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Abstract

Many high-level video processing applications such as visual
surveillance require the detection and tracking of objects of inter-
est in the video. However, due to inherent changes such as wav-
ing trees, water surfaces, �ickering lights, etc., the background
may not be completely static even with a �xed camera. Therefore,
background modeling becomes an essential and important part of
such applications. Recently, the Support Vector Data Description
(SVDD) has been introduced to address the issue of single-class
classi�cation when samples of only one class of data are avail-
able, i.e. background pixels. This paper proposes a method to
ef�ciently train an SVDD and compares the performance of this
training algorithm with the traditional SVDD training techniques.
We extensively compare the results and performance of our pro-
posed method with traditional SVDD and other classi�cation al-
gorithms on various data sets including real video sequences.

1 Introduction
Background modeling is one of the most effective and widely

used techniques to detect moving objects in videos with a quasi-
stationary background. In these scenarios, although the camera is
considered to be �xed, the background is not completely stationary
due to inherent changes, such as water fountains, waving �ags, etc.
In order to detect moving objects in such scenes the background
of the video needs to be modeled. There are several statistical
modeling approaches proposed in the literature. These approaches
can be used to estimate the probability density function from which
the data points are generated.

Parametric density estimation methods, such as Mixture of
Gaussians techniques (MoG) are proposed in [4]. However, the
parametric density estimation techniques may not be useful in ap-
plications when the data is not drawn from normal distributions.
As an alternative, non-parametric density estimation approaches �
also known as Parzen window � can be used to estimate the prob-
ability of a given sample belonging to the same distribution func-
tion as the data set [5]. However, the memory requirement of the
non-parametric approach is high. These techniques are also com-
putationally expensive since they require the evaluation of a kernel
function for each data sample in the training data set.

Support Vector Data Description (SVDD) is an elegant tech-
nique which uses support vectors in order to represent a data set
[7]. The SVDD represents one class of known data samples in
such a way that for a given test sample it can be recognized as
known, or rejected as novel.

In this paper we present a novel incremental learning scheme
for training SVDDs. The proposed learning technique employs
two factors in learning the support vector machines which guar-
antee its convergence. The convergence can be achieved by opti-
mizing on only two data points with a speci�c condition [1]. The

condition requires that at least one of the data points does not sat-
isfy the KKT conditions [3]. Our experimental results show that
the incremental SVDD training achieves higher speed and require
less memory than the online [8] and the canonical training [7].

The rest of the paper is organized as follows. Section 2 dis-
cusses the methodology used in this paper for the training of
SVDDs. In Section 3 a comprehensive quantitative and qualitative
set of experiments is carried out to compare the proposed incre-
mental SVDD with the online and canonical training algorithms.
Finally, Section 4 concludes the paper and proposes future direc-
tions of study.
2 Methodology

In this section we present the background modeling algorithm
employed by our approach. In order to discuss the proposed al-
gorithm we �rst introduce the SVDD method and its application.
Then, we present the proposed algorithm for incremental training
of the SVDDs.
2.1 Support Vector Data Description

A normal data description gives a closed boundary around the
data which can be represented by a hyper-sphere (i.e. F (R, a)).
The volume of this hyper-sphere with center a and radius R should
be minimized while containing all the training samples xi. To al-
low the possibility of outliers in the training set, slack variables
εi > 0 are introduced. The error function to be minimized is de-
�ned as:

F (R, a) = R2 + C
∑

i

εi ‖xi − a‖2 6 R2 + εi ∀i. (1)

subject to:
‖xi − a‖2 6 R2 + εi ∀i. (2)

In order to have a �exible data description, as opposed
to the simple hyper-sphere discussed above, a kernel function
K(xi, xj) = Φ(xi) · Φ(xj) is introduced. After applying the ker-
nel and using Lagrange optimization, the SVDD function using
kernels becomes:

L =
∑

i

αiK(xi, xi)−
∑

i,j

αiαjK(xi, xj) (3)

∀αi : 0 6 αi 6 C

When a sample falls in the hyper-sphere then its corresponding
Lagrange multiplier is zero. Only data points with non-zero αi are
needed in the description of the data set, therefore they are called
support vectors of the description. After optimizing the function
in (3) the following equality constraint must hold:

∑

i

αi = 1 (4)



Optimizing the functions in equation (3) is a Quadratic Pro-
gramming (QP) problem. Generally the SVDD is used to describe
large data sets. In such applications solving the above problem via
standard QP techniques becomes intractable. The quadratic form
of (3) needs to store a matrix whose size is equal to the square
of the number of training samples. Due to this fact several algo-
rithms have been proposed to present faster solutions to the above
QP problem.
2.2 Incremental SVDD

Our incremental training algorithm is based on the theorem pro-
posed by Osuna et al. in [3]. According to this theorem a large QP
problem can be broken into series of smaller sub-problems. The
optimization on these sub-problems converges when new samples
are added as long as at least one violates the KKT conditions.

In the incremental learning scheme, at each step we add one
sample to the training working set consisting of only support vec-
tors. Assume we have a working set which minimizes the current
SVDD objective function for the current data set. If a new sam-
ple belongs to the description then it satis�es the KKT conditions
and its inclusion to the working set does not minimize the cur-
rently minimum objective function. If the KKT conditions do not
hold for this sample, the SVDD optimization is solved for the new
working set which includes the new sample. Since the working set
contains only support vectors of the data set, its size is consider-
ably smaller than the actual data set and the optimization can be
performed ef�ciently.

From (4) it can be observed that Lagrange multipliers have a
linear relationship. In order to further increase the optimization
ef�ciency, we propose to solve the smallest possible sub-problem
[1] which consists of only two samples. Since only the new sample
violates the KKT conditions, at every step, our incremental learn-
ing algorithm chooses one sample from the working set along with
the new sample and solves the optimization on these two samples.

Solving the QP problem for two Lagrange multipliers can be
done analytically. This fact greatly reduces the burden of solving
numerical QP problems and decreases the cost of the algorithm.
Because there are only two multipliers at each step, the minimiza-
tion constraint can be displayed in 2-D. The two Lagrange multi-
pliers should satisfy the inequality constraint in (3) and the follow-
ing linear equality constraint:

α1 + α2 = γ : γ 6 1 (5)

The main component of our incremental learning algorithm is
based on an analytical method to solve for the two Lagrange mul-
tipliers. We �rst compute the constraints on each of the two mul-
tipliers. The two Lagrange multipliers should lie on a diagonal
line in 2-D (equality constraint) within a rectangular box (inequal-
ity constraint). By expressing the two ends of this line we can
easily �nd bounds for one of the two multipliers and from there
proceed to the optimization process. Without loss of generality
we consider that the algorithm starts with �nding the upper and
lower bounds on α2 which are H = min(C,αold

1 + αold
2 ) and

L = max(0, αold
1 + αold

2 ), respectively. The new value for αnew
2

is computed by �nding the maximum along the direction given by
the linear equality constraint:

αnew
2 = αold

2 +
E1 − E2

K(x2, x2) + K(x1, x1)− 2K(x2, x1)
(6)

where Ei is the error in evaluation of each multiplier. The denom-
inator in (6) is a step size (second derivative of objective function
along the linear equality constraint). Next, we determine whether
the new value for αnew

2 has exceeded the bounds and needs to be

1. Initialization
C : Confidence, σ : bandwidth

2. For each frame at time t
For each pixel xij

2.1. Training stage
ISVDi,j ← Inc. train(xij[t])

% ISVD: Incremental SVD
2.2. Classi�cation stage

DVi,j ← Test(xij[t],ISVDi,j)
% DV: Description Value

Label pixel based on DVi,j.

Figure 1. The SVDDM algorithm.
clipped. We call this α̂new

2 . Finally, the new value for α1 is com-
puted using the linear equality constraint:

αnew
1 = αold

1 + αold
2 − αnew

2 (7)

The process of optimizing the objective function for a multi-
plier pair iterates until all Lagrange multipliers satisfy the KKT
conditions within a small error range.
2.3 The Background Modeling Algorithm

Figure 1 shows the proposed algorithm in pseudo-code format1.
The support vector data description con�dence parameter C is the
target false reject rate of the system, which accounts for the sys-
tem tolerance. The Gaussian kernel bandwidth σ does not have
a particular effect on the detection rate as long as it is not set to
be less than one. For all of our experiments we set C = 0.1 and
σ = 5. The optimal value for these parameters can be estimated
by a cross-validation stage. The training of the support vector de-
scriptors for each pixel is performed using our proposed incremen-
tal learning scheme.
3 Experimental Results and Comparison

In this section we present a set of qualitative and quantitative
experiments. The experiments are conducted in two main cate-
gories. The �rst set compares the performance of the proposed
method in training the SVDDs with traditional methods on syn-
thetic data sets. In the second set of experiments we show the
performance of the proposed technique in a real background mod-
eling application.
3.1 Comparison on Synthetic Data

In order to show the performance of the proposed method and
its ef�ciency we compare the results obtained by our technique
with those of the online SVDD [8] and batch SVDD [7]. We com-
pare the speed of the algorithms as well as several error values for
these techniques using different number of training samples and
different data sets.

The SVVD Training Speed. In this section we compare the
speed of incremental SVDD against its online and batch counter-
parts. The experiments are conducted in Matlab 6.5 on a P4 Core
Duo processor with 1GB RAM.

Figure 2(a) shows the training speed of our incremental SVDD,
online and batch versions against the number of training samples.
As seen, the proposed SVDD training technique runs faster than
both batch and online algorithms and its asymptotic speed is linear
with the data set size. The online SVDD runs in linear time but
for larger data sets its training time is higher than the proposed
method. Our observation showed that this is due to the fact that
online SVDD retains more unnecessary support vectors than the
proposed technique. Notice that the training of a batch SVDD is
in the order of magnitude slower than the proposed method.

1The proposed method is implemented in MATLAB 6.5, using Data Description
toolbox [6].
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(a) (b)

Figure 2. Comparison of the training algorithms on
banana data set: (a) Training Speed. (b) No. of SV's.
Number of Support Vectors. A comparison of the number of

retained support vectors for our technique and batch and online
SVDD learning methods is presented in Figure 2(b). In this ex-
periment, the parameters of the SVDD system are C = 0.1 and
σ = 5 with a Gaussian kernel for all three classi�ers. Our method
keeps almost a constant number of support vectors. This can be in-
terpreted as mapping to the same higher dimensional feature space
for any given number of samples in the data set. Thus the proposed
algorithm is suitable for applications in which the number of train-
ing samples increases in time, i.e. in the case of growing data sets
such as long-term background modeling in videos.

Classi�cation Performance. In Figure 3(a) the classi�cation
boundaries of the three SVDD training algorithms are shown. In
this �gure the dots are the training samples drawn from the banana
data set and the circles represent the test data set drawn from the
same distribution function. The ?, ×, and + symbols are the sup-
port vectors of the incremental, online and canonical SVDD train-
ing algorithms, respectively. The proposed incremental learning
retains fewer support vectors compared to both online and canon-
ical training algorithms. From Figure 3(a), the decision bound-
aries of the classi�er trained using the incremental algorithm (solid
curve) is objectively more accurate than those trained by online
(dotted curve) and canonical (dashed curve) methods.

Figure 3(b) shows the Receiver Operating Curves (ROC) of the
three algorithms. The solid curve is the ROC of the incremental
learning while dotted and dashed curves correspond to the online
and canonical learning algorithms, respectively. Notice that the
true positive rate is higher for small false positive rates in the our
learning algorithm compared to both canonical and online learn-
ing. The ROC curves for other two data sets are similar to Figure
3(b) and are not included due to lack of space.

Figure 3(c) and (d) show a comparison of the classi�cation
boundaries between the three SVDD training algorithms on a 2-D
normal distribution (ellipse data set) a complex distribution func-
tion in 2-D (the egg data set), respectively. From Figure 3, the in-
cremental SVDD results in more accurate classi�cation boundaries
than both online and canonical versions. Notice that the proposed
method keeps a smaller number of support vectors to describe data
sets compared to the other two methods.

Error Evaluation. Table 1 compares the classi�cation error,
F1 measure, number of the support vectors, and learning time for
the three learning methods. The experiments are performed on
three data sets ('banana', 'normal', 'egg') with 1000 training sam-
ples and 1000 test samples. The F1 measure combines both the
recall and the precision rates of a classi�er:

F1 =
2× precision× recall

precision + recall (8)

Classi�cation Comparison. Table 2 compares the classi�ca-
tion error, F1 measure and training and classi�cation asymptotic

Table 1. Comparison of the proposed training al-
gorithm with, online and batch methods on banana,
ellipse and egg data sets of size 1000.

Training Data Set Error F1 No. SV's Time
Proposed 0.005 0.997 19 4.2

Banana Online 0.075 0.961 104 6.9
Canonical 0.085 0.956 106 1697
Proposed 0.013 0.993 6 3.72

Ellipse Online 0.100 0.947 105 4.1
Canonical 0.110 0.994 108 2314
Proposed 0.065 0.966 8 3.85

Egg Online 0.095 0.950 101 3.7
Canonical 0.128 0.932 87 1581

Table 2. Comparison of the classi�cation error, F1

measure, and asymptotic speeds with various clas-
si�ers on a complex data set of size 1000.

Classi�er Error F1 Training Classi�cation
Proposed 0.015 0.992 O(1) O(1)
Batch SVD 0.100 0.947 O(N) O(N)
Online SVD 0.103 0.945 O(N) O(N)
KDE(Parzen) 0.114 0.940 O(N) O(N)
MoG 0.143 0.923 O(1) O(1)
K-means 0.150 0.919 O(1) O(1)

time for various classi�ers. As seen, the proposed training of the
SVDDs reaches very good classi�cation rates compared to other
methods. The SVDDs trained with batch and online training tech-
niques give good classi�cation accuracy but are outperformed by
our method both in terms of accuracy and ef�ciency. In all sys-
tems, the trade-off parameter is set to be C = 0.1. Kernel band-
width for the three SVDD methods and the Parzen window is
σ = 3.8. K = 3 is selected for the number of Gaussians in the
MoG and number of nearest neighbors in the K-NN method.
3.2 Application to Background Modeling

In this section we show the results of our method applied to
background modeling in video sequences. We applied the incre-
mental SVDD (INCSVDD) to speed up the process in section 2.
We also compare the proposed method with traditional background
modeling techniques.

Presence of Irregular Motion. By using the water surface
video sequence, we compare the results of foreground region de-
tection using our proposed method with a typical AKDE [5] and
MoG [4]. For this comparison the sliding window of size L=150
is used in the AKDE method. The results of MoG are shown in
Figure 4(b), the AKDE method results are shown in Figure 4(c)
and the foreground masks detected by the proposed technique are
shown in Figure 4(d). As it can be seen, the proposed method
gives better detection since it generates a more accurate descrip-
tive boundary on the training data, and does not need an explicit
threshold to classify pixels as background or foreground.

Dif�cult Scenarios. Figure 5 shows the results of foreground
detection in videos using the proposed method. The water foun-
tain in Figure 5(a), waving tree branches in Figure 5(b) and �ick-
ering lights in Figure 5(c) pose challenges in foreground detection.
However, our method detects the foreground regions reliably and
models the inherent changes in the background explicitly.

Comparison Summary. Table 3 provides a comparison be-
tween different traditional background modeling methods and our
incremental SVDD (INCSVDD) technique. As seen in Table 3,
the Wall�ower method uses a K-means decision criterion, while
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(a) (b) (c) (d)

Figure 3. Comparison of incremental with batch and online SVDD: (a) banana data set. (b) Receiver Operating
Curve (ROC) for banana data set. (c) ellipse data set. (d) egg data set.

(a) (b) (c) (d)

Figure 4. Comparison of methods in presence of
irregular motion in water surface video: (a) Origi-
nal frame. (b) MoG results. (c) AKDE results. (d)
INCSVDD results.

(a) (b) (c)

Figure 5. Results of the foreground detection using
the proposed incremental SVDD for background
modeling. Top row: Original videos. Bottom row:
Detection results.

other systems �except INCSVDD� use a Bayes classi�er. The only
method which explicitly deal with the single-class classi�cation is
the proposed SVDD technique by �tting the description of data
belonging to the background class. Other methods shown in the
table use a binary classi�cation scheme and use heuristics ([4] and
[9]) or a more complex training scheme ([5]) to make it useful for
the single-class classi�cation problem of background modeling.

Only the INCSVDD technique is suitable for scenarios where
there is a steady and slow change in the background. Other meth-
ods fail to build a long term representation for the background
model because of the fact that their cost grows linearly by the num-
ber of training background frames. In scenarios where there is no

Table 3. Comparison between the proposed meth-
ods and traditional techniques.

Method Classi�er Memory Req.∗ Comp. Cost∗
INSVDD SVDD O(1) O(1)
AKDE[5] Bayes O(N) O(N)
Spatio-temp[2] Bayes O(N) O(N)
MoG[4] Bayes O(1) O(1)
Wall�ower[9] K-means O(N) O(N)

∗ : Per-pixel
N : number of training frames

empty set of background frames, called non-empty backgrounds,
the INCSVDD method is suitable and works independently with-
out any need to perform post-processing steps.
4 Conclusions

Tracking moving objects in videos with quasi-stationary back-
grounds is a challenging task. In order to detect moving fore-
ground regions in such videos the background and its changes
should be modeled. Support Vector Data Descriptors (SVDD) can
be employed in order to analytically model a single class of data
(the background pixels). This paper proposes a method to ef�-
ciently train an SVDD by solving the optimization problem. An-
other advantage of our technique is its constant memory require-
ments, since the proposed method only requires the support vec-
tors for its incremental retraining. We showed the results of the
proposed technique in a real world background modeling applica-
tion, while comparing the system with traditional techniques, both
quantitatively and qualitatively.

The proposed incremental training of the SVDD is a general
method that can be employed in many novelty detection applica-
tions such as face detection. The issue in face detection systems
is that samples of only one class of the data (faces) are available.
Most object recognition systems can be represented as a single-
class classi�cation application, hence the proposed training algo-
rithm can be used to train their corresponding SVDD.
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