
sequential (or arbitrated) representations for coordination can
be considered a subset of the approach proposed in this paper.

In making arbitration decisions, sequential methods repre-
sent all possible coordinations as discrete set of possibilities
along each axis of fusion space. [10] proposed null-space
composition as a fusion coordination mechanism limited to
control states where behaviors do not affect each other. This
coordination allows for off-axis (but discrete) combinations
in fusion space. Although the work of Platt et al. is applied to
dexterous manipulation, the comparison focuses only on the
behavior coordination mechanism and not on the platform
specifics. Other approaches to LFD use various forms of
supervised learning to create a mapping from input states to
output actions. [11] use piecewise statistical regression boot-
strapped by demonstration and planning. [12] use demon-
stration to bootstrap reinforcement learning techniques, such
as Q-Learning. This approach is a viable option for fully
observable states, but are nontrivial to extend for partial
observability.

In terms of fusion estimation, neural networks have been
previously employed in LFD. In [13] the fusion is done over
input data from multiple sensory modalities. In this paper,
fusion is performed over a set of “innate” robot primitives
that are cooperatively coordinated from first or third person
demonstration.

The choice of the particle filter [14] is only one of several
methods available to infer behavior fusion. Alternatively,
the problem can be cast as a parameter search. The most
straightforward choice, linear least squares optimization,
worked well when the number of primitives is small and
likelihood ambiguity is negligible, based on our initial testing.
Nonlinear methods, such as Levenberg-Marquardt or Nelder-
Mead, could yield better results. However, the particle filter
allows to account for ambiguity explicitly.

III. BEHAVIOR REPRESENTATION

The behavior-based controllers used in this work are built
from two components: behavior primitives (BPs) and fusion
primitives (FPs), which are combined in behavior network
controllers. A behavior network controller is a directed
acyclic graph of FPs, in which the links between nodes
represent task-specific activation conditions that enable the
representation and execution of sequenced tasks.

The behavior primitives perform a set of actions under
given (relevant) environmental conditions. These primitives
are meant to express the basic, general capabilities of the
robot and need not be oriented to accomplishing a broad
range of tasks. A fusion primitive encapsulates a set of mul-
tiple concurrently running primitive behaviors through linear
combination of the motor commands. Each BP component
brings its own contribution to the overall motor command.
These contributions are weighted and fused through vector
addition. These weights affect the magnitude of the individual
vectors coming from each behavior, thus generating different
modalities of execution for the task.

Each fusion primitive (Fig. 1) has a representation of
the goals it achieves, expressed as abstracted environmental
states. The state of the goals is continuously monitored
and updated from sensory data. The component behavior
primitives receive information from the sensors, which is
first used to detect if the behavior is active or not, given
its preconditions. The active/not active status of all behavior
primitives is encoded in a N -dimensional vector, where N
is the number of BPs. This vector, which we call a behavior
applicability condition (BAC), contains for each behavior a
1 or a 0, depending on whether the behavior is active or
not. For a given set of N primitive behaviors, theoretically
there could be 2N combinations representing whether the N
behaviors are active or not, based on their preconditions.
Practically, this number is much smaller, due to the fact
that some behaviors are triggered by similar environmental
conditions (such as the presence of an obstacle, for example),
and thus some combinations are impossible to achieve. For
each possible BAC, the fusion primitive has a different set of
fusion weights, which are used for behavior combination. The
sets of weights for the multiple possible BACs are stored in a
table, as shown in Fig. 1. The index of each row in the table
is the decimal equivalent of the binary N -bit BAC value.

The weights from the corresponding BAC modulate the
magnitude of control vector output by the individual prim-
itives, thus influencing the resulting command from fusion.
At each timestep t, each behavior primitive BPi provides a
response output vector vt

i , which represents a desired heading
for the robot. The fusion primitive’s output V t

r is a linear
combination of the vectors [vt

1 · · · v
t
N ], according to the BAC

superposition weights St = [st
1 · · · s

t
N ]:



Fig. 1. Representation of a fusion primitive, the key component of the
architecture. BP: behavior primitives.

V t
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N∑
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We consider heading to be the most important consider-
ation for behavior fusion in 2D navigation1. Consequently,
command vectors are normalized to unit length.

IV. LEARNING BY DEMONSTRATION METHODOLOGY

For this work, demonstrations consisted of guiding the
robot through navigation tasks, using a joystick, while the
robot’s behaviors continuously provide a response command
on what their outputs would be (in the form of a 2D speed
and heading vector in the robot’s coordinate system) for the
current sensory readings. The demonstration could also be
performed by having the robot follow a human user, similar to
work in [9]. However, instead of being translated into motor
commands, the behaviors’ outputs are recorded along with
the turning rate of the robot, at that moment of time. This
information is further processed, as described below.
Segmentation of observation traces. During training empty-
shell FPs are created, which contain only information about
the goals that the robot needs to detect, and whose only role
during the demonstration is to monitor their goal status. Goals
are abstracted environmental states, which can be monitored
from sensory information. Every time the goal of a behavior
is met, this generates a new segment in the demonstration,
which will result in a new FP node in the task network. Thus,
if the same goal is met multiple times during training, it will
appear in multiple instances in the task representation.

Within each segment multiple situations are possible, in
which different subsets of behaviors could be active (ex-
pressed as the BACs), depending on whether their precondi-
tions are met or not. To identify the different BACs present in
the demonstration, a further segmentation stage is performed
in each segment, based on the binary decisions set by the
preconditions of each behavior. This new segmentation of
the demonstration trace is performed at the moments of
time when the status of any of the behaviors’ preconditions

1Speed could easily be incorporated into our formulation. However speed
is marginalized over time by the slow drive of our robots.

changes between met and not-met. The resulting BAC sub-
segments represent different environmental situations, since
different behaviors become “applicable” at the transition
points, as described above. The weights of behaviors within
each BAC sub-segment encode the mode of performing the
current task given the situation and, thus within each BAC
sub-segment, the weights of the applicable behaviors are
constant and computed as follows.
Behavior Fusion Estimation. The primary function in be-
havior fusion estimation is to infer, from a teacher provided
demonstration, the contribution (or weight) of each primitive
in the robot’s repertoire such that their combination matches
the observed outcome.

Similar to Monte Carlo robot localization, a particle filter is
used to recursively estimate the joint density in the parameter
space of fusion weights St over time t = 1 · · ·T . Particle
filters have been used for state and parameter estimation in
several perception-oriented domains (such as robot localiza-
tion [14] and insect tracking [15]).

Our method follows the same standard form of the
Bayes filter to estimate the posterior probability density
p(St|V 1:t

r , V 1:t
p ) in the space of fusion parameters given

behavior outputs and result vectors:

p(St|V 1:t
r , V 1:t

p ) = (2)

kp(V t
r |V

t
p , St)

∫
p(St|St−1)p(St−1|V 1:t−1

r , V 1:t−1
p )

where p(V 1:t
r |St, V 1:t

p ) is the likelihood of observing a
result vector given a vector of fusion parameters, Vp are
the outputs of the primitives, p(St|St−1) is the motion
model describing the expected displacement of parameter
weights over a timestep, p(St−1|V 1:t−1

r , V 1:t−1
p ) is the prior

probability distribution from the previous timestep, and k is
a normalization constant to enforce that the distribution sums
to one.

The estimation of the posterior at time t is performed by
1) importance sampling to draw new particle hypotheses St

(j)

from the posterior at time t−1 and 2) computing weights πt
(j)

for each particle from the likelihood. Importance sampling is
performed by randomly assigning particle St

(i) to particles
St−1

(j) based on weights πt−1 and adding Gaussian noise.
Our likelihood function weights a particle i as the distance
between the actual and the displacement direction given by
the primitive behaviors:

πt
(i) = p(V t

r |V
t
p , St) = 2 − D(V t

r , V̂ t
(i))/2 (3)

where D(a, b) is the Euclidean distance between a and
b and the direction vector V̂ t

(i) normalizes to unit length a
weighted sum over individual primitive outputs.

The process described above is performed on each of the
recorded instances of time within a BAC sub-segment, result-
ing in a posterior distribution of fusion weights for every time



step during demonstration. To enable crisp decision making, a
single state is extracted from the fusion posterior distribution,
which is the mean of the posterior distribution.
Construction of Task Representation. For all the fusion
primitives corresponding to the identified goals, the controller
will include all sets of weights corresponding to different
behavior applicability conditions (BACs) that were detecting
during training. The fusion primitives resulting from the goal-
achieving segments are encapsulated in a node in the behavior
network and are linked in the order in which they occurred.

V. EXPERIMENTAL RESULTS

In the validation experiments, a Pioneer 3DX mobile robot
was trained to perform 3 different styles of navigation, in an
office building environment. The robot was equipped with a
SICK LMS-200 laser rangefinder, two rings of sonars, and
a pan-tilt-zoom (PTZ) camera, and was programmed using
Player [16].

ROF ROR AOS AO

ROT RONT RON AON
Fig. 2. The set of innate behaviors. The blue dashed line indicates the
range dmax.

The robot’s set of innate behaviors (Fig. 2) consists of 14
behaviors, whose output is a sum of vectors as follows:

• Repulse obstacles front (ROF): sum of all repulsive
vectors from obstacles closer than dmax.

• Repulse obstacles rear (ROR): sum of all rear repulsive
vectors from obstacles closer than dmax.

• Attract open space (AOS): sum of all vectors pointing
toward open space farther than dmax.

• Attract obstacles (AO): sum of all vectors toward all
detected objects closer than dmax.

• Repulse obstacles tangent (ROT): sum of all vectors
tangent to any detected objects closer than dmax.

• Repulse obstacle normal tangent (RONT): sum of all
vectors perpendicular to the direction toward obstacles
closer than dmax.

• Repulse obstacle normal (RON): sum of all vectors
normal to the tangent to any detected objects closer than
dmax, pointing away from objects.

• Attract obstacle normal (AON): sum of all vectors
normal to the tangent to any detected objects closer than
dmax, pointing toward objects.

Except for ROF and ROR, all other behaviors have two
versions, for the left and respectively right 90-degrees in front
of the robot. Distance dmax was set to 2 meters and was
detected with the laser rangefinder (in the front) and with
the sonar array (in the back). The behaviors are activated by
preconditions that test if certain laser readings are smaller or
respectively larger than the dmax threshold.

The three different types of navigation consisted of: 1)
navigating close to the right walls, 2) navigating close to
the left walls, 3) navigating in the center of the corridor. For
each type, a clockwise and counterclockwise experiment was
performed, resulting in 6 training experiences (Fig. 3).

Fig. 3. Sketch of experimental setup.

The goal of these experiments is to demonstrate that
the different navigation styles could be learned without the
need for special purpose routines and furthermore, that the
same task can be learned using different underlying sets of
primitives. Toward this end, the training data was processed
considering all possible subsets of primitives. That is, the
particle filter was applied to all possible combinations of
behaviors, resulting in 28 − 1 = 255 controllers for each of
the 6 training runs (the empty subset was ignored). For the
left wall navigation, each of the 255 controllers (representing
255 fusion combinations) has been evaluated by running it on
a robot in a simulated, accurate map of the building, using
Stage [16]. The robot was started in a random position in
the corridor (to determine if it is able to get into the correct
navigation position) and allowed to navigate for a period of
time (usually 2 minutes). For each controller, a qualitative
evaluation was performed, to determine if the robot had
captured the main aspects of the 4 navigation styles:

• Right follow (both runs): navigate on the right, take right
turn at T or Y-junction.
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TABLE I
BEHAVIOR SUBSETS (OF 2 AND 3 BEHAVIORS) WHICH LEARNED THE

LEFT-FOLLOW TASK. MULTIPLE BACS EXIST WITHIN EACH SUBSET.

• Left follow (both runs): navigate on the left, take left turn
at T or Y-junction.

• Center follow (clockwise): navigate in center corridor,
take right turn at T or Y-junction.

• Center follow (counterclockwise): navigate in center cor-
ridor, take left turn at T or Y-junction.

The evaluation of the 255 controllers lead to the expected
results: a significant number of controllers, corresponding to
different sets of underlying primitives, demonstrated success-
ful learning of the navigation policies. Table I shows the
combinations of 2 and 3 behaviors that were able to learn the
task from the left-follow, clockwise demonstration. In addi-
tion to those, there were 14 other successful combinations of
4 behaviors or more, including the subset that contained all
the behaviors. Also, the actual number of successful fusion
combinations is significantly larger than 2+3+14 = 19, due
to the fact that there exist additional combinations, of more
behaviors, which contain the groups of 2 and 3 behaviors
shown in Table I.

a) Center clockwise b) Center counterclockwise

a) Right b) Left
Fig. 4. Robot trajectories using controllers from the different navigation
styles. The robot’s path is indicated in red. The starting position is indicated
by a red circle.

For the controllers resulting from the other 5 demonstra-
tions, the Stage evaluation was performed for the fusion
combinations that were found successful above and for a
random set of previously unsuccessful combinations. The
results show that with approximately 95% accuracy, the
controllers’ performance corresponded with their counterpart
(same fusion combination) from left wall navigation task.
These results indicate that the fusion process is consistent
over the set of existing primitives. The small differences are
expected due to variations in the environment (people, doors)
during the individual demonstrations.

The robot trajectories shown in Fig. 4 demonstrate qualita-
tively that the robot had captured the correct tasks. From the
center clockwise demonstration the robot learns to navigate in
the center of the corridor and to take a right turn at junctions.
From the center counterclockwise, it learns a similar naviga-
tion style, but it now takes left turns at junctions. From the
right and left demonstrations, the robot learns to stay closer
to right and respectively left walls, and to take the right/left
turns at the junctions. Overall, these results also show that
the robot exhibits a smooth navigation style, similar to what
has been demonstrated.

As a quantitative evaluation, for the controllers that suc-
cessfully learned the task (used in Fig. 4, and for a full run
around the building), the distance from the robot to the left
and right walls was recorded. The means of those values are
as follows: a) Center right: mean left wall (MLW) = 1.99m,
mean right wall (MRW) = 2.13m, b) Center left: MLW =
1.8m, MRW = 2.03m, c) Right: MLW = 2.81m, MRW =
1.68m, d) Left: MLW = 1.41m, MRW = 3.13m. For center
navigation experiments, MLW and MRW have very close
values. For right and left navigation, the mean distance to the
wall the robot is supposed to follow is smaller. The standard
deviation is irrelevant in this case, as the maximum values
will always be the equivalent of an open space opening at
junctions, which in this case is 8 meters.

The unsuccessful controllers exhibited behaviors such as
getting stuck in a wall, oscillating (either in the middle of the
corridor, or facing a wall), getting stuck in corners, or failing
to take the correct turns at the junctions. The controllers’
performance provided a wealth of information regarding the
correlations between behaviors. For example, whenever ROT
and RONT were used, behaviors RON, AON and ROR had
no impact on the success of the controller (i.e., either if used
or not, the robot still performed the task correctly). Similarly,
whenever one of the RON or AON were used, if RONT was
not used, the robot would always get stuck in a corner. A
complete analysis of the behavior correlations is outside the
scope of this paper, but will be performed in future work to
gain insight into the role of each behavior for specific tasks.

VI. DISCUSSION OF RESULTS

A requirement for the applicability and success of this
method, is that the robot must be presented with represen-



tative examples of this policy in action. Towards this end,
human teachers must have some knowledge of controlling the
robot, but not necessarily of its innate primitive behaviors.
The quality of demonstration will certainly vary based on
robot platform and teleoperation control mapping. When this
quality is low, noise and ambiguity will be introduced into
fusion inference process. Further ambiguity can occur when
the teacher is inconsistent in their demonstration. Inconsis-
tency can occur when the teacher acts differently in similar
situations. Probabilistic inference, such as with the particle
filter, is well suited for state estimation when such uncertainty
is present.

When used alone, none of the innate behaviors is able
to learn the tasks or to produce any consistent behavior.
However, even simple weighted combinations of 2 or 3
general purpose primitives are able to capture detailed aspects
of a navigation policy, such as taking left/right turns at
junctions and navigating closer to a left/right wall. If designed
by hand, or by a learning from demonstration strategy that
relies solely on behavior sequencing, controllers for the tasks
demonstrated above would have required specialized behav-
iors for following walls and for dealing with junctions. In
contrast, by expressing the learning problem as an estimation
of behavior fusion weights, such tasks can be learned from
low-level, generic primitives.

The advantage of the proposed method is twofold. First, it
removes the need for prior knowledge of the task that needs to
be learned, thus reducing the robot programmer’s effort for
designing the underlying behavior set. Second, it provides
increased generalization capabilities, decreasing the discrep-
ancy between the robot’s innate capabilities and the users’
intended task policy. The experimental results demonstrate
these advantages and show how specific navigation tasks can
be learned as a superposition of multiple low-level primitives,
in the form of fusion primitives.

While only one-step tasks have been learned in this pa-
per, the proposed fusion estimation method has also been
employed in learning more complex, sequential task rep-
resentations, thus indicating its potential for use in real-
world, service robotics applications [17]. Future work will
also seek to develop methods that would flexibly select or
switch between the multiple solution policies of a task.

VII. SUMMARY

The problem of designing autonomous robot controllers is
typically restricted by the pre-existing innate robot capabil-
ities. This paper proposes a novel approach to constructing
such a task policy from demonstration. The method integrates
particle filtering, learning from demonstration, and behavior-
based robotics, in an approach that allows a robot to map the
demonstrator’s actions onto a linear combination of multiple,
low-level behavior primitives. Central to this approach are the
estimation of behavior fusion to map the demonstrator’s ac-

tions onto the robot control repertoire and the use of general-
purpose, low-level robot behaviors. Through fusion of these
behaviors, the method removes the need for task knowledge
and special-purpose robot primitives, increases the robustness
of learning and provides extended generalization capabilities.
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