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Abstract

Intensive research and fast developments in electronic nose (EN) technologies provide the users with a wide spectrum of sensors and

systems for their applications. This paper presents some of the results obtained with four different ENs on a series of collaborative tests carried

out on six standard fruit samples, pure liquids and mixtures. These experiments, part of the EU ASTEQ concerted action, were designed for

inter-comparison of the system’s performances. Various feature extraction techniques are considered along with inter-comparison of the

individual results obtained with radial basis function (RBF) and probabilistic neural networks (PNN). A low-level data fusion technique is

used to merge the various datasets together, considering all extracted parameters in order to increase the amount of information available for

classification. We achieve 86.7% correct classification with the fusion system, which outperforms the results obtained with individual ENs.

With this fusion array, a problem of dimensionality occurs and it is possible to find an optimal array configuration of reduced dimensionality

considering a subset of parameters. We report on various parameter selection methods: principal component analysis (PCA) as a mathematical

transformation and two types of genetic algorithms (GAs) optimisation as search methods. Various subsets of parameters are selected and all

techniques return improved classification rates, 80% with PCA, 96.7% with 6-integer gene GAs and 93.3% with 72-binary gene GAs. In order

to overcome cost and technology limitations, optimisation techniques can be used to create application specific arrays selecting the best

sensors or the correct parameters.
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1. Introduction

For the past 20 years, intensive research in the field of

electronic nose (EN) technologies has lead to improvements

in sensor technology [1] and multi-parameter extraction

techniques [2]. As a result, the user is provided with a wide

spectrum of sensors for their applications and to increase the

amount of information for the discrimination of samples

using multi-sensor arrays. Many sensors of the same type

can be found although they produce only slightly different

responses, as they are still non-specific. One of the most

promising applications of this approach is in the develop-

ment of application specific instruments, by selecting

the optimum sensors. Research should not only focus on

sensor technology development and powerful classification

algorithms, but parameter selection, which is considered to

be an important intermediate step as a subset of parameters

can often provide better discrimination [3]. Ideally, given a

reference database of P odours from N sensors or para-

meters, it should be possible to identify a subset of n sensors

that can produce the best possible discrimination of the p

samples of interest [4]. Hence, a systematic or structured

method for selecting the best sensors, identifying the optimal

array configuration or finding the key parameters would be

desired to enhance the overall system performance.

In this paper, we report on the use of four different ENs on

a series of collaborative tests carried out on six standard fruit

samples, pure liquids and mixtures. These experiments, part

of the EU ASTEQ concerted action; were conducted using

similar experimental set-ups; and were designed for inter-

comparison of the performance of the systems [5]. In Section

2, we present the experimental procedure used together with

the individual systems and the parameter extraction techni-

ques considered. Individual EN results are presented in

Section 3, extending on data fusion techniques used to
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merge the datasets from a mix of sensor technologies. In

Section 4, principal component analysis (PCA) is used for

preliminary data analysis and we emphasise on ‘the problem

of dimensionality’ introduced with the creation of the fusion

system. Different methods for parameter selection and

dimensionality reduction are considered in Section 5. The

use of PCA as an implementation of mathematical trans-

formations, and two types of genetic algorithm (GA) opti-

misation techniques as search methods will also be

discussed in the same section. Results are presented and

discussed in Section 6. The conclusions in Section 7, discuss

the advantages of the mix of technologies and the design of

application specific sensor arrays.

2. Experiment, systems and parameter extraction

The week of experiments that took place at the Flanders

Centre for post-Harvest Technology of the Catholic Uni-

versity of Leuven in Belgium from 30 January to 5 Feb-

ruary 2000, was the second single-site collaborative

instrument evaluation and test meeting held by ASTEQ

[5]. There were two main aims for the aroma sensors group,

one of the four group involved in the project. The first aim

of these tests was to compare the performance of the

various EN systems for the assessment of the quality of

Cox’s apples in terms of mealiness or damage level. The

second aim was to discriminate different standard fruit

solutions, pure liquids and mixtures, constituting a more

basic metrology approach.

2.1. Experimental procedure

For this last series of tests, a lot of attention was given to

gathering instruments in the same place and the use of the

same type of prepared samples as well as devising a common

protocol for headspace generation. These considerations

were devised to help us assess repeatability, reproducibility

and sensitivity of the EN systems. They were implemented

as rigorously as possible to be able to focus on the inter-

comparison of the results. For these experiments, six arti-

ficial solutions were considered:

� real apple juice;

� pure artificial: pear with ethanol, pear without ethanol and

peach;

� mixture: pear 40%/peach 60% and pear 60%/peach 40%.

A fixed volume of liquid, typically 100 ml was introduced

into a closed jar filled with control air and the set-up was left

to stand undisturbed for 20 min for headspace generation

and stabilisation. Control air was also used for the baseline

by most of the systems. The different solutions were pre-

sented at random to the ENs, each system using different

samples every time. The number of samples collected

and the number of repetitions for each liquid differed

from one EN to the other. Temperature and humidity were

continuously monitored during the tests, and external con-

ditions creating background disturbances were assumed to

be affecting all systems in the same way.

2.2. EN systems

From this series of collaborative tests, we will consider

a group of four EN systems using different technologies

but which employed the same experimental protocol

for headspace generation. The data files produced by

the operators were gathered and various signal-processing

techniques were used to extract the key features or para-

meters from the datasets. The four EN systems considered

are:

� INRA: an electronic olfactometer based on a virtual

sensor array (INRA Dijon) operated by Mr. Patrick

Mielle. The datasets available represented the entire

spectral response, including the transient signal for the

initial base line, and five zones corresponding to dif-

ferent modulated operating temperatures for the single

SnO2 metal oxide sensor. For each five zones, loga-

rithmic in shape, we extracted the static responses from

the mean of the signal (5� Mean Df psens) and also the

maximum of the first derivative of the signal in order to

explore the dynamic information (5� Max Derv psens).

A total of 16 samples were available and 10 parameters

were considered.

� Roma: a prototype EN of the LibraNose series (University

of Rome ‘Tor Vegata’ and Technochip) based on seven

‘thickness shear mode resonators’ (TSMR) operated by

Dr. Corrado Di Natale. The datasets available represented

the time responses over 8 min of the seven sensors of

standard exponentially decreasing shape. As an extracted

sensor response the mean of the deflection per sensor was

extracted (7� Mean Df sens), as well as the maximum of

the first derivative of the sensor signals (7� Min Derv

sens). A total of 21 samples were available and 14 features

were considered.

� UPM: another version of the LibraNose (University of

Rome ‘Tor Vegata’ and Technochip) based on eight quartz

crystal microbalance sensors (QMBS) operated by Ms.

Eva Correa. For this data, already pre-processed

responses were available consisting of the mean deflec-

tion (8� Df sens) and maximum deflection (8� Dfmax sens)

for each sensor. A total of 20 samples were available and

16 features were considered.

� Warwick: a prototype of the Cyrano Sciences’ EN,

datalogger (Cyrano Sciences Inc.) based on 32 swollen

conductive polymer (CP) sensors operated by Mr.

Pascal Boilot. For this data, one feature per sensor

was extracted using a fractional difference model pre-

processing algorithm; ((R�Ro)/Ro), using the sample

reading (R) and the baseline (Ro) (32� FD sens). A total

of 50 samples were available and 32 features were

considered.
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3. Individual results and data fusion

Radial basis function (RBF) networks and probabilistic

neural networks (PNN) were used to perform pattern recog-

nition [6,7]. The relatively small number of vectors per

dataset was a problem and it was decided to use these

two types of networks as they can help to overcome this

limitation, to a certain extent compared to multi-layer

perceptron (MLP). When implementing these two classifiers

using MATLAB1, the spread constant for the radial basis

layer had to be set and multiple values investigated, but only

the value producing the best results is reported. Each dataset

was normalised using sensor normalisation given in Eq. (1),

by considering sensor i and sample j, in order to set the range

of each dimension to [0, 1].

kij ¼
xij � xi;min

xi;max � xi;min

(1)

Due to the scarcity of data points, validation was facili-

tated by the leaving one out algorithm in which all patterns

are used to train the network except one left out for test. This

process is then repeated for all vectors in the dataset. Results

for each individual system using the original dataset formed

after feature extraction and normalisation are presented in

Table 1.

3.1. Low-level data fusion

In order to perform inter-comparison of the EN systems in

discrimination of the various fruit solutions, we felt that it

was most appropriate to use datasets of the same size,

containing the same number of patterns per class. With

the original datasets, the number of patterns per set is

different from one system to the other, and also there are

different numbers of patterns per class for one system. New

datasets were formed from the original non-normalised

ones, they have an equal number of patterns per class,

arbitrarily set to 5, using data reduction and generation

techniques. To generate more vectors from INRA, Roma

and UPM datasets, we used the original data and additional

vectors generated using the mean per class and the mean �
1/2standard deviation. For Warwick dataset, we employed

data reduction by considering the mean per class or the mean

of repetitions. After sensor normalisation, RBF and PNN

were used as classifiers; the results are shown in Table 1.

For each one of the four ENs, the new datasets formed

contained the same number of patterns (30), and they also

had the same number of patterns per class (5). A low-level

data fusion technique was used to merge the various new

datasets together, considering all extracted parameters in

order to increase the amount of information available for

classification [8]. At low-level fusion, data matrices with the

same number of vectors are combined together into a single

matrix having a number of rows equal to the number of

patterns (30) and a number of dimensions equal to the total

number of parameters (72). The 72 dimensions, referred to

as Param1 to Param72, were created by assembling indi-

vidual matrices. We considered first the 10 features from

INRA, then the 14 ones from Roma, the 16 parameters from

UPM and the 32 sensor responses from Warwick. RBF and

PNN were then used on the fusion system to evaluate the

classification accuracy; the results are shown in Table 1.

3.2. Results

With the original datasets, most of the classification

accuracies were below 50%, which indicates that the ENs

did not manage to separate the various samples of interest.

We achieved 75% correct classification using RBF with the

INRA data by extracting parameters that best represented

the information embedded within the responses. However,

for UPM and Roma, we only achieved 35 and 38%, respec-

tively with RBF and PNN, which may indicate that the

algorithms chosen for feature extraction are not the most

suitable to best represent the information. In general with the

new datasets, classification accuracies have been improved

as the data generation techniques used tended to add patterns

to a class reducing its overall variance. For example, we

achieved 66.7% correct classification with RBF on UPM

data and up to 80% with RBF on Warwick data. Results were

lower for INRA as there was no sample for pear with ethanol

due to the system responses going off the scale. In the new

dataset they were replaced by the same patterns used for pear

without ethanol, which may explain the confusion in iden-

tification. We found that PNN trained with a spread constant

set to 0.25 always produced the best classification results,

this value will be used later when we attempt to select

sensors. We achieved 86.7% correct classification with the

fusion system, which outperformed the results obtained with

individual ENs.

Table 1

RBF and PNN classification results using the original, the new and the fusion datasets

EN system Original dataset New dataset Fusion

INRA UPM Roma Warwick INRA UPM Roma Warwick
All

No. of patterns 16 20 21 50 30 30 30 30 30

No. of features 10 16 14 32 10 16 14 32 72

RBF (%) (spread constant) 75 (2) 35 (1.2) 19 (0.1) 34 (1) 56.7 (1.2) 66.7 (2) 40 (10) 80 (5) 86.7 (10)

PNN (%) (spread constant) 62.5 (0.8) 25 (0.5) 38.1 (1.2) 56 (0.25) 53.3 (0.25) 53.3 (0.25) 33.3 (0.25) 43.3 (0.25) 80 (0.25)
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4. Problem of dimensionality

The creation of the fusion system allows us to investigate

the potential for utilising a mix of sensor technologies in the

classification of odours. Roma and UPM ENs are based on

the same sensor technology however, sensors of the same

type may produce only slightly different responses and it

will be interesting to identify irrelevant or redundant sen-

sors. It is possible to extend this idea to the entire fusion

system for which many parameters may be highly corre-

lated.

4.1. Problem of dimensionality

With the fusion system, it was possible to merge a wide

spectrum of sensors or extracted features, but it generated a

selection problem for this specific application. We were able

to create a larger and more complex system, of which the

level of performance is better than the individual systems,

but by increasing the array size we have introduced redun-

dancy. Therefore, a method for selecting a subset of para-

meters in order to optimise the performance of the fusion

system is desired. In most cases a simpler application of a

subset of sensors can provide better recognition rate than the

whole set of parameters because most classifiers will not

produce optimal results if irrelevant or redundant sensors are

used [3]. In an optimisation process, a measure of the correct

classification rate can be used to maximise the performance

of the fusion array, whilst minimising the number of para-

meters selected [4]. Reducing the number of parameters in

order to maximise the performance is achieved at certain

cost, and parameters should be selected carefully as shown

in the configuration performance plot in Fig. 1. Too few,

inappropriate or poor configuration of parameters can lead to

an inadequate array performance. Conversely, increasing the

array size and the number of parameters may not be effective

if the parameters selected are redundant or do not help to

improve discriminatory power.

4.2. PCA preliminary analysis

A PCA was performed on the 72 parameters, as a dimen-

sionality reduction technique, in order to investigate how the

patterns clustered in the representation of the ‘fusion multi-

sensor space’. In Fig. 2, a plot of the first two principal

components, which account for 82.67% of the variance,

shows there is no clear discrimination between the various

clusters representing the fruit solutions. In the pattern clas-

sification space, the high level of similarity between the fruit

samples causes clusters to overlap, which indicates the

difficulty in separating them and the relatively low level

of separation achieved by using the extracted parameters.

Clearly, with this problem for which 72 parameters are

available, an optimisation process is required to identify a

configuration with fewer parameters that will give equiva-

lent or better levels of performance. Reducing the number of

sensors is desirable in order to optimise the system cost,

speed and reliability and in order to select the best sensors

suitable for this application.

5. Parameter selection

The optimisation processes we used focus on method of

dimensionality reduction and feature selection for which a

subset of parameters of the original space is selected. In this

Fig. 1. Configuration performance plot for sensor reduction. (Reprinted from Corcoran, Sens. Actuators A, 76, 57–66, # 1999 Elsevier Science, with

permission.)
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section, we report on the use of various parameter selection

methods that will be applied to the optimisation of the results

in the discrimination of standard fruit solutions from a fusion

system. We report on the use of PCA as an implementation

of a mathematical transformation based on linear projection

and two types of GA optimisation techniques as search-

based methods.

5.1. PCA as a projection method

PCA is based on a linear project of multidimensional data

onto different coordinates based on maximum variance and

minimum correlation [9]. As a result, less significant com-

ponents can be eliminated, reducing the data representation

to only those responsible for the most significant contribu-

tion. PCA uses eigenvectors and eigenvalues to define the

subspace orthogonal base from the data covariance, preser-

ving as much as possible, the variance presented in the

original N-dimensional data into the new subspace. PCA is

often used as a dimension reduction technique to map an N-

dimensional sensor space onto a two-dimensional feature

space, giving an appropriate representation of a dataset.

Through PCA, information on the coordinates of the data

in the new coordinates can be obtained, from which a score

plot can be drawn to best study the clustering of data as

shown in Fig. 2. Also, the contribution of each sensor to each

component can be extracted, from which a loading plot can

be drawn to give information about the mutual correlation of

sensors as shown in Fig. 3.

Using the first two principal components, the distribution

of the features from the four EN systems follows an inter-

esting pattern; along PC#2, top for INRA features and

bottom for Roma parameters, and along PC#1, left for

Warwick sensors and right for UPM ones. In order to select

a subset of parameters, features with minimum loadings are

removed and only parameters that contribute the most to

principal components will be considered. This selection

technique allows us to eliminate the most orthogonal sen-

sors, selecting the two extreme parameters on one principal

component to best represent the maximum variance cap-

tured in that direction. Using the first four principal com-

ponents, 95.49% of the variance of the data is captured,

using this technique it is possible to select a subset of eight

parameters, as shown in Table 2. The parameters come from

all four ENs although the INRA system seems to present the

best features with four parameters selected out of eight.

5.2. GAs for sensor selection

In principle an exhaustive search for the best result can be

conducted, but for this particular 72-paramters application, a

total of 272 combinations need to be evaluated. By reducing

the problem to only eight parameters would still leave

4:8 � 1014 (72 � 71 � � � � � 65) combinations to be consid-

ered. Different search algorithms are available, which clas-

sical sequential forward and classical s1equential backward

selections being two examples [10], but they will only

explore a small fraction of the whole set of configurations.

Fig. 2. PCA score plot, clustering representation for fusion system.
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However, we will explore the use GA-based search methods

using the maximisation or minimisation of an objective

function to guide the feature selection, as they have much

to offer [11]. The GA is an optimisation technique that will

arrive at an optimal solution to a particular problem using the

survival of the fittest principle as presented in Darwin’s

theory of evolution.

In most cases, when GAs are applied to feature selection

problems, the chromosomes representing the entire set of

features can easily be codified as a binary string where 1

means that the feature is present and 0 means that the feature

is absent [3,4]. The selected parameters for array config-

uration use a genetic representation for which each para-

meter is equivalent to a gene. For this particular application,

this representation was adopted with the chromosomes

representing the selected parameters being 72-genes long

(the results will be referred to as 72-binary genes GA). In

most applications this representation is the most suitable, but

for this particular selection problem genes formed might be

too complex and too long. Therefore, we decided to apply a

new coding technique for the creation of the population of

chromosomes. For the genetic representation, we used X-

genes long chromosomes with integer values from 1 to 72,

representing the selected parameters; one of the conditions

was that there will be no repetition of one value in the same

chromosome (referred to as check for integrity). For this

particular GA selection, various values for X, number of

parameters selected, were investigated and the results will be

referred to as 8-integer genes GA or 6-integer genes GA.

The GAs used follow the procedure described in Fig. 4, so

that the best configuration achieving the best recognition

rate is found. The initial population was generated at random

and the classification rates found at this stage were used to

produce the results for randomly-generated subsets. There

are no rules in defining the size of the initial population and

for 72-binary gene GAs a population of 15 chromosomes

was considered. For optimisation in X-integer gene GAs, it

was found that the initial population should contain at least

twice as many genes as the total number of parameters: 18

chromosomes for 8-integer gene GAs and 25 chromosomes

for 6-integer gene GAs. The check for integrity is only

performed for X-integer gene GAs. With every generation,

the recognition rate is evaluated using PNN for every

individual within the population. We used the survival of

the fittest (elitist model) to ensure the best chromosome will

Fig. 3. PCA loading plot, ENs features correlations for fusion system.

Table 2

PCA selected parameters

PC#1 (54.11%)

Max 0.1473 Param28 UPM Df sens4

Min �0.1742 Param71 Warwick FD sens31

PC#2 (28.56%)

Max 0.1945 Param9 INRA Max Derv psens4

Min �0.2334 Param15 Roma Mean Df sens5

PC#3 (7.82%)

Max 0.3271 Param6 INRA Max Derv psens1

Min �0.1828 Param17 Roma Mean Df sens7

PC#4 (5.01%)

Max 0.4067 Param8 INRA Max Derv psens3

Min �0.1828 Param1 INRA Mean Df psens1
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survive the next generation and will not be affected by

genetic operators. At the rearrangement stage, chromosomes

are sorted in ascending order of recognition rate, with a copy

of the fittest replacing the worst before genetic operators are

applied. For X-integer gene GAs, single crossover points are

applied in each population; two parents are selected at

random and genes are crossed over at a random point to

constitute the offspring chromosomes of the new genera-

tions. For 72-binary gene GAs, a mask is created to define

which genes should be swapped over. The number of cross-

overs to apply per generation is set so that the probability of

one chromosome to be affected is about 0.9. Random point

gene mutations are then carried out on the chromosomes,

randomly selecting a gene from the entire population and

changing its value. The number of mutations to apply per

generation is set so that the probability of one gene to be

affected is about 0.1. After applying the genetic operators,

the check for integrity is performed, and the fitness of each

new chromosome is evaluated using the recognition rate

from the PNN results. Two optimisation criteria that will

terminate the GA optimisation process were selected; the

maximum number of generations was set to 20 and the target

recognition rate was set to over 95%.

6. Results

All implementations of PCA and GA parameter selection

were run under MATLAB1. The PNN and PCA used are

built-in programs of this package but a customised program

was developed for GAs. PNN, with a spread constant of 0.25

and leaving one out for validation, was used as the classi-

fication paradigm to measure the level of performance

achieved with a selected subset of parameters. PNN is used

because it was shown earlier to give the best results for

individual systems and handles relatively well with small

datasets. It is believed that other classifiers will perform

better in this situation but it was beyond the scope of this

investigation to explore this here. For PCA, we considered a

subset of eight parameters from the first four principal

components and a subset of six parameters using only the

first three components. For GA, X-integer genes and 72-

binary genes, the results are presented in Table 3, represent-

ing the average after 10 different runs for the fittest chromo-

somes and for all chromosomes in the last population. From

the initial population generated at random, results for ran-

domly generated datasets can be extracted.

For the full parameter set we achieved 80% correct

classification with PNN, using a subset of eight parameters

selected considering the loadings from PCA, we achieved

equal levels of system performance whilst reducing array

dimensionality by 89%. For 72-binary gene GAs, further

examination of the complete set of results shows that the GA

search method consistently identified subsets containing

between 20 and 30 parameters. These subsets have optimal

classification rates of around 94.3% (96.7% at best) com-

pared with randomly generated data sets, which typically

have classification rates around 75.2% (with one exception

at 93.3%). With this GA parameter selection technique, the

array dimensionality is reduced by 60–70%, identifying

Fig. 4. Schematic depiciting the process of GA parameter selection.
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some of the redundant parameters, but still too many para-

meters are considered and this technique shows its limit for

this dimensionally-large fusion array.

The X-integer gene GAs were suggested for a faster and a

more efficient approach to dimensionality reduction. With 8-

integer gene GAs, the array dimensionality is reduced by

89%. The subsets of parameters found for the fittest chro-

mosome at the end of the optimisation process achieved on

average being 94% correct classification (96.7% at best). It

is clear that the same level of performance cannot be

achieved through random selection of a similar number of

parameters, as the classification rates are much lower with

only 66.5%. This idea was extended to an even fewer

parameters and with 6-integer gene GAs. The search method

could consistently identify subsets of parameters that will

achieve high levels of performance: 95% on average, 96.7%

at best. Selecting other values for X does not improve the

system performance any further. No further statistical ana-

lyses of selected subsets were conducted to find which

parameters were selected the most.

7. Conclusions

For individual ENs, no real generic conclusions can be

drawn concerning inter-comparison due to the relatively

small datasets available not being very representative of

the problem; and the poor selectivity of the feature extrac-

tion techniques used to represent the information. A low-

level data fusion technique was used to merge the various

datasets together, considering all extracted parameters, in

order to increase the amount of information available for

classification of the six standard liquid samples. Results

obtained with the fusion system outperformed the classifica-

tion results of the ENs taken individually. The use of

optimisation techniques for dimensionality reduction and

parameter selection was considered in order to find a subset

of parameters that will improve the levels of performance.

Parameter selection is required in order to develop an

application specific system by eliminating redundant or

irrelevant features, therefore optimising the array configura-

tion. Using PCA, a subset was selected by considering the

parameters with maximum and minimum loadings for each

one of the first four principal components. The PCA subset

achieved the same level of system performance as the entire

fusion array, namely 80%, but it is understood that the

validity of this technique is dependent upon the dataset.

GA implementations were considered for parameter selec-

tion, using genetic coding of the parameter index in a binary

string or as an integer value. With 72-binary gene GAs,

dimensionality is reduced by 60–70%, and we achieved

classification rates of around 94.3%; nevertheless the array

dimensionality can be further reduced by 89% using X-

integer genes GAs. These optimisation techniques achieved

more than 94% correct classification using subsets of only

eight or six parameters. These results were compared with

subsets of parameters randomly generated, which typically

achieved 65–75% correct classification. X-integer gene GAs

are believed to be the best, and the fastest, parameter

selection paradigm investigated and we believe it will prove

to be reliable and beneficial in defining the optimal array

configuration. This search method was successfully

employed to investigate the potential of utilising a mix

for sensor technologies and the selection of an optimal array

configuration for an application specific problem. Using

sensors from an existing database, the best subset for a

given application can be found in this way, reducing the cost

associated with new sensor developments, or using redun-

dant sensors in an array.
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