
Fuzzy Classification of Genome Sequences Prior to

Assembly Based on Similarity Measures
*

Sara Nasser, Gregory L. Vert, Adrienne Breland and Monica Nicolescu

Department of Computer Science Engineering

University of Nevada Reno

Reno, Nevada 89559, USA

sara@cse.unr.edu gvert@cse.unr.edu monica@cse.unr.edu abreland@cse.unr.edu

* This work is partially supported by NSF EPSCoR Fellowship (RING-TRUE III Award number: 0447416).

 Abstract - Nucleotide sequencing of genomic data is an

important step towards building understanding of gene

expression. Current limitations in sequencing limit the number of

base pairs that can be processed to only several hundred at a time.

Consequently, these sequenced substrings need to be assembled

into the overall genome. However, the existence of insertions,

deletions and substitutions can complicate the assembly of

subsequences and confuse existing methods. What has been

needed is an approach that deals with ambiguity in trying to

match and assemble a genome from its sequenced subsequences.

This research develops fuzzy similarity measures between

subsequences that are then incorporated into an assembler based

on fuzzy logic and fuzzy similarity measures. The research

addresses the problem of extensive computation required by

clustering data into meaningful groups. Preliminary evaluation of

this approach in conjunction with K-Means clustering suggests

that this approach is at least as good as standard approaches and

in some cases better.

I. INTRODUCTION

 Genome shotgun sequencing for DNA alignment is a slow

process that requires building consensus sequences from small

DNA fragments. DNA is composed of four nucleotides A, C,

G, T. Genome sequencing is figuring out the order of DNA

nucleotides, or bases, in a genome that make up an organism's

DNA. These nucleotides and their order determine the

structure of protein. Sequencing the genome is a very

important step in Genomics. Entire Genome sequences are

very large in size and can range from several thousand base

pairs to millions of base pairs. The whole genome can't be

sequenced all at once because the chemical reactions

researchers use to decode the DNA base pairs are accurate for

only about 600 to 700 nucleotides at a time [1]. Therefore

DNA is chopped up into small subsequences.

The process of DNA sequencing begins by breaking the

DNA into millions of random fragments, which are then given

to a sequencing machine. Fragments or subsequences are

selected randomly; using a sequence once may not cover all

regions. Therefore multiple copies of original sequences are

used to ensure that the entire sequence is covered. This is

generally referred as a coverage of ‘nX’, where n is the number

of copies. Coverage of 8X is widely accepted to be able to

generate the entire sequence. Next, a software called an

assembler pieces together the many overlapping reads and

reconstructs the original sequence [2].

The process explained above is known as "whole-genome

shotgun" method, which involves breaking the genome up into

small pieces, sequencing the pieces, and reassembling the

pieces into the full genome sequence. Sequencing DNA using

the shot-gun method was introduced in 1995 [3]. More details

about whole genome shot-gun sequencing can be found in [1,

3].

The problem of sequencing is not of exact matching but

requires obtaining approximate matches through consensus. A

consensus sequence is constructed through approximate

matches by following an overlap and consensus scheme [5],

this is illustrated in Fig. 1 below.

Fig. 1. Whole Genome Sequencing process is displayed in terms of reads from

the DNA sequences.

Even though computational power has made it possible to

sequence genomes, assembly is still an NP-Hard problem. An

exhaustive search is not a viable option. Heuristic approaches

that reduce the search space have been used.

The algorithm presented in this paper speeds up the original

assembly by reducing search space. Assembling sequences can

be done by first sorting the sequences into classes. Some

sequences can have a higher similarity with each other and

some other may have lesser or no similarity at all. We perform

a meaningful partitioning of data, so that sequences in a cluster

have high similarity with one another and sequences between

two clusters are less similar. A Divide-and-Conquer approach

to consign data into similar groups is used.

The following Section discusses the previous work done in

sequence assembly. Section III contains the approach. Section

IV has the experimental results followed by conclusions in

Section V and future work in Section V1.

II. PREVIOUS TECHNIQUES

In general, the approach to fragment assembly has been to

iteratively find the best overlap between all fragment pairs

until an acceptable final layout has been determined. In current

genome sequencing tasks, the number of fragments is usually

numerous and the degree of computation required increases

exponentially. Being essentially an NP-Hard problem, many

different approaches with varied parameters and matching

schemas have been explored that can, among other things, save

computation time. Finding the longest common subsequence

between fragments is the key to the process of sequence

assembly. Dynamic programming is used in the Smith-

Waterman algorithm for multiple sequence alignment [6], one

the most prominent algorithms used in sequence assembly

programs. Dynamic programming solves problems by

combining the solutions to sub problems [15], in this case

substrings. It is a method for reducing the runtime of

algorithms containing overlapping sub-problems and optimal

substructures [7]. Other techniques for finding the longest

common subsequence include suffix trees, the KMS algorithm

and greedy approaches. Suffix trees allow a linear time search

for matching substrings. The KMS Algorithm identifies best

matches of the longest substrings of the matches of many

strings [8]. Greedy algorithms can be much faster than

traditional dynamic programming and work well with

sequencing errors [12].

 Even with these algorithmic improvements, additional

reductions to search space in fragment assembly problems are

routinely employed. For example, PHRAP determines best

fragment matches by comparing only the highest quality parts

of reads[23], both reducing search time and possibly

increasing accuracy. The AMASS algorithm limits searches to

short, randomly selected sequences within fragments rather

than comparing complete reads. This approach showed a

drastic reduction in assembly time [24]. Another approach to

time reduction involves determining which groups of

fragments have more potential for aligning and only

comparing those together. For example, the assembler

STROLL [22] significantly reduces the number of required

comparisons by rejecting all candidate fragment pairs without

exact matches of a threshold length. Similarly, the CAP3

program determines which fragment pairs have potential

overlap before making comparisons [25]. Even one of the

earliest assembly schemes, SEQuencing AID (SEQAID) [21]

examines ancillary fragment information to aid in the

determination of fragment order.

 Pre-assembly clustering of fragments may be viewed as a

more structured form of fragment thinning before alignment

comparisons are made. Clustering is a process of grouping

objects into like groups based on some measure of similarity.

Clustering or classification can be achieved by several

techniques such as K-means, artificial neural networks, etc.

This divide-and-conquer strategy for sequence assembly was

described in [20]. A K-means clustering scheme was applied

to fragments based on their Average Mutual Information

(AMI) measures. AMI profiles are used to measure the degree

of ‘closeness’ between fragments.

K-means has been widely used in pattern recognition

problems. Several variations and improvements to the original

algorithm have been implemented. The K-means algorithm by

MacQueen [17] is widely used for its simplicity. Another

variation of K-means was proposed by Forgy [18]; this

algorithm has been shown to converge to a local minimum

[11].

Fuzzy Logic formularizes an intuitive theory based on

human reason of approximation. It differs from the traditional

logic methods where crisp or exact results are expected. The

concept of fuzzy logic was first put forth by Zadeh [26]. Fuzzy

Logic is used in problems where the results can be

approximate rather than exact. Hence, the principles of fuzzy

logic suit well to clustering problems. The results are

determined by some degree of closeness to true or to false.

Due to its applicability to problems that do not require hard

solutions, Fuzzy Logic has been widely used in various fields

to provide flexibility to classical algorithms. An earlier well

known approach to fuzzy classification is the fuzzy c-means

algorithm [27]. An improvement of K-means using the fuzzy

logic theory was presented [14] in which the concept of

fuzziness was used to improve the original K-means algorithm.

III. CLUSTERING AND ASSEMBLY

In this paper we present a clustering technique that uses a

fuzzy membership function to divide fragments into groups.

This reduces the number of comparisons and performs

meaningful assembly. The fuzzy functions used in this paper

are a modified version of the Fuzzy Genome Sequencing

Assembler described in [4].

A. Dynamic Programming with Fuzzy Logic

Dynamic programming has been extensively used to

determine the longest common subsequence (LCS). The reason

for its popularity is that reduces time complexity of assembly

to Θ(n
2
).

Fig. 2 shows the table constructed while using dynamic

programming. Two strings subject to comparison label the x

and y axis. To find the LCS start from the end of the table and

traverse along the direction indicated by the cell. The numbers

in the cells indicate the length of the subsequence until that

cell. The highest number in the table indicates the longest

subsequence that can be found between the two sequences.

Since the longest subsequence will most likely occur in the

cells along the diagonal. This method is simple and is very

useful in finding longest common subsequence which may

have mismatches in the sequence. This suits well to assembly

problems since not all subsequences found will be perfect.

This can be easily modified to find contiguous subsequences.

In the case of genome subsequences we would like to get the

longest subsequence with few insertions or deletions (indels).

One of the common techniques used by assembly processes

such as PHRAP is to search within a bandwidth along the

diagonal. If the path is beyond the bandwidth the indels

increase, and it is not a good match. The diagonal arrows

within each cell indicate a match, the more diagonal arrows,

we stay within the bandwidth, as mismatches increase we

either go up or left.

Fig. 2 Table constructed using Dynamic Programming to find the LCS

The optimal subsequence is either a perfect match, or the

user may choose to tolerate indels. These criteria can depend

on the user, the source of the data, quality of the data, etc.

Almost all existing techniques provide user defined thresholds.

Sometimes the user is not clear on the ideal cut off point for a

particular data set and may need to determine it empirically.

For example, assume a cutoff value for the maximum gap

allowed is 30 bases and there are fairly large numbers of

sequences with a gap of 31 and 32. Due to the fact that these

techniques allow for crisp matches only, these potentially

important sequences would be excluded. On the other hand we

can represent a match of 30 and lower with a fuzzy value of 1,

which is for crisp matches. Matches that are very close to 30

like 31 can have a fuzzy value of 0.98. If the user selects to

allow all matches greater than the value 0.8 then these

subsequences would be included. The user in this case does

not have to look into the data and change parameters and run

the program several times. Since there are several parameters

the user may not even know which parameters need to be

altered. The main objective is to obtain the best consensus of

the overall parameters.

This paper proposes a fuzzy matching technique where we

can have crisp and non-crisp matches. The user could also

obtain a fuzzy value that states how well the matching

sequences fit the threshold.

Fuzzy Logic has been applied to classification problems in

computational biology. Even though applications of fuzzy

logic have not been done extensively, recently it has begun to

gain popularity. A modified fuzzy k-means clustering was used

to identify overlapping clusters of yeast genes. Data was

based on published gene-expression results following the

response of yeast cells to environmental changes [9].

B. Fuzzy LCS

As mentioned earlier, one of the problems with existing

techniques is that they have crisp bounds. The user has to

specify the parameters for the program such as minimum score

and minimum match. The parameters need to be changed by

the user to suit the data, and then the program is run one or

more times, until an optimal solution is found. This allows the

user to determine which parameters work best with the given

sample. Selecting the longest sequence is not always the

optimal solution. Some applications prefer longer sequences

while others may require higher quality or less gaps.

The main objective of our method is assembling data by

approximate matching using fuzzy logic. To achieve this we

provide several matches of two subsequences. Then pick the

best match based on the criterion specified by the user.

Fuzzy Logic has been used in approximate string matching

using distance measures, etc. However, there has been limited

application to building genomes from subsequences of

nucleotides.

Current sequencing methods tend to reject sequences that do

not match with a high degree of similarity. This can lead to

large amounts of data being rejected by algorithms that

otherwise may be important in deriving a genomic sequence

and its metabolic characteristics.

We propose a method where we select multiple

subsequences and then based on several parameters select the

optimal solution. The sequence satisfying the aggregate overall

requirement is selected based on fuzzy parameters. In other

words, we are measuring the fuzzy similarity of the given

subsequences. There are several factors that determine if two

subsequences can have an optimal overlap. These factors are

used to measure their similarity. For example, two

subsequences can form a Contig if their overlap region is

larger than a threshold. They could be highly similar if they

have less number of indels, or less similar with more indels.

We perform a non-banded search, it is neither ideal to

search every possible subsequence or just use the diagonal.

Instead of selecting the longest common subsequence from the

dynamic programming table Fig. 2, we select all the

subsequences that satisfy the minimum length required. The

threshold is a function of the length of the LCS. The search is

banded by using a threshold to prevent moving away from the

diagonal. A cell is marked if it was already traversed, so we

don’t check it again. We keep track of cells that are traversed

and paths above the threshold are selected:

f(n(LCS)) thresholdwhere

 , thresholdlength

=

>=

We need determine if either of these subsequences will

create an optimal match. Any of the selected paths can

generate the optimal solution. Therefore we do not eliminate

any possible good subsequences.

The selection of the optimal subsequence is done using

fuzzy similarity measures. The selection process is done in

constant time; therefore the complexity of the algorithm is

same as the complexity of Dynamic programming, which is

Θ(mn) for any two subsequences of length m and n. The

following section lists the characteristic functions.

C. Fuzzy Similarity Measures

Fuzzy similarity measures are an important step in creating a

Contig from two subsequences or finding an overlap between

two sequences. The following subsections describe the fuzzy

functions utilized in our approach for assembly.

(i) Length of Overlap (µ lo): The first similarity measure we

consider is the length of the match. This is also the size of

overlap when a Contig is being created. This length includes

indels and replacements. A higher overlap is better as it

generates a longer Contig. The membership function for this

measure is defined as:

















=

=

=

|overlap |max / s2) ,overlap(s1 | | ,1][0,

0 |s2)(s1, overlap | | 0

|overlap |max |s2) (s1, overlap | |1

)2,1(ssolµ (1)

where:

|overlap(x, y)| - length of overlap of strings x, y

s1, s2 – strings being evaluated

(ii) Confidence (µqs): The confidence for each Contig is

defined as, a measurement of the quality of the contributing

base pairs [10]. A high quality base pair indicates a strong read

or a higher confidence in its accuracy. Noise and experimental

error are often present in reads that makes the confidence

lower. Every base involved in the Contig has a quality score.

The confidence of a Contig is the aggregate quality score of it

contributing bases. For simplicity, the sum of average quality

scores is the confidence of the Contig. µqs is the quality score

(qs) for the overall overlap region, which we calculate as

follows

n

qw
n

i

ii

qs

∑
== 1µ

 (2)

wi is used to standardize the quality scores. The bases with

high quality are assigned a weight of 1. Only the bases that are

of lower quality are given weights between 0 and 1. uQS (δ) is

the standard bound for threshold that was explained earlier,

this is generally specified by the user, minqs and maxqs are the

minimum and maximum values for quality.














−

−

=

≥

=

qsqs

qsqs

qs

qs

i if

if

w

minmax

min

0,0

,1

µ

µ

δµ
 (3)

(iii) Gap Penalty (µgp): This is the maximum gap that is

allowed in a match. Gap is measured in terms of the number of

bases.

Gaps= ∑(fn(insert)+ fn (delete)+ fn (replacement)) (4)

producing a membership function of:

























+

=

=

=

|s2),overlap(s1|

|)s2) (s1, diff ||s2)mbp(s1,| - (1
 | ,1][0,

|s2)diff(s1,||s2),overlap(s1| 0

|s2)mbp(s1,||overlap| |1

)2,1(ssgpµ

(5)

Here mbp(s1, s2) is the matching number of nucleotides in

s1, s2 and diff(s1, s2) is “inserts(s1,s2) + deletes(s1, s2) +

replacements(s1, s2)”.

(iv) Score (µws): This is the score of a match also known as

similarity of a match. A score is calculated from the number of

matching bases, number of indels and replacements. If all are

given value one a using a simple scoring method, here i-

inserts, d-deletes, r-replacements:

score= fn(MatchingBP)– fn(i)- fn(d)- fn(r)

 We can weight the matching base pairs higher than the

indels. The above equation leads to derivation of the following

fuzzy similarity membership function.





























<=

=

=

|s2),overlap(s1|

(score)
 | ,1][0,

0core| 0

|)2,1(|score |1

)2,1(s

ssfmbp

sswsµ (6)

Here fmbp (s1, s2) is the score of matching base pairs.

D. Thresholds

(i) MinMatch: This is the minimum number of matching

bases that are required between the two sequences. Genomic

DNA contains only 4 characters and they can be lot of

overlaps with these 4 characters. Therefore we would like to

have a cutoff value for matching sequences.

(ii) MinScore: This is the minimum score of a match. A

score is calculated from the number of matching bases, number

of indels and replacements. MinScore is used as a threshold.

Once the fuzzy value for each of these parameters is

calculated, we plug them in an overall fuzzy function. This

function is the aggregate fuzzy match value (afv). A perfect

overlap refers to an overlap that satisfies the two thresholds

above, is free of gaps, and satisfies the quality requirements.

lologpgpwswsqsqs wwwwcfa µµµµ +++=)((7)

afv = fa(c)/m, where m is number of parameters (8)

The subsequences that produce the highest fuzzy value are

selected as optimal sequences. Depending on their position as

a suffix or prefix a new Contig or consensus sequence is

formed.

C. K-means Clustering

Clustering problems generally derive some kind of

similarity between groups of objects. K-means clustering is a

simple and fast approach to achieve such grouping. The

algorithm starts with a large number of seeds (initial samples)

for the potential clusters. Remaining samples are then

assigned to a cluster based on their distance from the seed.

The centroid is recomputed for each cluster and the data points

are reassigned. The algorithm runs until it converges or until

the desired number of clusters is obtained.

Given N sequences, such that S={C}
i
 ,where C ={A, C, G,

T}. We randomly select “k” sequences as the initial seeds,

where k is less than the number of sequences N. The algorithm

starts by performing LCS on each of the sequences with the k

seeds. The sequence is assigned to the class which has the

highest fuzzy similarity. The fuzzy similarity is calculated as

given below, it is also referred as the fuzzy weighted average.

 ,.....2,1,0,

),1(

)(==∑ =
rxw

Pp p

r

p

rµ

Here x is the parameter or feature and p the number of

features. Given i=0,...,N and j=0,…,k, the distance d i,j for each

cluster can be calculated as follows:

 d i,j=max(µ
r
 j), for all j=0,…k

IV. EXPERIMENTS AND RESULTS

The Fuzzy Genome Sequence Assembler with Clustering

(ClusFGS) was implemented and tested on generated data sets

and several data sets from GenBank. We include results from

one of the test cases below. The parameters selected for the

assembly are length of overlap, confidence, score, gap penalty,

minscore and minmatch as described in section IV. The

genome sequence tested was the Wolbachia endosymbiont of

the Drosophila melanogaster strain wMel 16S ribosomal RNA

gene, partial sequence, which can be obtained from GenBank.

Wolbachia is a microscopic organism that has been used to test

several alignment tools.

The gene is "rpoBC", locus_tag="WD0024" and the

GeneID is “2738525” [13]. This particular sequence codes for

a protein. The sequence contains 8514 base pairs. The total

bases read were 4X of the original sequence. We selected 300

random fragments or subsequences from this set. Each

subsequence was in the range of 300-600bps. Fragment sizes

less than 500bp are commonly used for assembly [18]. We

selected k random seeds where k<<N. The results of assembly

are shown in Table 1.

In Table 1, MGS refers to an implementation of Smith-

Waterman algorithm for multiple sequence alignment using

Dynamic programming [16]. TIGR is a well known assembler

[19]. FGS is the fuzzy sequence assembly method that is

described in [4]. ClusFGS is the method described in this

paper and is a modified version of FGS.

The results obtained from assembling the genome projects

showed a high percentage of the genome recovered while

using FGS and TIGR. This indicates that given random

subsequences, the algorithm was able to create a fairly large

percentage of the original sequence. The clustering technique

did not perform as well as the FGS with clustering but is still

better than simple sequence alignment.

Fig. 3 Comparison of clustering on Wolbachia sequences

T
im

e

TABLE I

ASSEMBLY COMPARISONS ON RPOBC OF WOLBACHIA GENOME

Assembler
Number of

Contigs

Percentage Genome

Covered

MGS 106 65%

TIGR 150 99.6%

FGS 165 99.6%

ClusFGS 75 91%

MGS = Multiple Genome Sequencing using Dynamic

programming, TIGR=TIGR Assembler 2.0, FGS= Fuzzy

Genome Sequencing, Number of Contigs= total number of

Contigs obtained after assembly, third column is the

percentage of original genome covered by the assembly.

We compared the results with respect to time required for

assembling. The results of clustering are shown above in Fig 3.

The clustering technique is linear and hence can make the

assembly much faster as indicated in the graph in Fig 3. As the

value of k reaches the value of N the clustering technique

becomes same as the FGS algorithm.

IV. CONCLUSIONS

 This paper proposes the use of fuzzy k-means for

approximate sequence assembly. Fuzzy similarity measures

were used and a fuzzy weighted average was created to

perform the classification. We tested the assembler on

published genome projects and compared the results with other

assemblers.

 The results show that clusFGS was faster than FGS but

could not recover the genome as much as FGS or TIGR

assembler. ClusFGS can be used to get an estimate of

assembly in short time, especially for large datasets where

assembling the whole genome might be time consuming.

The assembly can be further improved by adding other

parameters for clustering that can classify data using structural

motifs such as AMI, G-C content etc. Our method uses a

simple k-means without reassignment of objects between

clusters, etc. An enhanced k-means can be used to improve the

performance of the assembler.

The idea proposed can be used to group meta-genomic data

into classes and provide a clean assembly for environmental

sequences.

IV. FUTURE WORK

While this work looks promising there are a number of

research questions that remain to be answered. The first of

these is the appropriate value to set the weights to in the fa(c)

equation. It is thought that a mathematical relationship

between fuzzy similarity measures and these weights should be

derived. Additionally, this work has been evaluated on a small

set of data from GenBank. Future work will evaluate

performance on eukaryotic and prokaryotic DNA which have

different structural characteristics. To improve performance,

further research can be done on reducing the amount of

information to be processed via the use of data transformation

schemes. Finally classification method proposed can be

extended to classify environmental sequences.

REFERENCES

[1] Gene Myers, Whole-Genome DNA Sequencing, IEEE Computational

Engineering and Science 3, 1 (1999), 33-43.

[2] Mihai Pop, Steven L. Salzberg, Martin Shumway, Genome Sequence

Assembly: Algorithms and Issues, 2002.

[3] F. Sanger et al., “Nucleotide Sequence of Bacteriophage Lambda DNA,”

J. Molecular Biology, vol. 162, no. 4, 1982, pp. 729-773.

[4] Sara Nasser, Gregory Vert, Monica Nicolescu, Alison Murray, “Multiple

Sequence Alignment using Fuzzy Logic”, Proceedings of the 2007 IEEE

Symposium on Computational Intelligence in Bioinformatics and

Computational Biology (CIBCB 2007), April 1-5, Honolulu, Hawaii,

Vol, 07, pp 304-311.

[5] Peltola, H., Soderlund, H. and Ukkonen, E. (1984), ‘SEQAID: A DNA

sequence assembling program based on a mathematical model’, Nucleic

Acids Res., Vol. 12(1), pp. 307–321.
[6] Genome Wikipedia, http://en.wikipedia.org/wiki/Genome, Accessed,

October 2006.
[7] Dynamic Programming-Wikipedia,

http://en.wikipedia.org/wiki/Dynamic_programming, Date accessed Oct

2, 2006.

[8] K Kaplan. An Approximate String Matching Algorithm with Extension

to Higher Dimensions. UMI Microfilm. 1995.

[9] Gasch, A. P. & Eisen, M. B. Exploring the conditional coregulation of

yeast gene expression through fuzzy k-means clustering. Genome Biol

3, RESEARCH0059 (2002).

[10] Phred Quality Base calling,

http://www.phrap.com/phred/#qualityscores, date accessed Oct 3 2006.

[11] S. Z. Selim, M. A. Ismail, k-means type algorithms: a generalized

convergence theorem and characterization of local optimality, IEEE

Trans. Pattern Analysis Machine Intelligence, 6, 1984, 81–87.

[12] Zheng Zhang, Scott Schwartz, Lukas Wagner, Webb Miller, “A Greedy

Algorithm for Aligning DNA Sequences”, Journal of Computational

Biology, vol 7, pp. 203-214, 2000.

[13] rpoBC DNA-directed RNA polymerase, Wolbachia endoysymbiont of

Drosophila melanogaster,

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve

&dopt=full_report&list_uids=2738525, Date accessed Oct 2006.

[14] C. G. Looney, Interactive clustering and merging with a new fuzzy

expected value, Pattern Recognition Lett., vol. 35, 2002, 187–197.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and

Clifford Stein, Introduction to Algorithms, Second Edition, 2001, pp

313-319.

[16] Smith T, Waterman M: Identification of common molecular

subsequences. Journal of Molecular Biology 1981, 147:195-197.

[17] J. B. MacQueen, Some methods for classification and analysis of

multivariate observations, Proc. 5th

 Berkeley Symp. Probability Statistics, University of California Press,

Berkeley, 1967, pp. 281–297.

[18] E. Forgy, Cluster analysis of multivariate data: efficiency versus

interpretability of classifications, Biometrics, 21, 1965, 768–776.

[19] TIGR Assembler 2.0, http://www.tigr.org/software/assembler/, Date

accessed Oct 2006.

[20] Hasan H. Otu, Khalid Sayood, “A divide-and-conquer approach to

fragment assembly”, Bioinformatics 19(1): 22-29 (2003)

[21] Peltola H., Soderlund H., and Ukkonen E, “SEQUAID: a DNA sequence

Assmebling problem based on a mathematical Model.” Nucleic Acids

Res., 12, 307-321(1984)

[22] Chen and Skiena, “A Case study in genome-lebel fragment assembly”,

Bioinformatics, 16(6):494-500(200)

[23] Green P. Documentation for Phrap. http//bozeman.mbt.washington.edu.

Genome Center. University of Washington.

[24] Kim S, Segre AM, “AMASS: astructured pattern matchingapproach to

shotgun sequence assembly”,Journal of Computational Biology,

Summer;6(2):163-86 (1999).

[25] Huang X., Madan A, “CAP3:A DNA sequence assembly program”,

Genome Res, Sep;9(9)868-77 (1999).

[26] L. A. Zadeh, Fuzzy logic and approximate reasoning. Synthese, vol. 30,

1975, 407--428.

[27] Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function

Algorithms. Plenum Press, New York.

