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Abstract 

 Nucleotide sequencing of genomic data is an important step towards building 

understanding of gene expression. Current limitations in sequencing limit the 

number of base pairs that can be processed to only several hundred at a time. 

Consequently, these sequenced substrings need to be assembled into the overall 

genome. Furthermore, the existence of insertions, deletions and substitutions can 

complicate the assembly of subsequences and confuse existing methods. What is 

needed is an approach that deals with ambiguity in trying to match and assemble 

a genome from its sub sequences. An assembler that can assemble Eukaryote and 

Prokaryote sequences alike is needed.   Evaluation of this approach suggests that 

this approach is at least as good as standard approaches and in some cases better. 

Preliminary evaluation of this approach in conjunction with K-Means for 

clustering species shows good classification of and assembly Prokaryote and 

Eukaryote sequences. 
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1  Introduction 

 
All living organisms can be categorized into two major groups based on the 

structure of their cells, the prokaryotes and eukaryotes. Prokaryotes have the 

most primitive type of cell structure. Their nucleus does not have a membrane 

and the structure is simple. Bacteria are the most common and largest group of 

prokaryote. An example of the Prokaryote is Escherichia coli (E. coli). 

Eukaryotes are organisms that have a membrane for the nucleus. Eukaryotic 

DNA is much longer in size and contains bulk of non-coding regions. Examples 

of eukaryotes include mammalian groups, plants, etc. 

 Genome shotgun sequencing for DNA alignment is a process that requires 

building consensus sequences from small DNA fragments.  DNA is composed of 

four nucleotides A, C, G, T. Genome sequencing is figuring out the order of 

DNA nucleotides, or bases, in a genome that make up an organism's DNA. These 

nucleotides and their order determine the structure of protein. Sequencing the 

genome is a very important step in Genomics. Entire genome sequences are very 

large in size and can range from several thousand base pairs to millions of base 

pairs. The whole genome can't be sequenced all at once because the chemical 

reactions researchers use to decode the DNA base pairs are accurate for only 

about 600 to 700 nucleotides at a time [10]. Therefore DNA is chopped up into 

small subsequences.  

Sequencing DNA has several steps starting from acquiring data to 

assembling the DNA fragments or sequences into an entire genome sequence. 

The process of DNA sequencing begins by breaking the DNA into millions of 

random fragments, which are then given to a sequencing machine. Fragments or 

sequences are selected randomly; using a sequence once may not cover all 

regions. Therefore multiple copies of original sequences are used to ensure that 

the entire sequence is covered.  This is generally referred to as coverage of ‘nX’, 

where n is the number of copies. Coverage of 8X-10X is widely accepted to be 

able to reconstruct the entire sequence. Following the sequencing process, an 

assembler pieces together the many overlapping reads and reconstructs the 

original sequence [20]. The process explained above is known as "whole-

genome shotgun" method, which involves breaking the genome up into small 

pieces, sequencing the pieces, and reassembling the pieces into the full genome 

sequence. Sequencing DNA using the shot-gun method was introduced in 1995 

[8], [9a]. 



The problem of assembly is not of an exact matching but rather of obtaining 

approximate matches through consensus. The consensus sequences are also 

known as contiguous sequences or contigs. In contigs, mismatches can occur due 

to insertions or deletions (indels) or replacement of base pairs. A consensus 

sequence is constructed through approximate matches by following an overlap 

and consensus scheme [20a]. This is illustrated in Fig. 1. below. 

 

 
Figure 1. Whole Genome Sequencing process is displayed in terms of reads from 

the DNA sequences.   

 

Even though computational power has made it possible to sequence 

genomes, assembly is still an NP-Hard problem. An exhaustive method such as 

brute-force is not a viable option. Heuristic approaches can work better for such 

problems.  

The algorithm presented in this paper uses a divide-and-conquer strategy to 

speed up the assembly by dividing the sequences into classes. Some sequences 

can have higher similarity with each other and some others may have lesser or 

no similarity at all. Assembling sequences is accomplished by first sorting the 

sequences into classes.  We perform a meaningful partitioning of data, so that 

sequences in a cluster have high similarity with one another and sequences 

between two clusters are less similar.  

Prokaryotes and Eukaryotes are metabolically different. The main difference 

is in the coding regions. Eukaryotes contain large amounts of regions that do not 

code for proteins. As the basic structure of prokaryotes and eukaryotes are 

different we would like to build an assembler that can sequence organisms from 

both groups. With recent advances in science samples are collected from the 



environment. These samples sometimes may have traces of mixed species or 

mixed strains. Therefore we perform classification of data along with assembly 

so that species can be separated. 

The following Section discusses the previous work done in sequence 

assembly. Section 3 contains the approach. Section 4 has the experimental 

results followed by future work and conclusions in Section 5. 

 

2   Previous Techniques 

 

In general, the approach to sequence assembly has been to iteratively find 

the best overlap between all fragment pairs until an acceptable final layout has 

been determined. In current genome sequencing tasks, the number of fragments 

is usually very large and the degree of computation required increases 

exponentially. Being essentially an NP-Hard problem, many different 

approaches with varied parameters and matching schemas have been explored 

which can, among other things, save computation time.  Finding the longest 

common subsequence (LCS) between fragments is the key to the process of 

sequence assembly.  LCS for matching strings solves problems by combining the 

solutions to sub problems [27], in this case substrings. It is a method for 

reducing the runtime of algorithms containing overlapping sub-problems and 

optimal substructures [5a]. An application of dynamic programming is used in 

the Smith-Waterman algorithm to find LCS for multiple sequence alignment 

[11], one of the most prominent algorithms used in sequence assembly programs. 

Other techniques for finding the longest common subsequence include suffix 

trees, the KMS algorithm [17] and greedy approaches [13].  Suffix trees allow a 

linear time search for matching substrings. The KMS Algorithm identifies the 

best matches of the longest substrings of the matches for multiple strings [17]. 

Greedy algorithms can be much faster than traditional dynamic programming 

and work well in the presence of sequencing errors [28].  

Even with these algorithmic improvements, additional reductions to search 

space in fragment assembly problems are routinely employed. For example, 

PHRAP determines best fragment matches by comparing only the highest quality 

parts of reads [12], both reducing search time and possibly increasing accuracy. 

The AMASS algorithm limits searches to short, randomly selected sequences 

within fragments rather than comparing complete reads.  This approach showed 

a drastic reduction in assembly time [18]. Another approach to time reduction 



involves determining which groups of fragments have more potential for 

aligning and only comparing those together.  For example, the assembler 

STROLL [3a] significantly reduces the number of required comparisons by 

rejecting all candidate fragment pairs without exact matches of a threshold 

length. Similarly, the CAP3 program determines which fragment pairs have 

potential overlap before making comparisons [14]. Even one of the earliest 

assembly schemes, SEQuencing AID (SEQAID) [21] examines ancillary 

fragment information to aid in the determination of fragment order. 

Pre-assembly clustering of fragments may be viewed as a more structured 

form of fragment thinning before alignment comparisons are made.  Clustering is 

a process of grouping objects into like groups based on some measure of 

similarity.  Clustering or classification can be achieved by several techniques 

such as K-means, artificial neural networks, etc.  This divide-and-conquer 

strategy for sequence assembly was described in [13].  A K-means clustering 

scheme was applied to fragments based on their Average Mutual Information 

(AMI) measures. AMI profiles are used to measure the degree of ‘closeness’ 

between fragments. 

K-means has been widely used in pattern recognition problems. Several 

variations and improvements to the original algorithm have been implemented. 

The K-means algorithm by MacQueen [15] is widely used for its simplicity. 

Another variation of K-means was proposed by Forgy [6a]; this algorithm has 

been shown to converge to a local minimum [25].  

Fuzzy Logic formularizes an intuitive theory based on human reason of 

approximation. It differs from the traditional logic methods where crisp or exact 

results are expected. The concept of fuzzy logic was first put forth by Zadeh 

[19]. Fuzzy Logic is used in problems where the results can be approximate 

rather than exact. The results are determined by some degree of closeness to 

being true or false. Due to its applicability to problems that do not require hard 

solutions, Fuzzy Logic has been widely used in various fields to provide 

flexibility to classical algorithms.  An earlier well known approach to fuzzy 

classification is the fuzzy C-means algorithm [1a]. An improvement of K-means 

using the fuzzy logic theory was presented [2a], in which the concept of 

fuzziness was used to improve the original K-means algorithm. Fuzzy 

approaches to bioinformatics have been explored to some extend. A model for 

creating fuzzy set theory uses for bioinformatics was proposed [16]. An 

application to ontology similarity using fuzzy logic was shown [4a]. 

Fuzzy Logic has been applied to classification problems in computational 



biology. Even though application of fuzzy logic has not been done extensively, 

recently it started to gain popularity. A modified fuzzy K-means clustering was 

used to identify overlapping clusters of yeast genes [9].  Data was based on 

published gene-expression results following the response of yeast cells to 

environmental changes. 

  

3 Sequence Assembly 
 

In this paper we present a clustering technique that uses a fuzzy membership 

function to divide genome sequences into groups. This reduces the number of 

comparisons and performs meaningful assembly. The fuzzy functions used in 

this paper are a modified version of the Fuzzy Genome Sequencing Assembler 

described in [23]. 

3.1 Longest Common Subsequence with Fuzzy Logic 

 

Dynamic programming has been extensively used to determine the longest 

common subsequence (LCS). The reason for its popularity is that reduces time 

complexity of assembly to Θ (n
2
).  

This method is simple and is very useful in finding longest common 

subsequence which may have mismatches in the sequence. This suits well to 

assembly problems since not all subsequences found will be perfect and can be 

easily modified to find contiguous subsequences.  

In the case of genome subsequences we would like to get the longest 

subsequence with fewest insertions or deletions (indels). One of the common 

techniques used by assembly processes, such as PHRAP, is to search within a 

bandwidth along the best possible match. As the path grows beyond the 

bandwidth, the indels increase and the subsequence shifts away from the optimal 

match.  

The optimal subsequence can either be a perfect match, or the user may 

choose to tolerate indels. These criteria can depend on the user, the source of the 

data, quality of the data, etc. Almost all existing techniques provide user defined 

thresholds for the number of indels allowed.  The ideal cut off point or the 

thresholds for a particular data set generally needs to be determined empirically. 

For example, assume that a cutoff value for the maximum gap allowed is 30 



bases and that there are fairly large numbers of sequences with a gap of 31 and 

32. Due to the fact that these techniques allow for crisp matches only, these 

potentially important sequences would be excluded. Alternatively, we can 

represent a match of 30 and lower with a fuzzy confidence value of 1, which is 

for crisp matches. Matches that are very close to 30 like 31 can have a fuzzy 

value of 0.98. If the user selects to allow all matches greater than the value 0.8 

then these subsequences would be included. In this case, the user does not have 

to look into the data, change parameters and run the program several times. 

There are several other parameters, which will be described later, that the user 

may have to alter to get a desired result. The main objective is to obtain the best 

consensus of the overall parameters. 

This paper proposes a fuzzy matching technique where we can have crisp 

and non-crisp matches. The user could also obtain a fuzzy value that states how 

well the matching sequences fit the threshold. 

3.2  LCS and Fuzzy Logic 

 

As mentioned earlier, one of the problems with existing techniques is that 

they have crisp bounds.  The user has to specify the parameters for the program 

such as minimum score and minimum match. Minimum match and score are 

described in Section 3.4. The parameters need to be changed by the user to suit 

the data, and then the program ran one or more times, until an optimal solution is 

found.  This allows the user to determine which parameters work best with the 

given sample. Selecting the longest sequence is not always the optimal solution. 

Some applications prefer longer sequences while others may require higher 

quality or smaller gaps. 

The main objective of our method is assembling data by approximate 

matching using fuzzy logic. Fuzzy Logic has been used in approximate string 

matching using distance measures, etc. However, there has been limited 

application to building genomes from subsequences of nucleotides.  

Current sequencing methods tend to reject sequences that do not match with 

a high degree of similarity. This can lead to large amounts of data being rejected, 

which otherwise might be important in deriving a genomic sequence and its 

metabolic characteristics.  

We propose a method where we select multiple subsequences and then based 

on several fuzzy parameters select the optimal solution. The novelty of our 



method is that it uses more parameters of the sequence besides the length of 

overlap. These parameters can lead to a better sequence. The sequence satisfying 

the aggregate overall requirement is selected based on fuzzy parameters. In other 

words, we are measuring the fuzzy similarity of the given subsequences. There 

are several factors that determine if two subsequences can have an optimal 

overlap. These factors are used to measure their similarity. For example, two 

subsequences can form a contig if their overlap region is larger than a threshold. 

They could be highly similar if they have less number of indels, or less similar 

with more indels.   

Since we perform a non-banded search, it is not ideal to try every possible 

subsequence combination. On the other hand it just searching along the diagonal 

may not give an overlap at all. Instead of selecting the longest common 

subsequence, we select all the subsequences that satisfy the minimum length 

required. The threshold is a function of the length of the LCS.  The search is 

banded by using a threshold to prevent moving away from the diagonal. A cell is 

marked if it was already traversed, so we don’t check it again. We keep track of 

cells that are traversed and paths above the threshold are selected: 

 

f(n(LCS))  threshold

 threshold,   length

=
>=                   (1) 

 

where: 

length is the size of overlap, threshold determines the minimum length required. 

Threshold is selected based on the LCS.   

We need determine if either of these subsequences will create an optimal 

match.  Any of the selected paths can generate an optimal solution. Therefore we 

do not eliminate any possible good subsequences. The selection of the optimal 

subsequence is done using fuzzy similarity measures. The selection process is 

done in constant time; therefore the complexity of the algorithm is same as the 

complexity of Dynamic programming, which is Θ(mn) for any two subsequences 

of length m and n. The following section lists the characteristic functions. 

 

3.2 Fuzzy Similarity Measures 

 

Fuzzy similarity measures and the concept created by this research are an 



important step in creating a contig from two subsequences or finding an overlap 

between two sequences. The following subsections describe the fuzzy functions 

utilized in our approach for assembly. 

 

(i) Length of Overlap (µ lo):  The first similarity measure that we look at is the 

length of the match. This is also the size of overlap when a contig is being 

created. This length includes indels and replacements. A higher overlap is better 

as it generates a longer contig. The membership function for this measure is 

defined as:  
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where:  

|overlap (s1, s2)| - length of overlap of strings s1, s2,  

s1, s2 – strings being evaluated 

 

Given strings s1, s1 where no overlap occurs, the possibility of similarity 

does not exist. Given string s1, s2 where there is complete overlap or maximum 

overlap, the possibility is of maximum similarity which is greater than partial or 

no overlap. For all other cases the similarity is between 0 and 1. The logic of 

Equation (2) can be described in Equation (3) as follows: 

  

∀ |overlap (s1, s2)| ↑  →  µ lo () ↑     (3) 

 

where: 

↑   - represents increase in value, 

 

(ii) Confidence (µqs): The confidence for each contig is defined as a 

measurement of the quality of the contributing base pairs [21a]. The quality of a 

base pair indicates if the read was strong. A strong read indicates a correct read 

or less changes of noise or experimental error.  Every base involved in the contig 

has a quality score. The confidence of a contig is the aggregate quality score of 

its contributing bases. For simplicity, the sum of average quality scores is the 



confidence of the contig. Equation (4) below describes the membership function   
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∑
== 1µ

                            (4) 

where: 

 µqs is the quality score for the overall overlap region, wi is the weight used to 

standardize the quality scores, n is the number of bases, qi is the quality score of 

an individual base, 

The weight can be calculated as shown in Equation (5). The bases with high 

quality are assigned a weight of 1. Only the bases that are of lower quality are 

given weights between 0 and 1.  
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where: 

δ is the threshold as explained earlier, (this is generally specified by the user),  

minqs and maxqs are the minimum and maximum values for quality. 

 

(iii) Gap Penalty (µgp): This is the penalty that is imposed on gaps within an 

overlap region. Gap is measured in terms of the of bases and is given in Equation 

(6) as follows: 

 

                                        Gaps= |insert|+ |delete|+ |replacement|                    (6) 

 

A simple gap penalty can be calculated using membership function in Equation 

(7) as follows: 
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where: 

overlap (s1, s2) - amount of overlap of strings s1, s2,   

 

The logic behind Equation (7) can be explained by Equation (8) given 

below.  

 

 

∀ ∆ (s1, s2)  ↑  →  µgp () → 0           (8) 

 

where: 

 ↑  - represents increase in value, → - implies approaches, ∆ - represents the 

difference. 

 

Informal proof: Given overlap (s1, s2) = 10 and Gaps = 2, µgp (s1,s2) over [0,1] 

→ 0.8 due to the fact that the overlap is higher than the Gaps. 

 

The above definition of Gap Penalty is a simple method to calculate gaps. In 

this method, every gap is given same weight. A gap of 10 bases is the same as 10 

gaps of 1 base each. It can be argued that a gap of 10 bases is actually caused by 

single insert or delete. It can be counted as 1 instead of 10. Therefore a weighed 

gap penalty can work well in this case. We use an affine gap penalty which is 

given by 

 

                 onGapExtensiGapLengthGapOpeningGapPen ×+=                        (9) 

 

Where, GapOpening and GapExtension are scores for an opening or a 

continuation of a gap. The summation of Equation (9) gives the entire gap 

penalty GapPen(s1,s2). The membership function for this is as follows: 
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where overlap (s1, s2) is the length of overlap of s1 and s2, 

  



(iv) Score (µws): A score is calculated from the number of matching bases, 

number of indels and replacements. Score can be calculated in different ways. 

For example:  

 

       score= fn(MatchingBP)– fn(Inserts)- fn(Deletes)- fn(Replacements)        

(11) 

 

A- CTCGCGAT- GCG 

AGCTCG- GATTGAG 

 

 For the above subsequences there are 11 BP matches, 2 inserts, one delete, 

and one replacement. If all are given a value one the score is 7(11-2-1-1). 

Commonly, higher scores are given to matching bases and lower values are 

given to bases that don’t match. A scoring matrix is used to assign these scores. 

  

Table 1. Scoring Matrix 

 

 A C G T 

A 3 -1 1 -1 

C -1 3 -1 1 

G 1 -1 3 -1 

T -1 1 -1 3 

 

  

In Table 1 the scores for each of the possible matches are given. If there is a 

match a score of 3 is given. Matches within Purine (A, G) or Pyrimidine (C, T) 

class are given a score of 1. Finally a score of -1 is given to matches between a 

Purine and Pyrimidine and vice versa. 

The above equation leads to derivation of the following fuzzy similarity 

membership function. 


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)2,1(µ                           (12) 

 

where: fmbp (s1, s2) - is the score calculated using the matrix illustrated in 



Table 1, t_score (s1, s2) - score of the overlap if they were no indels or 

replacements 

 

The logic of Equation (12) can be explained in Equation (13) below. 

  

              ∀ ∆ (t_score(s1, s2) – fmbp(s1,s2)  ↑  →  µws () → 0      

(13) 

where: ↑   - represents increase in value, → - implies approaches. 

 

Informal proof: Given t_score (s1, s2) = 10, and fmbp (s1, s2) = 9, µws(s1, s2) =  

9/10  =  0.9, because the relative percentage of differences to matches is high. 

3.4  Thresholds 

 

(i) MinMatch: This is the minimum number of matching bases that are required 

between the two sequences. It is not possible to get a perfect overlap and some 

amount of inexactness is tolerated. Genomic DNA contains only 4 characters 

and there can be several overlaps with these 4 characters. Therefore we would 

like to have a minimum match value for the overlap sequences.  

 

(ii) MinScore: A score is calculated from the number of matching bases, number 

of indels and replacements as given above in Equation (12). MinScore is a 

threshold which specifies the minimum allowable score of the overlap. 

Once the fuzzy value for each of these parameters is calculated, we plug 

them into an overall fuzzy function. This function is the aggregate fuzzy match 

value (afv).  A perfect overlap refers to an overlap that satisfies the two 

thresholds above, is free of gaps, and satisfies the quality requirements. 

  

lologpgpwswsqsqs wwwwcfa µµµµ +++=)(          (14) 

         afv = fa(c)/m,            (15) 

 

where:  

m is number of parameters   

fa(c) is given in equation (14) 



Equation (14) and (15) give the overall fuzzy function and the aggregate 

fuzzy function for m parameters. The sub-sequences that produce the highest 

fuzzy value for an overlap are selected as final sequences. Depending on their 

position as a suffix or prefix, a new contig or consensus sequence is formed. 

 

3.5  K-means Clustering 

 

Clustering problems generally derive some kind of similarity between 

groups of objects. Our approach uses K-means clustering to separate species. We 

use the technique of LCS and fuzzy logic proposed early in conjunction with K-

means.  K-means clustering is a simple and fast approach to achieve such 

grouping. The algorithm starts with a large number of seeds (initial samples) for 

the potential clusters.  Remaining samples are then assigned to a cluster based on 

their distance from the seed.  The centroid is recomputed for each cluster and the 

data points are reassigned.  The algorithm runs until it converges or until the 

desired number of clusters is obtained.  

Given N sequences, such that S={C}
i
 , where C ={A, C, G, T}. We 

randomly select “k” sequences as the initial seeds, where k is less than the 

number of sequences N. The algorithm starts by performing LCS on each of the 

sequences with the k seeds with the method described in the previous section.  

The sequence is assigned to the class which has the highest fuzzy similarity. The 

fuzzy similarity is calculated as given below; it is also referred as the fuzzy 

weighted average. Equation (16) replaces Equation (15). 

       

 ,.....2,1,0,
),1(

)( ==∑ =
rxw

Pp p

r

p

rµ                   (16) 

 

Here x is the parameter or feature and p the number of features. Given 

i=0,...,N and j=0,…,k, the distance d i,j for each cluster in this case, is the 

maximum fuzzy value and can be calculated as follows: 

 

          d i,j=max(µ
r
 j), for all j=0,…k         (17) 

 

 



4 Experiment and Results 

 

The main objective of this research was to create an assembler using fuzzy 

logic. The second objective was to test the assembler on different organisms and 

be able to differentiate species.  
The Fuzzy Genome Sequence Assembler was implemented with modified version 

LCS described above with all the parameters listed. The assembler was tested on 

generated data sets and data from GenBank. Artificially generated data sets were 

used to verify the algorithm and thus the assembly process. GenBank is a 

publicly available database of nucleotide sequences. The experiments were run 

on a 1.83GHz Intel Core 2 Duo processor and 1GB of RAM. The experiments 

are divided into 3 major categories, the prokaryotes assembly, the eukaryotes 

assembly and a classification of prokaryotes and eukaryotes. The results are 

compared with TIGR 2.0 [26].  TIGR 2.0 is a well-known assembler for 

assembling large shotgun sequence projects.  

 
Table 2. Assembly Comparisons prokaryotic Data 

 

 
 

The first group of experiments is prokaryote assembly. First genome 

sequence tested was the Wolbachia endosymbiont of the Drosophila 

melanogaster strain wMel 16S ribosomal RNA gene, partial sequence. The 

sequence contains 8,514 base pairs. Second prokaryote genome is Geobacillus 

thermodenitrificans NG80-2 plasmid pLW1071, complete sequence. This 

genome is 57,693 base pairs. The third genome is Yersinia pestis Pestoides F 

plasmid CD, complete sequence. This genome contains 71,507 base pairs. All 

Assembler Genome 
Percentage Genome 

Recovered 

MGS RPObc of Wolbachia genome 65% 

TIGR RPObc of Wolbachia genome 99.6% 

FGS RPObc of Wolbachia genome 99.6% 

TIGR Yersinia pestis Pestoides 93.9% 

FGS Yersinia pestis Pestoides 88.7% 

TIGR Geobacillus thermodenitrificans 77.1% 

FGS Geobacillus thermodenitrificans 91.6% 

 



these genomes can be obtained from GenBank [22]. The total bases read were 

4X of the original sequence. Each subsequence was in the range of 300-900bps. 

In Table 2 MGS = Multiple Genome Sequencing using simple LCS 

implementation, TIGR=TIGR Assembler 2.0, FGS= Fuzzy Genome Sequencing. 

The third column is the percentage of original genome recovered by the 

assembly process. Since MSG did not perform well we did not include it for 

further experiments. 

The second set of experiment was performed on eukaryotic genomes. The 

first genome sequence is the Arabidopsis thaliana, gene_id:F11I2.4. This 

sequence contains 36,034 base pairs.  The second genome is Ostreococcus tauri 

mitochondrion, complete genome containing 44,237 base pairs. The third 

genome is Phytophthora sojae mitochondrion, complete genome containing 

42,977 base pairs. Details of these sequences can be obtained from GenBank 

[22]. 
 

 

Table 3. Assembly Comparisons Eukaryotic Data 

 

 
 

In Table 3 MGS = Multiple Genome Sequencing using a simple LCS 

implementation, TIGR=TIGR Assembler 2.0, FGS= Fuzzy Genome Sequencing. 

The third column is the percentage of original genome recovered by the 

assembly. 

The third set of experiments are to separate two species. Sequences from 

two organisms are taken and mixed with each other. The input data appears as if 

it is from a single organism. We use 4X coverage of the entire sample. A K-

means clustering is performed to group sequences from the organisms into two 

different classes and then perform assembly.  

Assembler Genome 
Percentage Genome 

Covered 

MGS Arabidopsis thaliana 56.8% 

TIGR Arabidopsis thaliana 88.8% 

FGS Arabidopsis thaliana 92.135%  

TIGR Ostreococcus tauri mitochondrion 77.7% 

FGS Ostreococcus tauri mitochondrion 97.3% 

TIGR Phytophthora sojae mitochondrion 97.7% 

FGS Phytophthora sojae mitochondrion 97.2% 

 



Table 4: K-means clustering for two Organisms 

 

Genome Percentage 

Genome Recovered 
Miss-

Classifications 

Phytophthora sojae mitochondrion 61% 0 
Geobacillus thermodenitrificans 61.1% 0 

 

In Table 4 ClusFGS is the method described in this paper and is a modified 

version of FGS. ClusFGS is described in Section 3.5. Since TIGR does not 

perform a classification we did test the results with TIGR. Misclassification 

refers to length of overall subsequences from genome 1 that were assembled 

incorrectly with contigs of genome 2. 

The results obtained in Table 2 and Table 3 from assembling the genome 

projects showed a high percentage of the genome recovered while using FGS 

and TIGR. This indicates that given random subsequences, the algorithm was 

able to create a fairly large percentage of the original sequence. In Table 2 FGS 

performed better than simple MGS. Assembly of RPObc of Wolbachia genome has 

same results for both TIGR and FGS. Yersinia pestis Pestoides showed a slightly better 

recovery for TIGR. Geobacillus thermodenitrificans showed a much better assembly with 

FGS. Examining the results of Table 3, FGS performed better that a simple MGS 

and obtained better or similar results as the TIGR assembler. Some of small 

differences in results could be due to different thresholds being used. 

 Preliminary results from Table 4 show that Fuzzy K-means classification 

was successful in grouping these two classes separately. The clustering 

classified the data into two groups without any misclassification. The clustering 

technique is linear and hence can make the assembly much faster. At this stage it 

cannot recover a higher percentage of the genome as comparisons are limited to 

within class. The performance depends on the selection of the seeds. Currently 

we do not perform reassignment of clusters, merging, etc. Adding these methods 

can improve the classification and thus assembly. 

 

5 Conclusions and Future Work 

 

This paper proposes the use of fuzzy K-means for approximate sequence 

assembly. Fuzzy similarity measures were used and a fuzzy weighted average 

was created to perform the classification. We tested the assembler on published 



genome projects and compared the results with other assemblers. A K-means 

classification is used to increase performance. 

The functions proposed can be easily adapted in other assembly methods or 

techniques. The assembly can be further improved by data reduction before 

assembly; this would make it possible to run larger data sets and also make the 

process faster. Current assemblers use different techniques to achieve data 

reduction which makes assembly faster. This can be achieved by encoding the 

data, using hash tables, indexing, etc.  

Preliminary results show that the assembler is capable of separating different 

genomes. The idea proposed can be used to group meta-genomic data into 

classes and provide a clean assembly for environmental sequences. We would 

like to extend the assembler to classify strains within a population. 

While this work looks promising there are a number of research questions 

that remain to be answered. The first of these is the appropriate value to set the 

weights to in the fa(c) equation. It is thought that a mathematical relationship 

between fuzzy similarity measures and these weights should be derived. 

Additionally, this work has been evaluated on a small set of data from GenBank. 

To improve performance, further research can be done on reducing the amount 

of information to be processed via the use of data transformation schemes. 

Finally classification method proposed can be extended to classify 

environmental sequences and assemble them.  

We would like to improve the assembly by creating longer contigs. Graph 

approaches to build possible outcomes of the genome can be used.  

The assembly can be further improved by adding other parameters for 

clustering that can classify data using structural motifs such as AMI, G-C 

content etc. Our method uses a simple K-means without reassignment of objects 

between clusters, etc. An enhanced k-means can be used to improve the 

performance of the assembler. A supervised classification can be done so we can 

derive weights from the data set.   
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