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Abstract Most methods for foreground region detec-
tion in videos are challenged by the presence of quasi-
stationary backgrounds – flickering monitors, waving
tree branches, moving water surfaces or rain. Additional
difficulties are caused by camera shake or by the pres-
ence of moving objects in every image. The contribu-
tion of this paper is to propose a scene-independent
and non-parametric modeling technique which covers
most of the above scenarios. First, an adaptive statis-
tical method, called adaptive kernel density estimation
(AKDE), is proposed as a base-line system that ad-
dresses the scene dependence issue. After investigat-
ing its performance we introduce a novel general sta-
tistical technique, called recursive modeling (RM). The
RM overcomes the weaknesses of the AKDE in model-
ing slow changes in the background. The performance
of the RM is evaluated asymptotically and compared
with the base-line system (AKDE). A wide range of
quantitative and qualitative experiments is performed
to compare the proposed RM with the base-line system
and existing algorithms. Finally, a comparison of vari-
ous background modeling systems is presented as well
as a discussion on the suitability of each technique for
different scenarios.
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1 Introduction

Typically, in most visual surveillance systems static cam-
eras are used. However, because of inherent changes
in the background, such as fluctuations in monitors
and fluorescent lights, waving flags and trees, water
surfaces, etc. the background may not be completely
stationary. Furthermore, the background may not ap-
pear completely empty in any image across the video
sequence, thus making the background modeling even
more problematic. These difficult situations are illus-
trated in Fig. 1. We refer to these backgrounds as quasi-
stationary.

(a) (b) (c) (d)

Fig. 1 Examples of challenges in quasi-stationary backgrounds:
(a) Fluctuating monitors. (b) Rain/Snow. (c) Waving tree
branches. (d) Non-empty background.

1.1 Related work

In the presence of quasi-stationary backgrounds a sin-
gle background frame is not enough to accurately de-
tect foreground regions. Pless et al. [21] evaluated differ-
ent models for dynamic backgrounds. Depending on the
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complexity of the problem the background models em-
ploy expected pixel features (i.e. colors) [3], [4], [5], [23],
consistent motion [20], [33], or fusion of color/contrast
and motion [1]. They also may employ pixel-wise in-
formation [32] or regional models of features [31], [7]
and [15]. To improve robustness to noise, spatial [19] or
spatio-temporal [14] features may be used.

In [32] a single 3-D Gaussian model for each pixel
is built and the mean and covariance of the model are
learned in each frame. This system models the noise and
uses a background subtraction technique to detect those
pixels whose probabilities are smaller than a heuristi-
cally selected threshold. However, the system failed to
label a pixel as foreground or background when it has
more than one modality due to fluctuations in its val-
ues, such as in a fluctuating monitor.

Kalman filtering [12], [9], [10] is also used to update
the model and linear prediction using Wiener filtering
is presented in [31]. These background models were also
unable to represent multi-modal situations.

Indupalli et al. in [8] applied a histogram based
method and a clustering technique to segment the back-
ground of the video. They also used the HSV color space
in their pixel-wise system. However, their system re-
quires that its parameters be selected manually. Also,
this method fails if the scene does not have an empty
background or is crowded.

In [30] Totozafiny et al. proposed a background seg-
mentation system for road surveillance applications. Their
technique generates the background model using a back-
ground reference frame and a mixture of Gaussians.
This method is not adaptive to gradual and local changes
in the illumination of the scene since it generates the
model only once. The system is not scene independent
and its parameters should be updated from application
to application.

A mixture of Gaussians modeling technique was pro-
posed in [25], [24] and [6] to address the multi-modality
of the underlying background. In this technique back-
ground pixels are modeled by a mixture of Gaussians.
During the training stage, parameters and weights of
the Gaussians are trained and used in the background
subtraction where the probability of each pixel is gen-
erated using the mixture of Gaussians. The pixel is la-
beled as foreground or background based on its proba-
bility.

There are several shortcomings for mixture learn-
ing methods. First, the number of Gaussians needs to
be specified. Second, this method does not explicitly
handle spatial dependencies. Even with the use of in-
cremental expectation maximization, the parameter es-
timation and its convergence is noticeably slow where
the Gaussians adapt to a new cluster. The convergence

speed can be improved by sacrificing memory as pro-
posed in [16] and [17], limiting its applications when
mixture modeling is pixel-based and over long tempo-
ral windows.

A recursive filter formulation is proposed by Lee in
[13] to speed up the convergence. However, the prob-
lem of specifying the number of Gaussians as well as
the adaptation in later stages still exists. This model
does not account for situations in which the number of
Gaussians changes due to occlusion or uncovered parts
of the background.

In [5], El Gammal et al. proposed a non-parametric
kernel density estimation method (KDE) for pixel-wise
background modeling without making any assumption
about its probability distribution. Therefore, this method
can easily deal with multi-modality in background pixel
distributions without specifying the number of modes
in the background. However, there are several issues to
be addressed using non-parametric kernel density esti-
mation.

These methods are memory and time consuming
since for each pixel in each frame the system has to
compute the average of all kernels centered at each
training sample. The size of temporal window used as
the background model needs to be specified. Too small
a window increases speed, while it does not incorpo-
rate enough history for the pixel, resulting in a less
accurate model. The adaptation will be problematic by
using small window sizes. Increasing the window size
improves the model accuracy but at the cost of higher
memory requirements and slower convergence. In order
to adapt the model a sliding window is used in [18].
However, the model convergence is problematic in sit-
uations where the illumination suddenly changes.

In order to update the background for scene changes
such as moved objects, parked vehicles or opened/closed
doors, Kim et al. in [11] proposed a layered modeling
technique. This technique needs an additional model
called cache and assumes that the background model-
ing is performed over a long period of time. It should
also be used as a post-processing stage after the back-
ground is modeled.

Another approach to model variations in the back-
ground is to represent these changes as different states
corresponding to different environments – such as lights
on/off, night/day, sunny/cloudy. For this purpose Hid-
den Markov Models (HMM) have been used in [22] and
[26]. However, these techniques suffer from slow model
training speed and are sensitive to model selection and
initialization.
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1.2 Motivation and contributions

Because of the aforementioned issues in detecting fore-
ground regions in videos with quasi-stationary back-
grounds existing systems addresses some of these prob-
lems in a specific or a combination of scenarios. Our
focus here is to find a common ground that would cover
a general scenario for background modeling. Contribu-
tions of this study can be summarized as follows:

– Finding an appropriate approach to the problem of
detecting foreground regions in videos with quasi-
stationary background. This approach should ad-
dress the multi-modality of the background as well
as scene-independence. Our proposed solution is based
on a non-parametric framework that addresses the
issues in the literature. This base-line system, called
Adaptive Kernel Density Estimation (AKDE), out-
performs the existing methods in the literature [27],
[28].

– Investigating the efficiency of the base-line system
and deriving a more universal framework upon this
system. The proposed general method is called Re-
cursive Modeling (RM). This technique addresses
the issue of robust background training in slowly
changing backgrounds, non-empty backgrounds, and
backgrounds with steady, irregular global motion
(hand-held camera).

The AKDE. The theory behind the AKDE algo-
rithm is to estimate the probability of each pixel being
background based on a number of samples in its history.
One advantage of the AKDE method over existing ker-
nel density estimation modeling is in using a different
threshold for each pixel, instead of a single threshold
for all pixels in the scene. These thresholds are inde-
pendently trained over a number of video frames.

By training the thresholds the system becomes scene
independent and there is no need to heuristically select
and tune threshold values in different scenes. By em-
ploying these localized thresholds the system works ef-
ficiently on different video scenes and is more robust to
local changes in the same scene. The proposed AKDE
method exploits the dependency between pixel color
components as well, thus leading to a more accurate
background model.

The RM. The RM method is a recursive coun-
terpart for the AKDE technique which uses pixel in-
tensity/color values in new frames to update the back-
ground model at that pixel location. Since the update
process is performed continuously, the background model
converges to the actual one as more frames emerge and
are processed. This gives the RM its ability to detect
foreground regions when the background changes oc-
cur slowly and do not fit in a small temporal window.

In videos without a set of empty background frames
the proposed RM technique has the ability to gener-
ate a clear background model because pixels belonging
to the actual background provide more support for the
background model.

In order to make the background model converge
to the actual one and recover from the expired model
faster the proposed RM method uses a schedule for
learning. It should be noticed that a non-parametric
recursive modeling scheme has not been investigated in
the literature.

The rest of the paper is structured as follows. Sec-
tions 2 presents the base-line AKDE method and eval-
uates its performance and efficiency. This system and
a benchmark data provide a standard set of compari-
son tests. Section 3 present the proposed RM technique
and an evaluation of its performance with regard to the
standard assessment presented for the base-line system.
In section 5, a comprehensive comparison between these
two methods and other techniques is conducted and the
situations in which each of the proposed methods is su-
perior are presented. Finally, section 6 concludes the
paper and gives future directions of the research.

2 Adaptive kernel density estimation (AKDE)

In this section we present a novel technique for back-
ground modeling based on adaptive non-parametric ker-
nel density estimation (AKDE) [28].

2.1 The algorithm

Fig. 2 shows the pseudo-code for the AKDE algorithm,
consisting of three major stages: training, classification
and update. In the training stage the background model
is generated, and for each pixel its model values are used
to estimate the probability of that pixel to be back-
ground in new frames. The proposed method detects
foreground regions by solving a classification problem.
However, it should be noted that we only have samples
of the background class before any foreground object
appears in the scene.

The only parameter in kernel density estimation is
the kernel bandwidth. In theory, as the number of train-
ing samples grows without a bound the estimated den-
sity converges to the actual underlying density regard-
less of the kernel bandwidth value [2].

2.2 Non-parametric density estimation

In the proposed AKDE method a non-parametric model
for each pixel is generated and its classifier is trained.
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N: size of training buffer

For each frame at time t

1. Training stage
for each pixel (u,v)

- Calculate kernel covariance Σ(u, v) and threshold th(u, v).
2. Classification stage
for each pixel (u,v)

- Compute median of estimated probability in its neighborhood: Med(u, v)
- if Med(u, v) ≤ th(u, v)

then FGt(u, v) = 1 % (Foreground)

else FGt(u, v) = 0 % (Backgrounds)

3. Update stage
- if size(FG) ≥ 0.5 Image_Size

then % Global sudden change detected

for each pixel (u,v) % Replace oldest frame (OF)

OF(u,v)← It(u, v) % with current frame

else % Gradual change

for each pixel (u,v) % Replace background pixels in OF

OF(u, v|FGt(u, v) = 0) ← It(u, v|FGt(u, v) = 0) % with those in current frame

Fig. 2 The proposed AKDE modeling algorithm.

It uses the history of pixel values as training samples
and estimates the probability of each pixel being back-
ground in new frames as the classification criterion. In
the classification stage each pixel is classified as fore-
ground or background based on its estimated probabil-
ity, computed by:

Pt(xt) =
1

N2π|Σ|1/2

N∑

i=1

e[−
1
2 (xt−xi)

T Σ−1(xt−xi)] (1)

where xt is the pixel feature vector at time t and xi are
its values in the training sequence. Σ is a positive def-
inite symmetric matrix which is the kernel bandwidth
matrix and N is the number of frames used to train
the background model. In order to capture dependen-
cies between features for each pixel, Σ has to be a full
(non-diagonal) matrix.

Since in the AKDE method no assumptions are made
on the covariance matrix Σ, any features for each pixel
can be used. Because color is the easiest and most re-
liable feature to extract we use chrominance values for
each pixel. That is, given color values in RGB space we
determine red (cr) and green (cg) chrominance values
by:

cr =
R

R + G + B

cg =
G

R + G + B
(2)

Therefore the feature vector for each pixel at a given
time t is defined by:

xt =
[
cr(t) , cg(t)

]T

(3)

Due to limited memory and computational power,
we need to store a rather short term memory of the

(a) (b)

(c) (d)

Fig. 3 Diagonal vs full kernel matrix: (a) Pixel chrominance
scatter plot (cr, cg) for one pixel over time. (b) Probability con-
stant contours using diagonal covariance matrix. (c) Probability
constant contours using full covariance matrix. (d) Probability
density using full covariance matrix.

background frames as training samples. This makes the
non-parametric kernel density estimation dependent on
the choice of its kernel bandwidth. In order to achieve
an accurate and automatic background model, which
is adaptive to the spatial information in the scene, the
kernel bandwidth matrix needs to be trained.

The effect of using a full covariance matrix can be
observed in Fig. 3. By using a full covariance matrix
(Σ) in equation (1) we do not impose an assumption of
feature independence on our estimation. If we assumed
that features for each pixel are independent then a sim-
plified version of equation (1) could be used, where the
covariance matrix is diagonal. However, as it can be
seen from Fig. 3 by using chrominance features, the
independence assumption is not valid and the full co-
variance matrix results in a more accurate density es-
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timation, as opposed to the diagonal covariance matrix
proposed in [5].

2.3 Training stage

For each pixel the training samples are vectors XN =
{x1,x2, · · · ,xN}, where N is the number of training
frames. In our experiments we chose N = 300 for most
of the scenes. The successive deviation of the above vec-
tors is a matrix ∆X whose columns are:
[
xi − xi−1

]T with i = 2, 3, · · · , N (4)

For each pixel, the kernel bandwidth matrix is de-
fined such that it represents the temporal scatter of
training samples. Thus the kernel bandwidth is:

Σ = cov(∆X) (5)

From equations (4) and (5) it can be seen that for
pixels with more feature changes through time, such as
flickering pixels, the kernel bandwidth matrix has larger
elements, while for pixels that do not change much its
elements are smaller. Also notice that the kernel band-
width is drawn from the training samples without any
assumption on features and their underlying probabil-
ity density function. The estimated probability density
function by using this adaptive kernel bandwidth is ac-
curate, even with a small number of background train-
ing frames. Finally, since the kernel bandwidth matrix
is computed using successive deviations in equation (4)
it accounts for temporal dependencies in pixel feature
vectors.

In the traditional foreground detection techniques,
usually the foreground regions are detected by compar-
ing the value or model of each pixel with its value or
model in the background. If this deviation is larger than
a heuristically selected threshold it is labeled as a fore-
ground region. If we estimate the probability of each
pixel in all of the background frames, given that all
pixels are background, their probabilities should have
large values, close to 1. But because of noise and in-
herent background changes, pixels do not take a sin-
gle value and their probabilities become smaller. The
probability of a pixel to be background is related to
the amount of change that its features undergo in time.
Therefore a single global threshold does not work well
because pixels in different locations undergo different
amounts of change.

These threshold values need to be trained for each
pixel during the training stage to build an accurate and
automatic classifier. For each pixel its threshold value
(th) is selected such that its classifier results in 5% false

reject rate. That is, 95% of the time the pixel is cor-
rectly classified as belonging to background:

N∑
i=1

P (Bg|xi)≤th

P (Bg|xi) ≤ 0.05
N∑

i=1

P (Bg|xi) (6)

(a) (b)

Fig. 4 Adaptive threshold map: (a) An arbitrary frame. (b)
Threshold map.

This can be seen in Fig. 4, where (a) shows an ar-
bitrary frame of a sequence containing a water surface
and (b) shows the trained threshold map for this frame.
Darker pixels in Fig. 4(b) represent smaller threshold
values and lighter pixels correspond to larger thresh-
old values. The thresholds in areas that tend to change
more, such as the water surface, are lower than those
in areas with less amount of change, such as the sky.
Since the probability density function is normalized, for
pixels which undergo more changes the estimated prob-
ability density function is wider. As a result, in order to
keep 5% false reject rate, smaller threshold values are
needed. Note that the threshold map is noisy, since for
efficiency purposes only 150 frames are used.

2.4 Classification stage

In the training stage, for each pixel its kernel band-
width matrix Σ and its classification decision criterion
th were determined. The probability of each pixel in
the new frame is then estimated using equation (1). If
we directly apply the trained threshold of each pixel to
its estimated probability, due to impulse noise isolated
pixels may still be erroneously classified.

One of the properties of this type of noise is that, if
strong noise affects a pixel, it is less likely to affect its
neighbors with the same strength. If a pixel in a region
belonging to the background produces a fairly small
probability because of noise, its neighboring pixels are
expected to produce larger probabilities.

Notice that this impulsive noise is introduced to the
system as a byproduct of the probability density esti-
mation. As known, median filtering is a suitable tool
to remove this type of noise. Applying the median fil-
tering directly to the images suppresses the impulsive
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(a) (b) (c)

Fig. 5 Enforcing spatial consistency: (a) Original frame (b) De-
tected foreground regions by applying thresholds directly on the
estimated probability. (c) Detected foreground regions by apply-
ing threshold on median of probabilities in a neighborhood.

noise in the frames but does not significantly affect the
noise introduced by the process. In order to remove the
process noise we apply the median of estimated prob-
abilities in a region around a pixel. After estimating
the probability of each pixel in the new frame, the me-
dian of probabilities in its 8-connected neighborhood is
compared with its threshold to make the classification
decision:

Labelt =
{

Foreground if median
(
Probt

) ≤ th

Background otherwise
(7)

Fig. 5 shows the effect of enforcing spatial consis-
tency using the median of probabilities in foreground
region detection. As it can be seen, by applying the
threshold on the median of estimated probabilities of
pixels in a neighborhood, most of the noise can be sup-
pressed, while maintaining the image quality.

2.5 Update stage

In the proposed AKDE method we use two different
types of adaptation. To make the system adaptive to
gradual changes in illumination, we replace the pixels
in the oldest background frame with those belonging to
the current background mask. In order to detect sudden
changes in the illumination, the area of the foreground
objects are checked. Once a sudden change is detected
(detected foreground region is very large), the classi-
fication stage of the algorithm is suspended and new
frames replace all frames in the background training
buffer.

Because the training stage of the algorithm is time
consuming, the updating stage is actually performed
every few frames, depending on the rate of changes and
the processing power. In the current implementation
the updating stage is performed every 100-150 frames.

3 Recursive modeling (RM)

In this section we describe our novel recursive method.
The formulation is discussed in one dimension and its
extension to higher dimensions is straightforward. We

explain how dependencies between pixel features in higher
dimensions can be captured, resulting in more accurate
models.

3.1 The algorithm

The proposed method, in pseudo-code, is shown in Fig-
ure 6. θB

t is the background model and θF
t is the fore-

ground model for each pixel. Let xt be the the intensity
value of a pixel at time t. The non-parametric estima-
tion of the background model that accurately follows its
multi-modal distribution can be reformulated in terms
of recursive filtering [29]:

θ̂B
t (x) = [1− βt] · θB

t−1(x) + αt ·H∆ (x− xt) (8)

255∑
x=0

θB
t (x) = 1 (9)

where x ∈ [0, 255] and θB
t is the background pixel

model at time t, normalized according to (9). θ̂B
t is up-

dated by the local kernel H (·) with bandwidth ∆ cen-
tered at xt. Parameters αt and βt are the learning rate
and forgetting rate schedules, respectively. The kernel
H should satisfy the following conditions:

∑
x

H∆(x) = 1

∑
x

x×H∆(x) = 0 (10)

These conditions should be satisfied to ensure that
the kernel is normalized, symmetric and positive defi-
nite in case of multivariate kernels. In our implementa-
tion of the RM method we use a Gaussian kernel which
satisfies the above conditions. Note that in this context
there is no need to specify the number of modalities of
the background representation at each pixel.

Fig. 7 shows the updating process using our pro-
posed recursive modeling technique. It can be seen that
the trained model (solid line) converges to the actual
one (dashed line) as new samples are introduced. The
actual model is the probability density function of a
randomly generated sample population and the trained
model is generated by using the recursive formula pre-
sented in (8).

In existing non-parametric kernel density estimation
methods the learning rate α is selected to be constant
and has small values. This makes the pixel model con-
vergence slow and keeps its history in the recent tem-
poral window of size L = 1/α. The window size in non-
parametric models is important as the system has to
cover possible fluctuations in the background model.
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1. Initialization: ∆, α0, β, κ and th
2. For each frame at time t

For each pixel

2.1. Training stage

- Update αt = 1−α0
h(t)

+ α0 and ∆

- Update θB
t (x) = (1− βt)θB

t−1(x) + αt ·H∆(x− xt)

- If θB
t ≤ th then update θF

t (x) = (1− βt)θF
t−1(x) + αt ·H∆(x− xt)

2.2. Classification stage
- If ln

�
med(θB

t )/med(θF
t )
� ≤ κ then label pixel as foreground.

2.3. Update stage
- Update κ and th

Fig. 6 Our proposed RM algorithm.

(a) (b)

Fig. 7 Recursive modeling: Model after (a) 10 frames. (b) 200 frames.

That is, pixel intensity changes may not be periodic or
regular and consequently may not fit in a small tempo-
ral window. In such cases larger windows are needed,
resulting in higher memory and computational require-
ments. Another issue in non-parametric density estima-
tion techniques is that the window size is fixed and the
same for all pixels in the scene. However, some pixels
may have fewer fluctuations and therefore need smaller
windows to be accurately modeled, while others may
need a much longer history to cover their changes.

3.2 Scheduled learning

In order to speed up the modeling convergence and re-
covery we use a schedule for learning the background
model at each pixel based on its history. This schedule
makes the adaptive learning process converge faster,
without compromising the stability and memory re-
quirements of the system. The learning rate changes
according to the schedule:

αt =
1− α0

h(t)
+ α0 (11)

where αt is the learning rate at time t and α0 is a small
target rate which is:

α0 = 1/256× σθ (12)

where σθ is the model variance. The function h(t) is a
monotonically increasing function:

h(t) = t− t0 + 1 (13)

where t0 is the time at which a sudden global change
is detected. At early stages the learning occurs faster
(αt = 1) and monotonically decreases to converge to
the target rate (αt → α0). When a global change is
detected h(t) resets to 1. Later in section 5 we discuss
the effect of this schedule on improving the convergence
and recovery speed.

The forgetting rate schedule is used to account for
removing the values that have occurred a long time ago
and no longer exist in the background. In the current
implementation we assume that the forgetting rate is a
portion of the learning rate βt = l · αt, where l = 0.5.

3.3 Training stage

Before new objects appear in the scene, at each pixel
all the intensity values have the same probability of be-
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ing foreground. However, in each new frame the back-
ground models are updated according to equation (8),
resulting in larger model values (θB) at the pixel inten-
sity value xt. In essence the value of background pixel
model at each intensity x is:

θB
t (x) = P (Bg

∣∣x) x ∈ [0, 255] (14)

In order to achieve better detection accuracy, we
introduce the foreground model. Later in the classifi-
cation stage the foreground model is compared to the
background model. For all x ∈ [0, 255], the foreground
model is defined by:

θ̂F
t (x) = [1− βF

t ] · θF
t−1(x) + αF

t ·H∆ (x− xt) (15)

255∑
x=0

θF
t (x) = 1 (16)

Once the background model is updated for each
pixel, it is compared to the threshold th. If its value is
less than this threshold the foreground model for that
pixel value is updated according to (15) and (16).

3.4 Classification stage

For each pixel at time t we use a function θB
t for the

background model and θF
t for the foreground. The do-

main of these functions is [0, 255]N , where N is the
dimensionality of the pixel feature vector. For simplic-
ity assume the one dimensional case again, where θt

is the background/foreground model whose domain is
[0, 255]. From equation (15), each model ranges between
0 to 1 and its value shows the amount of evidence ac-
cumulated in the updating process (i.e., the estimated
probability). For each new intensity value xt we have
the evidence of each model as θB

t (xt) and θF
t (xt). The

classification uses a maximum a posteriori criterion to
label the pixel as foreground:

ln

(
θB

t

θF
t

)
≤ κ (17)

3.5 Updating stage

In many applications with dynamic or quasi-stationary
backgrounds, we need adaptive classification criteria.
Because not all pixels in the scene follow the same
changes, the decision threshold κ should be adaptive
and independent for each pixel and has to be driven
from the history of that pixel. Fig. 4 explains this is-
sue. The argument is similar to issue the of adaptive,
localized threshold map discussed in section 2.2.

From the algorithm shown in Fig. 6 it can be ob-
served that there are two set of thresholds th and κ.

Thresholds th for each pixel should adapt to a value
where:

∑
x

θB
t (x)≥th

θB
t (x) ≥ 0.95 (18)

For the other set of thresholds κ, we similarly use a
measure of changes in the intensity at each pixel posi-
tion. Therefore the threshold κ is inversely proportional
to the background model variance:

κ ≈ ln





[
255∑
x=0

(
θB

t (x)−mean[θB(x)]
)2

]−1


 (19)

This ensures that for pixels with more changes, smaller
threshold values are chosen for classification, while for
those pixels with fewer changes larger thresholds are
employed. It should be mentioned that in the current
implementation of the algorithm, the thresholds are up-
dated every 30 frames.

3.6 Incorporating color information

In the above section we described the recursive learning
scheme in 1-D where the background and foreground
models are updated using the intensity value of pixels
at each frame. To extend the modeling in higher di-
mensions and incorporate color information, one may
consider each pixel as a 3 dimensional feature vector
in [0, 255]3. The kernel H in this space is a multivari-
ate kernel HΣ . In this case, instead of using a diagonal
matrix HΣ a full multivariate kernel can be used. The
kernel bandwidth matrix Σ is a symmetric positive def-
inite 3 × 3 matrix. Given N pixels, x1,x2, · · · ,xN , la-
beled as background, their successive deviation matrix
is a matrix ∆X whose columns are:
[
xi − xi−1

]T with i = 2, 3, · · · , N (20)

The bandwidth matrix is defined such that it represents
the temporal scatter of training samples:

Σ = cov(∆X) (21)

However, in the current implementation only red
and green chrominance values are used. Also in order
to decrease the memory requirements of the system we
assumed that the two chrominance values are indepen-
dent. Making this assumption results in a significant
decrease in memory requirements while the accuracy
of the model does not decay drastically. The red/green
chrominance values are quantized into 256 discrete val-
ues.
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Fig. 8 Effect of the number of training samples on the estimated
density function.

4 Performance evaluation

In this section we evaluate the performance of each of
the proposed methods separately. The evaluation is con-
ducted in terms of the number of system parameters,
their impact on the output of the system, memory re-
quirements and accuracy of the results.

4.1 Adaptive kernel density estimation method
(AKDE)

In this section we present the system details and ana-
lyze its performance.

Parameters. One important parameter in this method
is the number of training samples used to estimate the
probability density. Other parameters such as the thresh-
old and the kernel bandwidth matrix are trained during
the training stage. In Fig. 8 the actual probability func-
tion of a randomly distributed population is shown by
the solid line. The estimated probability density func-
tion converges to the underlying density by increasing
the number of training samples. However, there is a
trade-off between the number of training samples, mem-
ory requirements and convergence speed of the algo-
rithm.

Memory requirements. The system needs to store
all the training samples in order to estimate the prob-
ability of a new sample. If only pixel intensity values
are to be employed for each pixel, n values should be
stored. Given that these values range is between 0 to
255, each intensity value is stored in 1 byte, resulting in
n bytes per-pixel memory requirement. Also the system
needs to store the kernel bandwidth and the thresholds
for each pixel, which result in 2 floating numbers. Con-
sidering that each floating number can be stored in 4
bytes, 8 bytes per pixel are needed to store the ker-
nel bandwidth and the threshold. This results in n + 8

bytes memory requirement per pixel. Similarly, the per-
pixel memory requirements using chrominance values
are 8n + 20.

From the above discussion we can conclude that the
asymptotic memory requirement for the system is O(n).
That is, if the number of training samples reaches in-
finity the memory requirements of the system grow lin-
early.

Computational cost. If we only use pixel inten-
sity values for n training samples per pixel we need 2
additions and 2 multiplications for each training sam-
ple. This results in 2n addition and 2n multiplication
operations. Given the optimal implementation of the
exponential function using look-up tables, its cost is
equal to a memory indexing. This can be assimilated
to a single addition operation. The per-pixel computa-
tional cost of the AKDE method is 5×n. If chrominance
values are used the computational cost will be 13 × n

per pixel.
Given the optimal implementation of the exponen-

tial function and multiplication operations, the asymp-
totic per-pixel computational cost is O(n). Note that
this is the optimal asymptotic computational cost per
pixel. The actual frame rate of the current implemen-
tation of the AKDE method is about 5-10 fps.

4.2 Recursive modeling method (RM)

In this section we analyze the performance of our re-
cursive modeling method.

Parameters. In the RM method there are 5 param-
eters: the learning and forgetting rate α and β, thresh-
olds th and κ, and the bandwidth Σ. As described ear-
lier, these parameters are trained and estimated from
the data to generate an accurate and robust model. The
reason that the RM technique is robust is in using most
of the information in the data set and not being limited
on the number of training samples. With all parame-
ters being updated, the system performance does not
depend on heuristically (and scene dependent) values
for these parameters.

Memory requirements. If pixel intensity is used
in the RM technique the model becomes a 1-D function
representing the probability mass function of the pixel.
The pixel intensity values range is from 0 to 255 making
the memory requirements of the RM equal to 256 × 4
bytes per pixel. Using chrominance values, the model is
2-D and needs 2562 × 4 bytes in memory.

The current implementation of the RM method uses
a simple assumption of independence between color fea-
tures which results in 8 × 256 bytes memory require-
ments [29]. Color components are not independent. How-
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(a) (b) (c)

Fig. 9 Rapidly fluctuating background: (a) Handshake video se-
quence. (b) Detected foreground regions using AKDE. (c) De-
tected foreground regions using RM.

ever, assuming that they are independent helps decreas-
ing memory needs drastically while the accuracy does
not decrease significantly. In conclusion the asymptotic
memory requirement of the RM algorithm is constant
O(1).

Computational cost. If we only use pixel inten-
sity values for pixels we need 256 addition and 2 ×
256 multiplication operations. Similarly, if we use 2-
D chrominance values as pixel features and using the
independence assumption discussed earlier, the system
requires only 2×256 addition and 4×256 multiplication
operations to update the model.

The asymptotic computation cost for this system
is constant, O(1), since the updating process merely
consists of adding two 1-D functions. Note that this
technique does not need to compute the exponential
function and it acts as an incremental process, updat-
ing the model at each frame using the kernel and the
previous model. The algorithm is inherently fast and
an efficient implementation runs in real-time reaching
frame rates of 15-30 fps.

5 Comparison

In this section we compare the performance of proposed
techniques using several real video sequences that pose
significant challenges. Also their performances are com-
pared with the mixture of Gaussians method [25], the
spatio-temporal modeling presented in [14] and the sim-
ple KDE method [5]. We use different scenarios to test
the performance of the proposed techniques and discuss
where each method is more suitable.

Rapidly fluctuating backgrounds. As described
above, for videos with rapidly changing background,
the AKDE method has a better performance in terms
of memory requirements and speed. Our experiments
showed that for videos where possible fluctuations in
the background occur in about 10 seconds, the AKDE
technique needs less memory and works faster com-
pared to the RM method. Fig. 9 shows the detection
results of the AKDE and RM algorithms on the Hand-
shake video sequence. As it can be seen from this figure,
capturing dependencies between chrominance features

(a) (b) (c) (d)

Fig. 10 Slowly changing background: (a) Water video sequence.
Detected foreground region using: (b) MoG. (c) AKDE. and (d)
RM.

(a)
(b)

(c) (d) (e) (f)

Fig. 11 Hand-held camera: (a) Room video sequence. (b) Mod-
eling error in a hand-held camera situation using different meth-
ods. (c) False positives after 2 frames using the AKDE method.
(d) False positives after 247 frames using the AKDE method. (e)
False positives after 2 frames using the RM method. (f) False
positives after 247 frames using the RM method.

results in a more accurate foreground region (in Fig.
9(b)), showing that AKDE performs better than the
RM. Note that this is a low contrast video sequence
and the color of foreground objects is close to the back-
ground in some regions. Also in both methods fluctua-
tions in monitors are completely modeled as a part of
background and not detected as foreground regions.

Slowly changing backgrounds. For videos with
slowly changing backgrounds or backgrounds in which
changes are not periodic, the AKDE method needs more
training frames to generate a good model for the back-
ground. This increases the system memory requirements
and drastically decreases its speed. In these situations
the RM technique is a very good alternative, since its
performance is independent of the number of training
frames. Fig. 10(a) shows an arbitrary frame of the Wa-
ter video sequence. In this figure the detection results
of both AKDE and RM methods are presented. This
example is particularly difficult because waves do not
follow a regular motion pattern and their motion is
slow. Fig. 10(b) shows the result of the MoG [25]. As it
can be seen from Fig. 10(c), using the AKDE method
without any post-processing results in many false posi-
tives. Fig. 10(d) shows the detection results of the RM
method, which outperforms both AKDE and MoG in
the presence of slowly changing backgrounds.
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(a) (b) (c)

Fig. 12 Non-empty background: (a) Mall video sequence. (b)
Background model after 5 frames using the RM method. (c) Back-
ground model after 95 frames using the RM method.

Hand-held camera. In situations when the cam-
era is not completely stationary, such as the case of a
hand-held camera, the AKDE method is not suitable. In
these situations there is a consistent, slow and irregular
global motion in the scene, which can not be modeled
by a limited size sliding window of training frames. In
such cases the RM method is highly preferable.

Fig. 11 shows the modeling error of the RM method
in the Room video sequence. In Fig. 11(a) an arbitrary
frame of this video is shown. Fig. 11(b) compares the
modeling error using different techniques. As it can be
seen, the modeling error using a constant window size
in the AKDE (the dotted line) is between 20%-40%,
and it does not decrease with time. This shows that the
system using the AKDE method with a constant sized
sliding window never converges to the actual model.
The dashed line shows the modeling error using the
RM method with a constant learning rate, and the solid
line shows the modeling error of the RM with scheduled
learning. We conclude that the model generated by the
RM technique eventually converges to the actual back-
ground model and its error goes to zero. Fig. 11(c) and
(d) show misclassified regions using the AKDE method
after 2 and 247 frames respectively and Fig. 11(e) and
(f) show the false positives using the RM method after
2 and 247 frames into the video. As it can be seen, the
amount of false positives decrease with time as the sys-
tem accumulates most changes observed in the history
of the scene using the RM method, but for the AKDE
it does not converge to zero.

Non-empty backgrounds. In situations where the
background of the video is not empty (there is no clear
background at any time in the video sequence), the
AKDE method fails to accurately detect the foreground
regions. In these situations the RM technique has to be
used to generate an accurate empty background model.

Fig. 12 shows the background model in the Mall
video sequence in which the background is never empty.
In this situation the AKDE method fails unless a post-
processing on the detected foreground regions is per-
formed to generate models for uncovered parts of the
background. This system considers the foreground ob-
jects present in the background training window as a

Fig. 13 Convergence speed.

part of background. When those objects move their
empty position is detected as a foreground region. In
the RM method however, the background model is up-
dated at every frame from the beginning of the video.
When an object moves the new pixel information is used
to update the background model to the new one. Fig-
ure 12(b) shows the background model after 5 frames
from the beginning of the video and Fig. 12(c) shows
the model after 95 frames.

In this scenario consistent background regions are
temporarily occluded by transient moving objects. There-
fore the background itself contributes more consistent
information to the model. As a result, the model con-
verges to the empty background. This can be observed
from Figure 12.

Convergence speed. An important issue in the
recursive learning is the convergence speed of the sys-
tem (how fast the model converges to the actual back-
ground). Fig. 13 illustrates the convergence speed of
our approach with scheduled learning, compared to con-
stant learning and kernel density estimation with con-
stant window size.

Sudden global changes in the background. In
situations where the video background suddenly changes
– such as lights on/off – the proposed RM technique
with scheduled learning recovers faster than the AKDE
method. Generally, with the same speed and memory
requirements, the RM method results in faster conver-
gence and lower model error than existing techniques.

Fig. 14 shows the comparison of the recovery speed
from an expired background model to the new one. Fig.
14(a) depicts an indoor scene with lights on and Fig.
14(b) shows the scene with the lights off. In our exam-
ple (Fig. 14(c)) lights go from on to off through three
global but sudden changes occurring at frames 23, 31
and 47. As shown, the scheduled learning RM method
(solid curve) recovers the background model after these
changes faster than non-scheduled RM and the AKDE
with constant window size. The constant, large learn-
ing rate recovers more slowly (dashed curve) while the
AKDE technique (dotted curve) is not able to recover
even after 150 frames. A similar situation with lights
going from off to on through three global, sudden il-
lumination changes is shown in Fig. 14(d). It needs to
be mentioned that the mixture learning algorithms are
even slower in convergence and recovery. A typical mix-



12 Alireza Tavakkoli et al.

(a) (b)

(c)

(d)

Fig. 14 Sudden global changes in the background: (a) Lobby
video sequence with lights on. (b) Lights off. (c) Recovery speed
comparison in lights turned off scenario. (d) Recovery speed com-
parison in lights turned on scenario.

ture learning technique proposed in [25] needs at least
1000 frames to converge.

Other difficult examples. Fig. 15 shows three
video sequences with challenging backgrounds. In col-
umn (a) the original frames are shown, while column
(b) and (c) show the results of the AKDE and the RM
methods, respectively. Heavy rain, waving tree branches,
and the water fountain shown in this figure (from top
to bottom) pose significant difficulties in detecting ac-
curate foreground regions.

Quantitative evaluation. Performance of our pro-
posed methods, RM and AKDE, is evaluated quanti-
tatively on randomly selected samples from different
video sequences, taken from [14].

The similarity measure between two regions A (de-
tected foreground regions) and B (ground truth) is de-
fined by S(A,B) = A∩B

A∪B . This measure increases mono-
tonically with the similarity between detected masks
and the ground truth, ranging between 0 and 1. By
using this measure we report the performance of the
AKDE method, the RM method, the spatio-temporal
technique presented in [14] and the mixture of Gaus-
sians (MoG) in [25]. By comparing the average of the
similarity measure over different video sequences in Ta-
ble 1, we can see that the RM method outperforms

(a) (b) (c)

Fig. 15 Other difficult examples: (a) Original frame. (b) De-
tected foreground region using AKDE. (c) Detected foreground
regions using RM.

other techniques. This shows that the RM method works
consistently well on a wide range of video sequences.
Also, note that both AKDE and RM are automatic,
without the need for fine-tuning a large number of pa-
rameters for each scene, as opposed to other existing
methods.

However from this table one might argue that AKDE
does not perform better than the method presented in
[14]. The reason is that in [14] the authors used a mor-
phological post-processing stage to refine their detected
foreground regions, while the results shown for AKDE
are the raw detected regions. We performed a morpho-
logical post-processing on the results obtained by the
AKDE, and the average similarity measure increased to
0.74.

Computation time. In this section we present a
comparison of the speed of the RM and the AKDE on
the Handshake video sequence. The frame size for the
experiments is 120×160 in RGB color format. The sys-
tems are implemented on a 4.8 GHz Pentium 4 Proces-
sor. We used N = 300 frames for the initial background
training process for the AKDE. Table 2 shows the com-

Table 2 Computation time.

Method Detection time per frame (sec) Speed (fps)

AKDE 0.186 5.2
RM 0.0625 15.38

putation time of the system for the AKDE and the RM
method. As seen, the RM method is a fast technique
with frame rate of at least 15 fps.

Comparison summary. Table 3 summarizes this
study and provides a comparison between different tra-
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Table 1 Quantitative evaluation and comparison. The sequences are Meeting Room, Lobby, Campus, Side Walk, Water and Fountain,
from left to right from [14].

Videos
Method

MR LB CAM SW WAT FT Avg.S(A,B)

AKDE 0.74 0.66 0.55 0.52 0.84 0.51 0.64
RM 0.92 0.87 0.75 0.72 0.89 0.87 0.84
Spatio-Temp[14] 0.91 0.71 0.69 0.57 0.85 0.67 0.74
MoG[25] 0.44 0.42 0.48 0.36 0.54 0.66 0.49

Table 3 Comparison between the proposed methods and traditional techniques.

Criteria AKDE RM KDE [5] Spatio-Temp[14] MoG [25] Wallflower [31]

No. of param. 3 3 3 9 5 8
Scene-independent Yes Yes No No No No
Post proc. No No No Yes No No
Classifier Bayes MAP Bayes Bayes Bayes K-means
Memory req.∗ O(n) O(1) O(n) O(n) O(1) O(n)
Comp. cost∗ O(n) O(1) O(n) O(n) O(1) O(n)

∗ : Per-pixel memory requirements or computational cost
n: number of training frames or training features used per pixel

Table 4 Scenarios where each method appears to be particularly suitable.

Scenario AKDE RM KDE [5] [14] MoG [25] Wallflower [31]

Low contrast video S∗ NS∗∗ S NS NS NS
Close Bg/Fg colors S NS NS NS NS NS
Slowly changing background NS S NS S S S
Rapidly changing background S S S S NS S
Sudden global changes NS S NS S S NS
Non-empty backgrounds NS S NS S S S
Hand-held camera NS S NS NS NS NS

∗ : Suitable
∗∗: Not suitable

ditional methods for background modeling proposed in
the literature and our proposed methods. The com-
parison includes the number of parameters, classifica-
tion type, memory requirements, computation cost and
parameter selection. Table 4 shows different scenarios
and illustrates which method appears to be particularly
suitable for foreground region detection.

6 Conclusions and future work

In this paper we have presented two novel techniques for
background modeling based on non-parametric density
estimation and recursive modeling. The advantage of
our adaptive kernel density estimation method (AKDE)
over existing techniques is that instead of a global thresh-
old for all pixels in the video scene, different and adap-
tive thresholds are used for each pixel. By training these
thresholds the system works robustly on different video
scenes without changing or tuning any parameter. Since
each pixel is classified by using adaptive thresholds and
exploiting its color dependency, the background model
is more accurate.

Our novel recursive modeling method (RM) updates
the model on-line when a new frame becomes available,
instead of processing a set of video frames to generate
the background model. Since the model is not gener-
ated by a finite set of samples it eventually converges to
the actual background model. This method is superior
and more robust than other techniques for situations in
which background changes are slow and not periodic.

In particular the RM method outperforms other non-
parametric techniques when a set of empty background
frames is not available (such as the Mall video sequence)
as well as in the case of a hand-held camera. The recov-
ery and convergence speed of the RM method in cases
when the global illumination suddenly changes are bet-
ter than those of other non-parametric techniques.

From studying the performance of each of the pro-
posed methods in terms of memory requirements and
computational cost it can be observed that the AKDE
method is more efficient than the RM technique when
background changes are fast. On the other hand when
changes occur very slowly, or when there are no empty
background frames, the RM works better than AKDE
because of its recursive nature.
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A future research direction is to perform the fore-
ground/background segmentation without establishing
a probabilistic model for the background or the fore-
ground. This new approach would aim to establish the
decision boundaries between background and foreground
classes for each pixel based on support vector classifi-
cation methods.
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