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Understanding intent is an important aspect of camioation among people
and is an essential component of the human cogniiystem. This capability is
particularly relevant for situations that involvellaboration among multiple agents
or detection of situations that can pose a paticthireat. In this paper, we propose
an approach that allows a physical robot to detgentions of others based on
experience acquired through its own sensory-mogpabilities, then using this
experience while taking the perspective of the agehose intent should be
recognized. Our method uses a novel formulationH@wfden Markov Models
(HMMs) designed to model a robot's experience amtdraction with the world
when performing various actions. The robot’s calitghid observe and analyze the
current scene employs a novel vision-based teckniqu target detection and
tracking, using a non-parametric recursive modebpgroach. We validate this
architecture with a physically embedded robot, cétg the intent of several
people performing various activities.

1 Introduction

The ability to understand the intent of othersrisaal for the success of communication
and collaboration between people. In our dailyraxtéons we rely heavily on this skill,
which allows us to “read” other people’s minds. Whpeople are very good at
recognizing intentions, endowing a robot with samikills is a more complex problem,
which has not been sufficiently addressed in thifilf robots are to become effective
collaborators in human environments, their cogaitskills must include mechanisms
for inferring intent, which allow them to understband communicate with people at or
close to their level. In this paper, we proposeedhwod that targets the development of
such capabilities.

The general principle of understanding intentiomat twe propose in this work is
inspired from psychological evidence of a Theoryifid [1], which states that people
have a mechanism for representing, predicting abekpreting each other’s actions.
This mechanism, based on taking the perspectiathafrs [2], gives people the ability
to infer the intentions and goals that underligoacf{3][4]. We base our work on these
findings and we take an approach that uses thenarée own learned experience to
detect the intentions of the agent or agents ienles.

Humans are continuously exposed to sensory inféomdhat reflects their actions
and interactions with the world while performingteén activities. We propose to use
this experience to infer the intent of others, Bkirig their perspective and observing



their interactions with the world. When matchedhwiwn past experiences, these
sensory observations become indicative of whatio@ntions would be in the same
situation. We propose to model the interactionshwihe world using a novel
formulation of Hidden Markov Models (HMMs), adapted suit our needs. The
distinguishing feature in our HMMs is that they rebehot only transitions between
discrete states, but also the way in which parametacoding the goals of an activity
changeduring its performance. The goals are represeasedbstracted environmental
states, such adistance-to-objecor angle-to-goal This novel formulation of the HMM
representation allows for recognition of the agemtent well before the underlying
actions are finalized. In our models, theals’ changesepresent theisible, observable
states while thehidden stategncode théntentional goalsof the observable agents.
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Figure 1. The two stages of the architecture.

Our approach has two main stagestivity modelingandintent recognitionDuring
the first stage the robot learns corresponding HMbtseach activity it should later
recognize, from its own experiences of performimgse activities. For example (Figure
1(a)), the agent observes that duringeetingactivity thedistanceandangle between
its heading and the direction of a person decraadke two agents are approaching.

During the intent recognition phase (Figure 1(lthe robot, now an observer, is
equipped with the trained HMMs and monitors otheerd(s) performance by
evaluating the changes of the same goal parameters, the perspective of the
observed agents.

A significant advantage of our work is that unliggical approaches to HMMs,
which are restricted to be used in the same (txg)nenvironment, our models are
general and can be transferred to different domaiheen if trained in different



environments, our HMMs encode features of the digs/that are identical irrespective
of the domain. For example, a meeting between wemts will always be characterized
by the agents approaching each other, irrespedivéhe place, the agents or the
specifics of their goals.

The remainder of the paper is structured as folloBection 2 summarizes related
work in activity modeling and recognition, and infag intent. Section 3 presents our
novel architecture for understanding intent usingMt and Section 4 describes the
visual capabilities we developed for this work. t8et 5 describes our results, and
Section 6 gives a discussion of the approach arettebns for future work. Section 7
summarizes our paper.

2 Related Work

HMMs are a powerful tool for modeling processeg thaolve temporal sequences, and
have been successfully used in applications inaglvipeech and sound. Recently,
HMMs have been used for activity understandingwshg a significant potential for
their use in activity modeling and inferring inteht particular, the HMM approach has
been used mostly in manipulation tasks, which |etheémselves naturally to
segmentation in relevant task stages, with clesordie end-states (e.ghject-on-table,
object-in-hand etc.). Representative examples include learningse a spatula and a
pan [5], learning peg-in-the-hole assembly tasKs Igarning trajectory of a 7-DOF
robotic arm [7], and sequences of trajectories I[8]such training scenarios, the robot
learns the transition probabilities between théates by observing the demonstration of
the task performed by a human. The discrete statedinked to robot actions (e.g.,
grasp, drop.etc.), which combined with the learned HMM allove tftobot to reproduce
the demonstrated task. While some of the existppr@aches allude to the potential of
using HMMs to learn the user’s intentions, thessteans fall short of this goal: the
approach allows detecting that some goal has bebiewed onlyafter observing its
occurrence. However, for tight collaborative scérsior for detection of potentially
threatening situations, it is of particular impowta to detect the intentiotefore the
goals of the actions have actually been achiewedhé context of using HMMs for
activity recognition, several approaches have axbd@ the problem of gesture
recognition [9], with the purpose of easily conliral the actions of a mobile robot, and
robot behavior recognition [10], with applicatiom the robot soccer domain. However,
these systems require that an entire sequencdiohsibe completed before the activity
can be recognized.

An application of HMMs that is closer to our work that of detecting abnormal
activity. The methods used to achieve this goglicglly rely on detecting
inconsistencies between the observed activity andtaf pre-existing activity models
[11][212][23]. While this approach is useful in detieg deviations from expected
activity patterns, it does not provide informatimgarding the intent of the observed
actions.

Intent recognition has also been addressed fronpénspective of intent inference
and plan recognition for collaborative dialog [14ut these methods use explicit
information such as natural language in order feriimntentional goals. Our robotic
domain relies entirely on implicit cues that comeni a robot’s sensory capabilities,
and thus requires different mechanisms for detgdétitent.

In robotics, the only existing approach for intestognition that we are aware of has
been proposed by Gragt. al [15]. Their solution, which is also based on pecsipe



taking, uses models of a robot’s tasks to infergbals and intentions of human users.
The robot monitors the actions performed by the dnurfrom his/her perspective and
matches them with high-level goals of its own task®rder to infer what goals the
human is trying to achieve. If the human encoundepsoblem, the robot is able to help
the person finish the task. Thus, the method allders detecting the intentional
meanings of a human’s high-level task goals (ge@muences or hierarchies). The
difference in our work is that we aim at inferrimgentions for lower granularity goals,
such as the individual goals from [15], before pegson finishes the actions meant to
achieve them. Our models look at how an activitydgls are changing as the human
executes it, rather than modeling a long task égtsequence.

3  General Architecturefor Intent Under standing

3.1  Novel HMM Formulation

Hidden Markov Models have found greatest use inbleros that have inherent
temporality, to represent processes that have @-é¢xtended evolution. In this
framework, a system is represented as a sbt dibcrete statefs;}. At each time step
the system can be in any of these states and easitton to another state with
probability P(5(t+1)|si(t)) = a;. Thus,a; is the probability of being in sta at time
t+1, given that the system was in stgtat timet.

However, the state of the system at tiie not directly observable. Instead, a set of
visible variables (stateqy;}, dependent upon the hidden states, is availalole e&ch
states, we have a probability of observing a particulasible statevy, given by
P(w()|s(t)) = by. In the classical HMM learning approach, a streetof the model is
given (i.e., number of hidden and visible statepptogy of transitions between states),
along with a training data set of observationshef visible symbols. From these, the
transition probabilitiesy and theby probabilities are computed.

The main contribution of our approach consistshoasing a different method for
constructing the model. This new HMM formulation adets an agent’s interaction with
the world while performing an activity, through theay in which parameters that
encode the goals of the task are changing (e.grease, decrease, stay constant, or
unknown). This is in contrast with the traditionapproaches that solely model
transitions between static states. With this regtion, thevisible statessncode the
changes in task goal parameters andhilden statesepresent the hidden underlying
intent of the performed actions.

The reason for choosing the activity goals as #rameters that are monitored by the
HMM is that goals carry intentional meanings, ahdst tracking their evolution is
essential for detecting and understanding an agangént.

3.1.1 Activity Modeling

During this stage, the robot uses its experiengeeoforming various activities to train
corresponding HMMs, whose structure is currentlgigieed by hand. The robot is
equipped with a basis set of behaviors and coet®[B3] that allow it to execute these
tasks. We use a schema-based representation ofitseshasimilar to that described in
[16][34][35]. Examples of activities that we used this work includeFollowing,
Meeting and Passing By While executing these activities, the robot maonst the
changes in the corresponding behaviors’ goals. éxample, for ameetingactivity
(Figure 2), theangle and distanceto the other person are parameters relevant to the



goal, which could be dngle = 0 and distance =1m} (i.e., “face the other person
directly at 1m away). The robot's observable symhblghabet models all possible
combinations of changes that can occur: increa@imy, decreasing (--), constant (= =),
or unknown (). For example, a visible symbol could ye= {distance: --, angle: +%.
The underlying intent of the actions is encodethe\HMMs'’ hidden states.
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Figure 2. Activity modeling stage:
observable symbols are chanaes in activity g

Repeated execution of a given activity providesdata used to estimate the model
transition probabilities; and by using the Baum-Welch algorithm [17]. As a restlt o
training, the robot has a set of HMMs, one for eacfivity.

During the training stage, the observed, visibétest are computed by the observer
from its own perspective. The detection and traglaf other agents or relevant targets
use the robot's on-board sensing capabilities sashthe camera and the laser
rangefinder, as described in Section 4.

3.1.2 Intent Recognition

The recognition problem consists of inferring, é&ach observed agent, the intent of the
actions they most likely perform, from the previgusained HMMs. Toward this end,
the robot observer monitors the behavior of all dgents of interest with respect to
other agents or locations. The robot also evaludtesobservable symbols for all
applicable HMMs. During the recognition phase, #ystem computes these visible
symbols in a different manner than during traini8mce the observer is now external to
the scene, the features need to be computed fremltberved agents’ perspective rather
than from the observer’'s own point of view. Thedseayvations consist of monitoring
the same goal parameters that have been usedinmgrahe HMM (e.g., change for
distance to target, angle, etc.). For examplejgaré 3, in order to detect the intentions
of the woman, the robot takes the following steff)sobtains agents’ positions with
respect to itself (values in black in Figure 3)) {fansfers the coordinate system to
monitored agent (the woman), (iii) computes ageptsitions from woman’s point of
view (values in red in Figure 3), and (iv) compubeservable symbols in the woman’s
coordinate system. The woman’s heading is compigedntegrating her previous
positions, which helps determine the orientatiothefcoordinate system in step (ii).



For each agent and
for all HMMs, the robot
computes the likelihood
that the sequence of
observations has been
produced by each model,
using the  Forward
Algorithm  [18]. To
detect the most probable
state that represents the
intent of an agent we
consider the intentional
state emitted only by the
model  with  highest
probability. For that
model, we then use the
Viterbi Algorithm [19] ' Figure 3. Intent recognition stage: the robot takes the
to detect the most perspective of the monitored agentm@hm represent
probable sequence of gistances, jw, m; and Ymwm; represent 2D coordinates
hidden (intentional) 4 q Ogmwwm FEPresents the angle displacements w.r.t.
states. the robot and woman.

The standard approach to recognition using an HM&s on a clear segmentation
of the observed activities and on a precise symibation between observed sequence
and the recognizing process. In our work, it cafm®assumed that this segmentation is
provided, as agents’ underlying behaviors are nown, and can start or change at any
time. A related challenge is that the observatioome as a continuous stream of
measurements, rather than as a fixed sequencéisirsituation the probability of a
particular model decreases to zero as the lengtheo§equence grows. To address this
problem, we chunk the observation sequences tatigt recenk observations, similar
to [9]. In our work,k = 30 has been empirically determined to give good tesaind
corresponds to a few seconds of video. For moreptioated scenarios, a larger chunk
size may be necessary.

4  Vision-Based Perceptual Capabilities

We provide a set of vision-based perceptual capiailfor our robotic system that
facilitate the modeling and recognition of actionarried out by other agents.
Specifically, we are interested imtetection and trackingof relevant entities, and
estimation of 3D position®r the detected entities, with respect to thecoles.

As the appearance of these agents is generallynoetn a priori, the only visual cue
that can be used for attracting the robot's atbentioward them is image motion.
Although it is possible to perform segmentationiran image sequence that contains
general motion (both the camera and the objecthénscene may be moving), such
approaches — typically based on optical flow edfioma[20], [36] — are not very robust
and quite time consuming. Therefore, our approaetke® significant use of more
efficient and reliable techniques traditionally dise real-time surveillance applications,
based on background-foreground modeling and segti@mt structured as follows:



» During theactivity modeling stagethe robot is moving while performing various
activities. The appearance models of the other Im@lgjents, necessary for tracking,
are built in a separate, prior process where thigcstobot observes each agent that
will be used for action learning. During this presgthe agents are detected through
a foreground-background segmentation techniquee@me agent model is learned
the robot starts performing the designated scemarnioorder to learn different
actions/intentions parameters. When the robot sstambving, the background
subtraction stage of the process is stopped andoti@ uses an enhanced mean-
shift tracking method to track the foreground objec

» During theintent recognition stagewe assume that the camera is static while the
robot observes the actions carried out by the adigents. This allows the use of a
foreground-background segmentation technique, iderrto build appearance
models on-line, and to improve the speed and rabksst of the tracker. The
stationary assumption is simply used for efficiemegisons. If the robot is moving
during theintent recognition stageve can use the approach from tmedeling
stage

41  Detection and Tracking

For tracking we use a standard kernel-based apipi[@4¢, where the appearance model
for each detected region is represented by a metodpased color distribution. The rest
of this section describes our proposed method dokfpround modeling and foreground
segmentation, extensively used for the detectidhede regions of interest.

The detection is achieved by building a represemtatf the scene background and
comparing the new image frames with this represiemta Motivated by the
requirements of our application, we focus on buaida statistical representation of the
scene background that supports reliable and nea-tietection of foreground objects in
the scene, while adapting automatically to eachescend being robust to natural scene
variations (quasi-stationary backgrounds).

The most commonly used feature in foreground olgettction is pixel intensity or
color. In video sequences with stationary backgdouteviations of pixel intensity or
color values over time can be modeled by a Gaushgribution function. A simplistic
approach is to compute the average of intensityeath pixel position, find the
difference of pixel intensities at each frame wiis average and simply threshold the
results. Using adaptive filters for modeling graduizanges in the scene illumination is
the approach employed in [22], while Kalman filteriis used in [23], and a linear
prediction using a Wiener filter is proposed in J[20ther features such as block
features [25] and edge features [26] are also tesetbdel the background.

However, because of inherent changes in the bagkdrosuch as fluctuations in
monitors and fluorescent lights, waving flags amdes$, water surfaces, etc. the
background may not be completely stationary. In fhiesence of these types of
backgrounds, referred to as quasi-stationary, numplex background modeling
techniques are required.

In parametric background modeling methods, the miglessumed to follow a
specific distribution whose parameters must berdeted. Mixtures of Gaussians are
used in [27]; in order to find the parameters ti@racterize the mixtures of Gaussians,
an Expectation Maximization (EM) algorithm is emydd, while the adaptation of
parameters can be achieved using an incrementaloveof the EM algorithm. A
Bayesian framework that incorporates spectral, i@pand temporal features to



characterize the background appearance is propos¢2B]. In order to model the
variations of the background as different statesdfstinct situations (e.g., sunlight vs.
shadow), Hidden Markov Models are used in [29] B@].

As opposed to this trend, one of the most succkesgfproaches in background
modeling [31] proposes a non-parametric model. Bhekground representation is
drawn by estimating the probability density funatiof each pixel, by using a kernel
density estimation technique.

The background model. In this work, we use the more generaln-parametric
modeling which estimates the density directly from theagdatithout any assumptions
about the underlying distribution. This avoids mayvito choose a specific model (that
may be incorrect or too restricting) and estimatitsgdistribution parameters. It also
addresses the problem of background multi-modadkgging to significant robustness
in the presence of quasi-stationary backgroundsthAtsame time, it allows enough
generality for handling a wide variety of scenanwithout the need to manually fine-
tune various parameters for each scene type, athrakholds used in detection are
estimated during model acquisition.

However, the method described in [31] is still degent on the number of image
frames used as samples for estimating the backdrowadel. Choosing a small number
of frames for the model increases speed, whiledischot incorporate enough history for
the pixel, resulting in a less accurate model.dasing the number of frames improves
the model accuracy but at the cost of higher menmmguirements and slower
convergence. This becomes apparent especially én cise of slowly changing
backgrounds, where a large number of samples wmeildeeded for accurate modeling.
In general, the non-parametric kernel density estion tends to be memory and time
consuming, as for each pixel in each frame theegystas to compute the average of all
kernels centered at each training sample.

In order to preserve the benefits of non-parametradeling while addressing its
limitations, we propose eecursive modelingscheme. Our approach for background
modeling employs a recursive formulation, where thackground modelg(x) is
continuously updated according to equation (1):

8,(x)= - B) B, (x)+a, H,(x-x) (1)

ZX:Q(X):l )

The model §(x) corresponds to a probability density function fjdit for each
pixel), defined over the range of possible intgngir color) valuesx. After being
updated, the model is normalized according to egug®), so that the function takes
values in [0,1], representing the probability fovaduex at that pixel to be background.
This recursive process takes into consideratiomibdel at the previous image frame,
and updates it by using a kernel function (e.ggaassianH/(x) centered at the new
pixel valuex;.

In order to allow for an effective adaptation tanhes in the background, we use a
scheduled learningpproach by introducing the learning rateand forgetting ratg as
weights for the two components in equation (1). Té@ning and forgetting rates are
adjusted online, depending on the variance obseivetie past model values. This
schedule makes the adaptive learning process agavaster, without compromising



the stability and memory requirements of the systehile successfully handling both
gradual and sudden changes in the background,endeptly at each pixel.
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Figure 4. Model evolution after 10 frames (left) and 100 feanright).

Results. Figure 4 shows the updating process using our segboecursive modeling
;
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Figure5. Convergence speed.

technique. It can be seen that the trained modét(blue line) converges to the actual
one (dashed red line) as new samples are introdi¢edactual model is the probability
density function of a randomly generated sampleufaijon and the trained model is
generated by using the recursive formula presenteduation (1).

Figure 5 illustrates the convergence speed of ppraach with scheduled learning,

modeling” " —— Scheduled learning
error!i L Constant learning rat
: - N Constant window sizg

20 40 a0 80 100 120 140 180 180 200

Figure 6. Recovery speed from sudden global changes.
compared to constant learning and kernel densitsnagon with constant window size.



(b) Water sequence

©

(e) Water fountain sequence (f) Non-empty background (model at 50 frames)

Figure 7. Background modeling and foreground detection in phesence of quasi-
stationary backarouds

Figure 6 compares the same three approaches i Ermecovery speed after sudden
global illumination changes (three different ligbtsitched off in sequence).

Results on several challenging sequences arerdtastin Figure 7, showing that the
proposed methodology is robust to noise, gradiwghihation changes or natural scene
variations, such as local fluctuating intensityues dues to monitor flicker (a), waves
(b), moving tree branches (c), rain (d) or watertioro (e). The ability to correctly
model the background even when there are movingctdbjn every frame is illustrated
in Figure 7(f).

Quantitative estimation. The performance of our method is evaluated quaiveds

Se\é:f:rf’ce MR LB CAM | Sw wSs FT Avg
apgrrgg;fe‘j 092 | o087 | o075 072| 089 087 o084
moit;tiir?;i‘izg] 091 | 071| o069 o057 085 067 074
Ga'\lj':gi:rrfs [g;] 044 | 042 | 048 036 054 066 049

Table 1. Quantitative evaluation and comparison to differemtthods. The video
seauences are Meetina Room. Lobbyv. Campus. Sidk. \W&lter Surface and Fountz
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on randomly selected samples from different videquences, taken from [28]. The
metric used is thesimilarity measurebetween two region®\ and B, defined as
S:[Aﬂ B]/[AD d where regiorA corresponds to the detected foreground, whileoregi

B corresponds to the true foreground. This measunmgoinotonically increasing with the

similarity of the two foreground masks, with valuetween 0 and 1.

Table 1 shows the similarity measure for sevemdéoisequences where ground truth
was available, as analyzed by our method, the maxvfi Gaussians described in [27],
and the statistical modeling proposed in [28].dh de seen that the proposed approach
clearly outperforms the others, while also prodgaimre consistent results over a wide
range of environments. We also emphasize thatamptbposed method the thresholds
are estimated automatically (and independentlyaah epixel), and there is no prior
assumption needed on the background model.

The proposed approach for background-foregroundnsatation has the following
benefits:

» The recursive formulation allows reliable convergerto the actual background
model, without the need to specify a temporal stidivindow, while being suitable
for slow changes because of its low (and constar@inory and processing time
requirements.

» The scheduled learning scheme achieves a high mpaivee speed, and a fast
recovery from expired models, allowing for succabkgfodeling even for non-empty
backgrounds (when there are moving objects in eframe); its adaptive localized
classification leads to automatic training for diffint scene types and for different
locations within the same scene.

4.2  Estimation of 3D Positions and orientation

We employ the robot-mounted laser rangefinder &iimsting the 3D positions of
detected agents with respect to the observing rétmteach such agent, its position is
obtained by examining the distance profile from thegefinder in the direction where
the foreground object has been detected by the rearttes assumed that agents face
toward the direction of travel. This allows oricita to be estimated using observed
changes in position. If the agent maintains acstadisition, the last known orientation
will be preserved until motion resumes.

For the intent recognition stage, once the 3D fms#énd orientation of each agent is
known with respect to the camera, a simple chafigeardinates allows the observing
robot to take the perspective of any participataggent, in order to map its current
observations to those acquired during the actiamlag stage.

(a) Follow (b) Meet

Figure 8. Activity modeling stage.
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5 Experimental Results

To validate our approach we performed experimeiitis & Pioneer 2DX mobile robot,
with an onboard computer, a laser rangefinder arfeiTZ Sony camera. While we
experimented with a mobile robot and not a humanminl approach is independent on
the platform as it provides cognitive capabilitibat are necessary for and that translate
directly to a humanoid robot. The experiments cstesi of two stages: the activity
modeling phase and the intent recognition phase.fidme rate of the system in both
activity modeling and intent recognition phasealisut 15 frames per second.
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Figure 13. Model probabilities for the two people during tia® passing byscenarios.

During activity modeling, the robot equipped withntrollers forfollowing, meetingand
passing bya person performed several runs of each of theetlctivities. Figure 8
shows sample frames from the robot’'s perspectivinguthis stage together with the
tracking results. The observations gathered froesehtrials were used to train the
HMMs represented in Figure 9, as explained in acdil1.1. The goal parameters
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monitored in order to compute the observable symbat the distance and angle to the
human, from the robot’s perspective.

During intent recognition, the robot acted as aseoter of activities performed by
two people in five different scenarios, which irséd following, meeting, passing by
and two additional scenarios in which the usersctwid repeatedly between these three
activities. We performed each of the first threersrios twice, to expose the robot to
different viewpoints of the activities and thus show the robustness of the intent
recognition mechanism with varying environmentahditions. The goal of the two
complex scenarios is to demonstrate the abilitthefsystem to infer a change in intent
as soon as the agents switch from one activitytiteer.

During each scenario, we recorded the probabilitst tthe models produced the
observations, for each of the three HMMs. FigureshOws snapshots of the detection
and intent recognition for the two runs of eachnsc® from different viewpoints.
Under each detection box we show the computedrdistérom the robot. The blue and
red bars correspond to the blue and respectivelyrezked agent. The length of the red
and blue bars represents the cumulative likelihmfatie models up to that point in time,
and the text inside the bars indicates the inteatichidden state of the highest
likelihood model.

Figure 11 through Figure 13 show the likelihoodseath model at each time step
over the course of one video sequence. One tinpecstgesponds to one frame of the
sequence. The figures show that the robot is abiefér the correct activity and intent
for the following, meeting,and passing byscenarios: the probability for the correct
model rapidly exceeds the other models, which heeny low likelihoods. Videos
available on-line also show the detected hiddetestaf the most probable model.

For thefollowing scenarios (Figure 11), we only present the intétiie person who
is performing the following. For the other scenar{figure 12 and Figure 13), we show
the intent of both people involved in the actigti¢he robot is able to detect that both
have similar intentions, either relatedmeetingor passing by

In the complex scenarios, the two subjects perfdritiee following sequence of
activities (agent 0 is tracked in red, agent tdsked in blue):

e Scenario 1: pass by, meet, red follows blue, Blews red
e Scenario 2: pass by, pass by, blue follows redfataolws blue

During these runs, the system was capable to quedtapt to changes in people’s
activities and detect the correct intentional sttéhe agents, as shown in Figure 14.
Although the activities follow each other contingby the system does not require an
explicit indication of when these start or end. Timedel with the highest current
probability is that for which the graph bars hdalzel indicating the hidden state (such
as tracking or approach).
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Figure 14. Results from complex scenario 2.

To provide a quantitative evaluation of our methveel analyze the following three
measures, typically used in evaluating HMMsccuracy rate, early detectioand
correct duration[32]:

» Accuracy rate= the ratio of the number of observation sequenoésvhich the
winning intentional state or activity matches theund truth, to the total number of
test sequences

« Early detectiore t/T, whereT is the length of the observation sequence and

= min{t| Pr@vinning intentional activityis highest from timéto T}

» Correct duration= C/T, whereC is the total time during which the intentionaltsta
or activity with the highest probability matches tjround truth.

For a reliable recognition, the system should haigh accuracy rate small value
for early detectiorand highcorrect duration The accuracy rate of our system is 100%:
all 10 intent recognition scenarios — 2

for following, 4 for meeting (for both Early Correct
agents) and 4 for passing by (for boll Scenario detection | duration
agents) — have been correctl [%] [%]
identified. Table 2 shows the value] Follow 1 1.23 98771
for _early detection and correct o liow 2 370 96,30
duration for these experiments. Fc -
all except two cases, the robc|Meeting1-agentl 0 100
inferred the correct intent of action] Meeting 1 — agent 2 47.25 86.09
before less than 10% of_th(_a activit] Meeting 2 — agent 1 8.24 91.76
had been executed, and in five of tf Meeting 2 — agent 2 5245 47 55
cases the correct intent was detect

Passing by 1 — agent 1 0 100

right from the startdarly detectior
0). As expected, theorrect duration | Passing by 1 —agent 2 0 100
for these cases had very high value] passing by 2 — agent 1 0 100
with the majority over 90%. The only 0 100
two cases that produced worse resu b
occurred when inferring the intent of Table 2. Quantitative evaluation of results.

Passing by 2 — agent 2
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agent 2, during the two meeting scenarios. Initls¢ ¢ase (Figure 12(a)), the robot had
inferred the correct intent very early on, but lzabdrief moment whepass byseemed
more likely at some point during the middle of then. For most of the scenario,
however, the robot correctly inferred that the agemtent is for meeting (correct
duration = 86.09%). In the second case (Figurd))2(he robot had mistaken the
meeting activity with a pass by, but only from therspective of the second agent.
Toward the end, however, the robot detects theecbrintent asmeetbecomes the
model with the highest likelihood. From our anadysf the data we observed that this
result is due to small variations in computing tieservable symbols from agent 2’s
perspective and due to the high similarity betweeeting and passing by.

6 Discussion

The above experiments demonstrate that the robatblesto reliably detect the correct
intentional meanings of people’s actions from ayvearly stage. By modeling the
interaction of an agent (human or robot) with thwienment while performing an
activity, we are able to distinguish between intemg that are otherwise hard to
disambiguate, such as the goal of meeting somebodymply passing them by. The
differences in activities are modeled by changegaal parameters, such as the angle
and distance to the other person. If the goal imé@t somebody, the distance to that
person reduces, just as the angle at which thaopeis in the field of view (since
meeting implies facing the other person directypwever, if the goal is simply to pass
by somebody, while the distance might be decreasiieggangle at which that person is
in the field of view is mostly increasing. Thesesetvations are modeled as the
observable symbols for our HMMs, thus encoding hiesvperceptual information about
the world changes while performing an action.

The models above are not necessarily a completeegeptation of ameeting
following or passing bysituation: additional intentional states and mitigal of change
for the observable states could be added for a nedireed and accurate representation.
For example, we could add hidden states that enastieving-downof the two agents
before meeting and we could also consider varyatgsr of change for distance, angle
and speed (e.qg., fast increase, slow decreask,Adclitionally, we are also looking into
ways for our system to automatically detect andfaagures that are appropriate for a
given intent recognition task.

Once an intentional state has been detected, bu¢ can use information specific to
the task to respond to that information (e.g. pievielp, turn around, etc.). It is outside
the scope of this paper to address this probleni¢chwim most cases would be task
specific. In our future work, we will design collatative scenarios that take advantage
of the capabilities provided by our approach.

We are currently performing experiments that ineobbject manipulation activities,
to detect the intent obffering or being offeredan object, as well as the intent of
abandoningor stealingan object (such as a bag) from someone. We asenalking on
expanding the repertoire of activities for the rotsomore complex navigation scenarios
involving hiding or interception.

7 Conclusion

In this paper, we proposed an approach for detgdtitent with application to the
robotic domain. So far, this problem has not bagficgently addressed, although the
ability to infer others’ intentions is essentialr feffective communication and
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collaboration, and should be a key component oblaot’'s cognitive system. The
method we proposed is based on experience acghireaggh the robot's own sensory-
motor capabilities, then using this experience ahdking the perspective of other
agents. We proposed a novel formulation of Hiddeartkdv Models (HMMs) to encode
a robot's experience and interaction with the wardgen performing various actions.
These models are used through perspective takimgeothe intent of other agents and
can perform this inference well before the agemistions are finalized. This is in
contrast with the wide spectrum of activity recdigm approaches, which only detect an
activity after most of its stages were done. Towlthe robot to observe and analyze its
environment, we developed a vision-based technfquéarget detection and tracking,
that uses a non-parametric recursive modeling @mbroNe validated this architecture
with a physically embedded robot, detecting thenhtof several people performing
multiple activities.
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