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 Abstract - Nucleotide sequencing of genomic data is an 

important step towards building understanding of gene 

expression. Current limitations in sequencing limit the number of 

base pairs that can be processed to only several hundred at a time. 

Consequently, these sequenced substrings need to be assembled 

into the overall genome. However, the existence of insertions, 

deletions and substitutions can complicate the assembly of 

subsequences and confuse existing methods. What has been 

needed is an approach that deals with ambiguity in trying to 

match and assemble a genome from its sequenced subsequences. 

This research develops fuzzy similarity measures between 

subsequences that are then incorporated into an assembler based 

on fuzzy logic and fuzzy similarity measures. The research 

addresses the problem of extensive computation required by 

clustering data into meaningful groups. Preliminary evaluation of 

this approach in conjunction with K-Means clustering suggests 

that this approach is at least as good as standard approaches and 

in some cases better. 

 

I.  INTRODUCTION 

 Genome shotgun sequencing for DNA alignment is a slow 

process that requires building consensus sequences from small 

DNA fragments.  DNA is composed of four nucleotides A, C, 

G, T. Genome sequencing is figuring out the order of DNA 

nucleotides, or bases, in a genome that make up an organism's 

DNA. These nucleotides and their order determine the 

structure of protein. Sequencing the genome is a very 

important step in Genomics. Entire Genome sequences are 

very large in size and can range from several thousand base 

pairs to millions of base pairs. The whole genome can't be 

sequenced all at once because the chemical reactions 

researchers use to decode the DNA base pairs are accurate for 

only about 600 to 700 nucleotides at a time [1]. Therefore 

DNA is chopped up into small subsequences.  

The process of DNA sequencing begins by breaking the 

DNA into millions of random fragments, which are then given 

to a sequencing machine. Fragments or subsequences are 

selected randomly; using a sequence once may not cover all 

regions. Therefore multiple copies of original sequences are 

used to ensure that the entire sequence is covered.  This is 

generally referred as a coverage of ‘nX’, where n is the number 

of copies. Coverage of 8X is widely accepted to be able to 

generate the entire sequence. Next, a software called an 

assembler pieces together the many overlapping reads and 

reconstructs the original sequence [2]. 

The process explained above is known as "whole-genome 

shotgun" method, which involves breaking the genome up into 

small pieces, sequencing the pieces, and reassembling the 

pieces into the full genome sequence. Sequencing DNA using 

the shot-gun method was introduced in 1995 [3]. More details 

about whole genome shot-gun sequencing can be found in [1, 

3]. 

The problem of sequencing is not of exact matching but 

requires obtaining approximate matches through consensus. A 

consensus sequence is constructed through approximate 

matches by following an overlap and consensus scheme [5], 

this is illustrated in Fig. 1 below. 

 

 
Fig. 1. Whole Genome Sequencing process is displayed in terms of reads from 

the DNA sequences.   

 

Even though computational power has made it possible to 

sequence genomes, assembly is still an NP-Hard problem. An 

exhaustive search is not a viable option. Heuristic approaches 

that reduce the search space have been used.  

The algorithm presented in this paper speeds up the original 

assembly by reducing search space. Assembling sequences can 

be done by first sorting the sequences into classes.  Some 

sequences can have a higher similarity with each other and 

some other may have lesser or no similarity at all. We perform 

a meaningful partitioning of data, so that sequences in a cluster 

have high similarity with one another and sequences between 



two clusters are less similar. A Divide-and-Conquer approach 

to consign data into similar groups is used.  

The following Section discusses the previous work done in 

sequence assembly. Section III contains the approach. Section 

IV has the experimental results followed by conclusions in 

Section V and future work in Section V1. 

 

II. PREVIOUS TECHNIQUES 

In general, the approach to fragment assembly has been to 

iteratively find the best overlap between all fragment pairs 

until an acceptable final layout has been determined. In current 

genome sequencing tasks, the number of fragments is usually 

numerous and the degree of computation required increases 

exponentially. Being essentially an NP-Hard problem, many 

different approaches with varied parameters and matching 

schemas have been explored that can, among other things, save 

computation time.  Finding the longest common subsequence 

between fragments is the key to the process of sequence 

assembly.  Dynamic programming is used in the Smith-

Waterman algorithm for multiple sequence alignment [6], one 

the most prominent algorithms used in sequence assembly 

programs. Dynamic programming solves problems by 

combining the solutions to sub problems [15], in this case 

substrings. It is a method for reducing the runtime of 

algorithms containing overlapping sub-problems and optimal 

substructures [7]. Other techniques for finding the longest 

common subsequence include suffix trees, the KMS algorithm 

and greedy approaches.  Suffix trees allow a linear time search 

for matching substrings. The KMS Algorithm identifies best 

matches of the longest substrings of the matches of many 

strings [8]. Greedy algorithms can be much faster than 

traditional dynamic programming and work well with 

sequencing errors [12].  

 Even with these algorithmic improvements, additional 

reductions to search space in fragment assembly problems are 

routinely employed. For example, PHRAP determines best 

fragment matches by comparing only the highest quality parts 

of reads[23], both reducing search time and possibly 

increasing accuracy. The AMASS algorithm limits searches to 

short, randomly selected sequences within fragments rather 

than comparing complete reads.  This approach showed a 

drastic reduction in assembly time [24]. Another approach to 

time reduction involves determining which groups of 

fragments have more potential for aligning and only 

comparing those together.  For example, the assembler 

STROLL [22] significantly reduces the number of required 

comparisons by rejecting all candidate fragment pairs without 

exact matches of a threshold length. Similarly, the CAP3 

program determines which fragment pairs have potential 

overlap before making comparisons [25]. Even one of the 

earliest assembly schemes, SEQuencing AID (SEQAID) [21] 

examines ancillary fragment information to aid in the 

determination of fragment order. 

 Pre-assembly clustering of fragments may be viewed as a 

more structured form of fragment thinning before alignment 

comparisons are made.  Clustering is a process of grouping 

objects into like groups based on some measure of similarity.  

Clustering or classification can be achieved by several 

techniques such as K-means, artificial neural networks, etc.  

This divide-and-conquer strategy for sequence assembly was 

described in [20].  A K-means clustering scheme was applied 

to fragments based on their Average Mutual Information 

(AMI) measures. AMI profiles are used to measure the degree 

of ‘closeness’ between fragments. 

K-means has been widely used in pattern recognition 

problems. Several variations and improvements to the original 

algorithm have been implemented. The K-means algorithm by 

MacQueen [17] is widely used for its simplicity. Another 

variation of K-means was proposed by Forgy [18]; this 

algorithm has been shown to converge to a local minimum 

[11].  

Fuzzy Logic formularizes an intuitive theory based on 

human reason of approximation. It differs from the traditional 

logic methods where crisp or exact results are expected. The 

concept of fuzzy logic was first put forth by Zadeh [26]. Fuzzy 

Logic is used in problems where the results can be 

approximate rather than exact. Hence, the principles of fuzzy 

logic suit well to clustering problems. The results are 

determined by some degree of closeness to true or to false. 

Due to its applicability to problems that do not require hard 

solutions, Fuzzy Logic has been widely used in various fields 

to provide flexibility to classical algorithms.  An earlier well 

known approach to fuzzy classification is the fuzzy c-means 

algorithm [27]. An improvement of K-means using the fuzzy 

logic theory was presented [14] in which the concept of 

fuzziness was used to improve the original K-means algorithm.  

 

III. CLUSTERING AND ASSEMBLY 

In this paper we present a clustering technique that uses a 

fuzzy membership function to divide fragments into groups. 

This reduces the number of comparisons and performs 

meaningful assembly. The fuzzy functions used in this paper 

are a modified version of the Fuzzy Genome Sequencing 

Assembler described in [4]. 

 

A. Dynamic Programming with Fuzzy Logic 

Dynamic programming has been extensively used to 

determine the longest common subsequence (LCS). The reason 

for its popularity is that reduces time complexity of assembly 

to Θ(n
2
).  

Fig. 2 shows the table constructed while using dynamic 

programming.  Two strings subject to comparison label the x 

and y axis. To find the LCS start from the end of the table and 

traverse along the direction indicated by the cell. The numbers 

in the cells indicate the length of the subsequence until that 

cell. The highest number in the table indicates the longest 

subsequence that can be found between the two sequences. 

Since the longest subsequence will most likely occur in the 

cells along the diagonal. This method is simple and is very 

useful in finding longest common subsequence which may 



have mismatches in the sequence. This suits well to assembly 

problems since not all subsequences found will be perfect. 

This can be easily modified to find contiguous subsequences. 

In the case of genome subsequences we would like to get the 

longest subsequence with few insertions or deletions (indels). 

One of the common techniques used by assembly processes 

such as PHRAP is to search within a bandwidth along the 

diagonal. If the path is beyond the bandwidth the indels 

increase, and it is not a good match. The diagonal arrows 

within each cell indicate a match, the more diagonal arrows, 

we stay within the bandwidth, as mismatches increase we 

either go up or left.           

 
Fig. 2 Table constructed using Dynamic Programming to find the LCS 

 

The optimal subsequence is either a perfect match, or the 

user may choose to tolerate indels. These criteria can depend 

on the user, the source of the data, quality of the data, etc. 

Almost all existing techniques provide user defined thresholds.  

Sometimes the user is not clear on the ideal cut off point for a 

particular data set and may need to determine it empirically. 

For example, assume a cutoff value for the maximum gap 

allowed is 30 bases and there are fairly large numbers of 

sequences with a gap of 31 and 32. Due to the fact that these 

techniques allow for crisp matches only, these potentially 

important sequences would be excluded. On the other hand we 

can represent a match of 30 and lower with a fuzzy value of 1, 

which is for crisp matches. Matches that are very close to 30 

like 31 can have a fuzzy value of 0.98. If the user selects to 

allow all matches greater than the value 0.8 then these 

subsequences would be included. The user in this case does 

not have to look into the data and change parameters and run 

the program several times. Since there are several parameters 

the user may not even know which parameters need to be 

altered. The main objective is to obtain the best consensus of 

the overall parameters. 

This paper proposes a fuzzy matching technique where we 

can have crisp and non-crisp matches. The user could also 

obtain a fuzzy value that states how well the matching 

sequences fit the threshold. 

Fuzzy Logic has been applied to classification problems in 

computational biology. Even though applications of fuzzy 

logic have not been done extensively, recently it has begun to 

gain popularity. A modified fuzzy k-means clustering was used 

to identify overlapping clusters of yeast genes.  Data was 

based on published gene-expression results following the 

response of yeast cells to environmental changes [9]. 

  

B. Fuzzy LCS 

As mentioned earlier, one of the problems with existing 

techniques is that they have crisp bounds.  The user has to 

specify the parameters for the program such as minimum score 

and minimum match. The parameters need to be changed by 

the user to suit the data, and then the program is run one or 

more times, until an optimal solution is found.  This allows the 

user to determine which parameters work best with the given 

sample. Selecting the longest sequence is not always the 

optimal solution. Some applications prefer longer sequences 

while others may require higher quality or less gaps. 

The main objective of our method is assembling data by 

approximate matching using fuzzy logic. To achieve this we 

provide several matches of two subsequences. Then pick the 

best match based on the criterion specified by the user.  

Fuzzy Logic has been used in approximate string matching 

using distance measures, etc. However, there has been limited 

application to building genomes from subsequences of 

nucleotides.  

Current sequencing methods tend to reject sequences that do 

not match with a high degree of similarity. This can lead to 

large amounts of data being rejected by algorithms that 

otherwise may be important in deriving a genomic sequence 

and its metabolic characteristics.  

We propose a method where we select multiple 

subsequences and then based on several parameters select the 

optimal solution. The sequence satisfying the aggregate overall 

requirement is selected based on fuzzy parameters. In other 

words, we are measuring the fuzzy similarity of the given 

subsequences. There are several factors that determine if two 

subsequences can have an optimal overlap. These factors are 

used to measure their similarity. For example, two 

subsequences can form a Contig if their overlap region is 

larger than a threshold. They could be highly similar if they 

have less number of indels, or less similar with more indels.   

We perform a non-banded search, it is neither ideal to 

search every possible subsequence or just use the diagonal. 

Instead of selecting the longest common subsequence from the 

dynamic programming table Fig. 2, we select all the 

subsequences that satisfy the minimum length required. The 

threshold is a function of the length of the LCS.  The search is 

banded by using a threshold to prevent moving away from the 

diagonal. A cell is marked if it was already traversed, so we 

don’t check it again. We keep track of cells that are traversed 

and paths above the threshold are selected: 

f(n(LCS))   thresholdwhere

 , thresholdlength  

=

>=  



We need determine if either of these subsequences will 

create an optimal match.  Any of the selected paths can 

generate the optimal solution. Therefore we do not eliminate 

any possible good subsequences. 

The selection of the optimal subsequence is done using 

fuzzy similarity measures. The selection process is done in 

constant time; therefore the complexity of the algorithm is 

same as the complexity of Dynamic programming, which is 

Θ(mn) for any two subsequences of length m and n. The 

following section lists the characteristic functions. 

 

C. Fuzzy Similarity Measures 

Fuzzy similarity measures are an important step in creating a 

Contig from two subsequences or finding an overlap between 

two sequences. The following subsections describe the fuzzy 

functions utilized in our approach for assembly. 

(i) Length of Overlap (µ lo):  The first similarity measure we 

consider is the length of the match. This is also the size of 

overlap when a Contig is being created. This length includes 

indels and replacements. A higher overlap is better as it 

generates a longer Contig. The membership function for this 

measure is defined as: 
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where:  

|overlap(x, y)| - length of overlap of strings x, y 

s1, s2 – strings being evaluated 

 

(ii) Confidence (µqs): The confidence for each Contig is 

defined as, a measurement of the quality of the contributing 

base pairs [10]. A high quality base pair indicates a strong read 

or a higher confidence in its accuracy.  Noise and experimental 

error are often present in reads that makes the confidence 

lower. Every base involved in the Contig has a quality score. 

The confidence of a Contig is the aggregate quality score of it 

contributing bases. For simplicity, the sum of average quality 

scores is the confidence of the Contig. µqs is the quality score 

(qs) for the overall overlap region, which we calculate as 

follows   

n

qw
n

i

ii

qs

∑
== 1µ

                              (2) 

 

wi is used to standardize the quality scores. The bases with 

high quality are assigned a weight of 1. Only the bases that are 

of lower quality are given weights between 0 and 1. uQS (δ) is 

the standard bound for threshold that was explained earlier, 

this is generally specified by the user, minqs and maxqs are the 

minimum and maximum values for quality.  
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(iii) Gap Penalty (µgp): This is the maximum gap that is 

allowed in a match. Gap is measured in terms of the number of 

bases. 

 

Gaps= ∑(fn(insert)+ fn (delete)+ fn (replacement))            (4) 

 

producing a membership function of: 
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(5) 

 

Here mbp(s1, s2) is the matching number of nucleotides in 

s1, s2 and diff(s1, s2) is “inserts(s1,s2) + deletes(s1, s2) + 

replacements(s1, s2)”.  

 

(iv) Score (µws): This is the score of a match also known as 

similarity of a match. A score is calculated from the number of 

matching bases, number of indels and replacements. If all are 

given value one a using a simple scoring method, here i-

inserts, d-deletes, r-replacements: 

 

score= fn(MatchingBP)– fn(i)- fn(d)- fn(r) 

 

 We can weight the matching base pairs higher than the 

indels. The above equation leads to derivation of the following 

fuzzy similarity membership function. 
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Here fmbp (s1, s2) is the score of matching base pairs. 

 

D. Thresholds 

(i) MinMatch: This is the minimum number of matching 

bases that are required between the two sequences. Genomic 

DNA contains only 4 characters and they can be lot of 



overlaps with these 4 characters. Therefore we would like to 

have a cutoff value for matching sequences.  

(ii) MinScore: This is the minimum score of a match. A 

score is calculated from the number of matching bases, number 

of indels and replacements. MinScore is used as a threshold.  

Once the fuzzy value for each of these parameters is 

calculated, we plug them in an overall fuzzy function. This 

function is the aggregate fuzzy match value (afv).  A perfect 

overlap refers to an overlap that satisfies the two thresholds 

above, is free of gaps, and satisfies the quality requirements. 

  

   
lologpgpwswsqsqs wwwwcfa µµµµ +++=)(        (7) 

afv = fa(c)/m,  where m is number of parameters   (8) 

 

The subsequences that produce the highest fuzzy value are 

selected as optimal sequences. Depending on their position as 

a suffix or prefix a new Contig or consensus sequence is 

formed. 

 

C. K-means Clustering 

Clustering problems generally derive some kind of 

similarity between groups of objects. K-means clustering is a 

simple and fast approach to achieve such grouping. The 

algorithm starts with a large number of seeds (initial samples) 

for the potential clusters.  Remaining samples are then 

assigned to a cluster based on their distance from the seed.  

The centroid is recomputed for each cluster and the data points 

are reassigned.  The algorithm runs until it converges or until 

the desired number of clusters is obtained.  

Given N sequences, such that S={C}
i
 ,where C ={A, C, G, 

T}. We randomly select “k” sequences as the initial seeds, 

where k is less than the number of sequences N. The algorithm 

starts by performing LCS on each of the sequences with the k 

seeds.  The sequence is assigned to the class which has the 

highest fuzzy similarity. The fuzzy similarity is calculated as 

given below, it is also referred as the fuzzy weighted average. 
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Here x is the parameter or feature and p the number of 

features. Given i=0,...,N and j=0,…,k, the distance d i,j for each 

cluster can be calculated as follows: 

 

   d i,j=max(µ
r
 j), for all j=0,…k 

 

IV. EXPERIMENTS AND RESULTS 

The Fuzzy Genome Sequence Assembler with Clustering 

(ClusFGS) was implemented and tested on generated data sets 

and several data sets from GenBank. We include results from 

one of the test cases below. The parameters selected for the 

assembly are length of overlap, confidence, score, gap penalty, 

minscore and minmatch as described in section IV. The 

genome sequence tested was the Wolbachia endosymbiont of 

the Drosophila melanogaster strain wMel 16S ribosomal RNA 

gene, partial sequence, which can be obtained from GenBank. 

Wolbachia is a microscopic organism that has been used to test 

several alignment tools. 

The gene is "rpoBC", locus_tag="WD0024" and the 

GeneID is “2738525” [13]. This particular sequence codes for 

a protein. The sequence contains 8514 base pairs. The total 

bases read were 4X of the original sequence. We selected 300 

random fragments or subsequences from this set. Each 

subsequence was in the range of 300-600bps. Fragment sizes 

less than 500bp are commonly used for assembly [18]. We 

selected k random seeds where k<<N. The results of assembly 

are shown in Table 1. 

 

 
 

In Table 1, MGS refers to an implementation of Smith-

Waterman algorithm for multiple sequence alignment using 

Dynamic programming [16]. TIGR is a well known assembler 

[19]. FGS is the fuzzy sequence assembly method that is 

described in [4]. ClusFGS is the method described in this 

paper and is a modified version of FGS. 

The results obtained from assembling the genome projects 

showed a high percentage of the genome recovered while 

using FGS and TIGR. This indicates that given random 

subsequences, the algorithm was able to create a fairly large 

percentage of the original sequence. The clustering technique 

did not perform as well as the FGS with clustering but is still 

better than simple sequence alignment. 

 

 
 

Fig. 3 Comparison of clustering on Wolbachia sequences 
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TABLE I 

ASSEMBLY COMPARISONS ON RPOBC OF WOLBACHIA GENOME 

Assembler 
Number of 

Contigs 

Percentage Genome 

Covered 

MGS 106 65% 

TIGR 150 99.6% 

FGS 165 99.6% 

ClusFGS 75 91% 

MGS = Multiple Genome Sequencing using Dynamic 

programming, TIGR=TIGR Assembler 2.0, FGS= Fuzzy 

Genome Sequencing, Number of Contigs= total number of 

Contigs obtained after assembly, third column is the 

percentage of original genome covered by the assembly. 

 



We compared the results with respect to time required for 

assembling. The results of clustering are shown above in Fig 3. 

The clustering technique is linear and hence can make the 

assembly much faster as indicated in the graph in Fig 3. As the 

value of k reaches the value of N the clustering technique 

becomes same as the FGS algorithm.  

IV. CONCLUSIONS 

 This paper proposes the use of fuzzy k-means for 

approximate sequence assembly. Fuzzy similarity measures 

were used and a fuzzy weighted average was created to 

perform the classification. We tested the assembler on 

published genome projects and compared the results with other 

assemblers. 

 The results show that clusFGS was faster than FGS but 

could not recover the genome as much as FGS or TIGR 

assembler. ClusFGS can be used to get an estimate of 

assembly in short time, especially for large datasets where 

assembling the whole genome might be time consuming.  

The assembly can be further improved by adding other 

parameters for clustering that can classify data using structural 

motifs such as AMI, G-C content etc. Our method uses a 

simple k-means without reassignment of objects between 

clusters, etc. An enhanced k-means can be used to improve the 

performance of the assembler.   

The idea proposed can be used to group meta-genomic data 

into classes and provide a clean assembly for environmental 

sequences. 

IV. FUTURE WORK 

While this work looks promising there are a number of 

research questions that remain to be answered. The first of 

these is the appropriate value to set the weights to in the fa(c) 

equation. It is thought that a mathematical relationship 

between fuzzy similarity measures and these weights should be 

derived. Additionally, this work has been evaluated on a small 

set of data from GenBank. Future work will evaluate 

performance on eukaryotic and prokaryotic DNA which have 

different structural characteristics. To improve performance, 

further research can be done on reducing the amount of 

information to be processed via the use of data transformation 

schemes. Finally classification method proposed can be 

extended to classify environmental sequences. 
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