Learn C under
Windows
O5/NT

Dave Mark

Table of Contents

Table of Contents

1 Welcome Aboard 5
What's in the Package? 5
Why LearnC?o 5
What Should You Know to Get Started? 6
What Equipment Will You Need?. 7
The Layof theLand. 7
The Chapters. 8
Conventions Used in ThisBook. 10
Strap YourselfIn.... 11
2 Using CodeWarrior e 13
Opening a Project. 13
Compiling a Project. 14
What'sNext?. 16
3 Programming Basics 0o 17
Reasons for Programming 17
Programming Languages 17
The Programming Process. 19
Flavors of Object Code 26
What'sNext?. 26
4 CBasics: Functions 29
CFunctionso 29
ISO C and the Standard Library 34
Same Program, Two Functions 36
Generating Some Errors 0L L. 43
What'sNext?. 46
Exercises o000 47
5 C Basics: Variables and Operators 49
An Introduction to Variables. 49
Operatorso 57

Learn C under Windows 95/NT 1

Table of Contents

Operator Order.
Sample Programs.
Sprucing Up YourCode

What's Next?.

Exercises

6 Controlling Your Program’s Flow.

Flow Control. .

Expressions
Sample Programs.

What's Next?.

Exercises

7 Pointers and Parameters

What Is a Pointer? .
Pointer Basics e e o

Function Parameters Ce e
What Do Parameters Have to Do with Pointers? . .
Global Variables and Function Returns
More Sample Programs

What's Next?.

Exercises

8 Variable DataTypes
Other Data Types.
Working with Characters
Arrays L Lo oo
TextStrings

#define .

A Sample Program: wordCount.

What's Next?.

Exercises

9 Designing Your Own Data Structures

Using Arrays (Model A) .

Designing Data Structures (Model B)

Allocating Your Own Memory .

2 Learn C under Windows 95/NT

Table of Contents

Working with Linked Lists. 262
What'sNext?.277
Exercises o000 278
10 Workingwith Files. 281
WhatIsaFile? 281
Working with Files, PartOne. 282
Working with Files, Part Two. 291
Working with Files, Part Three 309
What'sNext?.32
Exerciseso 323
11 AdvancedTopiCS. e 325
What Is Typecasting? 325
Unionso 330

Function Recursion.335
Binary Trees340

Function Pointers. 349
Initializers.00 L0 351
The Remaining Operators 353
Creating Your OwnTypes 357
Static Variables.00 0oL L 360
More on Stringso 362
What'sNext?.364
Exerciseso 000 364
12 Where Do You Go from Here?. 369
The Windows Graphical User Interface 369
The Windows API 370
Getting Started with Windows Programming.372
GoGet’Em C e e e 373

Learn C under Windows 95/NT 3

Table of Contents

A Glossary. e 375
B Source Code lListings. 387
C CSyntax Summary v v e e e 479
D Selections from the Standard Library 483
E Answers to Selected Exercises 523
F Bibliography. 531

4 Learn C under Windows 95/NT

Welcome Aboard

Welcome! By opening this book, you have taken the first step to-
ward learning the C programming language. As you make your
way through the book, you'll learn one of the most popular and
powerful programming languages of all time. You will be glad you
took this step.

Before we start programming, there are a few questions worth ad-
dressing at this point.

What'’s in the Package?

Why Learn

Learn C under Win 95/NT is an electronic book. The book is filled
with all kinds of interesting facts, figures, and programming exam-
ples, all designed to teach you how to program in C.

In addition to this electronic book, the Discover Programming CD-
ROM contains everything you'll need to run each of the book’s pro-
gramming examples on your own computer. As you look through
the disc, you'll find CodeWarrior, one of the most popular develop-
ment environments, along with each of the programs presented in
the book, so you don’t have to type in the examples yourself. We've
also included a boatload of cool shareware and commercial software
demos. Such a deal!

c?

There are many reasons for learning C. Perhaps the biggest reason is
C’s popularity as a programming language. C is probably the hot-
test programming language around. In fact, many of the best-selling
Windows applications were written in C. If you are just getting
started in programming, C is a great first programming language. If
you already know a programming language, such as BASIC or Pas-
cal, you'll find C a worthy addition to your language set.

Learn C under Windows 95/NT 5

Welcome Aboard
What Should You Know to Get Started?

C is everywhere. Almost every computer made today supports the
C language. Once you learn C, you'll be able to create your own pro-
grams for fun and profit. You can use C to create utilities, games,
and tools that do exactly what you want them to do. You can even
use C to write the next great spreadsheet, word processor, or utility.
Who knows? You might even make $80 gazillion in the process!

Whatever your reasons, learning to program in C will pay you divi-
dends the rest of your programming life.

What Should You Know to Get Started?

Figure 1.1

For the most part, the only prerequisite to using this book is a basic
knowledge of Windows. Do you know how to double-click on an
application to start it up? Does the file selection dialog in Figure 1.1
look familiar? Do you know how to use a word processor like Word-
Perfect or Microsoft Word? If you can use Windows to run programs
and edit documents, you have everything you need to get started
learning C.

T
Lookin: | ‘23 documents - =N

1 trp

File name: l | Open I
Filez of type: IP[DiECt Files j Cancel |

A file selection dialog.

If you know nothing about programming, don’t worry. The first few
chapters of this book will bring you up to speed. If you have some
programming experience (or even a lot), you might want to skim

6 Learn C under Windows 95/NT

Welcome Aboard
What Equipment Will You Need?

the first few chapters, then dig right into the C fundamentals that
start in Chapter 4.

What Equipment Will You Need?

Although it is possible to learn C just by reading a book, you'll get
the most out of this book if you run each example program as you
read how it works. To do this, you'll need a PC with at least a 486-
based processor and 16 megabytes of memory. CodeWarrior will
run with Windows 95 and Windows NT 4.0.

The Lay of the Land

This book was designed with several different readers in mind. If
you're new to programming, you'll want to read every chapter. As
you make your way through the book, try not to skip over material
you don’t understand. Ask. Make a commitment to finish this book.
You can do it!

If you have some programming experience but know nothing about
C, read Chapter 2, then skim through Chapter 3. If Chapter 3 is
cake to you, jump right to Chapter 4. You'll probably find that the
concepts presented in the first few chapters are pretty straightfor-
ward. Read at your own speed until you reach a comfortable depth.
The farther into the book you get, the more complex the concepts
become.

If you get stuck, there are a lot of places you can turn to for help. On-
line services, such as CompuServe and America Online feature pro-
gramming development forums filled with friendly folks who are
usually more than glad to help someone just getting started. If you
have access to the Internet, you can subscribe to newsgroups, such
as “comp.lang.c” and “comp.os.ms-windows.programmer.win32,”
where you'll be able to post your questions and, hopefully, find an-
swers to them. Better yet, find a friend who’s been down this road
before, someone you can get together with, face-to-face, to help you
through the tougher concepts.

Whether you have programming experience or not, you might find
it helpful to have a copy of a good C reference by your side as you
make your way through this book. Two particularly useful books

Learn C under Windows 95/NT 7

Welcome Aboard

The Chapters

are The C Programming Language by Kernighan and Ritchie (affec-
tionately known as K&R) and C: A Reference Manual by Harbison
and Steele (also known as H&S). K&R is the granddaddy of all C
references and is the book that got me started in C programming.
Although K&R tends to be a little dense, it is filled with great sam-
ple code. As you master each new concept in this book, take a look
at how K&R treats the same subject.

H&S covers much of the same ground as K&R but at a slightly dif-
ferent level. If you can swing the cost, consider picking up both of
these books. They’ll prove to be valuable additions to your C pro-
gramming library. You'll find descriptions of both books (along with
a bunch of others) in the bibliography in Appendix F.

The Chapters

This book is made up of 12 chapters and 6 appendixes. Chapter 1
provides an overview of the book and gets you started down the
right path.

Chapter 2 covers the basics of using CodeWarrior to open a project
and then convert the project’s source code into an executable appli-
cation.

Chapter 3 is for those of you with little or no programming experi-
ence. Chapter 3 answers some basic questions, such as Why write a
computer program? and How do computer programs work? We'll
look at all the elements that come together to create a computer pro-
gram, elements such as source code, a compiler, and the computer
itself. Even if you're a seasoned Pascal programmer, you might
want to read through this chapter, just to review the basics.

Chapter 4 opens the door to C programming by focusing on one of
the primary building blocks of C: the function. You'll run some sam-
ple programs and discover one of the cruelest, least-liked, yet most
important parts of programming: the syntax error.

Chapter 5 explores the foundation of C programming: variables and
operators. When you finish this chapter, you will have a fundamen-
tal understanding of programming. You'll know how to declare a
variable and how to use operators to store data in the variable.

8 Learn C under Windows 95/NT

Welcome Aboard
The Chapters

Chapter 6 introduces the concept of flow control. You'll learn how to
use C programming constructs, such asi f, whi | e, and f or, to con-
trol the direction of your program. You'll learn how your program
can make decisions based on data that you feed into it.

Chapter 7 starts off with the concept of pointers, which you'll use in
almost every C program you write. Pointers allow you to imple-
ment complex data structures, opening up a world of programming
possibilities.

Chapter 8 introduces data types. You'll learn about arrays and
strings and the common bond they share. At this point, you are in
real danger of becoming a C guru. Careful!

Chapter 9 tackles data structures. You'll learn how to design and
build the right data structure for the job. Your knowledge of point-
ers is sure to get a workout in this chapter.

Chapter 10 teaches you how to work with disk files. You'll learn
how to open a file and read its contents into your program. You'll
also learn how to write your program'’s data out to a file.

Chapter 11 is a potpourri of miscellaneous C programming issues.
This chapter tries to clear up any programming loose ends. You'll
learn about recursion, binary trees, and something not every C pro-
grammer knows about: C function pointers.

Chapter 12 prepares you for your next step along the programming
path. You'll learn a little about what makes Windows programs spe-
cial, as well as find out how you can write your own programs that
sport that special Windows look and feel.

Appendix A is a glossary of the technical terms used in this book.

Appendix B contains a complete listing of all the examples used in
this book. This section will come in handy as a reference as you
write your own C programs. Need an example of an if-else state-
ment in action? Turn to the examples in Appendix B.

Appendix C is another useful reference. It describes the syntax of
each of the C statement types introduced in the book. Need an exact
specification of a swi t ch statement? Check out Appendix C.

Appendix D provides a description of the Standard Library func-
tions introduced in this book. The Standard Library is a set of func-
tions available as part of every standard C development

Learn C under Windows 95/NT 9

Welcome Aboard
Conventions Used in This Book

environment, no matter what type of computer it’s being used with.
Need to know how to call one of the Standard Library functions in-
troduced in the book? Use Appendix D.

Appendix E provides answers to the exercises presented at the end
of each chapter.

Appendix F is a bibliography of useful programming titles.

Conventions Used in This Book

By the Way

As you read this book, you'll encounter a few standard conventions
intended to make it easier to read. For example, technical terms ap-
pearing for the first time are in boldface. You'll find most of these
terms in the glossary in Appendix A.

Occasionally, you’ll come across a block of text set off in its own lit-
tle box, like this. These blocks are called tech blocks and are in-
tended to add technical detail to the subject being discussed. For
the most part, each tech block will fit in one of three categories:
“By the Way,” “Important,” and “Warning.” As the names imply,
these blocks have different purposes. “By the Way” tech blocks are
intended to be informative but not crucial. “Important” tech blocks
should be read beginning to end and the information within tucked
into a reasonably responsive part of your brain. “Warning” tech
blocks are usually trying to caution you about a potentially disas-
trous programming problem you should be on the lookout for.
Read and heed these warnings.

All of the source code examples in this book are presented using a
special font, known as the code f ont. This font is also used for
source code fragments that appear in the middle of running text.

At the end of each chapter from Chapter 4 on, you'll find a set of ex-
ercises designed to reinforce the concepts presented in that chapter.
Go through each of the exercises. It will be time well spent. As men-
tioned earlier, Appendix E contains answers to selected chapter ex-
ercises.

10 Learn C under Windows 95/NT

Welcome Aboard
Strap YourselfIn . . .

Strap YourselfIn . ..

That’s about it. Let’s get started. . . .

Learn C under Windows 95/NT 11

Welcome Aboard
Strap YourselfIn . . .

12 Learn C under Windows 95/NT

2
M Using CodeWarrior

In this chapter, we’ll go over the basics of using CodeWarrior to
open a project and then convert the project’s source code into a real
double-clickable application.

Opening a Project

Let’s take CodeWarrior for a spin. Open the Learn C Proj ects
directory on your hard drive; then open the subdirectory named
02.01 - hel I a Youshould see a window with three files. Two of
the files in this window, hel | 0. cwpand hel | 0. ¢, contain the in-
gredients you'll use to build your very first C application. (The
third file, hel | 0. exe, is the finished C application.)

Double-click on the file hel | 0. cwp. A window just like the one
shown in Figure 2.1 should appear. This window is called the
project window. It contains information about the files used to
build our application. Since this information is stored in the

. g hello.cwp - |O
File _ Code| Datal 3
= & SOUICe] 0 @ a
w hello.c 1] 1] M
< ¢ libraries 0 0 =
¢ AnsicxB6.lib 1] 0 3}
¢ Odid2lib 1] 1] 3]
¢ Kernel32.lh 1] a M
¢ Mwcrtllib 1] a H
i file(s) 0 o Y

Figure 2.1 The hel | 0. cwp project window.

Learn C under Windows 95/NT 13

Using CodeWarrior

Compiling a Project

Warning

file hel | 0. cwp, this file is also known as a project file. A file that
ends in the characters . cwp is a CodeWarrior project file.

If a window with the title hel | 0. c appeared instead of the one
shown in Figure 2.1, you double-clicked on the wrong file. Quit

CodeWarrior and double-click on the file hel | 0. cwpinstead of
hel | 0. c.

The project window in Figure 2.1 is divided into two parts, each
marked by a down-pointing triangle on the extreme left side of the
window. The first part (labeled sour ce) names the files that contain
the project source code. Source code is a set of instructions that de-
termine what your application will do and when it will do it. This
project contains a single source code file, named hel | 0. c.

Let’s take a look at the source code in hel | 0. c. Double-click on the
label hel | 0. ¢, being careful not to double-click on the word

sour ce. A source code window will appear containing the source
code in the file hel | 0. ¢ (Figure 2.2). This is your first C program.
This program tells the computer to display the text “ Hel | o,

wor | d! ” in a window. Don’t worry about the how or why of it right
now. We'll get into all that later on. For now, let’s turn this source
code into an application.

Compiling a Project

Go to the Project menu and select Run. If you look closely, you'll see
numbers appear in each row of the project window. Then, a new
window, labeled hel | o, will appear on the screen. When you se-
lected Run from the Project menu, CodeWarrior converted your
source code into an application named hel | 0. exeand then ran
hel | 0. exe The application hel | 0. exe, in turn, created the new
window (Figure 2.3).

14 Learn C under Windows 95/NT

Using CodeWarrior
Compiling a Project

im hello.c =] E3
‘l"-l {},l ml _I Path | D:ideCACdone'0Z2.01%hello o e
#include <stdio. ho ﬁ
int main{ woid } =
1
printf{ "Hello, world!»n")
< thi= line i= put in ju=st to keep
< the con=ole window from clo=ing
< dmmediately — just hit the return
r/ or enter key to exit
getchar();
return 0
H
[eii [_>|_|
|| v

Figure 2.2 The source code window with the source code from the file
hel | 0. c.

Hello,. worldt

Figure 2.3 The window created by the hello.exe program.

Learn C under Windows 95/NT 15

Using CodeWarrior
What’s Next?

This window is not a CodeWarrior window, but a DOS console win-
dow. This window only gets displayed for an instant. You can
make the window of your console application remain visible until
you hit any key by adding the following line of code:

getchar();

If you execute hel | 0. exedirectly from the DOS window, the text
“Hel | o, worl d!"” will be output directly to the same window.

What's Next?

Now that you've learned the basics of CodeWarrior, let’s take a lit-
tle closer look at the programming process. Get comfortable and
turn the page. Here we go. . ..

16 Learn C under Windows 95/NT

3
M Programming Basics

Before we dig into the specifics of C programming, we’ll spend a
few minutes reviewing the basics of programming in general. We'll
answer such basic questions as, Why write a computer program?
and How do computer programs work? We’ll look at all of the ele-
ments that come together to create a computer program, such as
source code, a compiler, and the computer itself.

If you've already done some programming, skim through this chap-
ter. If you feel comfortable with the material, skip ahead to Chapter
4. Most of the issues covered in this chapter are not specific to C.

Reasons for Programming

Why write a computer program? There are many reasons. Some
programs are written in direct response to a problem too complex to
solve by hand. For example, you might write a program to calculate
the constant p to 5000 decimal places or to determine the precise
moment to fire the boosters that will bring the space shuttle home
safely.

Other programs are written as performance aids, allowing you to
perform a regular task more efficiently. You might write a program
to help you balance your checkbook, keep track of your baseball
card collection, or lay out this month'’s issue of Dinosaur Today.

All of these examples share a common theme. All are examples of
the art of programming.

Programming Languages

Your goal in reading this book is to learn how to use the C program-
ming language to create programs of your own. Before we get into
C, however, let’s take a minute to look at some other popular pro-
gramming languages.

Learn C under Windows 95/NT 17

Programming Basics
Programming Languages

Some Alternatives to C

As mentioned in Chapter 1, C is probably the most popular pro-
gramming language around. There’s very little you can’t do in C,
once you know how. On the other hand, a C program is not neces-
sarily the best solution to every programming problem.

For example, suppose that you are trying to build a database to
track your company’s inventory. Rather than writing a custom C
program to solve your problem, you might be able to use an off-the-
shelf package, such as FoxPro or dBase, to construct your database.
The programmers who created these packages solved most of the
knotty database management problems you’d face if you tried to
write your program from scratch. The lesson here: Before you tackle
a programming problem, examine all the alternatives. You might
find one that will save you time or money or that will prove to be a
better solution to your problem.

Some applications feature their own proprietary scripting language.
For instance, Microsoft Excel lets you write programs that operate
on the cells within a spreadsheet. Some word processing programs
let you write scripts that control just about every word processing
feature in existence. Although proprietary scripting languages can
be quite useful, they aren’t much help outside their intended envi-
ronments. You wouldn’t find much use for the Excel scripting lan-
guage outside Excel, for example.

What About Pascal?

There are a lot of programming languages out there. In the late
1970s and early 1980s, C’s popularity was still growing, and the un-
disputed ruler of the programming universe was Pascal. Pascal re-
mains an excellent programming language, but it has now fallen far
behind C in popularity. To prove this to yourself, go to your favorite
bookstore and compare the number of C books and Pascal books
(assuming you can still find a Pascal book). Better yet, dig out the
employment section from last Sunday’s paper and count the num-
ber of computer ads calling for C or C++ experience (we'll get to
C++ in a minute) versus those calling for Pascal experience. These
two exercises should convince you that you are on the right track.

18 Learn C under Windows 95/NT

Programming Basics
The Programming Process

What About C++?

If there is a pretender to the programming language throne, it has to
be a language called C++ (pronounced C-Plus-Plus). Simply put,
C++ is an object-oriented version of C and is extremely popular
with both Windows and Macintosh programmers. Someday, you
will want to learn C++. Thankfully, you can learn C first, and all that
C knowledge will count toward your C++ education. Learn C now
and spend some time practicing your newfound craft. Once you
have some C experience under your belt, make learning C++ your
next priority.

The Programming Process

In Chapter 2, you went through the process of opening a project,
and converting the project’s source code into an executable applica-
tion. Let’s take a closer look at that process.

Writing Your Source Code

No matter what their purposes, most computer programs start as
source code. Your source code will consist of a sequence of instruc-
tions that tell the computer what to do. Source code is written in a
specific programming language, such as C. Each programming lan-
guage has a specific set of rules defining what is and isn’t “legal” in
that language.

Your mission in reading this book is to learn how to create useful, ef-
ficient, and, best of all, legal C source code.

If you were using everyday English to program, your source code
might look like this:

H , Conputer!
Do ne a favor. Ask me for five nunbers, add themto-
gether, then tell nme the sum

If you wanted to run this program, you'd need a programming tool
that understood source code written in English. Since CodeWarrior
doesn’t understand English but does understand C, let’s look at a C
program that does the same thing:

Learn C under Windows 95/NT 19

Programming Basics
The Programming Process

int main(void)

{
int i ndex, num sum
sum = 0;

for (index=1l; index<=5; index++)

{
printf(“Enter nunber %l --->", index);
scanf(“%”, &num);
sum = sum + num
}
printf(“The sum of these nunbers is %.”, sum);
return O;

If this program doesn’t mean anything to you, don’t panic. Just keep
reading. By the time you finish reading this book, you'll be writing
C code like a pro.

Compiling Your Source Code

Once your source code is written, your next job is to hand it off to a
compiler. The compiler translates your C source code into instruc-
tions that make sense to your computer. These instructions are
known as machine language, or object code. Source code is for you,
machine language / object code is for your computer.

CodeWarrior uses the project file to keep track of all your source
and object code. As an example, the project file shown in Figure 3.1
contains the names of three files. The first two files contain C source
code. The third file, known as a library, contains object code. Think
of a library as a source code file that has already been compiled.

20 Learn C under Windows 95/NT

Programming Basics
The Programming Process

Figure 3.1

By the Way

& Code'Warrior Fies Used by
Pmoict Fike This Pmoject

’ ’

Dy
] tEStE_ cwp SomeSoume.o

nimaln ok |
File i :mum:l:
- % SOUTCe
% SOMESOUrcE.C =
¥ MOresoUrce.:
= & libraries
« Librarelib i
3 file(s)

A CodeWarrior project file containing three files.

A library starts life as source code. The source code is compiled
and the resulting object code stored in a file. This object code can
then be included in other projects. By using a library, you get ac-
cess to some useful source code without having to go through the
time and effort of recompiling the source code into object code.

When you ask CodeWarrior to run your project, CodeWarrior steps
through each of the files referenced by your project file (Figure 3.2).
If a file contains source code, the source code is sent to a compiler,

and the resulting object code is copied into the project file. If the file
is a library, the compilation step is skipped, and the library’s object

Learn C under Windows 95/NT 21

Programming Basics
The Programming Process

Figure 3.2

—

Eirm e |

[E: 11 H

. Compller

[=]
1 1 e

C Compils z] I'-.-'|_I|.I ,|':‘|,|:||:|_E_-:-:E.'

CodeWarrior sends source code through a compiler to
generate object code, then copies the object code into the
project file. Object code from libraries bypasses the
compilation step.

code is copied into the project file. Once all the object code is in
place, it gets combined (in a process known as linking) and copied
into your application file. Finally, CodeWarrior runs your applica-
tion.

Remember, when you run these applications, the output will be dis-
played in a DOS console window that appears for only a moment.
To make the window remain open, append the line

getchar();

to the end of your program.

22 Learn C under Windows 95/NT

Programming Basics
The Programming Process

By the Way

Figure 3.3

If the compilation process seems confusing to you, don’t worry.
Each programming example comes complete with step-by-step di-
rections that show you how to compile your code. Once you feel
more comfortable with the programming process, give this section
another read.

Let’s take a look at a real-life example, a project file named

hel | 0. cwp. Figure 3.3 shows the hel | 0. cwp project window. The
project window lists all the files that CodeWarrior uses to build the
hel | o application. Notice that the list is divided into two parts. The
top part lists the project’s source code files (there’s only one), and
the lower part lists the project’s libraries (there are five).

Each of the six files listed in the project window is found on your
hard drive. You'll find the file hel | 0. ¢ in the same subdirectory as
the project file (hel | 0. cwp). The five library files are located with
the rest of the CodeWarrior files, in the Lib subdirectory of the
CodeWarrior directory. To convince yourself of this, select Find from
the Start Menu (or select Find from the Tools Menu in the Windows
Explorer, or use Search from the File Menu in the File Manager) to
search for these libraries on your hard drive. They were copied onto
your hard drive when you installed CodeWarrior.

. g hello.cwp !E[E

File | Cod

Data |

13

i

= & SOUICEe i | FE

w hello.c 0 0 [&
- ¢ lihraries 1] 1] =l

¢ AnsicxB6.lib a 1] 3]

¢ Gdi32.lib 0 1] ™

¢ Mernel32.lib 0 1] 3}

¢ Mwcrtllib 0 0 ®

¢ User32lib 1] 1]] '|
i filels) 0 1 y

The hel | 0. cwp project window, before compilation.

Learn C under Windows 95/NT 23

Programming Basics
The Programming Process

Warning

When you find the libraries, don’'t move them or mess with them in
any way. CodeWarrior knows where these libraries live and won't
be able to run your project if it can’t find them.

When you select Run from the Project menu, CodeWarrior steps
through each of the project’s files. In the case of hel | 0. ¢, CodeWar-
rior first checks to see whether hel | 0. ¢ has been modified since
the last time it was compiled. If it has, the source code in hel | 0. cis
passed to CodeWarrior’s C compiler, and the resulting object code is
stored in the file hel | 0. cwp.

In the case of each of the five libraries, CodeWarrior first checks to
see whether the object code from the library file has already been
copied into hel | 0. cwp. If it has not been copied, the object code
gets copied over. This process is known as loading. Source code gets
compiled and libraries get loaded (insert silly drinking reference

here).

Figure 3.4 is a snapshot of the project window after all the project
files were updated. Notice that where there used to be a solid block
of zeroes, there are now all kinds of numbers. The Code column tells
you how much object code is stored in hel | 0. cwp for each file in
the project. For example, the object code for the file hel | 0. cis 56
bytes long, and the object code for the library Ansi cx86. | i bis
50,365 bytes long. Why such a big difference? The source code in
hel | 0. cis tiny. As you get farther along in the book, watch that
number start to climb!

24 Learn C under Windows 95/NT

Programming Basics
The Programming Process

Figure 3.4

By the Way

i p7 hello_.cwp _[O]
File | Code| Datal
w SOUFCE A T YA
hello.c Ak 141 O
S 1. i A R
Ansicx86Jib 50365 76004 @
Gui32.lib 2004438450 @
Kernel32.lib P 405092872]
Mwcrtllib 114402i335231 3]
User32.lib i 335473748]
6 file(z) 7IK 312K y

The updated project window.

You'll find these same five libraries in every one of the programs in
this book. Together, these libraries contain everything needed to
create the window that appears every time you run one of the
book’s programs.

The row labeled sour ce summarizes the numbers for all the source
code in the project. The row labeled | i br ari es summarizes the
numbers for the project libraries. If you add the code sizes for all
five libraries, you'll get the number 74,175. So where does the num-
ber 72K come from? One kilobyte, or 1K, is equal to 1024 bytes;
74,175 divided by 1024 is approximately 72.4. Roughly speaking,
74,175 bytes is around 72K.

As the compiler goes through your source code, it sets aside certain
pieces of your source code as data. For example, the text string
“Hel | o, worl d!\ n"isstored in the project file as data, not as part
of the object code. As you can see in Figure 3.4, this string takes up
15 bytes of memory (look in the column labeled Data). You'll learn
all about text strings later in the book.

Learn C under Windows 95/NT 25

Programming Basics
Flavors of Object Code

By the Way Since CodeWarrior stores the object code inside the project file on
your hard drive, your project files will take up more room with a
compiled program than with an uncompiled program. To save
space, select Remove Binaries from the Project menu when you
are done with a project. This item tells CodeWatrrior to delete any
object code it may have stored in the project file. Don’t worry; Re-
move Binaries won't affect your source code. It'll just slim down
your project file.

Flavors of Object Code

Just as there are many different programming languages, there are
many different flavors of object code. In order for your application
to run, the object code it was built on must be compatible with the
central processing unit (also known as the CPU, or processor),
which is the brains of your computer.

IBM PCs and PC-compatibles use processors built by Intel. These
processors include the 8086, 80286, 80386, 80486, the Pentium, and
the Pentium Pro. Macintosh computers are based on processors
from Motorola. These include the 68000, 68020, 68030, 68040, and
the PowerPC 601 and 604.

Each of these processors understands a specific set of machine lan-
guage instructions. The 80486 understands 80486 machine language
instructions but not 68000 machine language instructions. Similarly,
the 68000 does not understand 80486 machine language instruc-
tions. That’s one reason why you can’t just copy a Windows applica-
tion onto a Macintosh hard drive and run it. It's also one reason why
you can’t copy a Mac application onto a Windows machine and run
it.

What's Next?

At this point, don’t worry too much about the details. For now,
focus on the basics. Understanding how to write C source code is far
more important than the intricacies of the project file.

26 Learn C under Windows 95/NT

Programming Basics
What’s Next?

Ready to get into some source code? Get out your programming
gloves; we’re about to go to code!

Learn C under Windows 95/NT 27

Programming Basics
What’s Next?

28 Learn C under Windows 95/NT

A

M C Basics: Functions

Every programming language is designed to follow strict rules that
define the language’s source code structure. The C programming
language is no different. The next few chapters will explore the syn-
tax of C.

Chapter 3 discussed some fundamental programming topics, in-

cluding the process of translating source code into machine code

through a tool called the compiler. This chapter focuses on one of
the primary building blocks of C programming, the function.

C Functions

Important

C programs are made up of functions. A function is a chunk of
source code that accomplishes a specific task. You might write a
function that adds a list of numbers or that calculates the radius of a
given circle. Here’s an example of a function:

int main(void)

{
printf(“I ama function and ny nane is
main!!!t\n”);
return O;
}

This function, called mai n(), prints a message in a window.

Throughout this book, we’ll refer to a function by placing a pair of
parentheses after its name. This will help distinguish between
function names and variable names. For example, doTask() re-

Learn C under Windows 95/NT 29

C Basics: Functions

C Functions

fers to a function, whereas the name doTask refers to a variable.
Variables are covered in Chapter 5.

The Function Definition

Functions start off with a function specifier, in this case:
int main(void)

A function specifier consists of a return type, the function name,
and a pair of parentheses wrapped around a parameter list. We'll
talk about the return type and the parameter list later. For now, the
important thing is to be able to recognize a function specifier and be
able to pick out the function’s name from within the specifier.

Following the specifier comes the body of the function. The body is
always placed between a pair of curly braces: { }. These braces are
known in programming circles as “left-curly” and “right-curly.”
Here’s the body of mai n():

{
printf(“I ama function and nmy nane is
main!!1\n”);
return O;
}

The body of a function consists of a series of statements, with each
statement followed by a semicolon (;). If you think of a computer
program as a detailed set of instructions for your computer, a state-
ment is one specific instruction. The pri nt f () featured in the body
of mai n() is a statement. It instructs the computer to display some
text on the screen.

As you make your way through this book, you'll learn C’s rules for
creating efficient, compilable statements. Creating efficient state-
ments will make your programs run faster with less chance of error.

30 Learn C under Windows 95/NT

C Basics: Functions
C Functions

The more you learn about programming (and the more time you
spend at your craft), the more efficient you’ll make your code.

Syntax Errors and Algorithms

When you ask the compiler to compile your source code, the com-
piler does its best to translate your source code into object code.
Every so often, however, the compiler will hit a line of source code
that it just doesn’t understand. When this happens, the compiler re-
ports the problem to you and does not complete the compile. The
compiler will not let you run your program until every line of
source code compiles.

As you learn C, you'll find yourself making two types of mistakes.
The simplest type, called a syntax error, prevents the program from
compiling. The syntax of a language is the set of rules that deter-
mines what will and will not be read by the compiler. Many syntax
errors are the result of a mistyped letter, or typo. Another common
syntax error occurs when you forget the semicolon at the end of a
statement.

Syntax errors are usually fairly easy to fix. If the compiler doesn’t
tell you exactly what you need to fix, it will usually tell you where in
your code the syntax error occurred and give you enough informa-
tion to spot and repair the error.

The second type of mistake is a flaw in your program’s algorithm.
An algorithm is the approach used to solve a problem. You use algo-
rithms all the time. For example, here’s an algorithm for sorting
your mail:

1. Start by taking the mail out of the mailbox.

2. If there’s no mail, you're done! Go watch TV.

3. Take a piece of mail out of the pile.

4. If it’s junk mail, throw it away; then go back to step 2.

5. Ifit's a bill, put it with the other bills; then go back to step 2.

6. If it’s not a bill and not junk mail, read it; then go back to

step 2.
This algorithm completely describes the process of sorting through
your mail. Notice that the algorithm works, even if you didn’t get

any mail. Notice also that the algorithm always ends up at step 2,
with the TV on.

Learn C under Windows 95/NT 31

C Basics: Functions
C Functions

Figure 4.1 is a pictorial representation, or flowchart, of the mail-sort-
ing algorithm. Much as you might use an outline to prepare for
writing an essay or a term paper, you might use a flowchart to flesh
out a program’s algorithm before you start writing the program.

Take Mail Recycle the Place Bill
Darn Thing on Hall Table
A A

A

Out of Mailbox

A

Is it
a Bill?

Look at a
Piece of Mail

All Done!
Go Watch TV.

A 4

Read Mail

Figure 4.1 An algorithm for sorting your mail.

This flowchart uses two types of boxes. Each rectangular box por-
trays an action, such as taking mail out of the mailbox or throwing
junk mail into the trash. Each diamond-shaped box poses a yes/no
question. An action box has a single arrow leading from it to the
next box to read, once you've finished taking the appropriate action.
A question box has two arrows leading out of it: one showing the
path to take if the answer to the question is yes and the other show-
ing the path to take if the answer is no. Follow the flowchart
through, comparing it to the algorithm as described.

In the C world, a well-designed algorithm results in a well-behaved
program. On the other hand, a poorly designed algorithm can lead
to unpredictable results. Suppose, for example, that you wanted to
write a program that added three numbers and printed the sum at
the end. If you accidentally printed one of the numbers instead of
the sum of the numbers, your program would still compile and run.
The result of the program would be in error, however (you printed

32 Learn C under Windows 95/NT

C Basics: Functions
C Functions

one of the numbers instead of the sum), because of a flaw in your
program’s algorithm.

The efficiency of your source code, referred to earlier, is a direct re-
sult of good algorithm design. Keep the concept of algorithm in
mind as you work your way through the examples in the book.

Calling a Function

In Chapter 3, you looked at hel | o0, a program with a single func-
tion, mai n(). As a refresher, here’s the source code from hel | o:

#i ncl ude <stdi o. h>

int main(void)

{
printf(“Hello, world!'\n”);

return O;

You ran hel | 0 by selecting Run from the Project menu. CodeWar-
rior started by executing the first line in the function named

mai n(). In this case, the first line in mai n() was the call to the func-
tion pri nt f (). Whenever your source code calls a function, each
statement in the called function is executed before the next state-
ment of the calling function is executed.

Confused? Look at Figure 4.2. In this example, mai n() starts with a
call to the function MyFunct i on(). This call to MyFunct i on() will
cause each statement inside MyFunct i on() to be executed. Once
the last statement in MyFunct i on() has been executed, control is
returned to mai n(). Now, mai n() can call Anot her Functi on().

Learn C under Windows 95/NT 33

C Basics: Functions
ISO C and the Standard Library

MyFunction()
{

main() }
{
MyFunction(); ——— 1
AnotherFunction(); ——

AnotherFunction()

{
}

Figure 4.2 When mai n() calls MyFuncti on(), all of the statements inside
MyFuncti on() get executed before mai n() calls
Anot her Functi on().

Every C program you write will have a mai n() function. Your pro-
gram will start running with the first line in mai n() and, unless
something unusual happens, end with the last line in mai n().
Along the way, mai n() may call other functions, which may, in
turn, call other functions, and so on.

ISO C and the Standard Library

The American National Standards Institute (ANSI) established a na-
tional standard for the C programming language. This standard be-
came known as ANSI C. Later, the International Standards
Organization (ISO) adopted this standard, and ANSI C evolved into
the international standard known as ISO C. Part of this standard is
a specific definition of the syntax of the C language.

By the Way Since the term ISO C is still catching on, you'll still hear most C
programmers refer to the ANSI C standard. The main difference
between the two standards is that ISO C has extra functions in its
Standard Library to handle multibyte and wide characters. ISO C

34 Learn C under Windows 95/NT

C Basics: Functions
ISO C and the Standard Library

or ANSI C—either term is fine. The important thing to be aware of
is that a strict C standard does exist.

As we stated earlier, the syntax of a language provides a set of rules
defining what is and isn’t legal source code. For example, ISO C tells
you when you can and can’t use a semicolon. ISO C tells you to use
a pair of parentheses after the name of your function, regardless of
whether your function has any parameters. You get the idea. The
greatest benefit to having an international standard for C is portabil-
ity. With a minimum of tinkering, you can get an ISO C program
written on one computer up and running on another computer.
When you finish with this book, you’ll be able to program in C on
any computer that has an ISO C compiler.

Another part of the ISO C standard is the Standard Library, a set of
functions available to every ISO C programmer. As you may have
guessed, the pri nt f () function you’ve seen in our source code ex-
amples is part of the Standard Library. Take a look at the

hel | 0. cwp project window (Figure 4.3). In the libraries section, the
file Ansi cx86. Li b contains the Standard Library. Remember,
when you see ANSI, think ISO!

We'll spend a great deal of time working with the Standard Library
in this book. Once you get comfortable with the Standard Library
functions presented here, check out the Standard Library C Refer-
ence on the Discover Programming CD. Spend some time going
through each of the Standard Library functions to get a sense of the
variety of functions offered.

Learn C under Windows 95/NT 35

C Basics: Functions
Same Program, Two Functions

i ig hello.cwp _ (O] %]
File | Code| Data| of
= & SOUICE i i R
w hello.c 0 0 3
- & libraries 1 1] =
"8 AnsicxB6.lib ! 3}
w Gdid2.lih 1] 1] 3]
¢ HKernel32.lib 1] 1] 3]
« Mwcrtllib a 1] 3]
w User3Z.lib 1] 1] [""|
i file(s) o 0 y

Figure 4.3 The hello.cwp project window, with the Standard Library
highlighted.

Same Program, Two Functions

As you start writing your own programs, you'll find yourself de-
signing many individual functions. You might need a function that
puts a form up on the screen for the user to fill out. You might need
a function that takes a list of numbers as input, providing the aver-
age of those numbers in return. Whatever your needs, you will defi-
nitely be creating a lot of functions. Let’s see how it’s done.

Our first program, hel | o, consisted of a single function, mai n(),
that passed the text string“ Hel | o, world!'\n"toprintf().Our
second program, hel | 02, captures that functionality in a new func-
tion, called SayHel | o().

By the Way You’ve probably been wondering why the characters \ n keep ap-
pearing at the end of all our text strings. Don’t worry; there’s noth-
ing wrong with your copy of the book. The \ n is perfectly normal. It
tells pri nt f () to move the cursor to the beginning of the next line
in the text window, sort of like pressing the return key in a text edi-
tor.

36 Learn C under Windows 95/NT

C Basics: Functions
Same Program, Two Functions

Figure 4.4

The sequence \ n is frequently referred to as a carriage return, or
just plain return. By including a return at the end of a pri ntf (),
we know that the next line we print will appear at the beginning of
the next line in the text window.

Opening hello2.cwp

Using the Windows Explorer or My Computer, open the Learn C
Pr oj ect s directory, open the subdirectory named 04. 01 -

hel | 02, and double-click on the project file hel | 02. cwp. A project
window named hel | 02. cwpwill appear, as shown in Figure 4.4.

i i7 helloZ.cwp _[O]
File Code| Daal 3
- & SOurce [x] :|
w helloZ.c 0 L
- & libraries 0 0 =5
« AnsicxBb.lib I 0: @
w Odid2.hib 1] 0]
« Kernel32.lib 0 0: M©
w Mwcrtllib 1] 0i 3}
w User32.lib 0 0: ['|
i file(s) 0 o J:;

The project window for hel | 0. cwp.

If you double-click on the name hel | 02. ¢ in the project window, a
source code editing window will appear, containing source code re-
markably similar to this:

#i ncl ude <stdi o. h>

Learn C under Windows 95/NT 37

C Basics: Functions
Same Program, Two Functions

void SayHello(void);

int main(void)

{
SayHel | o();

return O;

void SayHel |l o(void)

{
printf(“Hello, world!'\n”);

hel | 02 starts off with this line of source code:
#i ncl ude <stdi o. h>

You'll find this line (or a slight variation) at the beginning of each
one of the programs in this book. It tells the compiler to include the
source code from the file st di 0. has it compiles hel | 02. c. The file
st di 0. h contains information we’ll need if we are going to call

pri ntf () in this source code file. You'll see the #i ncl ude (pro-
nounced pound-include) mechanism used throughout this book,
and we'll talk about it in detail later. For now, get used to seeing this
line of code at the top of each of our source code files.

The two lines following the #i ncl ude are blank. This is completely
cool. Since the C compiler ignores all blank lines, you can use them
to make your code a little more readable. I like to leave a few blank
lines (at least) between each of my functions.

This line of code appears next:

38 Learn C under Windows 95/NT

C Basics: Functions
Same Program, Two Functions

By the Way

void SayHello(void);

Although this line might look like a function specifier, don’t be
fooled! If this were a function specifier, it would not end with a
semicolon, and it would be followed by a left-curly brace ({) and the
rest of the function. This line is known as a function prototype, or
function declaration. You'll include a function prototype for every
function, other than mai n(), in your source code file.

To understand why, it helps to know that a compiler reads your
source code file from the beginning to the end, a line at a time. By
placing a complete list of function prototypes at the beginning of the
file, you give the compiler a preview of the functions it is about to
compile. The compiler uses this information to make sure that calls
to these functions are made correctly.

This will make a lot more sense to you once we get into the sub-
ject of parameters in Chapter 7. For now, get used to seeing func-
tion prototypes at the beginning of all your source code files.

Next comes the function mai n(). mai n() first calls the function
SayHel | o():

int main(void)

{
SayHel | o();

At this point, the lines of the function SayHel | o() get run. When
SayHel | o() is finished, mai n() can move on to its next line of
code. The keyword r et ur ntells the compiler to return from the cur-
rent function, without executing the remainder of the function. We'll
talk about r et ur nin Chapter 7. Until then, the only place you'll see
this line is at the end of mai n().

return O;

}

Following mai n() is another pair of blank lines, followed by the
function SayHel | o(). SayHel | o() prints the string “ Hel | o,
wor | d! " in a window, then returns control to mai n().

Learn C under Windows 95/NT 39

C Basics: Functions
Same Program, Two Functions

voi d SayHell o(void)

{
printf(“Hello, world!'\n”);

}

Let’s step back for a second and compare hel | oto hel | 02. In

hel | o, mai n() called pri ntf () directly. Inhel | 02, mai n() calls
a function that calls pri nt f (). This extra layer demonstrates a
basic C programming technique: taking code from one function and
using it to create a new function. This example took the following
line of code and used it to create a new function called SayHel | o():

printf(“Hello, world!'\n”);

This function is now available for use by the rest of the program.
Every time we call the function SayHel | o(), it’s as if we executed
the following line of code:

printf(“Hello, world!'\n”);

SayHel | o() may be a simple function, but it demonstrates an im-
portant concept. Wrapping a chunk of code in a single function is a
powerful technique. Suppose that you create an extremely complex
function, say, 100 lines of code in length. Now suppose that you call
this function in five different places in your program. With 100 lines
of code, plus the five function calls, you are essentially achieving
500 lines of functionality. That’s a pretty good return on your invest-
ment!

Let’s watch hel | 02 in action.

Running hello2.cwp

Select Run from the Project menu. You'll see a window similar to the
one shown in Figure 4.5. Gee, this looks just like the output from the
hel | o program. Of course, that was the point! Even though we em-
bedded our pri nt f () inside the function SayHel | o(), hel | 02
ran the same as hel | o.

40 Learn C under Windows 95/NT

C Basics: Functions
Same Program, Two Functions

Figure 4.5

2 hello2
Hello, world?

The output from hello2.

Before we move on to our next program, let’s get a little terminology
out of the way. The window that appeared when you ran hel | 0 and
hel | 02 is known as a console window. The console window ap-
pears whenever you call a function like pri nt f (), that s, a routine
that tries to display some text. The console window is one of the
benefits you get by using the Standard Library. All the programs in
this book take advantage of the console window.

The text that appears in the console window is known as output.
After you run a program, you're likely to check out the output that
appears in the console to make sure that your program ran correctly.

Another Example

Imagine what would happen if you changed mai n() inhel | 02to
read:

int main(void)
{
SayHel |1 o();
SayHel | o();

Learn C under Windows 95/NT 41

C Basics: Functions
Same Program, Two Functions

SayHel |1 o();

return O;

What's different? In this version, we’ve added two more calls to
SayHel | o(). Can you picture what the console will look like after
we run this new version?

To find out, close the hel | 02. cwp project window and then select
Open from CodeWarrior’s File menu. When the window shown in
Figure 4.6 appears, navigate into the subdirectory named 04. 02 -
hel | 03 and open the project named hel | 03. cwp.

Lookjn: | ‘24 04.02 - hellod BN == e
1 Resource frk.

hello3.cwp

File name: I Open
Filez of type: IF'r-:uiect Files j Cancel

Figure 4.6 This window appears when you select Open from
CodeWarrior’s File menu.

When you run hel | 03, the console window shown in Figure 4.7
will appear. Take a look at the output. Does it make sense to you?
Each call to SayHel | o() generates the text string “ Hel | o,

wor | d!'” followed by a carriage return.

42 Learn C under Windows 95/NT

C Basics: Functions
Generating Some Errors

% hello3

-, world?
-, world?
-, world?

Figure 4.7 The output from hel | 03.

Generating Some Errors

Before we move on to the next chapter, let’s see how the compiler re-
sponds to errors in our source code. Back in CodeWarrior, double-
click on the name hel | 03. cin the hel | 03. cwp project window
(Figure 4.8). The source code window containing the hel | 03. c
source code will appear.

In the source code window, find the line of source code containing
the function specifier for mai n(). The line should read:

int main(void)

Click at the end of the line, so the blinking cursor appears at the
very end of the line. Now type a semicolon, so that the line reads:

int main(void);

Learn C under Windows 95/NT 43

C Basics: Functions
Generating Some Errors

i HELLD3.CWP _ O] x|
File | Code Data| yf
= & SOUICe e

 TEIEEEE : |0 =
e | | | &

w AnsicxB6.li: 0 0 o]

¢ Gdiz2lih | 0 0 @

w Kernel32.lil: 0 0 M®=

w Mwcrtllib 0 0i 3]

w User32.lib ¢ 0 0] T|

fi filers) o o 4

Figure 4.8 The hel | 03. cwpproject window, with the source code file
hel | 03. c highlighted.

Here's the entire file, showing the tiny change you just made:

#i ncl ude <stdi o. h>

voi d SayHel |l o(void);

int main(void);

{
SayHel | o();
SayHel 1 o();
SayHel | o();
return O;

}

void SayHel | o(void)
{

44 Learn C under Windows 95/NT

C Basics: Functions
Generating Some Errors

Figure 4.9

printf(“Hello, world!\n”);

Keep in mind that you added only a single semicolon to the source
code; select Run from the Project menu. CodeWarrior knows that
you changed your source code since the last time it was compiled
and will try to recompile hel | 03. c. Figure 4.9 shows the error win-
dow that appears, telling you that you've got a problem with your
source code. Yikes! All that, just because you added a measly semi-
colon! Sometimes, the compiler will give you a perfectly precise
message that exactly describes the error it encountered. In this case,
however, the compiler got so confused by the extra semicolon that it
reported six errors instead of just one. Notice, however, that the
very first error message gives you a pretty good idea of what is
going on. It complains about a syntax error on line 8 and then dis-
plays a left-curly brace ({). If you click on the line you just modified,
then look at the bottom of the source code window, you’ll see that
the line you added the semicolon to is line 7 and that the very next
line (line 8) contains the left-curly brace in question.

: @ Errors & Warnings M=l E3
EE,] 6 i ! o [Emors and wamings for "HELLO3. CilfA" 7 |ﬂ

W Error . declaration svntax error
[S | e 1, " Fi -
hello3d . o line 8 i

Error o identifier 'SayHello' redeclared was declared as: 'wo
hello3d . o line 9 SayHello(i

eEerr . identifier 'SayHello' redeclared was declared as: 'wo
hello3. o line 10 SayHello()

OEerr ¢ identifier 'SayHello' redeclared was declared a=s: 'wo
hello3. o line 11 SayHello()

Error o declaration syntax error
hellod .o line 13 return 0;

oEerr . declaration syntax error
hellod.c line 14 a

g o

12 4

Yikes! All this just because you added a single semicolon!

Use the mouse and the delete key to delete the offending semicolon
at the end of the first line of code. Select Run from the Project menu

Learn C under Windows 95/NT 45

C Basics: Functions

What’s Next?

Figure 4.10

again. This time, the code should compile without a hitch. Once the
code is compiled, CodeWarrior will run it, proving that your source
code is now fixed.

The Importance of Case in C

Many types of errors are possible in C programming. One of the
most common results from the fact that C is a case-sensitive lan-
guage. In a case-sensitive language, there is a big difference be-
tween lower- and uppercase letters. This means that you can’t refer
toprintf()asPrintf() oreven PRI NTF().Figure 4.10 shows the
error message you'll get if you change your pri nt f () call to

PRI NTF(). This message is telling you that CodeWarrior couldn’t
find a function named PRI NTF(). To fix this problem, just change
PRI NTF() toprintf () and recompile.

i@ Ermors & Warnings | [O] =]
1 o | Erors and wamings for "HELLDZ, CUUF"

HE Error
hellod. o line 19

: function has no prototype
FRINTF{ "Hello, world!-n" J:

4 o

D _— g CENC é

The error reported by CodeWarrior for use of incorrect case in
calltoprintf().

What's Next?

Congratulations! You’ve made it through basic training. You know
how to open a project, how to compile your code, and even how to
create an error message or two. You've learned about the most im-
portant function: mai n(). You've also learned about pri nt f () and
the Standard Library.

46 Learn C under Windows 95/NT

C Basics: Functions
Exercises

Exercises

Now you're ready to dig into the stuff that gives a C program life:
variables and operators.

Open the project hel | 02. cwp, edithel | 02. c as described in each
exercise, and describe the error that results:

1. Change the line:
SayHel | o()
to say:
SayHel | o(
2. Change things back. Now change the line:
mai n()
to say:
Mai n()
3. Change things back. Now delete the { after the line:
mai n()

4. Change things back. Now delete the semicolon at the end of
this line:

printf(“Hello, world!l\n");
so it reads:
printf(“Hello, world!l\n")

Learn C under Windows 95/NT 47

C Basics: Functions
Exercises

48 Learn C under Windows 95/NT

5

C Basics: Variables
and Operators

At this point, you should feel pretty comfortable with the CodeWar-
rior environment. You should know how to open a project and how
to edit a project’s source code. You should also feel comfortable run-
ning a project and (heaven forbid) fixing any syntax errors that may
have occurred along the way.

On the programming side, you should recognize a function when
you see one. When you think of a function, you should first think of
mai n(), the most important function. You should remember that
functions are made up of statements, each of which is followed by a
semicolon.

With these things in mind, we’re ready to explore the foundation of
C programming: variables and operators. Variables and operators
are the building blocks you'll use to construct your program’s state-
ments.

An Introduction to Variables

A large part of the programming process involves working with
data. You might need to add a column of numbers or sort a list of
names alphabetically. The tricky part of this process is representing
your data in a program. This is where variables come in.

Variables can be thought of as containers for your program’s data.
Imagine three containers on a table. Each container has a label:
cupl, cup2, and cup3. Now imagine that you have three pieces of
paper. Write a number on each piece of paper and place one piece
inside each of the three containers. Figure 5.1 shows what this might
look like.

Learn C under Windows 95/NT 49

C Basics: Variables and Operators
An Introduction to Variables

Figure 5.1

Figure 5.2

Three containers, each with its own value.

Now imagine asking a friend to reach into the three cups, pull out
the number in each one, and add the three values. You can ask your
friend to place the sum of the three values in a fourth container cre-
ated just for this purpose. The fourth container is labeled sumand is
shown in Figure 5.2.

il

A fourth container, containing the sum of the other three
containers.

This is exactly how variables work. Variables are containers for your
program’s data. You create a variable and place a value in it. You
then ask the computer to do something with the value in your vari-
able. You can ask the computer to add three variables and place the
result in a fourth variable. You can even ask the computer to take the
value in a variable, multiply it by 2, and place the result back into
the original variable.

Getting back to our example, now imagine that you changed the
values in cupl, cup2, and cup3. Once again, you could call on your

50 Learn C under Windows 95/NT

C Basics: Variables and Operators
An Introduction to Variables

friend to add the three values, updating the value in the container
sum You've reused the same variables, using the same formula, to
achieve a different result. Here’s the C version of this formula:

sum = cupl + cup2 + cups3;

Every time you execute this line of source code, you place the sum
of the variables cupl, cup2, and cup3 into the variable named sum
At this point, it's not important to understand exactly how this line
of C source code works. What is important is to understand the
basic idea behind variables. Each variable in your program is like a
container with a value in it. This chapter will teach you how to cre-
ate variables and how to place a value in a variable.

Working with Variables

Variables come in a variety types. A variable’s type determines the
kind of data that can be stored in that variable. You determine a
variable’s type when you create the variable. (We’ll discuss creating
variables in just a second.) Some variable types are useful for work-
ing with numbers. Other variable types are designed to work with
text. In this chapter, we’ll work only with variables of one type: a
numerical type called i nt. (In Chapter 8, we’ll get into other vari-
able types.) A variable of type i nt can hold a numerical value, such
as 27 or —-589.

Working with variables is a two-stage process. First, you create a
variable; then you use the variable. In C, you create a variable by de-
claring it. Declaring a variable tells the compiler, “Create a variable
for me. I need a container to place a piece of data in.” When you de-
clare a variable, you have to specify both the variable’s type and its
name. In our earlier example, we created four containers, each hav-
ing a label. In the C world, this would be the same as creating four
variables with the names cupl, cup2, cup3, and sumIn C, if we
want to use the value stored in a variable, we use the variable’s
name. We'll show you how to do this later in the chapter.

Here’s an example of a variable declaration:

i nt nyVari abl e;

Learn C under Windows 95/NT 51

C Basics: Variables and Operators
An Introduction to Variables

This declaration tells the compiler to create a variable of type i nt
(remember, an i nt is useful for working with numbers) with the
name nyVar i abl e. The type of the variable (in this case, i nt) is ex-
tremely important. As you'll see, a variable type determines the
kind and range of values a variable can be assigned.

Variable Names

Here are two rules to follow when you create your own variable
names:

. Variable names must always start with an upper- or lower-
case letter (A, B,...,Zora,b,...,z) or with an underscore ().

. The remainder of the variable name must be made up of up-
per- or lowercase letters, numbers (0, 1, . . ., 9), or the underscore.

These two rules yield such variable names as nyVari abl e,

TH S_NUMBER, VaRi AbLe 1,and A1234_4321. Note thata C
variable may never include a space or a character such as & or *.
These two rules must be followed.

On the other hand, these rules do leave a fair amount of room for in-
ventiveness. Over the years, different groups of programmers came
up with additional guidelines (also known as conventions) that
made variable names more consistent and a bit easier to read.

As an example of this, UNIX programmers tended to use all lower-
case letters in their variable names. When a variable name consisted
of more than one word, the words were separated by an underscore.
This yielded variable names like ny_vari abl e or

nunber _of puppi es

Macintosh programmers tend to follow a naming convention estab-
lished by their SmallTalk cousins. Variable names are formed from
lowercase letters and numbers, always starting with a lowercase let-
ter. This yields variable names like nunber or di gi t 33. A variable
with more than one word is started with a lowercase letter, and each
successive word in the variable name is started with an uppercase
letter. This yields variable names like myVar i abl e or howivany.

Many Windows programmers use a variable naming convention
known as Hungarian notation. In Hungarian notation, the variable
name begins with a lowercase letter that denotes the type of the

52 Learn C under Windows 95/NT

C Basics: Variables and Operators
An Introduction to Variables

Warning

variable. For a char, the variable name would start with ¢, as in
cMyVari abl e Forani nt, the variable name would start with i , as
ini Myl nt.

As mentioned in Chapter 4, C is a case-sensitive language. The com-
piler will cough out an error if you sometimes refer to myVar i abl e
and other times refer to myvar i abl e. Adopt a naming convention
and stick with it: Be consistent!

The Size of aType

When you declare a variable, the compiler reserves a section of
memory for the exclusive use of that variable. When you assign a
value to a variable, you are modifying the variable’s dedicated
memory to reflect that value. The number of bytes assigned to a
variable is determined by the variable’s type. You should check
your compiler’s documentation to see how many bytes go along
with each of the standard C types.

Some compilers assign 4 bytes to each i nt. Others assign 2 bytes to
each i nt. By default, CodeWarrior uses 4-byte i nt s.

It's important to understand that the size of a type can change, de-
pending on such factors as your computer’s processor type and
operating system (Windows versus MacintoshQOS, for example)
and your development environment. Remember, read the manual
that comes with your compiler.

Let’s continue with the assumption that CodeWarrior is using 4-
byte i nts. The following variable declaration reserves memory (in
our case, 4 bytes) for the exclusive use of the variable ny| nt:

int mylnt;

If you later assign a value to ny| nt, that value is stored in the 4
bytes allocated for ny| nt. If you ever refer to the value of nyl nt,
you’ll be referring to the value stored in my| nt’s 4 bytes.

Learn C under Windows 95/NT 53

C Basics: Variables and Operators
An Introduction to Variables

Figure 5.3

If your compiler used 2-bytei nt s, the preceding declaration would
allocate 2 bytes of memory for the exclusive use of nyl nt. As you'll
see, it is important to know the size of the each type you are dealing
with.

Why is the size of a type important? The size of a type determines
the range of values that the type can handle. As you might expect, a
type that’s 4 bytes in size can hold a wider range of values than a
type that’s only 1 byte in size.

Bytes and Bits

Each byte of computer memory is made up of 8 bits. Each bit has a
value of either 1 or 0. Figure 5.3 shows a byte holding the value
00101011 The value 00101011 is said to be the binary representa-
tion of the value of the byte. Look more closely at Figure 5.3. Each
bit is numbered (above each bit in the figure), with bit 0 on the ex-
treme right side and bit 7 on the extreme left. Most computers use
this standard bit-numbering scheme.

Notice also the labels (“Add 1,” “Add 2,” and so on) that appear be-
neath each bit in the figure. These labels are the key to binary num-

bers. Memorize them. (It's easy—each bit is worth twice the value of
its neighbor to the right.) These labels are used to calculate the value
of the entire byte. Here’s how it works:

. Start with a value of 0.
o For each bit with a value of 1, add the label value below the
bit.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

0/0]1]0]1]0]1]1

Add 128 Add 64 Add32 Add16 Add8 Add4 Add2

A byte holding the binary value 00101011.

That’s all there is to it! In the byte pictured in Figure 5.3, you'd cal-
culate the byte’s value by adding 1 + 2 + 8 + 32 = 43. Where did we
get the 1, 2, 8, and 32? They’re the bottom labels of the only bits with

54 Learn C under Windows 95/NT

C Basics: Variables and Operators
An Introduction to Variables

Figure 5.4

Figure 5.5

Important

a value of 1. Try another one. What's the value of the byte pictured
in Figure 5.4?

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0/1]0]1]1]0]1]0

Add 128 Add 64 Add32 Add1l6 Add8 Add4 Add2 Add1l

What's the value of this byte?

Easy, right? Just 2 + 8 + 16 + 64 = 90. Right! How about the byte in
Figure 5.5?

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

1]1]1]1]1]1f1]1

Add 128 Add 64 Add32 Add16 Add8 Add4 Add2 Add1l

Last one: What’s the value of this byte?

This is an interesting one: 1 +2 + 4 + 8 + 16 + 32 + 64 + 128 = 255.
This example demonstrates the largest value that can fit in a single
byte. Why? Because every bit is turned on. We’ve added everything
we can add to the value of the byte.

The smallest value a byte can have is 0 (00000000). Since a byte can
range in value from 0 to 255, a byte can have 256 possible values.

This is just one of several ways to represent a number using bi-
nary. This approach is fine if you want to represent integers that
are always greater than or equal to 0 (known as unsigned inte-
gers). Computers use a different technique, known as two’s com-
plement notation, to represent integers that might be either
negative or positive.

To represent a negative number using two’s complement notation:

Learn C under Windows 95/NT 55

C Basics: Variables and Operators
An Introduction to Variables

«Start with the binary representation of the positive
version of the number.

*Complement all the bits (turn the 1s into Os and the Os
into 1s).

*Add 1 to the result.

For example, the binary notation for the number 9 is 00001001. To
represent -9 in two’s complement notation, flip the bits
(11110110) and then add 1. The two’s complement for -9 is
11110110 + 1 = 11110111

The binary notation for the number 2 is 00000010. The two’s com-
plement for -2 would be 11111101 + 1 = 11111110 Notice that
in binary addition, when you add 01 + 01, you get 10. Just as in
regular addition, you carry the 1 to the next column.

Don’t worry about the details of binary representation and arith-
metic. What's important to remember is that the computer uses one
notation for positive-only numbers and a different notation for
numbers that can be positive or negative. Both notations allow a
byte to take on one of 256 different values. The positives-only
scheme allows values ranging from 0 to 255. The two’s complement
scheme allows values ranging from —128 to 127. Note that both of
these ranges contain exactly 256 values.

Going from 1to 2 Bytes

So far, we’ve discovered that 1 byte (8 bits) of memory can hold one
of 28 = 256 possible values. By extension, 2 bytes (16 bits) of memory
can hold one of 21° = 65,536 possible values. If the 2 bytes are un-
signed (never allowed to hold a negative value), they can hold val-
ues ranging from 0 to 65,535. If the 2 bytes are signed (allowed to
hold both positive and negative values), they can hold values rang-
ing from -32,768 to 32,767.

By default, most C data types are signed (allowed to hold both posi-
tive and negative values). This means that a variable declared as fol-
lows is signed and, assuming a 4-bytei nt, can hold values ranging
from -2,147,483,648 to 2,147,483,647:

56 Learn C under Windows 95/NT

C Basics: Variables and Operators
Operators

Important

Operators

int nylnt;

To declare a variable as unsi gned, precede its declaration with
the unsi gned qualifier. Here’s an example:

unsi gned int nyl nt;

This version of my| nt (again, assuming 4-byte i nt s) can hold val-
ues ranging from 0 to 4,294,967,295.

Now that you’ve defined the type of variable your program will use
(in this case, i nt), you can assign a value to your variable.

One way to assign a value to a variable is with the = operator, also
known as the assignment operator. An operator is a special charac-
ter (or set of characters) representing a specific computer operation.
The assignment operator tells the computer to compute the value to
the right of the = and to assign that value to the left of the =. Take a
look at this line of source code:

mylnt = 237,

This statement causes the value 237 to be placed in the memory allo-
cated for nyl nt. In this line of code, ny| nt is known as an 1-value
(for left-value) because it appears on the left side of the = operator. A
variable makes a fine I-value. A number (like 237) makes a terrible 1-
value. Why? Because values are copied from the right side to the left
side of the = operator. For example, the following line of code asks
the compiler to copy the value in nmyl nt to the number 237:

237 = nylnt;

Learn C under Windows 95/NT 57

C Basics: Variables and Operators

Operators
Since you can’t change the value of a number, the compiler will re-
port an error when it encounters this line of code (most likely, the
error message will say something like “1-value expected”).

By the Way As we just illustrated, you can use numerical constants (such as

237) directly in your code. In the programming world, these con-
stants are called literals. Just as there are different types of vari-
ables, there are also different types of literals. You'll see more on
this topic later in the book.

Look at this example:

int main(void)

{

int nylnt, anotherlnt;

mylnt = 503;
anot herlnt = nylnt;

return O;

Notice we’ve declared two variables in this program. One way to
declare multiple variables is the way we did here, separating the
variables by a comma (,). There’s no limit to the number of variables
you can declare using this method.

We could have declared these variables by using two separate decla-
ration lines:

int nmylnt;
i nt anot herl nt;

Either way is fine. As you'll see, C is an extremely flexible language.
However, there is one rule of thumb you should keep in mind. Al-
though there are exceptions, you'll generally declare all your vari-

58 Learn C under Windows 95/NT

C Basics: Variables and Operators
Operators

ables before any other type of statement occurs. Consider this
example:

int main(void)

{ int mylnt;
myl nt = 503;
i nt anotherlnt;
anot herlnt = nylnt;
return O;

}

This program will not compile (see the errors in Figure 5.6). Why? A
variable (anot her | nt) was declared after a nondeclaration state-
ment (ny| nt = 503).

: @ Emors & Warnings AEE

@ 2 1] BErors and wamings for “test.cup” E

LT .
W, Error . e¥pression syntax error
nain.c line 9 int anotherlnt;
e’Eerr : undefined identifier 'anotherlnt'
main.c line 11 anotherInt = myInt:

i o

Figure 5.6 These errors occurred because anot her I nt was declared
after an assignment statement.

Learn C under Windows 95/NT 59

C Basics: Variables and Operators

Operators

By the Way

Here’s the corrected version:
int main(void)
{

int nmylnt;
i nt anot herlnt;

myl nt = 503;
anot herlnt = nylnt;

return O;

This program starts by declaring two i nts:

int nmylnt;
i nt anot herl nt;

Next, the program assigns the value 503 to ny| nt:
myl nt = 503;

Finally, the value in my| nt is copied into anot her | nt:
anot herint = nylnt;

After this last statement, the variable anot her | nt also contains the
value 503.

Here’s another version of our program that also compiles:
i nt mai n(void)

i nt nyl nt ;

60 Learn C under Windows 95/NT

C Basics: Variables and Operators
Operators

myl nt = 503;
{

i nt anot her | nt;

anot herlnt = nylnt;
}

return O;

Wait a sec. This version declares a variable (anot her | nt) after a
nondeclaration statement. So how come it compiles? The left-curly
() after the assignment statement starts a new block of code,
which gives you another opportunity to declare more variables.
The right-curly (}) ends the block.

Although this may be interesting, it doesn’t come up that often.
Your best bet is to stick to the strategy of declaring a function’s
variables at the beginning of the function.

Why go to all this effort just to assign a value to a variable? Think of
it as learning to crawl before you can walk. As we cover more and
more of the C language, you'll start to see some of the fantastic
things you can accomplish. At the beginning of this chapter, we
looked at an example that took the values from three containers,
added them, and placed the result in a fourth container. That’s what
this is all about. C variables and operators allow you to manipulate
and manage data inside a program. The data might represent your
baseball card collection or the flight path of the Mars lander. Vari-
ables and operators allow you to massage the data to get the results
you want. Have patience and keep reading.

Let’s look at some other operators.

Learn C under Windows 95/NT 61

C Basics: Variables and Operators

Operators

The +, -, ++, and -- Operators

The + and - operators each take two values and reduce them to a
single value. For example, the following statement will first resolve
the right side of the = by adding the numbers 5 and 3.

mylnt =5 + 3;

Once that’s done, the resulting value (8) is assigned to the variable
on the left side of the =. This statement assigns the value 8 to the
variable ny| nt. Assigning a value to a variable means copying the
value into the memory allocated to that variable.

Here’s another example:

mylnt = 10;
anotherint = 12 - nylnt;

The first statement assigns the value 10 to my| nt. The second state-
ment subtracts 10 from 12 to get 2, then assigns the value 2 to
anot her | nt.

The ++ and -- operators operate on a single value only. The ++ oper-
ator increments (raises) the value by 1, and -- decrements (lowers)
the value by 1. Take a look:

mylnt = 10;
nmyl nt ++;

The first statement assigns my| nt a value of 10. The second state-
ment changes the value of ny| nt from 10 to 11. Here’s an example
with --:

nylnt = 10;
-- nylnt;

This time, the second line of code left myl nt with a value of 9. You
may have noticed that the first example showed the ++ following

62 Learn C under Windows 95/NT

C Basics: Variables and Operators
Operators

By the Way

my| nt, whereas the second example showed the -- preceding vy -
I nt.

The position of the ++ and -- operators determines when their oper-
ation is performed in relation to the rest of the statement. Placing the
operator to the right of a variable or an expression (postfix notation)
tells the compiler to resolve all values before performing the incre-
ment (or decrement) operation. Placing the operator to the left of the
variable (prefix notation) tells the compiler to increment (or decre-
ment) first, then continue evaluation. Confused? The following ex-
amples should make this point clear:

nylnt = 10;
anot herlnt = nylnt--;

The first statement assigns my| nt a value of 10. In the second state-
ment, the -- operator is to the right of my| nt. This use of postfix no-
tation tells the compiler to assign ny| nt’s value to anot her | nt
before decrementing ny| nt. This example leaves my| nt with a
value of 9 and anot her | nt with a value of 10.

Here's the same example, written using prefix notation:

mylnt = 10;
anot herint = -- nylnt;

This time, the -- is to the left of ny| nt. In this case, the value of
myl nt is decremented before being assigned to anot her | nt. The
result? Both nyl nt and anot her | nt are left with a value of 9.

This use of prefix and postfix notation shows both a strength and a
weakness of the C language. The strength is that C allows you to
accomplish a lot in a small amount of code. In the previous exam-
ples, we changed the value of two different variables in a single
statement. C is powerful.

The weakness is that C code written in this fashion can be ex-
tremely cryptic, difficult to read for even the most seasoned C pro-

Learn C under Windows 95/NT 63

C Basics: Variables and Operators

Operators

grammer.

Write your code carefully.

The += and —= Operators

In C, you can place the same variable on both the left and right sides
of an assignment statement. For example, the following statement
increases the value of ny| nt by 10:

mylnt = nylnt + 10;

The same results can be achieved using the += operator:
nylnt += 10;

In other words, the preceding statement is the same as:
nmylnt = nylnt + 10;

In the same way, the -= operator can be used to decrement the value
of a variable. The following statement decrements the value of
nyl nt by 10:

nylnt -= 10;

The *, /, *=, and /= Operators

The * and / operators each take two values and reduce them to a
single value, much the same as the + and - operators do. The follow-
ing statement multiplies 3 and 5, leaving ny| nt with a value of 15:

mylnt = 3 * 5;

64 Learn C under Windows 95/NT

C Basics: Variables and Operators
Operators

Important

By the Way

The following statement divides 5 by 2 and, if ny| nt is declared as
ani nt (or any other type designed to hold whole numbers), assigns
the integral (truncated) result to ny| nt:

nylnt =5/ 2;

The number 5 divided by 2 is 2.5. Since ny| nt can hold only whole
numbers, the value 2.5 is truncated, and the value 2 is assigned to

myl nt.

Math alert! Numbers like —37, 0, and 22, are known as whole
numbers, or integers. Numbers like 3.14159, 2.5, and .0001 are
known as fractional, or floating-point, numbers.

The *= and /= operators work much the same as their += and -=
counterparts. The following two statements are identical:

nylnt *= 10;
nylnt = nylnt * 10;

The following two statements are also identical:

nmylnt /= 10;
nylnt = nmylnt / 10;

The / operator doesn't perform its truncation automatically. The ac-
curacy of the result is limited by the data type of the operands. As
an example, if the division is performed using i nt s, the result will
be an i nt and is truncated to an integer value.

Several data types (such as f | oat, introduced in Chapter 8) sup-
port floating-point division, using the / operator.

Learn C under Windows 95/NT 65

C Basics: Variables and Operators

Operator Order

Operator Order

Using Parentheses ()

Sometimes, the expressions you create can be evaluated in many
ways. For example:

mylnt =5 + 3 * 2

You can add 5 + 3, then multiply the result by 2 (giving you 16). Al-
ternatively, you can multiply 3 * 2 and add 5 to the result (giving
you 11). Which is correct?

C has a set of built-in rules for resolving the order of operators. As it
turns out, the * operator has a higher precedence than the + opera-
tor, so the multiplication will be performed first, yielding a result of
11.

Although it helps to understand the relative precedence of the C op-
erators, it is difficult to keep track of them all. That’s why the C gods
gave us parentheses! Use parentheses in pairs to define the order in
which you want your operators performed. The following state-
ment will leave ny| nt with a value of 16:

nylnt = (5+ 3) * 2;
The following statement will leave ny| nt with a value of 11:
nylnt =5+ (3 * 2);

You can use more than one set of parentheses in a statement, as long
as they occur in pairs—one left parenthesis associated with each
right parenthesis. The following statement will leave ny| nt with a
value of 16:

nylnt = ((5+3) * 2);

Resolving Operator Precedence

As mentioned previously, C has built-in rules for resolving operator
precedence. If you have a question about which operator has a
higher precedence, refer to the chart in Figure 5.7. Here’s how the
chart works.

66 Learn C under Windows 95/NT

C Basics: Variables and Operators
Operator Order

Figure 5.7

=>_ ., Fpostiix __postix Left to Right
*pointer - Qaddressof funary _nary |~ prefx __prefix - gjz@Of Right to Left
Typecast Right to Left
Hmutiply [Ofp Left to Right
+binary - _binary Left to Right
<<lefeshit > >ightshit Left to Right
> >= <, <=, Left to Right
== I= Left to nght
&bitwise-and Left to R|ght
A Left to Right
| Left to Right
&& Left to Right
I Left to Right
?: Right to Left
= 4=, -=, *= [=, %=, >>= <<=, &=, |=, = Right to Left
, Left to Right

The relative precedence of C’s built-in operators. The higher
its position in the chart, the higher the operator’s precedence.

The higher an operator is in the chart, the higher its precedence. For
example, suppose that you are trying to predict the result of this line
of code:

mylnt =5 * 3 + 7,

First, look up the operator * in the chart. Hmmm . . . * seems to be in
the chart twice: once with label poi nt er and once with the label
mul ti ply. You can tell just by looking at this line of code that we
want the mul ti pl y version. The compiler is pretty smart. Just like
you, it can tell that this is the mul t i pl y version of *.

OK, now look up +. Yup, it’s in there twice also: once as unar y and
once as bi nary. Aunary + or - is the sign that appears before a

Learn C under Windows 95/NT 67

C Basics: Variables and Operators

Operator Order

number, as in +147 or —32768. In our line of code, the + operator has
two operands, so clearly bi nary + is the one we want.

Now that you've figured out which operator is which, you can see
that the mul ti pl y* is higher up on the chart than the bi nary +
and thus has a higher precedence. This means that the * will get
evaluated before the +, as if the expression were written as:

nylnt = (5 * 3) + 7;

So far, so good. Now consider this line of code:
mylnt = 27 * 6 %5;

Both of these operators are on the fourth line in the chart. Which one
gets evaluated first? If both operators under consideration are on
the same line in the chart, the order of evaluation is determined by
the entry in the chart’s rightmost column. In this case, the operators
are evaluated from left to right. In the current example, * will get
evaluated before %, as if the line of code were written:

nylnt = (27 * 6) % 5;
Now look at this line of code:
mylnt = 27 %6 * 5;

In this case, the % will get evaluated before the *, as if the line of
code were written:

nylnt = (27 %6) * 5;

Of course, you can avoid this exercise altogether with a judicious
sprinkling of parentheses. As you look through the chart, you'll def-
initely notice some operators that you haven’t learned about yet. As

68 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

you read through the book and encounter new operators, check
back on the chart to see where it fits in. In fact, go ahead and dogear
the page (pay for the book first, though!) so you can find the chart
again later.

Sample Programs

So far in this chapter, we’ve discussed variables (mostly of typei nt)
and operators (mostly mathematical). The program examples on the
following pages combine variables and operators into useful C
statements. We’ll also learn about a powerful part of the Standard
Library, the pri nt f () function.

Opening operator.cwp

Our next program, oper at or . cwp, provides a testing ground for

some of the operators covered in the previous sections.

oper at or . c declares a variable (my| nt) and uses a series of state-
ments to change the value of the variable. By including a pri nt f ()
after each of these statements, oper at or . ¢ makes it easy to follow
the variable, step by step, as its value changes.

Start up CodeWarrior by double-clicking on the project file

oper at or . cwp inside the Learn C Pr oj ect sdirectory, in the
subdirectory named 05. 01 - oper at or. The project window for
oper at or . cwpshould appear (Figure 5.8).

Run oper at or. cwp by selecting Run from the Project menu.
CodeWarrior will first attempt to compile oper at or . ¢, turning it
into an application named oper at or. If you haven’t mucked
around with the source code, things should proceed smoothly, re-
sulting in a clean compile. Once the code compiles, CodeWarrior
will run oper at or, displaying information in the console window.
The information displayed by your program is also known as your
program’s output. Compare your output to that shown in Figure
5.9. They should be the same.

Learn C under Windows 95/NT 69

C Basics: Variables and Operators
Sample Programs

' DPERATOR.CWP M=l E3

|E File Code | Data| 4
- w SOUrce : 0;

F

[

- 1
w AnsicxB3e.l 1]

w Gdid2.lib 1]

w Kernel32.lil 1]
1]

1]

I

w Mwcrtllib
w User32.lib

B fileis)

Siloooo oo
ﬁEJEIEJEJEJ
'-'..':”-:-. 14

Figure 5.8 The oper at or. cwpproject window.

Figure 5.9 The output generated by oper at or.

70 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

By the Way

In ancient times, programmers used character-based displays to
communicate with their computers. These displays were called
consoles. A typical console screen supported 24 rows of text, each
up to 80 columns wide. When the computer wanted to communi-
cate with you, it displayed some characters on your console. To re-
spond to the computer, you'd type at your keyboard. The
characters you typed would also appear on your console.

Programmers love character-based displays because they’re sim-
ple. To display text on a window-based system (like Windows or

the Macintosh), you have to worry about things like text font, size,
and style. You have to worry about lining all your text up just right.

With a character-based display, you didn’t worry about things like
that. Typically, you just sent the text out to the display, one line at a
time. When you reached the bottom of the screen, the console
would scroll the text automatically. So easy!

Modern programming environments, such as CodeWarrior, offer
you the best of both worlds. For example, CodeWarrior supports
all the elements specific to Windows, such as pull-down menus,
scroll bars, windows, and icons.

CodeWarrior also features a standard, scrolling console window.
The console window is essentially a 24-line, 80-column display
console embedded in a Windows window. Since many of the Stan-
dard Library routines, such as pri nt f (), were designed with this
simpler, character-based display in mind, we’ll make extensive use
of the console window as we learn C.

Stepping Through the Source Code

Before we step through the source code in oper at or . ¢, you might
want to bring the source code up on your screen (double-click on
the name oper at or . cin the project window, or select Open from
the File menu). A new window will appear, listing the source code
in the file oper at or . c.

Learn C under Windows 95/NT 71

C Basics: Variables and Operators
Sample Programs

The file oper at or . ¢ starts off with a #i ncl ude statement that
gives us access to a bunch of Standard Library functions, including
printf():

#i ncl ude <stdi o. h>
Then, mai n() starts out by defining an i nt named nyl nt.

int main(void)

{
int nmylnt;

By the Way Note that earlier the term “declaring a variable” was used; now the
term “defining” is being used. What's the difference? A variable
declaration is any statement that specifies a variable’s name and
type—for example:

int nmylnt;

A variable definition is a declaration that causes memory to be al-
located for the variable. Since the previous statement does cause
memory to be allocated for myl nt, it does qualify as a definition.
Later in the book, you'll see some declarations that don’t qualify as
definitions. For now, just remember that a definition causes mem-
ory to be allocated.

At this point in the program (after ny| nt has been declared but be-
fore any value has been assigned to it), ny| nt is said to be uninitial-
ized. In computerese, the term initialization refers to the process of
establishing a variable’s value for the first time. A variable that has
been declared but that has not had a value assigned to it is said to be
uninitialized. You initialize a variable the first time you give it a
value.

Since ny| nt was declared to be of type i nt and since CodeWarrior
is currently set to use 4-byte i nts, 4 bytes of memory were reserved
for my| nt. Since we haven’t placed a value in those 4 bytes yet, they

72 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

Important

could contain any value at all. Some compilers place a value of 0 in a
newly allocated variable; some do not. The key is, don’t depend on
a variable being preset to a specific value. If you want a variable to

contain a specific value, assign the value to the variable yourself!

Later in the book, you'll learn about global variables. Global vari-

ables are always given an initial value by the compiler. All the vari-
ables used in this chapter are local variables, not global variables.
Local variables are not guaranteed to be initialized by the compiler.

The next line of code uses the * operator to assign a value of 6 to ny-
I nt. Following that, we use pri nt f () to display the value of
nyl nt in the console window:

mylnt = 3 * 2;
printf(“nylnt ---> %\n", nylnt);

The code between pri nt f ()’s left and right parentheses is known
as a parameter list. The parameters, or arguments, in a parameter
list are automatically provided to the function you are calling (in
this case, pri nt f ()). The receiving function can use the parameters
passed to it to determine its next course of action. We'll get into the
specifics of parameter passing in Chapter 7. For the moment, let’s
talk about pri nt f () and the parameters used by this Standard Li-
brary function.

The first parameter passed to pri nt f () defines what will be drawn
in the console window. The simplest call to pri nt f () uses a quoted
text string as its only parameter. A quoted text string consists of a
pair of double-quote characters (“) with zero or more characters be-
tween them. For example, this call of pri nt f () will draw the char-
acters Hel | o! in the console window:

printf(“Hello!”);

Notice that the double-quote characters are not part of the text
string.

Learn C under Windows 95/NT 73

C Basics: Variables and Operators

Sample Programs

By the Way

You can request that pri nt f () draw a variable’s value in the midst
of the quoted string. In the case of an i nt, do this by embedding the
two characters %@ within the first parameter and by passing the i nt
as a second parameter. Then, pri nt f () will replace the % with the
value of the i nt.

In these two lines of code, we first set nyl nt to 6 and use pri nt f ()
to print the value of ny| nt in the console window:

mylnt = 3 * 2;
printf(“nylnt ---> 9%l\n", nylnt);

This code produces the following line of output in the console win-
dow:

nmylnt ---> 06

The two characters “\ n” in the first parameter represent a carriage
return and tell pri nt f () to move the cursor to the beginning of the
next line before it prints any more characters.

The %l is known as a format specifier. The d in the format speci-
fier tells pri nt f () that you are printing an integer variable, such
as an i nt . We’ll cover format specifiers in detail in Chapter 8.

You can place any number of %specifications in the first parameter,
as long as you follow the first parameter by the appropriate number
of variables. Here’s another example:

i nt varl, var?2;

varl = 5;
var2 = 10;
printf(“varl = %@d\n\nvar2 = %l\n”, varl, var2);

74 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

The preceding code will draw the following text in the console win-
dow:

varl 5

var 2 10

Notice the blank line between the two lines of output. It was caused
by the “\ n\ n” in the firstpri nt f () parameter. The first carriage re-
turn placed the cursor at the beginning of the next console line (di-
rectly under the v in var 1). The second carriage return moved the
cursor down one more line, leaving a blank line in its path.

Let’s get back to our source code. The next line of oper at or . cin-
crements my| nt from 6 to 7 and prints the new value in the console
window:

mylnt += 1;
printf(“nylnt ---> %\n", nylnt);

The next line decrements ny| nt by 5 and prints its new value, 2, in
the console window:

nmylnt -=5;
printf(“nylnt ---> 9%\n", nylnt);

Next, nyl nt is multiplied by 10, and its new value, 20, is printed in
the console window:

mylnt *= 10;
printf(“nylnt ---> %\n", nylnt);

Next, myl nt is divided by 4, resulting in a new value, 5.

nylnt /= 4;
printf(“nylnt ---> %\n", nylnt);

Learn C under Windows 95/NT 75

C Basics: Variables and Operators

Sample Programs

Finally, ny| nt is divided by 2. Since 5 divided by 2 is 2.5 (not a
whole number), a truncation is performed, and ny| nt is left with a
value of 2:

nylnt /= 2;
printf(“nylnt ---> %", nylnt);

return O;

}

Opening postfix.cwp

Our next program demonstrates the difference between postfix and
prefix notation (the ++ and -- operators defined earlier in the chap-
ter). Using the Windows Explorer or My Computer, go into the
Learn C Projects directory, then into the 05. 02 - postfix
subdirectory, and double-click on the project file post f i x. cwp.
CodeWarrior will close the project file oper at or. cwp and open
postfi x. cwp

Take a look at the source code in the file post fi x. cand try to pre-
dict the result of the two pri nt f () calls before you run the pro-
gram. Remember, you can open a source code listing for post fi x. ¢
by double-clicking on the name post f i x. ¢ in the project window.
Careful, this one’s tricky.

Once your guesses are locked in, select Run from the Project menu.
How’d you do? Compare your two guesses with the output in Fig-
ure 5.10. Let’s look at the source code.

76 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

Figure 5.10

'E postfix

The output generated by the program post fi x.

Stepping Through the Source Code

The first half of post f i x. cis pretty straightforward. The variable
myl nt is defined to be of type i nt. Then, nyl nt is assigned a value
of 5. The tricky part comes next:

#i ncl ude <stdi o. h>

int main(void)

{
int nmylnt;

mylnt = 5;

The first call to pri nt f () has a statement embedded in it. This is
another great feature of the C language. Where there’s room for a
variable, there’s room for an entire statement. Sometimes, it’s conve-
nient to perform two actions within the same line of code. For exam-

ple:

Learn C under Windows 95/NT 77

C Basics: Variables and Operators

Sample Programs

By the Way

printf(“nylnt ---> %l\n”, nylnt = nylnt * 3);

This line of code first triples the value of ny| nt, then passes the re-
sult (the tripled value of myl nt) on to pri nt f (). The same could
have been accomplished using two lines of code:

nylnt = nylnt * 3;
printf(“nylnt ---> 9%l\n", nylnt);

In general, when the compiler encounters an assignment statement
where it expects a variable, it first completes the assignment, then
passes on the result of the assignment as if it were a variable. Let’s
see this technique in action.

In post f i X. ¢, our friend the postfix operator emerges again. Just
prior to the two calls of pri nt f (), nyl nt has a value of 5. The first
printf () increments the value of my| nt using postfix notation:

printf(“nylnt ---> %l\n”, nylnt++);

The use of postfix notation means that the value of ny| nt will be
passed on to pri nt f () before nmyl nt is incremented. This means
that the first pri nt f () will accord nmyl nt a value of 5. However,
when the statement is finished, nmy| nt will have a value of 6.

The second pri nt f () acts in a more rational (and preferable) man-
ner. The prefix notation guarantees that ny| nt will be incremented
(from 6 to 7) before its value is passed on topri nt f ():

printf(“nylnt ---> %", ++nylnt);

return O;

}

Can you break each of these pri nt f () statements into two sepa-
rate ones? Give it a try, thenread on . ..

The first pri nt f () looks like this:

78 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

printf(“nylnt ---> %l\n”, nylnt++);
Here’s the two-statement version:

printf(“nylnt ---> %\n", nylnt);
nmyl nt ++;

Notice that the statement incrementing nyl nt was placed after
the printf (). Do you see why? The postfix notation makes this
necessary. Run through both versions and verify this for yourself.
The second pri nt f () looks like this:

printf(“nylnt ---> 9%l”, ++nylnt);

Here’s the two-statement version:

++nyl nt ;

printf(“nylnt ---> %\ n”, nylnt);

This time, the statement incrementing myl nt came before the

printf (). Thistime, it's the prefix notation that makes this neces-
sary. Again, go through both versions and verify this for yourself.

The purpose of demonstrating the complexity of the postfix and
prefix operators is twofold. On one hand, it’s extremely important
that you understand exactly how these operators work from all an-
gles. This will allow you to write code that works and will aid you
in making sense of other programmers’ code. On the other hand,
embedding prefix and postfix operators within function parameters
may save you lines of code but, as you can see, may prove a bit con-
fusing.

Learn C under Windows 95/NT 79

C Basics: Variables and Operators

Sample Programs

Figure 5.11

Opening slasher.cwp

The last program in Chapter 5, sl asher . cwp, demonstrates sev-
eral backslash combinations. Using the Windows Explorer or My
Computer, open the Learn C Proj ect s directory; then open the
05. 03 - sl asher subdirectory and double-click on the project file
sl asher . cwp. When CodeWarrior opens the sl asher . cwp
project window, run sl asher. cwp by selecting Run from the
Project menu. You should see something like the console window
shown in Figure 5.11.

v2’s a backslash...N\...for vou.
Here's a double guote
Here are a few tahs...

The output from sl asher. cwp.

Stepping Through the Source Code

sl asher . c consists of a series of pri nt f () calls, each of which
demonstrates a different backslash combination. The first pri nt f ()
prints a series of 10 zeros, followed by the characters\ r (also
known as the backslash combination\r):

#i ncl ude <stdi o. h>

80 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sample Programs

int main(void)

{
printf(“0000000000\r”);

The \ r backslash combination generates a carriage return without a
line feed, leaving the cursor at the beginning of the current line (un-
like \ n, which leaves the cursor at the beginning of the next line
down).

The nextpri nt f () prints five 1s over the first five Os, as if someone
had printed the text string “1111100000". The\ n at the end of this
print f () moves the cursor to the beginning of the next line in the
console window:

printf(“11111\n”);

The next pri nt f () demonstrates \ b, the backspace backslash com-
bination, which tells pri nt f () to back up one character so that the
next character printed replaces the last character printed. This

pri ntf () sends out four Os, backspaces over the last two, then
prints two 1s. The result is as if you had printed the string “ 0011":

printf(“0000\b\bll\n”);

The \ can also be used to cancel a character’s special meaning
within a quoted string. For example, the backslash combination \ \
generates a single \ character. The difference is, this \ loses its spe-
cial backslash powers. It doesn’t affect the character immediately
following it.

The backslash combination \” generates a “ character, taking away
the special meaning of the “. Without the \ before it, the “ character
would mark the end of the quoted string. The \ allows you to in-
clude a “ inside a quoted string.

The backslash combinations \ \ and \” are demonstrated in the next
twoprintf () calls:

printf(“Here’s a backslash...\\...for you.\n”);

Learn C under Windows 95/NT 81

C Basics: Variables and Operators
Sprucing Up Your Code

printf(“Here’s a double quote...\”...for
you.\n”);

The\'t combination generates a single tab character. The console
window has a tab stop every eight spaces. Here’sapri nt f () ex-
ample:
printf(“Here are a few tabs...\t\t\t\t...for
you.\n”);

The \ a backslash combination provides a simple way to make your
PC beep.

printf(“Here are a few beeps...\a\a\a\a...for
you.”);

return O;

}

Those are all the sample programs for this chapter. Before we move
on, however, I'd like to talk to you about something personal. It's
about your coding habits.

Sprucing Up Your Code

You are now in the middle of your C learning curve. You've learned
about variables, types, functions, and bytes. You've learned about
an important part of the Standard Library, the function pri nt f ().
It's at this point in the learning process that programmers start de-
veloping their coding habits.

Coding habits are the little things programmers do that make their
code a little bit different (and hopefully better!) than anyone else’s.
Before you get too set in your ways, here are a few coding habits
you can, and should, add to your arsenal.

82 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sprucing Up Your Code

Source Code Spacing

You may have noticed the tabs, spaces, and blank lines scattered
throughout the sample programs. These are known in C as white
space. With a few exceptions, white space is ignored by C compilers.
Believe it or not, as far as the C compiler goes, the following two
programs are equivalent:

mai n()
{
I nt nylnt;mylnt

5

printf(“mylnt=",nylnt);}

mai n()
{

int nylnt;

mylnt = 5;

printf(“nylnt =", nylnt);
}

The C compiler doesn’t care whether you put 5 statements per line
or whether you put 20 carriage returns between your statements
and your semicolons. One thing the compiler won’t let you do is
place white space in the middle of a word, such as a variable or a
function name. For example, the following line of code won’t com-
pile:

my Int =5;

Learn C under Windows 95/NT 83

C Basics: Variables and Operators
Sprucing Up Your Code

Instead of a single variable named ny| nt, the compiler sees two
items: one named ny and the other named | nt . White space can
confuse the compiler.

Too little white space can also confuse the compiler. For example,
this line of code won’t compile:

i ntnyl nt;

The compiler needs at least one piece of white space to tell where
the type ends and where the variable begins. On the other hand, as
you've already seen, this line compiles just fine:

nyl nt =5;

Since a variable name can’t contain the character =, the compiler has
no problem telling where the variable ends and where the operator
begins.

As long as your code compiles properly, you're free to develop your
own style for using white space. Here are a few hints:

. Place a blank line between your variable declarations and the
rest of your function’s code. Also, use blank lines to group
related lines of code.

. Sprinkle single spaces throughout a statement. Here is a line
without spaces:

printf(“nmylnt=",nylnt);
Compare that line with this line:
printf(“nylnt =", nylnt);

The spaces make the second line easier to read.

. When in doubt, use parentheses. Compare these two lines:

84 Learn C under Windows 95/NT

C Basics: Variables and Operators
Sprucing Up Your Code

nyl nt =var 1+2*var 2+4;
nylnt = varl + (2 * var2) + 4,

What a difference parentheses and spaces make!

. Always start variable names with a lowercase letter, using an
uppercase letter at the start of each subsequent word in the
name. This yields variable names such as nyVar,
ar eWeDone, and enpl oyeeNane

. Always start function names with an uppercase letter, using
an uppercase letter at the start of each subsequent word in
the name. This yields function names such as
DoSoneWor k(), Hol dThese(), and Deal TheCar ds().

These hints are merely suggestions. Use standards that make sense
for you and the people with whom you work. The object here is to
make your code as readable as possible.

Comment Your Code

One of the most critical elements in the creation of a computer pro-
gram is clear and comprehensive documentation. When you deliver
your award-winning graphics package to your customers, you'll
want to have two sets of documentation. One set is for your custom-
ers, who'll need a clear set of instructions to guide them through
your wonderful new creation.

The other set of documentation consists of the comments you'll
weave throughout your code. Comments in source code act as a sort
of narrative, guiding a reader through your source code. You'll in-
clude comments that describe how your code works, what makes it
special, and what to look out for when changing it. Well-commented
code includes a comment at the beginning of each function to de-
scribe the function, the function parameters, and the function’s vari-
ables. It’s also a good idea to sprinkle individual comments among
your source code statements, explaining the role each line plays in
your program’s algorithm. How do you add a comment to your
source code? Take a look . . .

Learn C under Windows 95/NT 85

C Basics: Variables and Operators
Sprucing Up Your Code

Important

All C compilers recognize the sequence / * as the start of a com-
ment and will ignore all characters until they reach the sequence */
(the end of comment characters). Here’s some commented code:

int main(void)

{
i nt nunPi eces;/* Nunber of pieces of pie left */
nunPi eces = 8;/* W started with 8 pieces */
nunPi eces--;/* Marge had a piece */
nunPi eces--;/* Lisa had a piece */
nunPi eces -= 2;/* Bart had two pieces!! */
nunPi eces -= 4;/* Homer had the rest!!!l */
printf(“Slices left = %", nunPieces);
/* How about sone */
/* cake instead? */
return O;
}

Notice that although most of the comments fit on the same line, the
last comment was split among two lines. The preceding code will
compile just fine.

Most modern C compilers will also accept the C++ commenting
convention. C++ ignores the remainder of a line of code, once it
encounters the characters / / . For example, this line of code com-
bines both comment styles:

printf(“Coments” /* C comment */);
/'l C++ coment!!!

Use the C++ comment mechanism only if you are sure you won't

86 Learn C under Windows 95/NT

C Basics: Variables and Operators
What’s Next?

be porting your code to a C compiler that doesn’t understand the
C++ mechanism.

Since all the programs in this book are examined in detail, line by
line, the comments were left out. This was done to make the exam-
ples as simple as possible. In this instance, do as we say, not as we
do. Comment your code. No excuses!

What's Next?

Exercises

This chapter introduced the concepts of variables and operators,
tied together in C statements, separated by semicolons. We looked
at several examples, each of which made heavy use of the Standard
Library function pri nt f (). We learned about the console window,
quoted strings, and backslash combinations.

Chapter 6 will increase our programming options significantly, in-
troducing C control structures, such as the f or loop and thei f . ..
then ... el se statement. Get ready to expand your C program-
ming horizons. See you in Chapter 6.

1. Find the error in each of the following code fragments:
a. printf(Hello, world);

b. i nt nylnt nyQherlnt;

C. nylnt =+ 3;

d. printf(“nylnt = %l”);

e. printf(“nylnt =, nylnt);

f. printf(“nylnt = %\”, nylnt);

8. mylnt + 3 = nylnt;

h. int main(void)

{

int mylnt;

Learn C under Windows 95/NT 87

C Basics: Variables and Operators
Exercises

mylInt = 3;

int anotherInt;
anotherInt = mylInt;

return 0O;

2. Compute the value of nyl nt after each code fragment is
executed:

a. mylnt = 5;

nmylnt *= (3+4) * 2;
b. nylnt = 2;

nylnt *= (3*4) | 2) - 9
C. mylnt = 2;

nylnt /= 5;

nyl nt - -;
d. mylnt = 25;

nylnt /=3 * 2;
e. nyl nt (3*4*5) | 9;

nylnt -= (3+4) * 2;
f. mylnt = 5;

printf(“nylnt = %", nylnt = 2);
g. nylnt = 5;

nyl nt (3+4) * 2;
h. nylnt = 1;

nylnt /= (3+4) /| 6;

88 Learn C under Windows 95/NT

Controlling Your
Program’s Flow

So far, you've learned quite a bit about the C language. You know
about functions (especially one named mai n()). You know that
functions are made up of statements, each of which is terminated by
a semicolon. You know about variables, which have a name and a
type. Up to this point, you've dealt with variables of type i nt.

You also know about operators, such as =, +, and +=. You've learned
about postfix and prefix notation and the importance of writing
clear, easy-to-understand code. You've learned about an important
programming tool, the console window. You've learned about the
Standard Library, a set of functions supplied as standard equipment
with every C programming environment. You've also learned about
printf (), aninvaluable component of the Standard Library.

Finally, you've learned a few housekeeping techniques to keep your
code fresh, sparkling, and readable. Comment your code, because
your memory isn’t perfect, and insert some white space to keep
your code from getting too cramped.

Flow Control

One thing you haven’t learned about the C language is flow control.
The programs we’ve written so far have all consisted of a straight-
forward series of statements, one right after the other. Every state-
ment is executed in the order it occurred.

Flow control is the ability to define the order in which your pro-
gram’s statements are executed. The C language provides several
keywords you can use in your program to control your program’s
flow. One of these is the keyword i f .

Learn C under Windows 95/NT 89

Controlling Your Program’s Flow
Flow Control

Thei f Statement

The keyword i f allows you to choose among several options in
your program. In English, you might say something like this:

If it’s raining outside I'll bring nmy unbrella; oth-
erwse | won't.

In the previous sentence, you're using “if” to choose between two
options. Depending on the weather, you'll do one of two things.
You'll bring your umbrella or you won’t bring your umbrella. C's i f
statement gives you this same flexibility. Here’s an example:

int main(void)

{
int nmylnt;

mylnt = 5;

if (nylnt == 0)
printf(“nylnt is equal to zero.”);
el se
printf(“nylnt is not equal to zero.”);

return O;

This program declares ny| nt to be of type i nt and sets the value of
nyl nt to 5. Next, we use the i f statement to test whether nyl nt is
equal to 0. If myl nt is equal to 0 (which we know is not true), we’ll
print one string. Otherwise, we'll print a different string. As ex-
pected, this program prints the string“ nmyl nt i s not equal to
zero”.

Ani f statement can come in two ways. The first, known as plain
old i f, fits this pattern:

I f (expression)
st at enment

90 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Flow Control

Ani f statement will always consist of the word i f, a left parenthe-
sis, an expression, a right parenthesis, and a statement. (We'll define
both “expression” and “statement” in a minute.) This first form of

i f executes the statement if the expression in parentheses is true.
An English example of the plaini f might be:

If it’s raining outside, 1’1l bring my unbrell a.

Notice that this statement tells us what will happen only if it’s rain-
ing outside. No particular action will be taken if it is not raining.

The second form of i f, known asi f - el se, fits this pattern:

i f (expression)
st at emrent

el se
st at emrent

Ani f - el sestatement will always consist of the word i f, a left pa-
renthesis, an expression, a right parenthesis, a statement, the word
el se, and a second statement. This form of i f executes the first
statement if the expression is true and executes the second state-
ment if the expression is false. An English example of ani f - el se
statement might be:

If it’s raining outside, 1’1l bring my unbrella,
otherwise | won't.

Notice that this example tells us what will happen if it is raining
outside (I'll bring my umbrella) and if it isn’t raining outside (I
won’t bring my umbrella). The example programs presented later in
the chapter demonstrate the proper use of bothi f andi f - el se.

Our next step is to define our terms.

Learn C under Windows 95/NT 91

Controlling Your Program’s Flow

Expressions

Expressions

By the Way

In C, an expression is anything that has a value. For example, a vari-
able is a type of expression, since a variable always has a value.
(Even an uninitialized variable has a value—we just don’t know
what the value is!) The following are all examples of expressions:

o mylnt + 3
. (nylnt + anotherint) * 4
o myl nt ++

An assignment statement is also an expression. Can you guess the
value of an assignment statement? Think back to Chapter 5. Re-
member when we included an assignment statement as a parameter
to pri nt f ()? The value of an assignment statement is the value of
its left side. Check out the following code fragment:

mylnt = 5;
nmylnt += 3;

Both of these st at enent s qualify as expressions. The value of the
first expression is 5. The value of the second expression is 8 (because
we added 3 to nmy| nt’s previous value).

Literals can also be used as expressions. The number 8 has a value.
Guess what? Its value is 8. All expressions, no matter what their
type, have a numerical value.

Technically, there is an exception to this rule. The expression

(voi d) 0 has no value. In fact, any value or variable cast to type
voi d has no value. Ummm, but, Dave, what's a cast? What is type
voi d? We'll get to both of these topics later in the book. For the
moment, when you see voi d, think “no value.”

True Expressions

Earlier, we defined thei f statement as follows:

92 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

if (expression)
st at ement

We then said that the statement gets executed if the expression is
true. Let’s look at C’s concept of truth.

Everyone has an intuitive understanding of the difference between
true and false. I think we’d all agree that the statement is false:

5 equals 3
We’d also agree that the following statement is true:
5 and 3 are both greater than O

This intuitive grasp of true and false carries over into the C lan-
guage. In the case of C, however, both true and false have numerical
values. Here’s how it works.

In C, any expression that has a value of 0 is said to be false. Any ex-
pression with a value other than 0 is said to be true. As stated earlier,
ani f statement’s statement gets executed if its expression is true. To
put this more accurately:

Ani f statement’s statement gets executed if (and only if) its expres-
sion has a value other than 0.

Here’s an example:
nmylnt = 27,

if (nylnt)
printf(“nylnt is not equal to 0");

The i f statement in this piece of code first tests the value of ny| nt.
Since ny| nt is not equal to 0, the pri nt f () gets executed.

Learn C under Windows 95/NT 93

Controlling Your Program’s Flow
Expressions

Comparative Operators

C expressions have a special set of operators, called comparative
operators. Comparative operators compare their left sides with their
right sides and produce a value of either 1 or 0, depending on the
relationship of the two sides.

For example, the operator == determines whether the expression on
the left is equal in value to the expression on the right. In the follow-
ing expression, my | nt evaluates to 1if myl nt is equal to 5 and to 0 if
nyl nt is not equal to 5:

nmylnt ==

Here’s an example of the == operator at work:

if (nylnt == 5)
printf(“nylnt is equal to 5");

If nyl nt is equal to 5, the expression nyl nt == 5evaluates to 1
and print f () gets called. If nyl nt isn’t equal to 5, the expression
evaluates to 0 and the pri nt f () is skipped. Just remember, the key
to triggering an i f statement is an expression that resolves to a
value other than 0.

Figure 6.1 shows some of the other comparative operators. You'll
see some of these operators in the example programs later in the
chapter.

Operator Resolves to 1 if...

== left side is equal to right

<= left side is less than or equal to right
>= left side is greater than or equal to right
< left side is less than right

> left side is greater than right

! left side is not equal to right

Figure 6.1 Some comparative operators.

94 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

By the Way

Figure 6.2

Logical Operators

Our next set of operators, collectively known as logical operators,
are modeled on the mathematical concept of truth tables, and make
use of t rue and f al se. If you don’t know much about truth tables
(or are just frightened by mathematics in general), don’t panic. Ev-
erything you need to know is outlined in the next few paragraphs.

To make your programs a little easier to read, you can define the
constantstrue and f al se. The constantt r ue has a value of 1,
and the constant f al se has a value of 0. You define t r ue and

f al se like this:

#defi ne true 1
#def i ne false O

The first of the set of logical operators is the ! operator. The! oper-
ator turns t r ue into f al se and f al seinto t r ue. Figure 6.2 shows
the truth table for the ! operator. In this table, T stands fort r ue and
F stands for f al se. The letter Ain the table represents an expres-
sion. If the expression Ais t r ue, applying the ! operator to Ayields
the value f al se. If the expression Ais f al se, applying the ! opera-
tor to Ayields the value t r ue. The ! operator is commonly referred
to as the NOT operator; ! Ais pronounced Not A.

T F
F T

The truth table for the ! operator.

Here’s a piece of code that demonstrates the ! operator:

int myFirstlint, nySecondl nt;

Learn C under Windows 95/NT 95

Controlling Your Program’s Flow

Expressions

nmyFirstint = fal se;
nySecondlnt = ! nyFirstlnt;

First, we declare two i nts. We assign the value f al se to the first

i nt, then use the ! operator to turn the f al seintoat rue and as-
sign it to the second i nt . This is really important. Take another look
at Figure 6.2. The ! operator convertst r ueintof al seand f al se
into t r ue. What this really means is that! converts 1 to 0 and 0 to 1.
This really comes in handy when you are working with ani f state-
ment’s expression, like this one:

i f (nySecondlnt)
printf(“nySecondlnt nust be true”);

The previous chunk of code translated my Secondl nt from f al se
to t r ue, which is the same thing as saying that my SecondI nt has a
value of 1. Either way, nySecondl nt will cause the i f to fire, and
the pri nt f () will get executed.

Take a look at this piece of code:

if (! nySecondlnt)
printf(“nySecondl nt nust be false”);

This pri nt f () will get executed if nySecondl nt isf al se. Do you
see why? If mySecondlI nt is f al se, then ! nySecondl nt must
betrue.

The ! operator is a unary operator. Unary operators operate on a
single expression (the expression to the right of the operator). The
other two logical operators, & and | | , are binary operators. Binary
operators, such as the == operator presented earlier, operate on two
expressions, one on the left side and one on the right side of the op-
erator.

The && operator is commonly referred to as the and operator. The
result of an && operation is t r ue if, and only if, both the left side
and the right side are t r ue. Here’s an example:

96 Learn C under Windows 95/NT

Controlling Your Program’s Flow

Expressions

I nt hasCar, hasTi neToG veRi de;
hasCar = true;
hasTi nreToG veR de = true;
if (hasCar && hasTi neToG veRi de)

printf(“Hop in - 1’1l give you a ride!\n”);
el se

printf(“lI’ve either got no car, no tine, or

neither!\n”);

This example uses two variables. One indicates whether the pro-
gram has a car, the other whether the program has time to give us a
ride to the mall. All philosophical issues aside (Can a program have
a car?), the question of the moment is, Which pri nt f () will fire?
Since both sides of the & were set to t r ue, the first pri nt f () will
be called. If either one (or both) of the variables were set to f al se,
the second pri nt f () would be called. Another way to think of this
is that we’ll get a ride to the mall only if our friendly program has a
car and has time to give us a ride. If either of these is not true, we're
not getting a ride. By the way, notice the use here of the second form
of i f:thei f - el sestatement.

The | | operator is commonly referred to as the or operator. The re-
sultof a | | operation ist r ue if either the left side or the right side,
or both sides, of the| | aret r ue. Put another way, the resultof a | |

is f al seif, and only if, both the left side and the right side of the | |

are f al se. Here’s an example:

i nt not hi ngEl seOn, newEpi sode;

not hi ngEl seOn = true;
newEpi sode = true;

if (newkpi sode || nothingEl seOn)
printf(“Let’s watch Star Trek!\n”);
el se

Learn C under Windows 95/NT 97

Controlling Your Program’s Flow

Expressions

printf(“Sonmething else is on or 1’'ve seen this
one.\n”);

This example uses two variables to decide whether we should
watch “Star Trek” (your choice: TOS, TNG, DS9, or VOY). One vari-
able indicates whether anything else is on right now, and the other
tells you whether this episode is a rerun. If this is a brand new epi-
sode or if nothing else is on, we’ll watch “Star Trek.”

Here’s a slight twist on the previous example:

I nt not hi ngEl seOn, itsARerun;

not hi ngEl seOn = true;
itsARerun = fal se;

if ((! itsARerun) || nothingEl seOn)
printf(“Let’s watch Star Trek!\n”);
el se
printf(“Sonmething else is on or |I’'ve seen this
one.\n”);

This time, we've replaced the variable newEpi sode with its exact
opposite, i t SARer un. Look at the logic that drives the i f state-
ment. We're combining i t SARer unwith the ! operator. Before, we
cared whether the episode was a newEpi sode. This time, we are
concerned that the episode is not a rerun. See the difference?

Both the && and the | | operators are summarized in the table in Fig-
ure 6.3. If you look in the directory Learn C Proj ect s you'll find
a subdirectory named 06. 01 - trut hTest er. The file

t rut hTest er . ccontains the three examples we just went through.
Take some time to play with the code. Take turns changing the vari-
ables from t r ue to f al se and back again. Use this code to get a
good feel for the !, && and | | operators.

98 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

Figure 6.3

By the Way

Truth table for the && and || operators.

On most keyboards, you type the character & by holding down the
shift key and typing a 7. You type the character | by holding down
the shift key and typing a \ (backslash). Don’t confuse the | with
the letters | or i or with the ! character.

Compound Expressions

All of the examples presented so far have consisted of relatively
simple expressions. Here’s an example that combines several opera-
tors:

int nylnt;
nylnt = 7,
if ((nylnt >= 1) && (nylnt <= 10))

printf(“nylnt is between 1 and 10");
el se

printf(“nylnt is not between 1 and 10");

This example tests whether a variable is in the range between 1 and
10. The key here is the expression:

(mylnt >= 1) && (nmylnt <= 10)

Learn C under Windows 95/NT 99

Controlling Your Program’s Flow

Expressions

This expression lies between the i f statement’s parentheses and
uses the && operator to combine two smaller expressions. Notice
that the two smaller expressions are each surrounded by parenthe-
ses to avoid any ambiguity. If we left out the parentheses, the ex-
pression might not be interpreted as we intended:

nmylnt >= 1 && nylnt <= 10
Once again, use parentheses for safe computing.

Statements
At the beginning of the chapter, we defined thei f statement as:

if (expression)
st at enent

We've covered expressions pretty thoroughly. Now, we’ll turn our
attention to the statement.

At this point in the book, you probably have a pretty good intuitive
model of the statement. You’d probably agree that this is a state-
ment:

nylnt = 7,
But is this one statement or two?

if (isCold)
printf(“Put on your sweater!”);

The previous code fragment is a statement within another state-
ment. The pri nt f () resides within a larger statement, thei f state-
ment.

100 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

The ability to break your code out into individual statements is not a
critical skill. Getting your code to compile, however, is critical. As
we introduce new types of statements, pay attention to the state-
ment syntax. And pay special attention to the examples. Where do
the semicolons go? What distinguishes this type of statement from
all other types?

As you build up your repertoire of statement types, you'll find
yourself using one type of statement within another. That’s perfectly
acceptable in C. In fact, every time you create ani f statement,
you'll use at least two statements, one within the other. Take a look
at this example:

if (nyvar >= 1)
if (nyvVar <= 10)
printf(“nyVar is between 1 and 10");

This example uses an i f statement as the statement for another i f
statement. This example calls the pri nt f () if bothi f expressions
are t r ue, thatis, if myVar is greater than or equal to 1 and less than
or equal to 10. You could have accomplished the same result with
this piece of code:

if ((nyvar >= 1) && (nyVar <= 10))
printf(“nyVar is between 1 and 10");

The second piece of code is a little easier to read. There are times,
however, when the method demonstrated in the first piece of code is
preferred. Take a look at this example:

if (nyvar '=0)
if ((1/ nmyvar) < 1)
printf(“nyVar is in range”);

One thing you don’t want to do in C is divide a number by 0. Any
number divided by 0 is infinity, and infinity is a foreign concept to
the C language. If your program ever tries to divide a number by 0,

Learn C under Windows 95/NT 101

Controlling Your Program’s Flow

Expressions

your program is likely to crash. The first expression in this example
tests to make sure that myVar is not equal to 0. If my Var is equal to 0,
the second expression won’t even be evaluated! The sole purpose of
the firsti f is to make sure that the second i f never tries to divide
by 0. Make sure that you understand this point. Imagine what
would happen if we wrote the code this way:

if ((nyvar '=0) && ((1 / nyVar) < 1))
printf(“nyVar is in range”);

As it turns out, if the left half of the && operator evaluates tof al se,
the right half of the expression will never be evaluated, and the en-
tire expression will evaluate to f al se. Why? Because if the left op-
erand is f al se, it doesn’t matter what the right operand is; t r ue or
f al se, the expression will evaluate to f al se. Be aware of this as
you construct your expressions.

The Curly Braces

Earlier in the book, you learned about the curly braces ({ }) that
surround the body of every function. These braces also play an im-
portant role in statement construction. Just as parentheses can be
used to group terms of an expression together, curly braces can be
used to group multiple statements together. Here’s an example:

onYour Back = TRUE;

i f (onYourBack)

{
printf(“Flipping over”);
onYour Back = FALSE;

In the example, if onYour Backis t r ue, both of the statements in
curly braces will be executed. A pair of curly braces can be used to
combine any number of statements into a single superstatement,
also known as a block. You can use this technique anywhere a state-
ment is called for.

102 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

Curly braces can be used to organize your code, much as you'd use
parentheses to ensure that an expression is evaluated properly. This
concept is especially appropriate when dealing with nested state-
ments. Consider this code, for example:

if (nylnt >= 0)
if (nylnt <= 10)
printf(“nylnt is between 0 and 10.\n”);
el se
printf(“nylnt is negative.\n”); /* <---
Errorl!! */

Do you see the problem with this code? Which i f does the el se be-
long to? As written (and as formatted), the el se looks as though it
belongs to the firsti f. Thatis, if ny| nt is greater than or equal to 0,
the second i f is executed; otherwise, the second pri nt f () is exe-
cuted. Is this right?

Nope. As it turns out, an el se belongs to the i f closest to it (the
second i f, in this case). Here’s a slight rewrite:

if (nylnt >= 0)
if (nylnt <= 10)
printf(“nylnt is between 0 and 10.\n”);
el se
printf(“nylnt is not between 0 and 10.\n”);

One point here is that formatting is nice, but it won’t fool the com-
piler. More important, this example shows how easy it is to make a
mistake. Check out this version of the code:

if (nylnt >= 0)

{
if (nylnt <= 10)
printf(“nylnt is between 0 and 10.\n”);
}
el se

Learn C under Windows 95/NT 103

Controlling Your Program’s Flow

Expressions

printf(“nylnt is negative.\n”);

Do you see how the curly braces help? In a sense, they act to hide
the second i f inside the firsti f statement. There is no chance for
the el se to connect to the hidden i f .

No one I know ever got fired for using too many parentheses or too
many curly braces.

Where to Place the Semicolon

So far, the statements we’ve seen fall into two categories. Function
calls, such as calls to pri nt f (), and assignment statements are
called simple statements. Always place a semicolon at the end of a
simple statement, even if it is broken over several lines, like this:

printf(“%%%%l”, varl,
var 2,
var 3,
var4d);

Statements made up of several parts—including, possibly, other
statements—are called compound statements. Compound state-
ments obey some pretty strict rules of syntax. The i f statement, for
example, always looks like this:

if (expression)
st at enent

Notice there are no semicolons in this definition. The statement part
of thei f can be a simple statement or a compound statement. If the
statement is simple, follow the semicolon rules for simple state-
ments by placing a semicolon at the end of the statement. If the
statement is compound, follow the semicolon rules for that particu-
lar type of statement.

Notice that using “curlies” to build a superstatement, or block, out
of smaller statements does not require the addition of a semicolon.

104 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

The Loneliest Statement

Guess what? A single semicolon qualifies as a statement, albeit a
somewhat lonely one. For example:

if (bored)

This code fragment is a legitimate (and thoroughly useless) i f state-
ment. If bor edis t r ue, the semicolon statement gets executed. The
semicolon by itself doesn’t do anything but fill the bill where a state-
ment was needed. There are times where the semicolon by itself is
exactly what you need.

The whi | e Statement

Thei f statement uses the value of an expression to decide whether
to execute or to skip over a statement. If the statement is executed, it
is executed just once. Another type of statement, the whi | e state-
ment, repeatedly executes a statement as long as a specified expres-
sionis t r ue. The whi | e statement follows this pattern:

while (expression)
st at enent

The whi | e statement is also known as the whi | e loop, because
once the statement is executed, the whi | e loops back to reevaluate
the expression. Here’s an example of the whi | e loop in action:

int i:
i =0;

while (++i < 3)
printf(“Looping: %\n”, i);

printf(“W are past the while loop.”);

Learn C under Windows 95/NT 105

Controlling Your Program’s Flow

Expressions

This example starts by declaring a variable, i , to be of typei nt;i is
then initialized to 0. Next comes the whi | e loop. The first thing the
whi | e loop does is evaluate its expression. The whi | e loop’s ex-
pression is:

++j < 3

Before this expression is evaluated, i has a value of 0. The prefix no-
tation used in the expression (++i) increments the value of i to 1 be-
fore the remainder of the expression is evaluated. The evaluation of
the expression results in't r ue, since 1 is less than 3. Since the ex-
pression ist r ue, the whi | e loop’s statement, a single pri nt f (), is
executed. Here’s the output after the first pass through the loop:

Looping: 1

Next, the whi | e loops back and reevaluates its expression. Once
again, the prefix notation increments i , this time to a value of 2.
Since 2 is less than 3, the expression evaluates to t r ue, and the

pri ntf () is executed again. Here’s the output after the second pass
through the loop:

Looping: 1
Loopi ng: 2

Once the second pri nt f () completes, it's back to the top of the
loop to reevaluate the expression. Will this never end? Once again, i
is incremented, this time to a value of 3. Aha! This time, the expres-
sion evaluates to f al se, since 3 is not less than 3. Once the expres-
sion evaluates to f al se, the whi | e loop ends. Control passes to the
next statement, the second pri nt f () in our example:

printf(“We are past the while loop.”);

The whi | eloop was driven by three factors: initialization, modifica-
tion, and termination. Initialization is any code that affects the loop

106 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

By the Way

but occurs before the loop is entered. In our example, the critical ini-
tialization occurred when the variablei was set to 0.

In a loop, you'll frequently use a variable that changes value each
time through the loop. In our example, the variable i was incre-
mented by 1 each time through the loop. The first time through the
loop, i had a value of 1. The second time, i had a value of 2. Vari-
ables that maintain a value based on the number of times through
a loop are known as counters.

Traditionally, programmers have given counter variables simple
names, such asi, j, or k (it's an old FORTRAN convention). In
the interest of clarity, some programmers use such names as
count er or | oopCount er. The nice thing about names likei , j ,
and k is that they don't get in the way; they don’t take up a lot of
space on the line. On the other hand, your goal should be to make
your code as readable as possible, so it would seem that a name
like count er would be better than the uninformative i , j , or k.

Once again, pick a style you are comfortable with and stick with it!

Within the loop, modification is any code that changes the value of
the loop’s expression. In our example, the modification occurred
within the expression itself when the counter, i , was incremented.

Termination is any condition that causes the loop to end. In our ex-
ample, termination occurs when the expression has a value of

f al se. This occurs when the counter, i , has a value that is not less
than 3. Take a look at this example:

int i;
i =1;
while (i < 3)

{
printf(“Looping: %\n”, i);

Learn C under Windows 95/NT 107

Controlling Your Program’s Flow

Expressions

printf(“We are past the while loop.”);

This example produces the same results as the previous example.
This time, however, the initialization and modification conditions
have changed slightly. In this example, i starts with a value of 1 in-
stead of 0. In the previous example, the ++ operator was used to in-
crement i at the very fop of the loop. This example modifiesi at the
bottom of the loop.

Both of these examples show different ways to accomplish the same
end. The phrase “There’s more than one way to eat an Oreo” sums
up the situation perfectly. There will always be more than one solu-
tion to any programming problem. Don’t be afraid to do things your
own way. Just make sure that your code works properly and is easy
to read.

The for Statement

Nestled inside the C toolbox, right next to the whi | e statement, is
the f or statement. The f or statement is similar to the whi | e state-
ment, following the basic model of initialization, modification, and
termination. Here’s the pattern for a f or statement:

for (expressionl ; expression2 ; expression3)
st at enent

The first expression represents the f or statement’s initialization.
Typically, this expression consists of an assignment statement, set-
ting the initial value of a counter variable. This first expression is
evaluated once, at the beginning of the loop.

The second expression is identical in function to the expression in a
whi | e statement, providing the termination condition for the loop.
This expression is evaluated each time through the loop, before the
statement is executed.

108 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

Important

By the Way

Finally, the third expression provides the modification portion of the
f or statement. This expression is evaluated at the bottom of the
loop, immediately following execution of the statement.

All three of these expressions are optional and may be left out en-
tirely. For example, here’s a f or loop that leaves out all three ex-
pressions:

for (; ;)
DoSonet hi ngFor ever () ;

Since this loop has no terminating expression, it is known as an in-
finite loop. Infinite loops are generally considered bad form and
should be avoided like the plague!

The f or loop can also be described in terms of a whi | e loop:

expressi onl;
while (expression2)
{

st at enent

expr essi on3;

}

Since you can always rewrite a f or loop as a whi | e loop, why in-
troduce the f or loop at all? Sometimes, a programming idea fits
more naturally into the pattern of a f or statement. If the f or loop
makes the code more readable, why not use it? As you write more
and more code, you'll develop a sense for when to use the whi | e
and when to use the f or.

Here’s an example of a f or loop:

int i;

Learn C under Windows 95/NT 109

Controlling Your Program’s Flow

Expressions

for (i =1; i < 3; i++)
printf(“Looping: %\n”, i);

printf(“We are past the for loop.”);

This example is identical in functionality to the whi | e loops pre-
sented earlier. Note the three expressions on the first line of the f or
loop. Before the loop is entered, the first expression is evaluated (re-
member, assignment statements make great expressions):

Once the expression is evaluated, i has a value of 1. We are now
ready to enter the loop. At the top of each pass through the loop, the
second expression is evaluated:

I < 3

If the expression evaluates to t r ue, the loop continues. Since i is
less than 3, we can proceed. Next, the statement is executed:

printf(“Looping: %\n”, i);
Here’s the first line of output:
Looping: 1

Having reached the bottom of the loop, the f or evaluates its third
expression:

i ++

This changes the value of i to 2. Back to the top of the loop. Evaluate
the termination expression:

110 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

I < 3

Since i is still less than 3, the loop continues. Once again, the
printf () does its thing. The console window looks like this:

Looping: 1
Loopi ng: 2

Next, the f or evaluates expr essi on3:
i ++

The value of i is incremented to 3. Back to the top of the loop. Eval-
uate the termination expression:

I <3

Lo and behold! Since i is no longer less than 3, the loop ends, and
the second pri nt f () in our example is executed:

printf(“We are past the for loop.”);

As was the case with whi | e, f or can take full advantage of a pair of
curly braces:

for (i =0; i <10; i++)
{

DoThi s();

DoThat () ;

DanceALittl edig();

}

Learn C under Windows 95/NT 111

Controlling Your Program’s Flow

Expressions

By the Way

In addition, bothwhi | e and f or can take advantage of the loneliest
statement, the lone semicolon:

for (i =0; i < 1000; i++)

This example does nothing 1000 times. But the example does take
some time to execute. The initialization expression is evaluated
once, and the modification and termination expressions are each
evaluated 1000 times. Here’s a whi | e version of the loneliest loop:

i = 0;

while (i++ < 1000)

Some compilers will eliminate this loop and just seti to its termi-
nating value (the value it would have if the loop executed nor-
mally). This is known as code optimization. The nice thing about
code optimization is that it can make your code run faster and
more efficiently. However, an optimization pass on your code can
sometimes have unwanted side effects, such as eliminating the
whi | e loop just discussed. It's a good idea to get to know your
compiler’s optimization capabilities and tendencies. Read your
manual!

loopTester.cwp

Interestingly, there is an important difference between the f or and
whi | e loops you just saw. Take a minute to look back and try to pre-
dict the value of i the first time through each loop and after each
loop terminates. Were the results the same for the whi | e and f or
loops? Hmmm. . . . You might want to take another look. Here’s a
sample program that should clarify the difference between these
two loops. Look in the directory Learn C Pr oj ect s, inside the
subdirectory named 06. 02 - | oopTest er, and open the project

112 Learn C under Windows 95/NT

Controlling Your Program’s Flow

Expressions

Figure 6.4

| oopTest er. cwa The file | oopTest er. ¢ implements awhi | e
loop and two slightly different f or loops. Run the project. Your out-
put should look like that shown in Figure 6.4.

The | oopTest er program starts off with the standard #i ncl ude.
The mai n() function defines a counter variable, i ; setsi to 0; and

then enters a whi | e loop:

whil e
pri

"¢ looptester

(1++ < 4)

ntf(“while:

t i=1
D oi=2
: i=3
HE
» while loop. i=G.

fowr:

i=@

vood=1
v i=2
j o =
v+ first for loop. i=4.

second for: i=1
second for: 2
second for: i=3
second for: i=4
After second for loop. i=G.

i=og\n", i);

The output from | oopTest er. cwp, showing the output from
three different loops.

The loop executes four times, resulting in this output:

whi | e:
whi | e:
whi | e:
whi | e:

=1
I =2
I =3
I =4

Learn C under Windows 95/NT 113

Controlling Your Program’s Flow

Expressions

Do you see why? If not, go through the loop yourself, calculating
the value fori each time through the loop. Remember, since we are
using postfix notation (i ++), i gets incremented after the test is
made to see whether it is less than 4. The test and the increment
happen at the top of the loop, before the loop is entered.

Once the loop completes, we print the value of i again:
printf(“After while loop, i=%.\n\n", i);

Here’s the result:

After while | oop, i=5.

Here’s how we got that value. The last time through the loop (with i
equal to 4), we go back to the top of the whi | e loop, test to see
whether i is less than 4 (it no longer is), and then do the increment
of i , bumping it from 4 to 5.

OK, one loop down, two to go. This next loop looks as if it should
accomplish the same thing. The difference is, we don’t do the incre-
ment of i until the bottom of the loop, until we’ve been through the
loop once already.

for (i =0; i < 4; i++)
printf(“first for: i=%\n", i);

As you can see by the output, i ranges from 0 to 3 instead of from 1
to 4.

first for: i=0
first for: i=1
first for: i=2
first for: i=3

After we drop out of the f or loop, we once again print the value of
i

114 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

printf(“After first for loop, i=%.\n\n", i);
Here’s the result:
After first for |oop, i=4.

As you can see, thewhi | eloop rangedi from 1 to 4, leavingi with
a value of 5 at the end of the loop. The f or loop ranged i from 0 to
3, leavingi with a value of 4 at the end of the loop. So how do we fix
the f or loop so that it works the same way as the whi | eloop? Take
a look:

for (i =1; 1 <=4; i++)
printf(“second for: i=%\n", i);

This f or loop started i at 1 instead of 0 and it tests to see whether i
is less than or equal to 4 instead of just less than 4. We could also have
used the terminating expressioni < 5 instead. Either one will
work. As proof, here’s the output from this loop:

second for: i=1
second for: 1=2
second for: i=3
second for: 1=4

Once again, we print the value of i at the end of the loop:

printf(“After second for loop, i=%.\n", i);

return O;

}

Here's the last piece of output:

Learn C under Windows 95/NT 115

Controlling Your Program’s Flow

Expressions

After second for |oop, i=5.

This second f or loop is the functional equivalent of the whi | e loop.
Take some time to play with this code. You might try to modify the
whi | e loop to match the first f or loop.

The whi | e and f or statements are by far the most common types of
Cloops. For completeness, however, we'll cover the remaining loop,
a little-used gem called the do statement.

The do Statement

The do statement is a whi | e statement that evaluates its expression
at the bottom of its loop instead of at the top. Here’s the pattern a do
statement must match:

do
st at enment
while (expression) ;

Here’s a sample:

= 1;

do

{
printf(“%\n”, i);
i ++;

}

while (i < 3);

printf(“We are past the do loop.”);

The first time through the loop, i has a value of 1. The pri nt f ()
prints a 1 in the console window, then the value of i is bumped to 2.
It’s not until this point that the expression (i < 3) isevaluated.
Since 2 is less than 3, a second pass through the loop occurs.

116 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

During this second pass, the pri nt f () prints a 2 in the console
window; then the value of i is bumped to 3. Once again, the expres-
sion(i < 3)isevaluated. Since 3 is not less than 3, we drop out
of the loop to the second pri nt f ().

The important thing to remember about do loops is this: Since the
expression is not evaluated until the bottom of the loop, the body of
the loop (the statement) is always executed at least once. Since f or
and whi | e loops both check their expressions at the top of the loop,
it’s possible for either to drop out of the loop before the body of the
loop is executed.

Let’s move on to a completely different type of statement, known as
the swi t ch.

The switch Statement

The swi t ch statement uses the value of an expression to determine
which of a series of statements to execute. Here’s an example that
should make this concept a little clearer:

switch (theYear)

{
case 1066:
printf(“Battle of Hastings”);
br eak;
case 1492:
printf(“Colunbus sailed the ocean blue”);
br eak;
case 1776:
printf(“Declaration of |Independence\n”);
printf(“A very inportant docunent!!!”);
br eak;
defaul t:
printf(“Don’t know what happened during this
year”);
}

Learn C under Windows 95/NT 117

Controlling Your Program’s Flow

Expressions

The swi t chis constructed of a series of cases, each based on a spe-
cific value of t heYear. If t heYear has a value of 1066, execution
continues with the statement following that case’s colon, in this
case, the line:

printf(“Battle of Hastings”);

Execution continues, line after line, until either the bottom of the
swi t ch (the right-curly brace) or a br eak statement is reached. In
this case, the next line is a br eak statement.

The br eak statement comes in handy when you are working with
Swi t ch statements and loops. The br eak tells the computer to
jump immediately to the next statement after the end of the loop or
swi tch.

Continuing with the example, if t heYear has a value of 1492, the
SWi t chjumps to the lines:

printf(“Colunbus sailed the ocean blue”);
br eak;

A value of 1776 jumps to the lines:

printf(“Declaration of |Independence\n”);
printf(“A very inportant docunent!!!”);
br eak;

Notice that this case has two statements before the break. There is
no limit to the number of statements a case can have: One is OK;
653 is OK. You can even have a case with no statements at all.

The original example also contains a def aul t case Iftheswi tch
can’t find a case that matches the value of its expression, the

swi t chlooks for a case labeled def aul t. If the def aul t is
present, its statements are executed. If no def aul t is present, the
swi t ch completes without executing any of its statements.

Here's the pattern the swi t ch tries to match:

118 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Expressions

Important

swtch (expression)
{
case constant:
statenents
case constant:
statenents
defaul t:
statenents

Why would you want a case with no statements? Here's an exam-
ple:

switch (myVar)
{
case 1:
case 2:
DoSonet hi ng() ;
br eak;
case 3:
DoSonet hi ngEl se();

}

In this example, if myVar has a value of 1 or 2, the function
DoSonet hi ng() is called. If myVar has a value of 3, the function
DoSonet hi ngEl se() is called. If nyVar has any other value,
nothing happens. Use a case with no statements when you want
two different cases to execute the same statements.

Think about what happens with this example:

switch (myVar)
{

case 1:
DoSoneti mes() ;
case 2:

Learn C under Windows 95/NT 119

Controlling Your Program’s Flow
Expressions

DoFr equent |l y();
defaul t:
DoAl ways() ;
}

If myVar is 1, all three functions will get called. If myVar is 2,
DoFr equent | y() and DoAl ways() will get called. If myVar has
any other value, DoAl ways() gets called by itself. This is a good
example of a swi t ch without breaks.

At the heart of each swi t chis its expression. Most swi t ches are
based on single variables, but, as we mentioned earlier, assignment
statements make perfectly acceptable expressions.

Each case is based on a constant. Numbers (such as 47 or =12,932)
are valid constants. Variables, such as myVar, are not. As you'll see
later, single-byte characters (such as “a” or “\n’) are also valid con-
stants. Multiple-byte character strings (like “Gummy-bear”) are not.

If your swi t chuses adef aul t case, make sure that you use it as
shown in the pattern described. Don’t include the word case before
the word def aul t.

br eak Statements in Other Loops

The br eak statement has other uses besides the swi t ch statement.
Here’s an example of a br eak used in a whi | e loop:

i =1;

while (i <=9)
{
Pl ayAnl nning(i);
if (ItlIsRaining())
br eak;
i ++:

120 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Sample Programs

This sample tries to play nine innings of baseball. As long as the
function | t | sRai ni ng() returns with a value of f al se, the game
continues uninterrupted. If | t | SRai ni ng() returns a value of

t r ue, the br eak statement is executed, and the program drops out
of the loop, interrupting the game.

The br eak statement allows you to construct loops that depend on
multiple factors. The termination of the loop depends on the value
of the expression found at the top of the loop, as well as on any out-
side factors that might trigger an unexpected br eak.

Sample Programs

IsOdd.c

This program combines f or and i f statements to tell you whether
the numbers 1 through 20 are odd or even and whether they are an
even multiple of 3. The program also introduces a brand new opera-
tor: the % operator. Go into the Learn C Pr oj ect s directory, then
into the 06. 03 - i sQdd subdirectory, and open the project

i sCdd. cwp.

Runi sCdd. cwp by selecting Run from the Project menu. You
should see something like the console window shown in Figure 6.5.
You should see a line for each number from 1 through 20. Each of
the numbers will be described as either odd or even. Each of the
multiples of 3 will have additional text describing them as such.
Here’s how the program works.

Stepping Through the Source Code

This program starts off with the usual #i ncl ude and the beginning
of mai n(), which begins by declaring a counter variable named i .

int main(void)

{

int i:

Learn C under Windows 95/NT 121

Controlling Your Program’s Flow
Sample Programs

odd.

EVEN .

odd and is a multiple of 3.
even.

odd.

even and iz a multiple of 3.
odd

even.

odd and is a multiple of 3.

nunber
number
nunber
nunber
number
nunber
number
nunber
number

L=]--EN [- Ry N L] LY

numnher is even.
number iz odd.
numbe r iz even and is a multiple of 3.

number iz odd

nunber iz even.

number iz odd and iz a multiple of 3.
nunber iz even.

number iz odd.

numbe r is even and is a multiple of 3.
nunber iz odd

number iz even.

Figure 6.5 Runningi sOdd. cwp

Our goal here is to step through each of the numbers from 1 to 20.
For each number, we want to check to see whether the number is
odd or even. We also want to check whether the number is evenly
divisible by 3. Once we’ve analyzed a number, we'll usepri ntf ()
to print a description of the number in the console window.

By the Way The scheme that defines the way a program works is called the
program’s algorithm. It's a good idea to try to work out the details
of your program’s algorithm before writing even one line of source
code.

As you might expect, the next step is to setup a f or loop, usingi as
a counter initialized to 1. The loop will keep running as long as the
value of i is less than or equal to 20. This is the same as saying that
the loop will exit as soon as the value of i is found to be greater than
20. Every time the loop reaches the bottom, the third expression,

i ++, will be evaluated, incrementing the value of i by 1. This is a
classic f or loop.

122 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Sample Programs

for (i =1; i <= 20; i++)

Now we're inside the f or loop. Our goal is to print a single line for
each number, that is, one line each time through the f or loop. If you
check back to Figure 6.5, you'll notice that each line starts with the
phrase:

The nunber x is

In that phrase, x is the number being described. That’s the purpose
of this first pri ntf ():

printf(“The nunber % is “, i);

Notice that this pri nt f () wasn’t partof ani f statement. We want
this pri nt f () to print its message every time through the loop. The
next sequence of pri nt f () statements are a different story alto-
gether.

The next chunk of code determines whether i is even or odd, then
uses pri nt f () to print the appropriate word in the console win-
dow. Because the last pri nt f () didn’t end with a newline charac-
ter (" \ n"), the word “even” or “odd” will appear in the console
window on the same line as, and immediately following:

The nunber x is

This next chunk of code introduces a brand new operator—%—a bi-
nary operator that returns the remainder when the left operand is
divided by the right operand. For example, i % 2 divides 2 into i
and returns the remainder. If i is even, this remainder will be 0. Ifi
is odd, this remainder will be 1.

if ((i %2) ==0)
printf(“even”);
el se

Learn C under Windows 95/NT 123

Controlling Your Program’s Flow

Sample Programs

printf(“odd”);

In the expression i % 3, the remainder willbe 0ifi is evenly divis-
ible by 3 and either 1 or 2 otherwise.

if ((i %3) ==0)
printf(“ and is a nultiple of 3");

Ifi is evenly divisible by 3, we’ll add the following phrase to the
end of the current line:

and is a multiple of 3”

Finally, we add a period “.” and a newline “\ n” to the end of the
current line, placing us at the beginning of the next line of the con-
sole window:

printf(“.\n”);

The loop ends with a curly brace, and mai n() ends with our normal
r et ur nand a right-curly brace.

return O;

next Pri me. cwp

Our next program focuses on the mathematical concept of prime

numbers. A prime number is any number whose only factors are 1
and itself. For example, 6 is not a prime number, because its factors
are 1, 2, 3, and 6. The number 5 is prime because its factors are lim-

124 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Sample Programs

Figure 6.6

ited to 1 and 5. The number 12 isn’t prime, because its factors are 1,
2,3,4,6,and 12.

Our next program will find the next prime number greater than a
specified number. For example, if we set our starting point to 14, the
program would find the next prime, 17. We have the program set up
to check for the next prime after 19. Know what that is?

Go into the directory Learn C Pr oj ect s, into the subdirectory
06. 04 - next Pri me, and open the project next Pri me. cwp.
Run next Pri ne. cwp by selecting Run from the Project menu. You
should see something like the console window shown in Figure 6.6.
As you can see, the next prime number after 19 is (drum roll, please
...) 23. Here’s how the program works.

Stepping Through the Source Code

This program starts off with two #i ncl udes instead of the usual
one. The new #i ncl ude, <mat h. h>, gives us access to a series of
math functions, most notably the function sqr t (). This function
takes a single parameter and returns the square root of that parame-
ter. You'll see how this works in a minute.

4 nextprime (Ol x|

The next prime after 19 is 23. Happy?

Running next Pri ne. cwp.

Learn C under Windows 95/NT 125

Controlling Your Program’s Flow

Sample Programs

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

Next, we define the constantst r ue and f al se. (We’ll cover
#def i nelater.)

#def i ne true 1
#define fal se 0

int main(void)

{

We're going to need a boatload of variables. They're all defined as
I nts:

int startingPoint, candidate, last, i;
int isPrineg;

The first variable, st ar t i ngPoi nt, is the number we want to start
off with. We'll find the next prime after st art i ngPoi nt ;

candi dat eis the current candidate we are considering. Is

candi dat e the lowest prime number greater than

st arti ngPoi nt? By the time we are done, it will be!

startingPoint = 19;

Since 2 is the lowest prime number, if st ar t i ngPoi nt is less than
2, we know that the next prime is 2. By setting candi dat eto 2, our
work is done:

if (startingPoint < 2)
{

}

candi date = 2;

126 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Sample Programs

If starti ngPoi nt is 2, the next prime is 3, and we’ll set
candi dat eaccordingly:

else if (startingPoint == 2)

{
}

candi date = 3;

If we got this far, we know thatst ar t i ngPoi nt is greater than 2.
Since 2 is the only even prime number and since we’ve already
checked for st ar t i ngPoi nt being equal to 2, we can now limit
our search to odd numbers only. We'll start candi dat e at

st ar ti ngPoi nt, then make sure that candi dat e is odd. If it
isn’t, we’ll decrement candi dat e. Why decrement instead of in-
crement? If you peek ahead a few lines, you'll see that we’re about
to enter a do loop and that we bump candi dat e to the next odd
number at the top of the loop. By decrementing candi dat e now,
we're preparing for the bump at the top of the loop, which will take
candi dat eto the next odd number greater than st ar t i ngPoi nt .

el se

{

candi date = startingPoint;

if (candidate %2 == 0)
candi dat e- - ;

This loop will continue stepping through consecutive odd numbers
until we find a prime number. We’ll starti sPri neoff astr ue, then
check the current candidate to see whether we can find a factor. If
we do find a factor, we'll seti sPri netof al se, forcing us to repeat
the loop.

isPrime = true;

Learn C under Windows 95/NT 127

Controlling Your Program’s Flow

Sample Programs

By the Way

candi date += 2;

Now we'll check to see whether candi dat e is prime. This means
verifying that candi dat e has no factors other than 1 and candi -
dat e. To do this, we'll check the numbers from 3 to the square root
of candi dat e to see whether any of them divides evenly into can-
di dat e. If not, we know we’ve got ourselves a prime!

| ast = sqrt(candidate);

So why don’t we check from 2 up to candi dat e —1? Why start
with 3? Since candi dat e will never be even, we know that 2 will
never be a factor. For the same reason, we know that no even
number will ever be a factor.

Why stop at the square root of candi dat €? Good question! To
help understand this approach, consider the factors of 12, other
than 1 and 12. They are 2, 3, 4, and 6. The square root of 12 is ap-
proximately 3.46. Notice how this fits nicely in the middle of the list
of factors. Each of the factors less than the square root will have a
matching factor greater than the square root. In this case, 2
matches with 6 (2*6=12) and 3 matches with 4 (3*4=12). This will
always be true. If we don'’t find a factor by the time we hit the
square root, there won'’t be a factor, and the candidate is prime.

Take a look at the top of the f or loop. We starti at 3. Each time we
hit the top of the loop (including the first time through the loop),
we’ll check to make sure that we haven’t passed the square root of
candi dat eand thati sPrineisstilltrue.Ifi sPri neisfal se,
we can stop searching for a factor, since we’ve just found one! Fi-
nally, each time we complete the loop, we bump i to the next odd
number.

for (1 =3; (i <=1last) && isPrine; i
+= 2)
{

128 Learn C under Windows 95/NT

Controlling Your Program’s Flow
What’s Next?

Each time through the loop, we’ll check to see whetheri divides
evenly into candi dat e. If so, we know that it is a factor, and we can
seti sPrinmetofal se:

if ((candidate %i) == 0)
isPrinme = fal se;

}
} while (! isPrime);

Once we drop out of the do loop, we use pri nt f () to print both the
starting point and the first prime number greater than the starting
point:

printf(“The next prinme after % is %.
Happy?\ n”, starti ngPoi nt, candidate);

return O;

If you are interested in prime numbers, play around with this pro-
gram. See if you can modify the code to print all the prime numbers
from 1 to 100. How about the first 100 prime numbers?

What's Next?

Congratulations! You've made it through some tough concepts.
You've learned about the C statements that allow you to control
your program’s flow. You've learned about C expressions and the
concept of t rue and f al se. You've also learned about the logical
operators based on the values t r ue and f al se. You've learned
about thei f,if-else for,while do,sw tch and br eak state-
ments. In short, you've learned a lot!

Our next chapter introduces the concept of pointers, also known as
variable addresses. From now on, you'll use pointers in almost

Learn C under Windows 95/NT 129

Controlling Your Program’s Flow
Exercises

every C program you write. Pointers allow you to implement com-
plex data structures, opening up a world of programming possibili-
ties.

Chapter 7 also discusses function parameters in detail. As usual,
plenty of code fragments and sample applications will be presented
to keep you busy. See you there.

Exercises

1. What's wrong with each of the following code fragments:
a. i f i
i ++;
b. for (1=0; i<20; i++)
i--;

c. while ()

i ++;
d. do (i++)
until (i == 20);
e. switch (i)
{
case “hello”:
case “goodbye”:
printf(“Geetings.”);
br eak;
case defaul t:
printf(“Boring.”);
}
f. i f (i <20)
i f (i ==20)
printf(“Lonely...”);

130 Learn C under Windows 95/NT

Controlling Your Program’s Flow
Exercises

while (done = TRUE)

done = ! done;
for (i=0; i<20; i*20)
printf(“Mdification...”);

Modify next Pri me. ¢ to compute the prime numbers from
1 to 100.

Modify next Pri me. ¢ to compute the first 100 prime
numbers.

Learn C under Windows 95/NT 131

Controlling Your Program’s Flow
Exercises

132 Learn C under Windows 95/NT

Pointers and
Parameters

You've come a long way. You've mastered variable basics, operators,
and statements. You're about to add some powerful, new concepts
to your programming toolbox.

For starters, we’ll introduce the concept of pointers. In program-
ming, pointers are references to other things. When someone calls
your name to get your attention, they’re using your name as a
pointer. Your name is one way people refer to you.

What Is a Pointer?

Your name and address can combine to serve as a pointer, telling the
mail carrier where to deliver the new Sears catalog. Your address
distinguishes your house from all the other houses in your neigh-
borhood, and your name distinguishes you from the rest of the peo-
ple living in your house.

A pointer to a variable is really the address of the variable in mem-
ory. If you pass the value of a variable to a function, the function can
make use of the variable’s value but can’t change the variable’s
value. If you pass the address of the variable to the function, the
function can also change the value of the variable.

When you declare a variable in C, memory is allocated to the vari-
able. This memory has an address. C pointers are special variables,
specifically designed to hold one of these addresses. Later in the
chapter, you'll learn how to create a pointer, how to make it point to
a specific variable, and how to use the pointer to change the vari-
able’s value.

Learn C under Windows 95/NT 133

Pointers and Parameters

What Is a Pointer?

Important

Why Use Pointers?

Pointers can be extremely useful, allowing you to access your data
in ways that ordinary variables just don’t allow. Here’s a real-world
example of “pointer flexibility.”

When you go to the library in search of a specific title, you probably
start your search in a card catalog. Card catalogs contain thousands
of index cards, one for every book in the library. Each index card
contains information about a specific book: the author’s name, the
book’s title, and the copyright date, for example.

Most libraries have three card catalogs. Each lists all the books,
sorted alphabetically by subject, by author, or by title. In the subject
card catalog, a book can be listed more than once. For example, a
book about Thomas Jefferson might be listed under “Presidents,
U.S.,” “Architects,” or even under “Inventors” (Jefferson was quite
an inventor).

Figure 7.1 shows a catalog card for Albert Einstein’s famous book on
relativity, called The Meaning of Relativity. The card was listed in the
subject catalog under the subject “RELATIVITY (PHYSICS).” Take a
minute to look the card over. Pay special attention to the catalog in-
formation located on the left side of the card. The catalog number
for this book is 530.1. This number tells you exactly where to find
the book among all the other books on the shelves. The books are or-
dered numerically, so you’ll find this book , between 530 and 531 on
the shelves.

In this example, the library bookshelves are like your computer’s
memory, with the books acting as data. The catalog number is the
address of your data (a book) in memory (on the shelf).

As you might have guessed, the catalog number acts as a pointer.
The card catalogs use these pointers to rearrange all the books in the
library, without moving a single book. Think about it. In the subject
card catalog, all the books are arranged by subject. Physically, the
book arrangements have nothing to do with subject. Physically, the
books are arranged numerically, by catalog number. By adding a

134 Learn C under Windows 95/NT

Pointers and Parameters

What Is a Pointer?
Catalog
Information
RELATIVITY (PHYSICS)
\{Eggrhlg Einstein, Albert, 1879-1955
1950 The Meaning of Relativity; 3rd ed.

rev. including the generalized theory
of gravitation. Princeton Univ. Press,
c1950.

162p.

I. Relativity (Physics) . Title

O O

Figure 7.1 Catalog card for a rather famous book. Note the catalog
information on the left side of the card.

layer of pointers between you and the books, the librarians achieve
an extra layer of flexibility.

In the same way, the author and title card catalogs use a layer of
pointers to arrange all the books by author and by title. With these
pointers, all the books in the library can be arranged in four differ-
ent ways without ever leaving the shelves. The books are arranged
physically (sorted by catalog number) and logically (sorted in one
catalog by author, in another by subject, and in another by title).
Without the support of a layer of pointers, these logical book ar-
rangements would be impossible.

By the Way Adding a layer of pointers is also known as “adding a level of indi-
rection.” The number of levels of indirection is the number of point-
ers you have to use to get to your library book (or to your data).

Learn C under Windows 95/NT 135

Pointers and Parameters

Pointer Basics

Checking Out of the Library

So far, we’ve talked about pointers in terms of library catalog num-
bers. The use of pointers in your C programs is not much different
from this model. Each card catalog number points out the location
of a book on the library shelf. In the same way, each pointer in your
program will point out the location of a piece of data in computer
memory.

If you wrote a program to keep track of your compact disc collec-
tion, you might maintain a list of pointers, each one of which might
point to a block of data describing a single CD. Each block of data
might contain such information as the name of the artist, the name
of the album, the year of release, and a category (jazz, rock, blues). If
you got more ambitious, you could create several pointer lists. One
list might sort your CDs alphabetically by artist name. Another
might sort them chronologically by year of release. Yet another list
might sort your CDs by musical category. You get the picture.

There’s a lot you can do with pointers. By mastering the techniques
presented in these next few chapters, you'll be able to create pro-
grams that take full advantage of pointers.

Our goal for this chapter is to master pointer basics. We'll talk about
C pointers and C pointer operations. You'll learn how to create a
pointer and how to make the pointer point to a variable. You'll also
learn how to use a pointer to change the value of the variable the
pointer points to.

Pointer Basics

Pointers are variable addresses. Instead of an address such as:

1313 Mocki ngbird Lane
Raven Hei ghts, California 90263

a variable’s address refers to a memory location within your com-
puter. As we discussed in Chapter 3, your computer’s memory con-
sists of a sequence of bytes. A 1-megabyte computer has exactly 229
(or 1,048,576) bytes of memory, also known as random-access mem-
ory, or RAM. An 8-megabyte computer has exactly 8 x 229 = 223 —

136 Learn C under Windows 95/NT

Pointers and Parameters
Pointer Basics

Figure 7.2

Important

8,388,608 bytes of RAM. Every one of those bytes has its own unique
address. The first byte has an address of 0. The next byte has an ad-
dress of 1. Computer addresses always start with 0 and continue up,
one at a time, until they reach the highest address. Figure 7.2 shows
the addressing scheme for an 8-megabyte computer. Notice that the
addresses run from 0 (the lowest address) all the way up to
8,388,607 (the highest address).

8,388,607
8,388,606

Addressing scheme for 8 megabytes of bytes.

Variable Addresses

When you run a program, one of the first things the computer does
is allocate memory for your program’s variables. For example, sup-
pose that you declare an i nt in your code, like this:

i nt myVar;

The compiler reserves memory for the exclusive use of myVar.

The amount of memory allocated for an i nt depends on your de-
velopment environment. Since all of the projects in this book were
built using 4-byte i nt s, the figures showing i nt memory alloca-
tion also show 4-byte i nt s. Don’t be fooled! If your development

Learn C under Windows 95/NT 137

Pointers and Parameters
Pointer Basics

environment is set to use 2-byte i nt's, 2 bytes will be allocated for
eachint.

Each of nyVar ’s bytes has a specific address. Figure 7.3 shows an 8-
megabyte computer with 4 bytes allocated to the variable nyVar. In
this picture, the 4 bytes allocated to myVar have the addresses 508,
509, 510, and 511.

8,368,607
8,358,605

all

a0
209
a0a

int myllar;

Figure 7.3 The 4 bytes allocated for the i nt named nyVar.

By convention, a variable’s address is said to be the address of its
first byte (the first byte is the one with the lowest-numbered ad-
dress). If a variable uses memory locations 508 through 511 (as
myVar does), its address is 508 and its length is 4 bytes.

Important When more than 1 byte is allocated to a variable, the bytes will al-
ways be consecutive (next to each other in memory). The 4 bytes
allocated to an i nt might have such addresses as 508, 509, 510,
and 511 or 64,000, 64,001, 64002, and 64003. You will never see

138 Learn C under Windows 95/NT

Pointers and Parameters
Pointer Basics

an i nt whose byte addresses are 508, 509, 510, and 695. A vari-
able’s bytes are like family—they stick together!

As we showed earlier, a variable’s address is a lot like the catalog
number on a library catalog card. Both act as pointers: one to a book
on the library shelf and the other to a variable. From now on, when
we use the term pointer with respect to a variable, we are referring
to the variable’s address.

Now that you understand what a pointer is, your next goal is to
learn how to use pointers in your programs. The next few sections
will teach you some valuable pointer-programming skills. You'll
learn how to create a pointer to a variable. You'll also learn how to
use that pointer to access the variable it points to.

The C language provides you with a few key tools to help you.
These tools come in the form of two special operators: & and *.

The & Operator

The & operator (also called the “address of” operator) pairs with a
variable name to produce the variable’s address. For example, the
following expression refers to myVar ’s address in memory:

&y Var

If nyVar owned memory locations 508 through 511 (as in Figure
7.3), the expression would have a value of 508:

&y Var

The expression &y Var is a pointer to the variable myVar.

As you start programming with pointers, you’ll find yourself using
the & operator frequently. An expression like &y Var is a common
way to represent a pointer. Another way to represent a pointer is
with a pointer variable, a variable specifically designed to hold the
address of another variable.

Learn C under Windows 95/NT 139

Pointers and Parameters

Pointer Basics

Declaring a Pointer Variable

C supports a special notation for declaring pointer variables. The
following line declares a variable called nmyPoi nt er:

i nt *nyPoi nter;

Notice that the * is not part of the variable’s name. Instead, it tells
the compiler that the associated variable is a pointer, specifically de-
signed to hold the address of an i nt . If there were a data type called
bl ut o, you could declare a variable designed to point to a bl ut o
like this:

bl uto *pl ut oPoi nt er;

For now, we’ll limit ourselves to pointers that point to i nt s. Look at
this code:

i nt *nyPoi nter, nyVar;
nmyPoi nter = &myVar;

The assignment statement puts nyVar ’s address in the variable ny-
Poi nt er. If myVar ’s address is 508, this code will leave myPoi nt er
with a value of 508. Note that this code has absolutely no effect on
the value of nyVar.

There will be times in your coding when you have a pointer to a
variable but not the variable itself. This happens a lot. You can use
the pointer to manipulate the value of the variable it points to. Ob-
serve:

i nt *nyPoi nter, nyVar;

nmyPoi nter = &myVar;
*nyPoi nter = 27;

140 Learn C under Windows 95/NT

Pointers and Parameters
Pointer Basics

By the Way

As before, the first assignment statement places myVar ’s address in
the variable myPoi nt er. The second assignment introduces the *
operator. The * operator (called the star operator) converts a pointer
variable to the item the pointer points to.

The * that appears in the declaration statement isn’t really an op-
erator. It's there only to designate the variable myPoi nt er as a
pointer.

If myPoi nt er points to myVar, as is the case in our example,
*myPoi nt er refers to the variable myVar. In this case, the next two
lines say the same thing:

*myPoi nter = 27,
nmyVar = 27;

Confused? These memory pictures should help. Figure 7.4 joins our
program in progress, just after the variables myVar and nmyPoi nt er
were declared:

i nt *nyPoi nter, nyVar;

Learn C under Windows 95/NT 141

Pointers and Parameters

Pointer Basics

Figure 7.4

Important

8,358,607
8,358,606

1,035
1,054
1,053
1,030

int *myFointer;

a1l

a0
=04
a05

int mylar;

Memory allocated for nyVar and nyPoi nt er.

Notice that 4 bytes were allocated for the variable myVar and that 4
bytes were allocated for my Poi nt er. Why? Because nyVar is an

i nt and myPoi nt er is a pointer, designed to hold a 4-byte address;
4 bytes equal 32 bits. Since memory addresses start at 0 and can
never be negative, 4-byte memory addresses range from 0 up to 232
—1=4,294,967,295. That means that a 32-bit computer can address a
maximum of 4 gigabytes (4096 megabytes) of memory. That’s a lot
of RAM!

Early versions of Windows were 16 bit systems. 20 bit physical
addresses were formed from two 16 bit values, a segment and an

142 Learn C under Windows 95/NT

Pointers and Parameters
Pointer Basics

offset. This allowed for the addressing of 1 megabyte of memory.

Windows 95 uses full 32 bit memory addressing. This allows for
the direct addressing of 4 gigabytes of physical memory.

Once memory is allocated for myVar and nyPoi nt er, we move on
to the statement:

myPoi nter = &nyVar ;

The 4-byte address of the variable myVar is written to the 4 bytes al-
located to my Poi nt er. In our example, myVar ’s address is 508. Fig-
ure 7.5 shows the value 508 stored in myPointer’s 4 bytes. Now

nmy Poi nt er is said to “point to” myVar.

OK, we're almost there. The next line of our example writes the
value 27 to the location pointed to by nmyPoi nt er:

*myPoi nter = 27;

Without the * operator, the computer would place the value 27 in
the memory allocated to myPoi nt er. The * operator dereferences
my Poi nt er. Dereferencing a pointer turns the pointer into the vari-
able it points to. Figure 7.6 shows the end results.

If the concept of pointers seems alien to you, don’t worry. You are
not alone. Programming with pointers is one of the most difficult
topics you'll ever take on. Just keep reading, and follow each of the
examples line by line. By the end of the chapter, you'll be a pointer
expert!

Learn C under Windows 95/NT 143

Pointers and Parameters
Pointer Basics

8,388, a0y
8,388,608
-
-
-
1I|::"35 1 S 1 1 1 1
1,034 [] | , ,
< U - int *myFointer;
1,053 8
1|I::'|32 _I 11 1 1 1 I-
-
-
-
a1l
210
int mylar;
209
203
-
-
-
1
i

Figure 7.5 The address of myVar is assigned to nyPoi nt er.

144 Learn C under Windows 95/NT

Pointers and Parameters
Function Parameters

8,383, 507
5,385,606
-
-
»
1Im5 1 é 1 1 1
1,004 [| I ,
< O - int *myFointer;
1,033 8
1II::"32 _I 1 1 1 1 1 I-
-
-
»
511 1 1 1 1 1 1
510 || |
- 27 - int myllar;
203 || |
EI:IE 1 1 1 1 1 1
-
»
-
1
i

Figure 7.6 Finally, the value 27 is assigned to * nmyPoi nt er.

Function Parameters

One of the most important uses of pointers (and perhaps the easiest
to understand) lies in the implementation of function parameters.
In this section, we'll focus on parameters and, at the same time,
have a chance to see pointers in action.

Learn C under Windows 95/NT 145

Pointers and Parameters

Function Parameters

What Are Function Parameters?

A function parameter is your chance to share a variable between a
calling function and the called function.

Suppose that you wanted to write a function called AddTwo() that
took two numbers, added them, and returned their sum. How
would you get the two original numbers into AddTwo() ? How
would you get the sum of the two numbers back to the function that
called AddTwo()?

As you might have guessed, the answer to both questions lies in the
use of parameters. Before you can learn how to use parameters,
however, you'll have to first understand the concept of variable
scope.

Variable Scope

In C, every variable is said to have a scope, or range. A variable’s
scope defines where in the program you have access to a variable. In
other words, if a variable is declared inside one function, can an-
other function refer to that same variable?

C defines variable scope as follows:

. A variable declared inside a function is local to that function
and may be referenced only inside that function.

This statement is important. It means that you can’t declare a vari-
able inside one function, then refer to that same value inside another
function. Here’s an example that will never compile:

int main(void)

{ i nt nunDot s;
nunbDot s = 500;
Dr awDot s() ;

return O;

}

146 Learn C under Windows 95/NT

Pointers and Parameters
Function Parameters

By the Way

void Drawbots(void)

{
int i;
for (i =1; i <= nunDots; i++)
printf(“.”);
}

The error in this code occurs when the function Dr awDot s() tries to
reference the variable nunDot s. According to the rules of scope,

Dr awDot s() doesn’t even know about the variable nunDot s. If you
tried to compile this program, the compiler would complain that

Dr awDot s() tried to use the variable nunDot s without declaring it.

The problem you are faced with is getting the value of nunDot s to
the function Dr awDot s() so Dr awDot s() knows how many “dots”
to draw. The answer to this problem is function parameters.

Dr awDot s() is another example of the value of writing functions.
We've taken the code needed to perform a specific function (in this
case, draw some dots) and embedded it in a function. Now, in-
stead of having to duplicate the code inside Dr awDot s() every
time we want to draw some dots in our program, all we’'d need is a
single line of code: a call to the function Dr awDot s().

How Function Parameters Work

Function parameters are just like variables. Instead of being de-
clared at the beginning of a function, function parameters are de-
clared between the parentheses on the function’s title line, like this:

void DrawDot s(int nunDots)
{

}

/* function’s body goes here */

Learn C under Windows 95/NT 147

Pointers and Parameters
Function Parameters

When you call a function, you just match up the parameters, mak-
ing sure that you pass the function what it expects. To call the ver-
sion of Dr awDot s() we just defined, make sure that you place an
i nt between the parentheses. The call to Dr awDot s() inside

mai n() passes the value 30 into the function Dr awDot s():

int main(void)

{
DrawDot s(30);

return O;

}

When Dr awDot s() starts executing, it sets its parameter to the
passed-in value. In this case, Dr awDot s() has one parameter, an
i nt named nunDot s. When the call executes, the function Dr aw-
Dot s() sets its parameter, nunDot s, to a value of 30:

DrawDot s(30);

To make things a little clearer, here’s a revised version of our exam-
ple:

int main(void)

{
Dr awDot s(30);
return O;
}
void DrawbDots(int nunDots)
{
int i;
for (i =1, i <= nunDots; i++)

148 Learn C under Windows 95/NT

Pointers and Parameters
Function Parameters

Figure 7.7

printf(“.”);

This version of mai n() calls Dr awDot s(), passing as a parameter
the constant 30. Dr awDot s() receives the value 30 inits i nt param-
eter, nunDot s. This means that the function Dr awDot s() starts exe-
cution with a variable named nunDot s having a value of 30.

Inside DrawDots(), the f or loop behaves as you might expect,
drawing 30 periods in the console window. Figure 7.7 shows this
program in action. You can run this example yourself. The project
file, dr awDot s. cwp, is located in the Learn C Pr oj ect s direc-
tory in a subdirectory named 07. 01 - drawDots.

72 drawdots

The program dr awDot s in action.

Parameters Are Temporary

When you pass a value from a calling function to a called function,
you are creating a temporary variable inside the called function.
Once the called function exits (returns to the calling function), that
variable ceases to exist.

Learn C under Windows 95/NT 149

Pointers and Parameters
Function Parameters

In our example, we passed a value of 30 into Dr awDot s() as a pa-
rameter. The value came to rest in the parameter variable named
nunDot s. Once Dr awDot s() exited, nunDot s ceased to exist.

o Remember, a variable declared inside a function can be
referenced only by that function.

It is perfectly acceptable for two functions to use the same variable
names for completely different purposes. It’s fairly standard, for ex-
ample, to use a variable name like i as a counterinaf or loop.
What happens when, in the middle of just such af or loop, you call
a function that also uses a variable named i ? Here’s an example:

int main(void)

{
int i;
for (i=1; i<=10; i++)
{
DrawDot s(30);
printf(“\'n”);
}
return O,
}
void DrawbDots(int nunDots)
{
int i;
for (i =1; i <= nunDots; i++)
printf(“.”);
}

This code prints a series of 10 rows of dots, with 30 dots in each row.
After each call to Dr awDot s(), a carriage return (“\ n”) is printed,
moving the cursor in position to begin the next row of dots.

Notice that both mai n() and Dr awDot s() feature a variable named
i . Inmai n(), the variable i is used as a counter, tracking the num-

150 Learn C under Windows 95/NT

Pointers and Parameters
What Do Parameters Have to Do with Pointers?

ber of rows of dots printed. Dr awDot s() also uses i as a counter,
tracking the number of dots in the row it is printing. Won’t the copy
of i in Dr awDot s() mess up the copy of i in mai n()? No!

When mai n() starts executing, memory gets allocated for its copy
of i . When mai n() calls Dr awDot s(), additional memory gets allo-
cated for the copy of i in Dr awDot s(). When Dr awDot s() exits,
the memory for its copy of i is deallocated, freed up so it can be
used again for some other variable. A variable declared within a
specific function is known as a local variable. Dr awDot s() has a
single local variable, the variable i .

What Do Parameters Have to Do with Pointers?

OK. Now we're getting to the crux of the whole matter. What does
all this have to do with pointers? To answer this question, you have
to understand the two different methods of parameter passing.

Parameters are passed from function to function either by value or
by address. Passing a parameter by value passes only the value of a
variable or a literal on to the called function. Take a look at this code:

int main(void)

{
i nt nunDot s;
nunbDots = 30;

Dr awDot s(nunmDot s);

return O;

}

void DrawbDots(int nunDots)
{

int i;

Learn C under Windows 95/NT 151

Pointers and Parameters
What Do Parameters Have to Do with Pointers?

for (i =1, i <= nunDots; i++)
printf(“.”);

Here’s what happens when mai n() calls Dr awDot s(). On the call-
ing side, the expression passed as a parameter to Dr awDot s() is re-
solved to a single value. In this case, the expression is simply the
variable nunDot s. The value of the expression is the value of
nunDot s, which is 30.

On the receiving side, when Dr awDot s() gets called, memory is al-
located for its parameters, as well as for its local variables. This
means that memory is allocated for its copy of nunDot s, as well as
for its copy of i . The value that Dr awDot s() receives from mai n()
(in this case, 30) is copied into the memory allocated to its copy of
nunDot s.

It is important to understand that whatever mai n() passes as a pa-
rameter to Dr awDot s () is copied into its local copy of the parameter.
Think of this copy of nunDot s as just another local variable that will
disappear when Dr awDot s() exits. Dr awDot s() can do whatever
it likes to its copy of the parameter. Since it is just a local copy, any
changes will have absolutely no effect on the copy of the parameter
inmai n().

Since passing parameters by value is a one-way operation, there’s
no way to get data back from the called function. Why would you
ever want to? Several reasons. You might write a function that takes
an employee number as a parameter. You might want that function
to return the employee’s salary in another parameter. How about a
function that turns yards into meters? You could pass the number of
yards as a value parameter, but how would you get back the num-
ber of meters?

Passing a parameter by address (instead of by value) solves this
problem. If you pass the address of a variable, the receiving function
can use the * operator to change the value of the original variable.
Here’s an example:

int main(void)

{

I nt square;

152 Learn C under Windows 95/NT

Pointers and Parameters
What Do Parameters Have to Do with Pointers?

By the Way

Squarelt(5, &square);
printf(“5 squared is %.\n”, square);

return O;

void Squarelt(int nunber, int *squarePtr)

{

*squarePtr = nunber * nunber;

}

In this example, mai n() calls the function Squar el t (), which
takes two parameters. As in the previous example, both parameters
are declared between the parentheses on the function’s title line. No-
tice that a comma separates the parameter declarations.

The first of the two Squar el t () parameters is an i nt. The second
parameter is a pointer to an i nt. Squar el t () squares the value
passed in the first parameter, using the pointer in the second param-
eter to return the squared value.

If i's been 10 or more years since your last math class, squaring a
number is the same as multiplying the number by itself. The
square of 4 is 16, and the square of 5 is 25.

Here’s how mai n() calls Squarel t ():
Squarelt(5, &square);
Here’s the function prototype of Squar el t ():

void Squarelt(int nunber, int *squarePtr);

Learn C under Windows 95/NT 153

Pointers and Parameters
What Do Parameters Have to Do with Pointers?

Figure 7.8

When Squar el t () gets called, memory is allocated for an i nt
(nunber) and for a pointer to ani nt (squar ePtr).

Once the local memory is allocated, the value 5 is copied into the
local parameter nunber, and the address of squar e is copied into
squar ePt r . (Remember, the & operator produces the address of a
variable.)

Inside the function Squar el t (), any reference to * squar ePt r is
just like a reference to squar e. The following assignment statement
assigns the value 25 (since number has a value of 5) to the variable
pointed to by squar ePt r:

*squar ePtr = nunber * nunber;

This has the effect of assigning the value 25 to squar e. When
Squar el t () returns control to mai n(), the value of squar e has
been changed, as evidenced by the screen shot in Figure 7.8. If
you’d like to give this code a try, you'll find it in the Learn C

Pr oj ect s directory, inside the 07. 02 - squar el t subdirectory.
We'll see lots more pointer-wielding examples throughout the rest
of the book.

"'& squareit

squar el t in action.

154 Learn C under Windows 95/NT

Pointers and Parameters
Global Variables and Function Returns

Global Variables and Function Returns

The combination of pointers and parameters gives us one way to
share variables between different functions. This section demon-
strates two more techniques for doing the same.

Global variables are variables that are accessible from inside every
function in your program. By declaring a global variable, two sepa-
rate functions can access the same variable without passing parame-
ters. We'll show you how to declare a global variable, then talk
about when and when not to use global variables in your programs.

Another topic we'll discuss later in the chapter is a property com-
mon to all functions. All functions written in C have the ability to re-
turn a value to the function that calls them. You set this return value
inside the function. You can use a function’s return value in place of
a parameter, use it to pass “additional information” to the calling
function, or not use it at all. We’ll show you how to add a return
value to your functions.

Global Variables

Earlier in the chapter, you learned how to use parameters to share
variables between two functions. Passing parameters between func-
tions is great. You can call a function and pass it some data to work
on; when the function’s done, it can pass you back the results.

Global variables provide an alternative to parameters. Global vari-
ables are just like regular variables, with one exception. Global vari-
ables are immune to C’s scope rules. They can be referenced inside
each of your program’s functions. One function might initialize the
global variable, another might change its value, and another func-
tion might print the value of the global variable in the console win-
dow.

As you design your programs, you'll have to make some basic deci-
sions about data sharing between functions. If you'll be sharing a
variable among a number of functions, you might want to consider
making the variable a global. Globals are especially useful when
you want to share a variable between two functions that are several
calls apart.

Learn C under Windows 95/NT 155

Pointers and Parameters
Global Variables and Function Returns

Several calls apart? At times, you'll find yourself passing a parame-
ter to a function not because that function needs the parameter but
because the function calls another function that needs the parame-
ter. Look at this code:

#i ncl ude <stdi o. h>

voi d PassAl ong(int nyVar);
void PrintM/Var(int nyVar);

int main(void)
{
i nt myVar;
nmyVar = 10;

PassAl ong(nyVar);

return O;
}
voi d PassAl ong(int nyVar)
{
Print MyVar(nyVar);
}
void PrintM/Var(int nyVar)
{
printf(“nyVar = %", nyVar);
}

Notice that mai n() passes nyVar to the function PassAl ong().
PassAl ong() doesn’'t make use of nyVar but instead just passes
myVar along to the function Pri nt MyVar (). Pri nt MyVar () prints
nyVar, then returns.

If myVar were a global, you could have avoided some parameter
passing. In that case, mai n() and Pri nt MyVar () could have

156 Learn C under Windows 95/NT

Pointers and Parameters
Global Variables and Function Returns

shared nmyVar without the use of parameters. When should you use
parameters? When should you use globals? There’s no easy answer.
As you write more code, you'll develop your own coding style and,
with it, your own sense of when to use globals versus parameters.

For the moment, let’s take a look at the proper way to add globals to

your programs.

Adding Globals to Your Programs

Adding globals to your programs is easy. Just declare a variable at
the beginning of your source code, before the start of any of your
functions. Here’s the example we showed you earlier, using globals

in place of parameters:

#i ncl ude <stdi o. h>

voi d PassAl ong(void);
void PrintM/Var(void)

i nt gWyVar;

int main(void)

{
gWwVvar = 10;

PassAl ong();

return O;

}

voi d PassAl ong(void)

{
Print MyVar () ;

}

void PrintM/Var(void)
{

printf(“gMyVar = %”
}

g Var)|

Learn C under Windows 95/NT 157

Pointers and Parameters
Global Variables and Function Returns

This example starts with a variable declaration, right at the top of
the program. Because gMyVar was declared at the top of the pro-
gram, gMyVar becomes a global variable, accessible to each of the
program’s functions. Notice that none of the functions in this ver-
sion use parameters. As a reminder, when a function is declared
without parameters, use the keyword void in place of a parameter
list.

When to Use Globals

In general, you should try to minimize your use of globals. On the
one hand, global variables make programming easier, because you
can access a global anywhere. With parameters, you have to pass the
parameter from function to function, until it gets to where it will be
used.

On the other hand, globals are expensive, memorywise. Since the
memory available to your program is finite, you should try to be
memory conscious whenever possible. What makes global variables
expensive where memory is concerned? Whenever a function is
called, memory for the function’s variables is allocated on a tempo-
rary basis. When the function exits, the memory allocated to the
function is freed up (put back into the pool of available memory).
Global variables, on the other hand, are around for the life of your
program. Memory for each global is allocated when the program
first starts running and isn’t freed up until the program exits.

Try to minimize your use of globals, but don’t be a miser. If using a
global will make your life easier, go ahead and use it.

Function Returns

Before we get to our source code examples, there’s one more subject
to cover. In addition to passing a parameter and using a global vari-
able, there’s one more way to share data between two functions.
Every function returns a value to the function that called it. You can
use this return value to pass data back from a called function.

So far, all of our examples have ignored function return values. The
return value comes into play only when you call a function in an ex-
pression, like this:

158 Learn C under Windows 95/NT

Pointers and Parameters
Global Variables and Function Returns

int main(void)

{
I nt sum
sum = AddTheseNunbers(5, 6);
printf(“The sumis %l.”, sum);
return O;

}

i nt AddTheseNunbers(int nunl, int nunt)
{

}

return(nunml + nun);

There are a few things worth noting in this example. First, take a
look at the function specifier for AddTheseNunber s(). So far in
this book, every single function other than mai n() has been de-
clared by using the keyword voi d. AddTheseNunber s() , like
mai n(), starts with the keyword i nt. This keyword tells you the
type returned by this function. A function declared with the voi d
keyword doesn’t return a value. A function declared with the i nt
keyword returns a value of typei nt.

A function returns a value by using ther et ur nkeyword, followed
by an expression that represents the value you want returned. For
example, take a look at this line of code from AddTheseNunber s():

return(nunl + nun);

This line of code adds the two variables nunil and nun®, then re-
turns the sum. To understand what that means, take a look at this
line of code, which calls AddTheseNunber s() from mai n():

sum = AddTheseNunbers(5, 6);

Learn C under Windows 95/NT 159

Pointers and Parameters
Global Variables and Function Returns

This line of code first calls AddTheseNunber s() , passing in values
of 5 and 6 as parameters. AddTheseNunber s() adds these num-
bers and returns the value 11, which is then assigned to the variable
sum

When you use a function inside an expression, the computer makes
the function call, then substitutes the function’s return value for the
function when it evaluates the rest of the expression.

There are several ways to user et ur n. To exit a function immedi-
ately, without establishing a return value, you could use this state-
ment:

return,
You could also use this statement:
return();

The parentheses in ar et ur n statement are optional. You'd use the
plainr et urn, without an expression, to return from a function of
type voi d. You might use this immediate r et ur nin case of an er-
ror, like this:

if (QutOf Menory())
return;

What you'll want to remember about this form of r et ur nis that it
does not establish the return value of the function. This works fine if
your function is declared voi d:

void MyVoi dFunction(int nmyParam);
But it won’t cut it if your function is declared to return a value:

I nt AddTheseNunbers(int nunil, int nunR)

160 Learn C under Windows 95/NT

Pointers and Parameters
Global Variables and Function Returns

By the Way

Figure 7.9

If you forget to specify a return value, some compilers will say
nothing, some will print warnings, and others will report errors.

AddTheseNunber s() is declared to return a value of typei nt.
Here are two versions of the AddTheseNunber s() r et ur nstate-
ment:

return(numl + nun®);

return nunl + nun®;

Notice that the second version did not include any parentheses.
Since r et ur nis a keyword and not a function call, either of these
forms is fine.

You can find a version of this program on your hard drive. Look in
the directory Learn C Pr oj ect s in the subdirectory 07. 03 -
addThese. Figure 7.9 shows the output of this program.

"2 addthese
The szum is 11.

addThesein action.

Learn C under Windows 95/NT 161

Pointers and Parameters
Global Variables and Function Returns

Danger! Avoid Uninitialized Return Values!

Before we leave the topic of function return values, there’s one pit-
fall worth mentioning. If you're going to use a function in an expres-
sion, make sure that the function provides a return value. For
example, this code will produce unpredictable results:

int main(void)

{
int sum
sum = AddTheseNunbers(5, 6);
printf(“The sumis %l.”, sum);
return O;

}

i nt AddTheseNunbers(int nunil, int nunt)
{
return;/* Yikes! W forgot to
set the return value */

When AddTheseNunber s() returns, what will its value be? No one
knows! Figure 7.10 shows one possibility. As you can see, the com-
puter used 0 as the return value for AddTheseNunber s() . Don't
forget to set a return value if you intend to use a function in an ex-
pression.

162 Learn C under Windows 95/NT

Pointers and Parameters
Global Variables and Function Returns

Figure 7.10

2 addthese
The sum iz A.

Yikes! The sum of 5 + 6 is not equal to 0. Someone forgot to
set the return value.

To Return or Not to Return

Should you use a return value or a passed-by-address parameter?
Which is correct? This is basically a question of style. Either solution
will get the job done, so feel free to use whichever works best for
you. Just remember that a function can have only one return value
but an unlimited number of parameters. If you need to get more
than one piece of data back to the calling function, your best bet is to
use parameters.

The function AddTheseNunber s() was a natural fit for ther et ur n
statement. It took in a pair of numbers (the input parameters) and
needed to return the sum of those numbers. Since it needed to re-
turn only a single value, the r et ur n statement worked perfectly.

Another nice thing about using the r et ur n statement is that it fre-
quently allows us to avoid declaring an extra variable. In
addThese, we declared sumto receive the value returned by
AddTheseNunber s(). Since all we did with sumwas print its

Learn C under Windows 95/NT 163

Pointers and Parameters
More Sample Programs

value, we could have accomplished the same thing with this version
of mai n():

int main(void)
{
printf(“The sumis %. ",
AddTheseNunbers(5, 6));

return O;

}

See the difference? We included the call to AddTheseNunber s() in
the pri nt f (), bypassing sumentirely. When AddTheseNunber s()
returns its i nt, that value is passed on to pri ntf ().

More Sample Programs

Are you ready for some more code? The next few sample programs
use pointers, function parameters, global variables, and function re-
turns. Crank up the stereo, break out the pizza, and fire up your PC.
Let’s code!

listPrimes.cwp

Our next sample program is an updated version of next Pr i ng, the
Chapter 6 program that found the next prime number following a
specified number. The example we presented reported that the next
prime number after 19 was 23.

This version of the program, called | i st Pri mes. cwp, uses a func-
tion named | sl t Pri me() and lists all the prime numbers between
1 and 50. Open up the project| i st Pri nes. cwp. You'll find the

program in the Learn C Pr oj ect s directory, inside the subdirec-

tory named 07. 04 - |istPrimes. Runli st Prinesand then
compare your results with the console window shown in Figure
7.11.

164 Learn C under Windows 95/NT

Pointers and Parameters
More Sample Programs

Stepping Through the Source Code

Thel i st Pri mes. ¢ source code consists of two functions: mai n()
and | sl tPrinme().lsltPrime() takes a single parameter, ani nt
named candi dat e, which is passed by value. | sl t Pri me() re-
turns a value of t r ue if candi dat eis a prime number and a value
of f al se otherwise.

The program starts off with two #i ncl udes: stdi o. h givesus
access to the function prototype of pri nt f (), and mat h. h gives us
access to the function prototype for sqrt ():

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

Then we define the constantst r ue and f al se. (Remember, we’ll
discuss #def i nelater.)

#def i ne true 1
#define fal se 0

Next comes the function prototype for | sl t Pri ne(). The compiler
will use this function prototype to make sure that all calls to

I st Prime() pass the right number of parameters (in this case, 1)

and that the parameters are of the correct type (in this case, a single
i nt).

/***********************/

/* Function Prototypes */

/***********************/

int IsltPrinme(int candidate);

Learn C under Windows 95/NT 165

Pointers and Parameters

More Sample Programs

s a prime numbher.
is a prime number.
iz a prime number.

is
is
iz
is
iz
is
iz
is
iz
is

iz

U == == - =L - -

prime
prime
prime
prime
prime
prime
prime
prime
prime
prime
prime

nunher.
number.
nunher.
number.
nunher.
number.
nunher.
nunber.
numher.
nunber.
numher.

Figure 7.11 | i st Pri nesin action.

The mai n() function defines a single variable, an i nt named i .
We'llusei as a counter to step through the integers from 1 to 50.
We'll pass each number to | sl t Pri me(). If the resultis t r ue, we’ll

report the number as prime:

int main(void)

I ++)

printf(“% is a prine nunber.\n”,

{
int i;
for (i =1; i <= 50;
{
if (IsltPrinme(i))
}
return O;
}

166 Learn C under Windows 95/NT

Pointers and Parameters
More Sample Programs

By the Way

As usual, mai n() ends with ar et ur n statement. By convention,
returning a value of 0 tells the outside world that everything ran
just hunky-dory. If something goes wrong (if we ran out of memory,
perhaps), the same convention calls for us to return a negative
number from mai n() . Some operating systems will make use of
this return value, and others won't. It doesn’t cost you anything to
follow the convention, so go ahead and follow it.

I slt Prinme() first checks to see whether the number passed in is
less than 2. If itis, | sl t Pri me() returns f al se, since 2 is the first
prime number:

int IsltPrine(int candidate)

{

int i, |last;

if (candidate < 2)
return fal se;

If candi dat ehas a value of 2 or greater, we'll step through all the
numbers between 2 and the square root of candi dat e, looking for
a factor. If this algorithm is new to you, go back to the previous
chapter and check out the program next Pri me. If we find a factor,
we know that the number isn’t prime, and we’ll return f al se:

el se

{
| ast = sqgrt(candidate);
for (i =2, i <=last; i++)
{

if ((candidate %i) == 0)
return fal se;

Learn C under Windows 95/NT 167

Pointers and Parameters
More Sample Programs

By the Way

If we get through the loop without finding a factor, we know that
candi dat e is prime, and we returnt r ue:

return true;

If candi dat eis equal to 2, | ast will be equal to 1.414, which will
get truncated to 1, since | ast isani nt.Ifl ast is 1, the f or loop
won't even get through one iteration and will fall through to the
statement:

return true;

The same thing happens if candi dat eis 3. Since 2 and 3 are
both prime, this works just fine. On the other hand, this little exam-
ple shows you how careful you have to be to check your code, to
make sure it works in all cases.

Consider the function name | sl t Pri ne(). In C, when you name a
function in the form of at r ue or f al se question, it is good form to
return a value of t r ue orf al se. The question this function answers
is, Is the candidate prime? It is critical that | sl t Pri nme() return

t r ue if the candidate was prime and f al se otherwise. When

mai n() calls|sltPrime(), main() is asking the question, Is the
candidate prime? In the case of the i f statement, mai n() is saying,
Ifi is prime, do the printf():

if (IsltPrinme(i))
printf(...);

Make sure that your function return values make sense!

168 Learn C under Windows 95/NT

Pointers and Parameters
More Sample Programs

power.cwp

Our next program combines a global variable, a pointer parameter,
and some value parameters. At the heart of the program is a func-
tion, called DoPower (), that takes three parameters. DoPower ()
takes a base and an exponent, raises the base to the exponent power,
and returns the result in a parameter. Raising a base to an exponent
power is the same as multiplying the base by itself, an exponent
number of times.

For example, raising 2 to the fifth power (written as 2°) is the same
as saying 2*2*2*2*2, which is equal to 32. In the expression 2°, 2 is
the base and 5 is the exponent. The function DoPower () takes a
base and an exponent as parameters and raises the base to the expo-
nent power. DoPower () uses a third parameter to return the result
to the calling function.

The program also uses a global variable, ani nt named

gPri nt Tr acel nf o, which demonstrates one of the most impor-
tant uses of a global variable. Every function in the program checks
the value of the global gPri nt Tracel nf o. If gPri nt Tracel nfo
ist r ue, each function prints a message when the function is entered
and another message when the function exits. In this way, you can
trace the execution of the program. By reading each pri nt f (), you
can see when a function is entered and when it leaves.

If gPrint Tracel nf o issettotr ue, the extra function-tracing in-
formation will be printed in the console window. If

gPri nt Tr acel nf ois set to f al se, the extra information will not
be printed. As you'll see in a moment, by simply changing the value
of a global, you can dramatically change the way your program
runs.

Running power.cwp

You'll find power . cwp inthelLearn C Projects directory, in
the 07. 05 - power subdirectory. Runpower. cwp and compare
your results with the console window shown in Figure 7.12. This
output was produced by three consecutive calls to the function
DoPower (). The three calls calculated the result of the expressions
25 3% and 5°. Here’s how the program works.

Learn C under Windows 95/NT 169

Pointers and Parameters
More Sample Programs

2 to the Sth
3 to the 4th
% to the 3rd

Figure 7.12 power output, with gPri nt Tr acel nf oset to f al se.

Stepping Through the Source Code

The program starts with a standard #i ncl ude, the definition of the
contstants t r ue and f al se, and the function prototype for
DoPower (). Notice that DoPower () is declared to be of type voi d,
telling you that DoPower () doesn’t return a value. As you read
through the code, think about how you might rewrite DoPower ()
to return its result by using the r et ur n statement instead of in a pa-
rameter.

#i ncl ude <stdi o. h>

#defi ne true 1
#defi ne fal se 0

/***********************/

/* Function Prototypes */

/***********************/

170 Learn C under Windows 95/NT

Pointers and Parameters
More Sample Programs

By the Way

void DoPower(int *resultPtr, int base, int
exponent);

Next comes the declaration of our global, gPr i nt Tr acel nf o.
Once again, notice that the global starts with a g:

/***********/

/* d obals */

/***********/

I nt gPrint Tr acel nf o;

Next, mai n() starts off by setting gPri nt Tracel nfo tofal se.
We then check to see whether tracing is turned on. If so, we'll print a
message telling us we’ve entered mai n():

int main(void)

{
i nt power;

gPrintTracelnfo = fal se;

if (gPrintTracelnfo)
printf(“---> Starting main()...\n");

C guarantees that it will initialize all global variables to zero. Since
f al seis equivalent to zero, we could have avoided setting
gPrint Tracel nfo tofal se, butit does make the code a little
clearer.

Here are our three calls to DoPower (), each of which is followed by
aprintf () reporting our results. If DoPower () returned its results
in ar et ur n statement, we could have eliminated the variable
power and embedded the call to DoPower () inside the pri ntf ()
in place of power.

Learn C under Windows 95/NT 171

Pointers and Parameters
More Sample Programs

DoPower (&power, 2, 5);
printf(“2 to the 5th = %.\n", power);
DoPower (&ower, 3, 4);
printf(“3 to the 4th = %.\n", power);

I~

DoPower (&power, 5, 3
d

printf(“5 to the 3r %.\n", power);

If tracing is turned on, we'll print a message saying that we are leav-
ing mai n():

if (gPrintTracelnfo)
printf(“---> Leaving main()...\n”);

return O;

}

The function DoPower () takes three parameters. We'll use

resul t Ptr, a pointer to an i nt, to pass back the function results.
The value parameters base and exponent represent the—guess
what?—base and exponent.

void DoPower(int *resultPtr, int base, int
exponent)

{

int i;

Once again, check the value of gPri nt Tracel nfo. Ifit'str ue,
print a message telling us that we’re at the beginning of DoPower ().
Notice the tab character (represented by the characters \ t) at the be-
ginning of the pri nt f () quoted string. You'll see what this was for
when we set gPri nt Tracel nfototrue.

if (gPrintTracelnfo)

172 Learn C under Windows 95/NT

Pointers and Parameters
More Sample Programs

printf(“\t---> Starting DoPower()...\n”);

The following three lines calculate base raised to the exponent
power, accumulating the results in the memory pointed to by
resul t Pt r. When nai n() called DoPower (), it passed &power
as its first parameter. This means thatr esul t Pt r contains the ad-
dress of (points to) the variable power. Changing *resul t Pt r is
exactly the same as changing power. When DoPower () returns to
mai n(), the value of power will have been changed; power was
passed by address (also called by reference) instead of by value.

*resultbPtr = 1,
for (i = 1; i <= exponent; i++)
*resultPtr *= base;

Finally, if gPri nt Tr acel nf o is t r ue, print a message telling us
that we’re leaving DoPower ():

if (gPrintTracelnfo)
printf(“\t---> Leaving DoPower()...\n”);

Figure 7.13 shows the console window when power is run with
gPrint Tracel nfo settotrue. See the trace information? Find
the lines printed when you enter and exit DoPower (). The leading
tab characters help distinguish these lines.

This tracing information was turned on and off by a single global
variable. As you start writing your own programs, you'll want to
develop your own set of tricks for global variables. For example,
programmers who write programs that can run in color or black and
white usually create a global called something like gl sCol or. They
set gl sCol or totrueorfal se, once they establish whether they
are running in a color or a black-and-white environment. In this
way, a function buried deep inside the program doesn’t have to fig-
ure out whether it’s running in color or in black and white. All it has
to do is check the value of gl sCol or.

Learn C under Windows 95/NT 173

Pointers and Parameters

What’s Next?

Figure 7.13

——2» Btarting maind)>...
———>» Starting DoPower<{d...
———>» Leaving DoPower(>...
5th = 32.
> Starting DoPowerd{d...
Leaving DoPower{>_..
the 4th = B1.
———>» Starting DoPower<{d. ..
———» Leaving DoPower(>...
the 3rd = 125_
Leaving maind{)»...

power output, with gPri nt Tracel nf osetto t r ue.

What's Next?

Exercises

Wow! You really are becoming a C programmer. In this chapter
alone, you covered pointers, function parameters (both by value
and by address), global variables, and function return values.

You're starting to develop a sense of just how powerful and sophis-
ticated the C language really is. You've built an excellent founda-
tion. Now you're ready to take off.

Chapter 8 introduces the concept of data types. Throughout the
book, you've been working with a single data type, the i nt. Chap-
ter 8 introduces the concepts of arrays, strings, pointer arithmetic,
and typed function return values. Let’s go.

1. Predict the result of each of the following code fragments:

174 Learn C under Windows 95/NT

Pointers and Parameters

Exercises

a. int main(void)

{

int num i;
num = 5;

for (i =0; i < 20; i++)
AddOne(&num) ;

printf(“Final value is %l.”, num);

return O;

}

voi dAddOne(int *nyVar)

{
(*nyVar) ++;
}

b. int gNunber;

int main(void)
{
int i;

gNunber 2;

for (i =1; i <=2; i++)
gNunmber *= Mul tiplylt(gNunber);

printf(“Final value is %l.”, gNunber);

}

int Multiplylt(int nmyVar)

{
return(nmyVar * gNunber);

}

Learn C under Windows 95/NT 175

Pointers and Parameters
Exercises

c. int gNunber;

int main(void)

{
int i;
gNunber = 1,
for (1 =1; i <= 10; i++)
gNunber = Doubl elt(gNunber);

printf(“Final value is %l.”, gNunber);

i nt Doublelt(intnyVar)

{
return 2 * nyVar,

}

2. Modify power . c. Delete the first parameter of the function
DoPower (), modifying the routine to return its result as a
function return value instead.

3. Modify | i st Pri nmes. c. Instead of printing prime numbers,
print only nonprime numbers. In addition, print one message
for nonprimes that are multiples of 3 and a different message
for nonprimes that are not multiples of 3.

176 Learn C under Windows 95/NT

8
Variable Data Types

OK, now we're cooking! You may now consider yourself a C Pro-
grammer, First Class. At this point, you’ve mastered all the basic el-
ements of C programming. You know that C programs are made up
of functions, one—and only one!—of which is named mai n(). Each
of these functions uses keywords (such asi f, f or, and whi | e), op-
erators (such as =, ++, and * =), and variables to manipulate the pro-
gram’s data.

Sometimes, you'll use a global variable to share data between func-
tions. At other times, you'll use a parameter to share a variable be-
tween a calling and a called function. Sometimes, these parameters
are passed by value; sometimes, pointers are used to pass a parame-
ter by address. Some functions return values. Others, declared with
the voi d keyword, don’t return a value.

In this chapter, we’ll focus on variable types. Each of the variables
in the previous example programs has been declared as ani nt. As
you’ll soon see, there are many other data types out there.

Other Data Types

By the Way

So far, the focus has been on i nt s, which are extremely useful when
it comes to working with numbers. You can add two i nts. You can
check whether an i nt is even, odd, or prime. You can do a lot with
i nts, as long as you limit yourself to whole numbers.

Just as a reminder, 527, 33, and —2 are all whole numbers,
whereas 35.7, 92.1, and —1.2345 are not whole numbers.

What do you do if you want to work with nonwhole numbers, such
as 3.14159 and —98.6? Check out this slice of code:

Learn C under Windows 95/NT 177

Variable DataTypes

Other Data Types

By the Way

i nt myNum

myNum = 3. 5;
printf(“myNum= %", nyNum);

Since myNumis an i nt, the number 3.5 will be truncated before it is
assigned to myNum When this code ends, my Numwill be left with a
value of 3 and not 3.5 as intended. Do not despair. There are several
special C data types created especially for working with nonwhole,
or floating-point numbers.

The term floating point refers to the decimal point found in all float-
ing-point numbers.

Floating-Point Data Types

The three floating-point data types are f | oat, doubl e, and | ong
doubl e. These types differ in the number of bytes allocated to each
and, therefore, the range of values each can hold. The relative sizes
of these three types are completely implementation dependent.
Here’s a program you can run to tell you the size of these three
types in your development environment and to show you various
ways to use pri nt f () to print floating-point numbers.

floatSizer

Look inside the Learn C Proj ect s directory, inside the subdirec-
tory named 08. 01 - fl oat Si zer, and open the project named
fl oat Si zer. cwp. Figure 8.1 shows the results when Iranf | oat -
Si zer on Windows using CodeWarrior. The first three lines of out-
put tell you the size, in bytes, of the types f | oat, doubl e, and | ong
doubl e, respectively. If you run the same program using Microsoft
Visual C++ Compiler, you'll find that a f | oat is still 4 bytes long
and that a doubl eand al ong doubl eare still 8 bytes each. How-
ever, never assume that you know the size of a type. As you'll see
when we go through the source code, C gives you everything you
need to check the size of a specific type in your development

178 Learn C under Windows 95/NT

Variable DataTypes
Other Data Types

Figure 8.1

eof{ float > = 4
eof ¢ douhle » = 8
sizeof ¢ long double > = 8

myFloat = 12345%.678711
myDouble = 12345.678%681
myLongDouble = 12345%.678981

12345.6787189375000000
12345.67870123450000008
myLongDouble = 12345 .67898123450006000

12345.7
12345.68
12345.678718937588
12345.678718738

1.234568e+04

188808
1e+86

The output from f | oat Si zer.

environment. If you need to be sure of a type’s size, write a program

and check the size for yourself.

Stepping Through the Source Code

The code starts with the standard #i ncl ude:

#i ncl ude <stdi o. h>

Then mai n() defines three variables: a f | oat, a doubl e, and a

| ong doubl e:

int main(void)

{
fl oat nmyFl oat ;
doubl e nmyDoubl e;

| ong doubl e nmyLongDoubl e;

Learn C under Windows 95/NT 179

Variable DataTypes

Other Data Types

By the Way

Next, we'll assign a value to each of the three variables. Notice that
we’ve assigned the same number to each:

nyFl oat = 12345. 67890123456789;
nyDoubl e = 12345. 67890123456789;
nyLongDoubl e = 12345. 67890123456789;

Now comes the fun part. We'll start by using C’s si zeof operator
to print the size of each of the three floating-point types. Even
though si zeof doesn’t look like the other operators we’ve seen (+,
*, <<, and so on), it is indeed an operator. Stranger yet, Si zeof re-
quires a pair of parentheses surrounding a single parameter, much
like a function. The parameter is either a type or a variable;

si zeof () returns the size, in bytes, of its parameter.

Like ret urn, si zeof doesn't always require a pair of parenthe-
ses. If the si zeof operand is a type, the parentheses are re-
quired. If the si zeof operand is a variable, the parentheses are
optional. Rather than trying to remember this rule, avoid confusion
and always use parentheses with si zeof.

Did you notice the (i nt) to the left of each si zeof ? This is known
as a typecast. A typecast tells the compiler to convert a value of one
type to a specified type. In this case, we are taking the type returned
by si zeof and converting it to an i nt. Why do this? The reason is

that si zeof returns a value of type si ze_t (weird type name, eh?),
and pri nt f () doesn’t have a format specifier that corresponds to a
Si ze_t.By converting the si ze_t toani nt, we can use the format
specifier % to print the value returned by si zeof . Notice the extra
\ n at the end of the third pri nt f (), which gives us a blank line be-
tween the first three lines of output and the next line of output:

printf(“sizeof(float) = %\n”, (int)sizeof
(float));

printf(“sizeof(double) = %l\n”, (int)sizeof
(double));

180 Learn C under Windows 95/NT

Variable DataTypes
Other Data Types

Important

printf(“sizeof(long double) = %\n\n",
(int)sizeof(|ong double));

If the concept of typecasting is confusing to you, have no fear.
We'll get into typecasting in Chapter 11. Until then, you can use
this method whenever you want to print the value returned by

si zeof. Alternatively, you might declare a variable of type i nt,
assign the value returned by si zeof to the i nt, and then print the
int:

i nt nyl nt ;

nylnt = sizeof(float);
printf(“sizeof(float) = %\n”, nylnt);

Use whichever method works for you.

The rest of this program is dedicated to various and sundry ways
you can print your floating-point numbers. So far, all of our pro-
grams have printed i nt s using the format specifier %d. The Stan-
dard Library has a set of format specifiers for all of C’s built-in data
types, including several for printing floating-point numbers.

First, we’ll use the format specifer % to print our three floating-
point numbers in their natural, decimal format:

printf(“nyFloat = %\n”, nyFloat);
printf(“nyDouble = %\n”, nyDouble);
printf(“myLongDouble = %\n\n”, nyLongDouble);

Here’s the result:

nyFl oat = 12345. 678711
nyDoubl e = 12345. 678901
nmyLongDoubl e = 12345. 678901

Learn C under Windows 95/NT 181

Variable DataTypes

Other Data Types

As a reminder, all three of these numbers were assigned the value:
12345. 67890123456789

Hmmm . . . none of the numbers we printed matches this number.
And the first number we printed is different from the second and
third numbers. What gives? There are several problems here. As
we’ve already seen, this development environment uses 4 bytes for
afl oat and 8 bytes each for a doubl eand al ong doubl e This
means that the number:

12345.67890123456789

can be represented more accurately using a doubl eor al ong dou-
bl e than it can be using a f | oat . In addition, we are printing using
the default precision of the % format specifier. In this case, we are
printing only six places past the decimal point. Although this might
be plenty of precision for most applications, we’d like to see how ac-
curate we can get.

We then use format specifier modifiers to more closely specify the
output produced by each pri nt f (). By using %25.16f instead of

% , we tell pri nt f () to print the floating-point number with an ac-
curacy of 16 places past the decimal and to add spaces if necessary
so the number takes up at least 25 character positions:

printf(“nyFloat = 9%5.16f\n”, nyFloat);

printf(“nyDouble = 9%25.16f\n”, nyDouble);

printf(“nyLongDouble = 9%25.16f\n\n”,
nmyLongDoubl e) ;

Here’s the result:

nyFl oat = 12345. 6787109375000000
nyDoubl e = 12345. 6789012345678900
nyLongDoubl e = 12345.6789012345678900

182 Learn C under Windows 95/NT

Variable DataTypes
Other Data Types

By the Way

As requested, pri nt f () printed each of these numbers to 16 places
past the decimal place (count the digits yourself), padding each re-
sult with zeros as needed. Since adding the 16 digits to the right of
the decimal, plus 1 space for the decimal, plus 5 for the 5 digits to
the left of the decimal equals 22 (16+1+5=22) and we asked

printf () touse 25 character positions, pri nt f () added 3 spaces
to the left of the number.

We originally asked pri nt f () to printaf | oat with a value of:
12345. 67890123456789

The best approximation of this number we were able to represent
by afl oat is:

12345. 6787109375000000

Where did this approximation come from? The answer has to do
with the way your computer stores floating-point numbers.

The fractional part of a number (the number to the right of the dec-
imal) is represented in binary just like an integer. Instead of the
sum of powers of 2, the fractional part is represented as the sum
of powers of 1/2. For example, the number 0.75 is equal to 1/2 +
1/4. In binary, that’s 11.

The problem with this representation is that it's impossible to rep-
resent some numbers with complete accuracy. If you need a
higher degree of accuracy, use doubl eoral ong doubl ein-
stead of f | oat. Unless you cannot afford the extra memory that
the larger data types require, you are probably better off using a
doubl eoral ong doubl ein your programs instead of a f | oat
for all your floating-point calculations.

The next portion of code shows you the result of using different
modifer values to print the same f | oat:

Learn C under Windows 95/NT 183

Variable DataTypes

Other Data Types

printf(“nyFloat = %40.1f\n”, nyFloat);

printf(“nyFloat = % 2f\n”, nyFloat);

printf(“nyFloat = % 12f\n”, nyFl oat);

printf(“nyFloat = %9f\n\n”, nyFloat);
Here's the output produced by each pri ntf ():
nyFl oat = 12345.7
nyFl oat = 12345. 68
nyFl oat = 12345. 678710937500
nyFl oat = 12345. 678710938
The specifier 94.0. 1f told pri ntf () to print 1 digit past the deci-
mal and to use 10 character positions for the entire number. The
specifier % 2f told pri nt f () to print 2 digits past the decimal and
to use as many character positions as necessary to print the entire
number. Notice that pri nt f () rounds off the result for you and
doesn’t simply cut off the number after the specified number of
places.
The specifier % 12f told pri nt f () to print 12 digits past the deci-
mal, and the specifier % 9f told pri nt f () to print 9 digits past the
decimal. Again, notice the rounding that takes place.

By the Way Unless you need to exactly control the total number of characters

used to print a number, you'll probably leave off the first modifier
and just specify the number of digits past the decimal you want
printed, using specifiers such as % 2f and % 9f.

If you do use a two-part modifier, such as 3. 2f, printf () will
never cut off numbers to the left of the decimal. For example, the
output myFl oat = 255. 54will be produced by the following
code:

nyFl oat = 255. 543;
printf(“nyFloat = %3.2f”, nyFloat);

184 Learn C under Windows 95/NT

Variable DataTypes
Other Data Types

Even though you told pri nt f () to use three character positions
to print the number, pri nt f () was smart enough to not lose the
numbers to the left of the decimal.

The nextpri nt f () uses the specifier %, askingpri ntf () to print
the float using scientific, or exponential, notation:

printf(“nyFloat = %\n\n”, nyFloat);
Here’s the corresponding output:
nyFl oat = 1.234568e+04

The result, 1. 234568e+041is equal to 1.234568 times 10 to the
fourth power, or 1.234568*104, or 1.234568 * 10000 == 12,345.68.

The next two pri nt f () calls use the specifier %g, letting pri nt f ()
decide whether decimal or scientific notation will be the most effi-
cient way to represent this number. The first %g deals with a

nyFl oat value of 100,000:

nyFl oat = 100000;
printf(“nyFloat = %g\n”, nyFloat);

Here’s the output:
myFl oat = 100000

Next, the value of myFl oat is changed to 1,000,000, and %g is used
once again:

nyFl oat = 1000000;
printf(“nyFloat = %g\n”, nyFloat);

Learn C under Windows 95/NT 185

Variable DataTypes

Other Data Types

Important

return O;

Here’s the result of this last pri nt f (). As you can see, this time
printf () decided to represent the number using exponential nota-
tion:

nyFl oat = 1e+06

The lesson here is: Use f | oat if you want to work with floating-
point numbers. Use doubl eor | ong doubl e for extra accuracy,
but beware the extra cost in memory usage. Use i nt for maximum
speed, if you want to work exclusively with whole numbers, or if
you want to truncate a result.

The Integer Types

So far, you've learned about four types: three floating-point types
(f1 oat, doubl e, and | ong doubl €) and one integer type (i nt). In
this section, we’ll introduce the remaining integer types: char,
short, and | ong. As was the case with the three floating-point
types, the size of each of the four integer types is implementation
dependent. Our next program, i nt Si zer proves that point. You'll
find i nt Si zer, inthe Learn C Proj ects directory, in the
08.02 - intSizer subdirectory.

Although these forms are rarely used, a short is also known as a
short int,andal ongis also knownasal ong int.As an ex-
ample, these declarations are perfectly legal:

short int nmyShort ;
| ong i nt nmyLong;

Although the preceding declarations are just fine, you are more
likely to encounter declarations like these:

short nmyShort ;

186 Learn C under Windows 95/NT

Variable DataTypes
Other Data Types

| ong nmyLong;

As always, choose your favorite style and be consistent.

Thei nt Si zer program contains one pri nt f () for each integer
type:

printf(“sizeof(char) = %\ n”, (int)sizeof
(char));

printf(“sizeof(short) = %\n”, (int)sizeof
(short));

printf(“sizeof(int) = %\n", (int)sizeof
(int));

printf(“sizeof(long) = %\n”, (int)sizeof
(Tong));

Like their f | oat Si zer counterparts, these pri nt f () calls use
si zeof to determine the size of a char, ashort, ani nt, and a

| ong. When i nt Si zer was compiled using CodeWarrior, here’s
what came back:

sizeof(char) =1
si zeof (short) =
sizeof(int) =4
sizeof(long) = 4

2

Again, the point to remember is: There are no guarantees. Don’t as-
sume that you know the size of a type. Write a program and check
for yourself.

Type Value Ranges

All the integer types can be either si gned or unsi gned. This obvi-
ously affects the range of values handled by that type. For example,
a si gned 1-byte char can store a value from —-128 to 127, and an
unsi gned 1-byte char can store a value from 0 to 255. If this clouds
your mind with pain, now might be a good time to go back and re-
view Chapter 5.

Learn C under Windows 95/NT 187

Variable DataTypes
Other Data Types

Asi gned2-byteshort ori nt can store values ranging from
-32768 to 32767. Anunsi gned2-byte shor t ori nt can store values
ranging from 0 to 65535.

Asi gned4-byte |l ongori nt can store values ranging from
-2,147,483,648 to 2,147,483,647. An unsi gned4-byte | ongori nt
can store values ranging from 0 to 4,294,967,295.

A 4-bytef | oat can range in value from -3.4e+38 to 3.4e+38. An 8-
byte doubl eor | ong doubl e can range in value from -1.7e+308
to 1.7e+308.

Memory Efficiency Versus Safety

Each time you declare one of your program’s variables, you'll have
a decision to make. What's the best type for this variable? In gen-
eral, it’s a good policy not to waste memory. Why use a | ong when
ashort will do just fine? Why use adoubl e when a f | oat will do
the trick?

There is a danger in being too concerned with memory efficiency,
however. For example, suppose that a customer asked you to write
a program designed to print the numbers 1 through 100, one num-
ber per line. Sounds pretty straightforward. Just create af or loop
and embed a pri nt f () in the loop. In the interests of memory effi-
ciency, you might use a char to act as the loop’s counter. After all, if
you declare your counter as an unsi gnedchar, it can hold values
ranging from 0 to 255. That should be plenty, right?

unsi gned char counter;

for (counter=1; counter<=100; counter++)
printf(“%\n”, counter);

This program works just fine. But suppose that your customer then
asks you to extend the program to count from 1 to 1000 instead of
just to 100. You happily change the 100 to 1000 like so:

unsi gned char counter;

for (counter=1; counter<=1000; counter++)

188 Learn C under Windows 95/NT

Variable DataTypes
Working with Characters

printf(“%\n”, counter);

What do you think will happen when you run the program? To find
out, open the Learn C Proj ects directory, open the 08. 03 -

t ypeOver f | ow subdirectory, and open and run the project
typeOverfl ow. cwp.

Keep an eye on the numbers as they scroll by on the screen. When
the number 255 appears, a funny thing happens. The next number
will be 0, then 1, 2, and so on. If you leave the program running for a
while, it will climb back up to 255, then jump to 0 and climb back up
again. This will continue forever. Type Control C to quit the pro-
gram.

The problem with this program occurs when the f or loop incre-
ments count er when it has a value of 255. Since an unsi gned
char can hold a maximum value of 255, incrementing it gives it a
value of 0 again. Since count er can never get higher than 255, the
f or loop never exits.

Just for kicks, edit the code and change the unsi gned char toa
si gned char. What do you think will happen? Try it!

The real solution here is to use ashort, i nt, or | onginstead of a
char. Don’t be stingy. Unless there is a real reason to worry about
memory usage, err on the side of extravagence. Err on the side of

safety!

Working with Characters

With its minimal range, you might think that a char isn’t good for
much. Actually, the C deities created the char for a good reason. It
is the perfect size to hold a single alphabetic character. In C, an al-
phabetic character is a single character placed between a pair of sin-
gle quotes (‘). Here’s a test to see whether a char variable contains
the letter * a’ :

char c;

Learn C under Windows 95/NT 189

Variable DataTypes
Working with Characters

Warning

ifo(== 'a')
printf(“The variable ¢ holds the character
)

As you can see, the character * @’ is used in both an assignment
statement and an i f statement, just as if it were a number or a vari-

able.

The ASCII Character Set

In C, asi gned char takes up a single byte and can hold a value
from -128 to 127. How can a char hold a numerical value, as well as
a character value, such as‘ @’ or ‘ +' ? The answer lies with the
ASCII character set. The ASCII (American Standard Code for Infor-
mation Interchange) character set of 128 standard characters fea-
tures the 26 lowercase letters, the 26 uppercase letters, the 10
numerical digits, and an assortment of other exciting characters,
such as } and =. Each of these characters corresponds exactly to a
value between 0 and 127. The ASCII character set ignores the values
between 128 and 1.

For example, the character * @’ has an ASCII value of 97. When a C
compiler sees the character * @’ in a piece of source code, it substi-
tutes the value 97. Each of the values from 0 to 127 is interchange-
able with a character from the ASCII character set.

Although we use the ASCII character set throughout this book, you
should know that there are other character sets out there. Another
commonly used character set is the EBCDIC character set. Each
EBCDIC character, like an ASCII character, has a value between 0
and 127 and, therefore, fits nicely inside a char.

Some foreign alphabets have more characters than can be repre-
sented by a single byte. To accommodate these multibyte charac-
ters, ISO C features wide-character and wide-string data types.

Although we won’t get into EBCDIC and multibyte character sets in

190 Learn C under Windows 95/NT

Variable DataTypes
Working with Characters

this book, you should keep these things in mind as you write your
own code. Read up on the multibyte extensions introduced as part
of the ISO C standard. There’s an excellent writeup in Harbison
and Steele’s C: A Reference Manual (see the bibliography at the
back of this book).

ascii.cwp

Here’s a program that will make the ASCII character set easier to
understand. Go into the Learn C Pr oj ect s directory, then into
the 08. 04 - ascii subdirectory, and open the project
ascii.cwp.

Before we step through the project source code, let’s take it for a
spin. Select Run from the Project menu. A console window similar
to the one in Figure 8.2 should appear. The first line of output shows
the characters corresponding to the ASCII values from 32 to 47. Why
start with 32? As it turns out, the ASCII characters between 0 and 31
are nonprintable characters, such as the backspace (ASCII 8) or the
carriage return (ASCII 13). A table of the nonprintable ASCII charac-
ters is presented later on.

Notice that ASCII character 32 is a space, or * ‘. ASCII character 33
is* 1" . ASCII character 47 is * / ’ . This presents some interesting
coding possibilities. For example, this code is perfectly legitimate:

i nt suntf Chars;

suntf Chars = ‘" + ‘[

What a strange piece of code! Although you will probably never do
anything like this, try to predict the value of the variable
suntf Char s after the assignment statement. And the answer is . . .

The character ‘ ! ' has a value of 33, and the character ‘ / ’ has a
value of 47. Therefore, sumOf Char s will be left with a value of 80
following the assignment statement. C allows you to represent any
number between 0 and 127 in two different ways: as an ASCII char-
acter or as a number. Let’s get back to the console window in Figure
8.2.

Learn C under Windows 95/NT 191

Variable DataTypes
Working with Characters

Figure 8.2

47 ——3> VSRR’ (O -/

57 ——> B123456789

64 ———> =;<{=>7@

98 ———> ABCDEFGHIJKLMNOPQRSTUUWRYZ

96 —>» [~NI°_°

122 —-> ahcdefghijklmnopgrstuvwxyz
123 to 126 —-> {i¥™

The printable ASCII characters.

The second line of output shows the ASCII characters from 48
through 57. As you can see, these 10 characters represent the digits 0
through 9. Here’s a little piece of code that converts an ASCII digit
to its numerical counterpart:

char digit;
i nt convertedDi git;

digit = *3;
convertedDigit = digit - ‘0";

This code starts with a char named di gi t, initialized to hold the
ASCII character ‘3’, which has a numerical value of 51. The next line
of code subtracts the ASCII character ‘0’ from di gi t. Since the char-
acter * 0’ has a numerical value of 48, and di gi t started with a nu-
merical value of 51, conver t edDi gi t ends up with a value of 51 -
48, or 3. Isn’t that interesting?

192 Learn C under Windows 95/NT

Variable DataTypes
Working with Characters

Warning

Warning

Subtracting * 0’ from any ASCII digit yields that digit's numerical
counterpart. Although this is a great trick if you know you're work-
ing with ASCII, your code will fail if the digits of the current charac-
ter set are not represented in the same way as they are in ASCII.
For example, if you were on a machine that used a character set in
which the digits were sequenced from 1 to 9, followed by 0, this
trick wouldn’t work.

The next line of the console window shown in Figure 8.2 shows the
ASCII characters with values ranging from 58 to 64. The following
line is pretty interesting. It shows the range of ASCII characters from
65 to 90. Notice anything familiar about these characters? They rep-
resent the complete uppercase alphabet.

The next line in Figure 8.2 lists ASCII characters with values from 91
through 96. The next line lists the ASCII characters with values
ranging from 97 through 122. These 26 characters represent the com-
plete lowercase alphabet.

Adding 32 to an uppercase ASCII character yields its lowercase
equivalent. Likewise, subtracting 32 from a lowercase ASCII char-
acter yields its uppercase equivalent.

Guess what? You never want to take advantage of this information!
Instead, use the Standard Library routines t ol ower () and
t oupper () to do the conversions for you.

As a general rule, try not to make assumptions about the order of
characters in the current character set. Use Standard Library func-
tions rather than working directly with character values. Although it
is tempting to do these kinds of conversions yourself, by going
through the Standard Library, you know that your program will
work across single-byte character sets.

The final line in Figure 8.2 lists the ASCII characters from 123 to 126.
As it turns out, the ASCII character with a value of 127 is another
nonprintable character. Figure 8.3 lists these “unprintables.” The

Learn C under Windows 95/NT 193

Variable DataTypes
Working with Characters

left-hand column shows the ASCII code; the right-hand column
shows the keyboard equivalent for that code, along with any appro-
priate comments. The characters with comments by them are proba-
bly the only unprintables you'll ever use.

ASCII Unprintables

Used to terminate text strings (Explained later in chapter)
Control-A

Control-B

Control-C

Control-D (End of file mark, see Chapter 10)
Control-E

Control-F

Control-G (Beep character - Try it!)
Control-H (Backspace)

Control-I (Tab)

10 Control-J (Line feed)

11 Control-K (Vertical feed)

12 Control-L (Form feed)

13 Control-M (Carriage return, no line feed)
14 Control-N

15 Control-O

16 Control-P

17 Control-Q

18 Control-R

19 Control-S

20 Control-T

21 Control-U

22 Control-V

23 Control-W

24 Control-X

25 Control-Y

26 Control-Z

27 Control-[(Escape character)

28 Control-|

29 Control-]

30 Control-»

31 Control-_

127 del

co~NOOUOTD WNPEFL O

©

Figure 8.3 The ASCIl unprintables.
Stepping Through the Source Code

Before we move on to our next topic, let’s take a look at the
asci i . ¢ source code that generated the ASCII character listing in

194 Learn C under Windows 95/NT

Variable DataTypes
Working with Characters

Figure 8.2. This code begins with the usual #i ncl ude, followed by
a function prototype of the function Pr i nt Char s().

Pri nt Char s() takes two parameters, which define a range of
chars to print.

#i ncl ude <stdi o. h>

/***********************/

/* Function Prototypes */

/***********************/

void PrintChars(char |low, char high);

The mai n() function calls Pr i nt Char s() seven times in an at-
tempt to functionally organize the ASCII characters:

int main(void)

{
Print Chars(32, 47);
Print Chars(48, 57);
PrintChars(58, 64);
Print Chars(65, 90);
PrintChars(91, 96);
Print Chars(97, 122);
Print Chars(123, 126);
return O

}

Pri nt Char s() declares a local variable, ¢, to act as a counter as we
step through a range of char s:

void PrintChars(char Iow, char high)
{

char c;

Learn C under Windows 95/NT 195

Variable DataTypes

Arrays

Arrays

We'lluse | owand hi gh to print a label for the current line, showing
the range of ASCII characters to follow. Notice that we use % to
print the integer version of these chars; %6 can handle any integer
types no bigger than an i nt :

printf(“%d to % --->“, low, high);

Next, a f or loop is used to step through each of the ASCII charac-
ters, from | owto hi gh, using pri nt f () to print each of the charac-
ters consecutively on the same line. The pri nt f () bears closer
inspection. Notice the use of % (instead of our usual %) to tell
printf () to print a single ASCII character:

for (¢ =1low ¢ <= high; c++)
printf(“%”, c);

Once the line is printed, a single new line is printed, moving the cur-
sor to the beginning of the next line in the console window. Thus
ends Pri nt Char s():

printf(“\'n”);
}

The char data type is extremely useful to C programmers. The next
two topics—arrays and text strings—will show you why. As you
read through these two topics, keep the concept of ASCII characters
in the back of your mind. As you reach the end of the section on text
strings, you'll see an important relationship develop among the
three topics.

An array turns a single variable into a list of variables; for example:

int nyNunmber [3];

196 Learn C under Windows 95/NT

Variable DataTypes
Arrays

Important

This declaration creates three separate i nt variables, referred to in
your program as nyNunber[O], nyNunmber[1], and
myNunmber [2].Each of these variables is known as an array ele-
ment. The number enclosed in brackets ([]) is called an index.

char nyChar[20];

In this declaration, the name of the array is my Char. This declaration
will create an array of type char with a dimension of 20. The di-
mension of an array is the array’s number of elements. The array el-
ements will have indices that run from 0 to 19.

In C, array indices always run from 0 to one less than the array’s
dimension.

This slice of code first declares an array of 100 i nt s, then assigns
each i nt a value of 0:

int nyNunber[100], i;

for (i=0; i<100; i++)
myNunmber[i] = O;

You could have accomplished the same thing by declaring 100 indi-
vidual i nt s, then initializing each individual i nt. Here’s what that
code might look like:

i nt myNunmber O, myNunberl, , nyNunber 99;
myNunber0 = O;
nmyNunber1l = 0;

Learn C under Windows 95/NT 197

Variable DataTypes

Arrays
nmyNunber 99 = 0;
It would take 100 lines of code just to initialize these variables! By
using an array, we've accomplished the same thing in just a few
lines of code. Look at this code fragment:
sum = 0;
for (i=0; i<100; i++)
sum += nyNunber[i];
printf(“The sum of the 100 nunbers is %l.”, sum);
This code adds the value of all 100 elements of the array myNurnber.
Important In this example, the f or loop is used to step through an array,

performing some operation on each of the array’s elements. You'll
use this technique frequently in your own C programs.

Why Use Arrays?

Programmers would be lost without arrays. Arrays allow you to
keep lists of things. For example, if you need to maintain a list of 50
employee numbers, declare an array of 50 i nt's. You can declare an
array using any C type. For example, the following code declares an
array of 50 floating-point numbers:

float salaries[50];
This might be useful for maintaining a list of employee salaries.

Use an array when you want to maintain a list of related data.
Here’s an example.

198 Learn C under Windows 95/NT

Variable DataTypes
Arrays

Figure 8.4

dice.cwp

Look in the Learn C Proj ects directory, inside the 08. 05 -
di ce subdirectory, and open the project di ce. cwp. This program
simulates the rolling of a pair of dice. After each roll, the program
adds the two dice, keeping track of the total. It rolls the dice 1000
times, then reports on the results. Give it a try!

Run di ce by selecting Run from the Project menu. A console win-
dow should appear, similar to the one in Figure 8.4. Take a look at
the output—it’s pretty interesting. The first column lists all the pos-
sible totals of two dice. Since the lowest-possible roll of a pair of six-
sided dice is 1 and 1, the first entry in the column is 2. The column
counts all the way up to 12, the highest-possible roll (achieved by a
roll of 6 and 6).

KX

O

OO
S

SO O OO

M D DM DM S

SO O O O
OO OO OO
IO

HHHH

K

di cein action.Your mileage may vary!

The number in parentheses is the total number of rolls (out of 1000
rolls) that matched that row’s number. For example, the first row de-
scribes the dice rolls that total 2. In this run, the total is 28. Finally,
the program prints an X for every 10 of these rolls. For the total 28,
for example, the program prints two X’s at the end of the 2s row.
Since 160 7s were rolled, 16 x’s were printed at the end of the 7s row.

Learn C under Windows 95/NT 199

Variable DataTypes

Arrays

By the Way

Recognize the curve depicted by the x’s in Figure 8.4? The curve
represents a “normal” probability distribution, also known as a bell
curve. According to the curve, you are about six times more likely
to roll a 7 as you are to roll a 12. Want to know why? Check out a
book on probability and statistics.

Let’s take a look at the source code that makes this possible.

Stepping Through the Source Code

The source code starts off with three #i ncl udes: <stdlib. h>
gives us access to the routines r and() and srand(), <ti ne. h>
gives us access to ¢l ock(), and <st di 0. h>gives us access to
printf().

#i ncl ude <stdlib. h>
#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

Following are the function prototypes for Rol | Gne(),
PrintRol | s(),andPri nt X().You'll see how these routines work
as we step through the code.

/***********************/

/* Function Prototypes */
/***********************/

i nt Rol | One(void);

void PrintRolls(introlls[]);
void PrintX(inthowany);

mai n() declares an array of 13 i nt s namedr ol | s, which will keep
track of the 11 possible types of dice rolls. For example, r ol | s[2]

will keep track of the total number of 2s, r ol | s[3] will keep track
of the total number of 3s, and so on, up until r ol | s[12], which will
keep track of the total number of 12s rolled. Since there is no way to

200 Learn C under Windows 95/NT

Variable DataTypes
Arrays

By the Way

roll a 0 or a 1 with a pair of dice, rol | s[0] and r ol | s[1] will go
unused.

int main(void)

{

i nt rolls[13], twoDice, i;

We could have rewritten the program using an array of 11 i nt s,
thereby saving 2 i nt s worth of memory. If we did that, r ol | s 0]
would track the number of 2s rolled, r ol | s[1] would track the
number of 3s rolled, and so on. This would have made the pro-
gram a little more difficult to read, since rol | s[i] would be refer-
ring to the number of (i +2)’s rolled.

In general, it is OK to sacrifice memory to make your program eas-
ier to read, as long as program performance isn’t compromised.

The function sr and(), part of the Standard Library, initializes a
random-number generator, using a seed provided by another Stan-
dard Library function, cl ock(). Once the random-number genera-
tor is initialized, another function, r and(), will return an i nt with
a random value.

srand(cl ock());

Why random numbers? Sometimes, you want to add an element of
unpredictability to your program. For example, in our program, we
want to roll a pair of dice again and again. The program would be
pretty boring if it rolled the same numbers over and over. By using a
random-number generator, we can generate a random number be-
tween 1 and 6, thus simulating the roll of a single die!

The next step is for mai n() to initialize each of the elements of the
array rol | sto 0:

for (i=0; i<=12; i++)
rolls[i] = 0;

Learn C under Windows 95/NT 201

Variable DataTypes

Arrays

This is appropriate, since no rolls of any kind have taken place yet.

The next f or loop rolls the dice 1000 times. As you'll see, the func-
tion Rol | One() returns a random number between 1 and 6, simu-
lating the roll of a single die. By calling it twice and storing the sum
of the two rolls in the variable t woDi ce, we’ve simulated the roll of
two dice:

for (i=1; i <= 1000; i++)

{
twoDice = Roll One() + Roll One();

The next line is pretty tricky, so hang on. At this point, the variable
t woDi ceholds a value between 2 and 12, the total of two individual
dice rolls. We'll use that value to specify which i nt to increment. If
t woDi ceis 12 (if we rolled a pair of 6s), we’ll increment

rol | s[12]. Get it? If not, go back and read through this again. If
you still feel stymied (and it's OK if you do), find a C buddy to help
you through this. It is important that you get this concept. Be pa-
tient.

++ rolls[twoDice |;

}

Once we're finished with our 1000 rolls, we’ll passr ol | s as a pa-
rameter to Pri nt Rol | s():

PrintRolls(rolls);

return O;

}

Notice that we used the array name without the brackets (r ol | s in-
stead of r ol | s[]). The name of an array is a pointer to the first ele-
ment of the array. If you have access to this pointer, you have access

202 Learn C under Windows 95/NT

Variable DataTypes
Arrays

Important

to the entire array. You'll see how this works when we look at
PrintRol I s().

Just remember that passing the name of an array as a parameter
is exactly the same as passing a pointer to the first element of the
array. To prove this, edit di ce. ¢ and change

PrintRolls(rolls); to:

PrintRolls(& rolls[0]));

The two lines of code are equivalent! The second form passes the
address of the first array element. If you think back to Chapter 7,
we used the & operator to pass a parameter by reference instead
of by value. By passing the address of the first array element, you
give Pri nt Rol | s() the ability to both access and modify all of the
array elements. This is an important concept!

Rol | One() first callsr and() to generate a random number rang-
ing from 0 to 32,767 (in fact, the upper bound is defined by the con-
stant RAND_MAX which is guaranteed to be at least 32,767). Next, the
%operator is used to return the remainder when the random num-
ber is divided by 6. This yields a random number ranging from 0 to
5. Finally, 1 is added to this number, converting it to a number be-
tween 1 and 6, and that number is returned:

int Roll One(void)
{

}

return (rand() %6) + 1;

Pri nt Rol | s() starts off by declaring a single parameter, an array
pointer named r ol | s. Notice thatr ol | s was declared using square
brackets, telling the compiler thatr ol | s is a pointer to the first ele-
ment of an array (in this case, to an array of i nts).

void PrintRolls(int rolls[])

Learn C under Windows 95/NT 203

Variable DataTypes

Arrays

By the Way

{

i nt [

Print Rol | s() could also have declared its parameter using this
notation:

voi d PrintRolls(int *rolls)

Instead, it used this notation:

voi d PrintRolls(int rolls[])

Both of these notations describe a pointer to an i nt, and both can
be used to access the elements of an array. You'll learn more
about the close relationship between pointers and arrays as you
make your way through the rest of the book.

For now, remember this convention. If you are declaring a parame-

ter that will point to an array, use the square-bracket form. Other-
wise, use the normal pointer form.

Let’s get back to our program. We had just started looking at

Print Rol | s(). The f or loop steps through ther ol | s array, one

i nt at a time, starting with r ol | s[2] and making its way to

rol | s[12]. For each element, Pri nt Rol | s() first prints the roll
number and then, in parentheses, the number of times (out of 1000)
that roll occurred. Next, Pri nt X() is called to print a single x for
every 10 rolls that occurred. Finally, a carriage return is printed, pre-
paring the console window for the next roll.

for (i=2; i<=12; i++)

{
printf(“oRd (98d): “, i, rolls[i]);
PrintX(rolls[i] / 10);
printf(“\'n”);

}

}

204 Learn C under Windows 95/NT

Variable DataTypes
Arrays

Pri nt Xis pretty straightforward. It uses a f or loop to print the
number of X’s specified by the parameter howiVany:

void PrintX(int howivany)

{
int i;
for (i1=1; i<=howMany; i++)
printf(“x”);
}

Danger, Will Robinson!!!

Before we move on, there is one danger worth discussing at this
point. See if you can spot the potential hazard in this piece of code:

int mylnts[3];

for (i=0; 1<20; i++)
nmylnts[i] = 0;

Yikes! The array my| nt s consists of exactly three array elements, yet
the f or loop tries to initialize 20 elements. This is called exceeding
the bounds of your array. Because C is such an informal language, it
will let you “get away” with this kind of source code. In other
words, CodeWarrior will compile this code without complaint. Your
problems will start as soon as the program tries to initialize the
fourth array element, which was never allocated.

What will happen? The safest thing to say is that the results will be
unpredictable. The problem is, the program is trying to assign a
value of 0 to a block of memory that it doesn’t necessarily own.
Anything could happen. The program would most likely crash,
which means that it stops behaving in a rational manner. I've seen
some cases where the computer actually leaps off the desk, hops
across the floor, and jumps face first into the trash can.

Learn C under Windows 95/NT 205

Variable DataTypes

Text Strings
Well, OK, not really. But odd things will happen if you don’t keep
your array references in bounds.

Warning As you code, be aware of the limitations of your variables. For ex-

ample, a char is limited to values from —128 to 127. Don’t try to
assign a value such as 536 to a char. Don't reference

nyArray[27] if you declared myAr r ay with only 10 elements. Be
careful!

Text Strings

Figure 8.5

The first C program in this book made use of a text string:
printf(“Hello, world!”);

This section will teach you how to use such text strings in your own
programs. It will teach you how these strings are stored in memory
and how to create your own strings from scratch.

A Text String in Memory

The text string “ Hel | o, wor | d! ” exists in memory as a sequence
of 14 bytes (Figure 8.5). The first 13 bytes consist of the 13 ASCII
characters in the text string. Note that the seventh byte contains a
space (on an ASCII-centric computer, that translates to a value of
32).

The final byte (byte 14) has a value of 0, not to be confused with the
ASCII character * 0’ . The 0 is what makes this string a C string.
Every C string ends with a byte having a value of 0. The 0 identifies
the end of the string.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hiell|l|o|, |™|w|o|r|l[d]|!]|O

The “Hel | o, Worl d! " text string.

206 Learn C under Windows 95/NT

Variable DataTypes
Text Strings

When you use a quoted string like “ Hel | o, wor | d! "in your code,
the compiler creates the string for you. This type of string is called a
string constant. When you use a string constant in your code, the
detail work is done for you automatically. In the following example,
the 14 bytes needed to represent the string in memory are allocated
automatically:

printf(“Hello, world!”);

The 0 is placed in the fourteenth byte, automatically. You don’t have
to worry about these details when you use a string constant.

String constants are great, but they are not always appropriate. For
example, suppose that you want to read in somebody’s name, then
pass the name on to pri nt f () to display in the console window.
Since you won’t be able to predict the name that will be typed in,
you can’t predefine the name as a string constant. Here’s an exam-

ple.

name.cwp

Look in the Learn C Proj ects directory, inside the 08. 06 -
nane subdirectory, and open the project nane. cwp. The program
will ask you to type your first name on the keyboard. Once you've
typed your first name, the program will use your name to create a
custom welcome message. Then, name will tell you how many char-
acters long your name is. How useful!

To run name, select Run from the Project menu. A console window
will appear, prompting you for your first name, like this:

Type your first nane, please:

Type your first name, then enter a carriage return. When I did, I saw
the output shown in Figure 8.6. Let’s take a look at the source code
that generated this output.

Learn C under Windows 95/NT 207

Variable DataTypes

Text Strings
Blvpe your first name. please: Dave
BYelcome,. Dave.
gYour name iz 4 characters long.
Figure 8.6 nane prompts you to type in your name, then tells you how

long your name is.

Stepping Through the Source Code

At the heart of nane. c is a new Standard Library function called
scanf (). This function uses the same format specifiers as

printf () toread textin from the keyboard. This code will read in
anint:

int nylnt;

scanf(“%”, &nylnt);

The % tells scanf () to read in ani nt. Notice the use of the & be-
fore the variable ny| nt. This passes the address of nyl nt to

scanf (), allowing scanf () to change the value of nyl nt. To read
in a f | oat, use code like:

fl oat nyFl oat;

208 Learn C under Windows 95/NT

Variable DataTypes
Text Strings

scanf(“%”, &nyFloat);

The program nane. c starts off with a pair of #i ncl udes:
<string. h> gives us access to the Standard Library function
strlen(), and <st di 0. h>, well, you know what we get from
<stdi 0. h>—pri nt f (), right? Right.

#i ncl ude <string. h>
#i ncl ude <stdi o. h>

To read in a text string, you have to first declare a variable to place
the text characters in. The program uses an array of characters for
this purpose:

int main(void)

{

char nane[50];

The array nane is big enough to hold a 49-byte text string. When
you allocate space for a text string, remember to save 1 byte for the 0
that terminates the string.

The program starts by printing a prompt. A prompt is a text string
that lets the user know that the program is waiting for input, as in
the following:

printf(“Type your first nane, please: “);

Before we get to the scanf () call, it helps to understand how the
computer handles input from the keyboard. When the computer
starts running your program, it automatically creates a big array of
char s for the sole purpose of storing keyboard input to your pro-
gram. This array is known as your program’s input buffer. Every
time you enter a carriage return, all the characters typed since the
previous carriage return are appended to the current input buffer.

When your program starts, the input buffer is empty. If you type
123 abcd from your keyboard, followed by a carriage return, the

Learn C under Windows 95/NT 209

Variable DataTypes
Text Strings

End of
Input Buffer

R,

e.
tUrJ
n

1[2]3

S
pa
C
e

albjc|d

Figure 8.7 A snapshot of the input buffer.

input buffer will look like Figure 8.7. The computer keeps track of
the current end of the input buffer. The space character between the
123’ and the* abcd’ has an ASCII value of 32. Notice that the car-
riage return was placed in the input buffer.

Given the input buffer shown in Figure 8.7, suppose that your pro-
gram called scanf (), like this:

scanf(“%”, &nylnt);

Starting at the beginning of the input buffer, scanf () reads a
character at a time until it reaches one of the nonprintables, such as
a carriage return, tab, space, or 0, until it reaches the end of the
buffer or a character that conflicts with the format specifier (if %
was used and the letter * 8’ was encountered, for example).

After the scanf (), the input buffer looks like Figure 8.8. Notice that
the characters passed on to scanf () were removed from the input
buffer and that the rest of the characters slid over to the beginning of
the buffer. In fact, scanf () took the characters‘ 1',‘ 2’ ,and * 3’
and converted them to the integer 123, placing 123 in the variable

nmyl nt.

210 Learn C under Windows 95/NT

Variable DataTypes
Text Strings

End of
Input Buffer

'

ajbjcfdlr] | 1 L e

Figure 8.8 A second snapshot of the input buffer.

If you then typed the line:
3.5 Dave

followed by a carriage return, the input buffer would look like Fig-
ure 8.9. At this point, the input buffer contains two carriage returns.
To the input buffer, a carriage return is just like any other character.
To a function like scanf (), the carriage return is white space.

By the Way If you forgot what white space is, now would be a good time to turn
back to Chapter 5, where white space was first described.

End of
Input Buffer

/

&t
ur [2 N)
n

albfcid

“.]3].]5]>|D]a]v]e

Figure 8.9 A third snapshot of the input buffer.

Learn C under Windows 95/NT 211

Variable DataTypes

Text Strings

By the Way

Before we started our discussion on the input buffer, mai n() had
just called pri nt f () to prompt for the user’s first name:

printf(“Type your first nane, please: “);

Next, we called scanf () to read the first name from the input
buffer:

scanf(“9%”, nane);

Since the program just started, the input buffer is empty; scanf ()
will wait until characters appear in the input buffer, which will hap-
pen as soon as you type some characters and enter a carriage return.
Type your first name and enter a carriage return.

Note that scanf () will ignore white-space characters in the input
buffer. For example, if you type a few spaces and tabs and then
enter a carriage return, scanf () will still sit there, waiting for
some real input. Try it!

Once you type in your name, scanf () will copy the characters, a
byte at a time, into the array of char s pointed to by nanme. Remem-
ber, because nane was declared as an array, hane points to the first
of the 50 bytes allocated for the array.

If you type in the name Dave, scanf () will place the four charac-
ters‘' D, “a,'v’,and "' e’ into the first four of the 50 bytes allo-
cated for the array. Next, scanf () will set the fifth byte to a value of
0 to terminate the string properly (Figure 8.10). Since the string is
properly terminated by the 0 in nanme[4], we don’t really care about
the value of the bytes nane[5] through nane[49].

Next, we pass name on to printf(), asking it to print the name as part
of a welcoming message. The %s tells printf() that name points to
the first byte of a zero-terminated string. Stepping through memory,
one byte at a time, printf() starts with the byte that name points to
and prints each byte in turn until it reaches a byte with a value of 0,
marking the end of the string.

212 Learn C under Windows 95/NT

Variable DataTypes
Text Strings

Figure 8.10

Warning

name
points here

0 2 3 8 9
Ls-Dla]v]elo]]---[[

The array name after the string “Dave"” is copied to it. Notice
that name[4] has a value of O.

printf(“Welcone, %.\n”, nane);

If name[4] didn’t contain a 0O, the string wouldn’t be properly termi-
nated. Passing a nonterminated string to pri nt f () is a sure way
to confuse pri nt f (), which will step through memory one byte at
a time, printing a byte and looking for a O. It will keep printing bytes
until it happens to encounter a byte set to 0. Remember, C strings
must be terminated!

The next line of the program calls another Standard Library func-
tion, called st r | en(), which takes a pointer as a parameter and re-
turns the length, in bytes, of the string pointed to by the parameter.
This function depends on the string being terminated with a 0. Just
like si zeof (), strl en() returns a value of type si ze_t. We'll use
a typecast to convert the value to an i nt, then print it using %l.
Again, we'll cover typecasting later in the book.

printf(“Your nane is % characters |long.”,
(int)strlen(name));

return O;

}

Learn C under Windows 95/NT 213

Variable DataTypes

#define

#def i ne

Important

Our last program for this chapter demonstrates a few more charac-
ter-handling techniques, a new Standard Library function, and an
invaluable programmer’s tool, the #def i ne.

The #def i ne (pronounced pound-define) tells the compiler to sub-
stitute one piece of text for another throughout your source code.
The following statement, for example, tells the compiler to substi-
tute 6 every time it finds the text KkMaxPl ayer sin the source code.

#defi ne kMaxPl ayers 6

The text KMax Pl ayer sis known as a macro. As the C compiler
goes through your code, it enters each #def i neinto a list, known as
a dictionary, performing all the #def i ne substitutions as it goes.

It's important to note that the compiler never modifies your source
code. The dictionary it creates as it goes through your code is sep-
arate from your source code, and the substitutions it performs are
made as the source code is translated into machine code.

Here’s an example of a #def i ne in action:

#defi ne kMaxArraySi ze 100

int main(void)

{
char nyArray[kMaxArraySi ze];

i nt i

for (i=0; i<kMaxArraySize; i++)
nyArray[i] = 0;

return O;

214 Learn C under Windows 95/NT

Variable DataTypes
#define

Warning

The #def i ne at the beginning of this example substitutes 100 for
kMaxAr r aySi ze everywhere it finds it in the source code file. In
this example, the substitution will be done twice. Although your
source code is not modified, here’s the effect of this #def i ne:

int main(void)

{
char nyArray[100];
i nt i

for (i=0; i<100; i++)
nyArray[i | = 0;

return O;

Note that a #def i ne must appear in the source code file before it
is used. In other words, this code won’t compile:

int min(void)

{
char nyArray[kMaxArraySize |;
i nt i;
#defi ne kMaxArraySi ze 100
for (i=0; i<kMaxArraySize; i++)
nyArray[i] = 0;
return O,
}

Having a #def i nein the middle of your code is just fine. The prob-

Learn C under Windows 95/NT 215

Variable DataTypes

#define

By the Way

lem here is that the declaration of myAr r ay uses a #def i ne that
hasn’t occurred yet!

If you use #def i nes effectively, you'll build more flexible code. In
the previous example, you can change the size of the array by modi-
fying a single line of code, the #def i ne. If your program is de-
signed correctly, you should be able to change the line to:

#defi ne kMaxArraySi ze 200

You can then recompile your code, and your program should still
work properly. A good sign that you are using #def i nes properly
is an absence of constants in your code. In the example, the constant
100 was replaced by kMaxAr r aySi ze. You can also use the Pre-
process command from the Project menu to get a preview of the re-
sult of all your #def i ne substitutions.

Windows programmers, like Unix programmers, tend to name their
#def i ne constants using all uppercase letters, sprinkled with un-
derscores (_) to act as word dividers (as in MAX_ARRAY_SI ZB.

As you'll see in our next program, you can put practically anything,
even source code, into a #def i ne. Take a look:

#define kPrintReturn printf(“\'n”);

Although not particularly recommended, this #def i ne will work
just fine:

printf(“\'n”);

It will substitute that statement for every occurrence of the text
KPri nt Ret ur n in your source code. You can also base one
#def i neon a previous #def i ne:

216 Learn C under Windows 95/NT

Variable DataTypes
#define

By the Way

#defi ne kSi deLength 5
#defi ne kArea kSideLength * kSi deLength

Interestingly, you could have reversed the order of these two
#def i nes, and your code would still have compiled. As long as
both entries are in the dictionary, their order of occurrence in the
dictionary is not important.

What is important is that #def i ne appear in the source code be-
fore any source code that refers to it. If this seems confusing, don’t
sweat it. It won’'t be on the test.

FunctionLike #define Macros
You can create a #def i ne macro that takes one or more arguments.
Here’s an example:

#define kSquare(a) (a) * (a))

This macro takes a single argument. The argument can be any C ex-
pression; for example:

nylnt = kSquare(nylnt + 1);

If you called the macro like that, the compiler would use its first
pass to turn the line into this:

nmylnt = ((nylnt + 1) * (nylnt + 1));

Notice the usefulness of the parentheses in the macro. Suppose,
however, the macro were defined like this:

#define kSquare(a)a * a

Learn C under Windows 95/NT 217

Variable DataTypes
#define

The compiler would have produced:
mylnt = nylnt + 1 * nylnt + 1;

But that is not what we wanted. The only multiplication that gets
performed by this statementis 1 * nyl nt, because the * operator
has a higher precedence than the + operator.

Be sure that you pay strict attention to your use of white space in
your #def i ne macros. For example, there’s a world of difference
between these two macros:

#define kSquare(a)((a) * (a))
#define kSquare (a)((a) * (a))

(Note the space between kSquar eand (a).) The second form of
the macro creates a #def i ne constant named kSquar e, which is de-
fined as:

(a)((a) * (a))
This won’t even compile (see the error message in Figure 8.11), be-

cause the compiler doesn’t know what a is.

Here’s another interesting macro side effect. Suppose that you
wanted to call this macro:
#define kSquare(a) (a) * (a))

But instead, you called it like this:

mySquare = kSquare(nylnt++);

218 Learn C under Windows 95/NT

Variable DataTypes
A Sample Program: wordCount

imErrors & Warnings [_ (O] %
@ 1 i Eors and wamings for 't3.cup”

LT | oo . P
_H.‘ Error - undefined identifier 'a'
main.c line 10 a3 (fa) = (a))

Figure 8.11 An error generated by adding one space to a macro.

The preprocessor pass expands this macro call to:

nySquare = ((nmylnt++) * (nylnt++));

Do you see the problems here? First, ny| nt will get incremented
twice by this macro call (probably not what was intended). Second,
the first myl nt ++will get executed before the multiply happens,
yielding a final result of ny| nt * (my| nt +1), definitely not what
you wanted! The point here: Be careful when you pass an expres-
sion as a parameter to a macro.

A Sample Program: wordCount

Look in the Learn C Proj ects directory, inside the 08. 07 -
wor dCount subdirectory, and open the project wor dCount . cwp.
This program will ask you to type in a line of text and will count the
number of words in the text you type.

Torunwor dCount , select Run from the Project menu. The program
will then prompt you to type in a line of text:

Type a line of text, please:

Learn C under Windows 95/NT 219

Variable DataTypes
A Sample Program: wordCount

Type in a line of text, at least a few words long. End your line by en-
tering a carriage return. When you do, wor dCount will report its re-
sults. The program will ignore any white space, so feel free to
sprinkle your input with tabs, spaces, and the like. My output is
shown in Figure 8.12. Let’s take a look at the source code that gener-
ated this output.

"4 wordcount

Type a line of text. please:
I find delight in the gruesome and grimtt?

———— This line has B words ————
I find delight in the gruesome and grim?t??

Figure 8.12 wor dCount, doing its job.

Stepping Through the Source Code

The program begins with the usual#i ncl ude and then adds a new
one—<ct ype. h>—which includes the prototype of the function

i sspace(). This function takes a char as input and returns t r ue if
the char isatab (‘ \ t’), hard carriage return (a return without a
line feed: ‘ \ r '), newline (a return with a line feed: ‘ \ n’), vertical
tab (‘' \ v’), form feed (* \ '), or space (" ‘). Otherwise, it returns
fal se.

#i ncl ude <stdi o. h>

220 Learn C under Windows 95/NT

Variable DataTypes
A Sample Program: wordCount

By the Way

#i ncl ude <ctype. h>

Older C environments may include a variant of i sspace() called
I swhite().

Next, we define some constants: t r ue, fal se,

kMaxLi neLengt h, kZeroByte. kMaxLi neLengt h specifies the
largest line this program can handle (200 bytes should be plenty).
kZer oByt e has a value of 0 and is used to mark the end of the line
of input. More of this in a bit.

#define true 1

#define fal se 0

#defi ne kMaxLi neLength 200
#defi ne kZer oByte 0

Here are the function prototypes for the two functions ReadLi ne()
and Count Wor ds(). ReadLi ne() reads in a line of text, and
Count Wor ds () takes a line of text and returns the number of words
in the line:

/***********************/

/* Function Prototypes */
/***********************/

void ReadLine(char *line);

I nt Count Wrds(char *line);

The mai n() function starts by defining an array of chars that will
hold the line of input we type and an i nt that will hold the result of
our call to Count Wor ds():

/**> tTHI n <*/
int main(void)

char |ine[kMaxLineLength];

i nt numhor ds;

Learn C under Windows 95/NT 221

Variable DataTypes
A Sample Program: wordCount

By the Way

Notice that we’'ve added a comment line that appears immediately
before each of the wor dCount functions. As your programs get
larger and larger, a comment like this makes it easier to spot the
beginning of a function and makes your code a little easier to read.

Once we type the prompt, we'll pass | i ne to ReadLi ne(). Remem-
ber that | i ne is a pointer to the first byte of the array of chars.
When ReadLi ne() returns, | i ne contains a line of text, terminated
by a zero byte, making | i ne a legitimate, 0-terminated C string.
We'll pass that string on to Count Wor ds():

printf(“Type a line of text, please:\n”);

ReadLi ne(line);
numAords = CountWbrds(line);

We then print a message telling us how many words we just
counted:

printf(“\'n---- This |ine has % word”,
numbrds) ;

if (numMrds !'= 1)
printf(“s”);

printf(“ ----\n%\n”, line);

return O;

This last bit of code shows attention to detail, something very im-
portant in a good program. Notice that the first pri nt f () ended
with the characters “ wor d”. If the program found either no words
or more than one word, we want to say either of the following:

222 Learn C under Windows 95/NT

Variable DataTypes
A Sample Program: wordCount

By the Way

This |ine has 0 words.
This |line has 2 words.

If the program found exactly one word, the sentence should read:
This line has 1 word.

The lasti f statement makes sure that the “ s” gets added if needed.

In mai n(), we defined an array of char s to hold the line of charac-
ters we type in. When mai n() called ReadLi ne(), it passed the
name of the array as a parameter to ReadLi ne():

char line[kMaxLineLength];
ReadLi ne(line);

As we said earlier, the name of an array also acts as a pointer to the
first element of the array. In this case, | i ne is equivalent to

&(l'i ne[0]). ReadLi ne() now has a pointer to the first byte of the
| i ne array in mai n().

/************************************> Readl_l ne <*/

void ReadLine(char *line)

{

This whi | e loop calls get char () to read one character at a time
from the input buffer; get char () returns the next character in the
input buffer. Or, if there’s an error, it returns the constant ECF. You'll
learn more about EOF in Chapter 10.

As was the case with scanf (), when a character is read from the
input buffer, the character is removed, and the rest of the charac-

Learn C under Windows 95/NT 223

Variable DataTypes
A Sample Program: wordCount

Important

ters in the buffer move over to take the place of the removed char-
acter.

The first time through the loop, | i ne points to the first byte of the

| i ne array in mai n(). At this point, the expression*1 i ne is equiv-
alent to the expression | i ne[0]. The first time through the loop,
we're getting the first character from the input buffer and copying it
intol i ne[0].

The whi | e loop continues as long as the character we just read in is
not‘\n’ (aslong as we have not yet retrieved the return character
from the input buffer):

while ((*Iine = getchar()) !'=*\n")
i ne++;

Each time through the loop, we’ll increment the local copy of the
pointer line in ReadLi ne() to point to the next byte in the | i ne
array of mai n(). The next time through the loop, we'll read a char-
acter into the second byte of the array, then the third byte, and so on,
until read ina * \ n’ and drop out of the loop.

This technique is known as pointer arithmetic. When you incre-
ment a pointer that points into an array, the value of the pointer is
incremented just enough to point to the next element of the array.
For example, if | i ne were an array of 4-byte f | oat s instead of
chars, the following line of code would increment | i ne by 4 in-
stead of by 1:

i ne++;

In both cases, | i ne would start off pointing to | i ne[0] ; then,
after the statement | i ne++, 1 i ne would pointto | i ne[1].

Take a look at this code:

char charPtr;

224 Learn C under Windows 95/NT

Variable DataTypes
A Sample Program: wordCount

fl oat floatPtr;
doubl e doubl ePtr:
char Ptr ++;

fl oat Ptr ++;
doubl ePt r ++;

In the last three statements, char Pt r gets incremented by 1 byte,
f | oat Pt r gets incremented by 4 bytes, and doubl ePt r gets in-
cremented by 8 bytes (assuming 1-byte chars, 4-byte f | oat s,
and 8-byte doubl es).

This is an extremely important concept to understand. If this
seems fuzzy to you, go back and reread this section, then write
some code to make sure that you truly understand how pointers
work, especially as they relate to arrays.

Once we drop out of the loop, we'll place a 0 in the next position of
the array. This turns the line into a O-terminated string we can print
using printf():

*line = kZeroByte;

Count Wor ds () also takes a pointer to the first byte of the

mai n() function’s | i ne array as a parameter. Count Wor ds() will
step through the array, looking for nonwhite space characters. When
one is encountered, Count Wor ds() setsi nWbrdtot r ue and incre-
ments NuMAbr ds, then keeps stepping through the array looking for
a white-space character, which marks the end of the current word.
Once the white space is found, i n\Wr dis set to f al se:

/**********************************> Count \Mr ds <*/

i nt CountWords(char *line)

{
i nt numMdrds, i nWrd;

Learn C under Windows 95/NT 225

Variable DataTypes
What’s Next?

numMrds = 0;
i nWord = fal se;

This process continues until the zero byte marking the end of the
line is encountered:

while (*line != kZeroByte)
{
if (! isspace(*line))
{
if (! inwWrd)
{
numMAbr ds++;
i nWbrd = true;
}
}

el se
i nWrd = fal se;

i ne++;

}

Once we drop out of the loop, we’ll return the number of words in
the line:

return numhbrds:

}

What's Next?

Congratulations! You've made it through one of the longest chapters
in the book. You've mastered several new data types, including

f 1 oats and chars. You've learned how to use arrays, especially in
conjunction with chars. You've also learned about C’s text-substitu-
tion mechanism, the #def i ne.

226 Learn C under Windows 95/NT

Variable DataTypes
Exercises

Exercises

Chapter 9 will teach you how to combine C’s data types to create
your own customized data types, called st r ucts. So go grab some
lunch, lean back, prop up your legs, and turn the page.

1. What's wrong with each of the following code fragments:
a. char c;
i nt i
i =0;
for (c=0; c<=255; c++)
I += c;
b. fl oat nyFl oat ;

nyFl oat = 5. 125;
printf(“The value of nyFloat is %.\n", f);
C. char c;

C — “ a” ;

printf(“c holds the character %.”, c);
d. char c[5 1];

c = “Hello, world!”;

e. char c[kMaxArraySi ze |

#defi ne kMaxArraySi ze 20

i nt i

Learn C under Windows 95/NT 227

Variable DataTypes
Exercises

for (i=0; i<kMaxArraySize; i++)
c[i] =0;
f. #defi ne kMaxArraySi ze 200

char c[kMaxArraySize];

c[kMaxArraySize | = O;
g. #defi ne kMaxArraySi ze 200

char c[kMaxArraySize], *cPtr;

I nt]
cPtr = c;
for (i=0; i<kMaxArraySize; i++)
chPtr++ = 0;
h. #defi ne kMaxArraySi ze 200

char c[kMaxArraySi ze];

i nt [

for (i=0; i<kMaxArraySize; i++)

{
*c = 0
C++;
}
i. #defi ne kMaxArraySi ze 200;
2. Rewrite di ce. ¢, showing the possible rolls using three dice

instead of two.

228 Learn C under Windows 95/NT

Variable DataTypes
Exercises

3.

Rewrite wor dCount . cwp printing each of the words, one
per line.

Learn C under Windows 95/NT 229

Variable DataTypes
Exercises

230 Learn C under Windows 95/NT

9

Designing Your Own
M Data Structures

In Chapter 8, we introduced several new data types, such as f | oat,
char, and shor t. We discussed the range of each type and intro-
duced the format specification characters necessary to print each
type using pri nt f (). Next, we introduced the concept of arrays,
focusing on the relationship between char arrays and text strings.
Along the way, we discovered the #def i ne, C’s mechanism for text
substitution.

This chapter will show you how to use existing C types as building
blocks to design your own customized data structures. Sometimes,
your programs will want to bundle certain data together. For exam-
ple, suppose that you were writing a program to organize your
compact disc collection. Imagine the type of information you'd like
to access for each CD. At the least, you’d want to keep track of the
artist’'s name and the name of the CD. You might also want to rate
each CD’s listenability on a scale of 1 to 10.

In the next few sections, we’ll look at two approaches to a basic CD
tracking program. Each approach will center on a different set of
data structures. One approach (Model A) will use arrays, and the
other (Model B) will use a set of custom-designed data structures.

Using Arrays (Model A)

One way to model your CD collection is to use a separate array for
each CD’s attributes:

#defi ne kMaxCDs 300
#define kMaxArtistLength 50
#defi ne kMaxTitl eLength 50

Learn C under Windows 95/NT 231

Designing Your Own Data Structures
Using Arrays (Model A)

char rating[kMaxCDs];
char artist][kMaxCDs][kMaxArtistLength + 1];
char title[kMaxCDs][kMaxTitleLength + 1];

This code fragment uses three #def i nes: kMax CDs defines the
maximum number of CDs this program will track,

kMaxAr ti st Lengt h defines the maximum length of a CD artist’s
name, and kMaxTi t | eLengt h defines the maximum length of a
CD'’s title.

The array r at i ng consists of 300 chars, one char for each CD.
Each char in this array will hold a number from 1 to 10, the rating
we’ve assigned to a particular CD. For example, this line of code as-
signs a value of 8 to CD 37:

rating[37] = 8; /* A pretty good CD */

The arrays arti st and ti t| e are known as multidimensional ar-
rays. A normal array, such as r at i ng, is declared using a single di-
mension:

f | oat nyArray[5];

This statement declares a normal, or one-dimensional, array con-
taining five f | oats:

myArray[O]
nyArray[1]
nmyArray[2]
nyArray[3]
nmyArray[4 |

The following statement, however, differs from a normal array:

fl oat myArray[3][51];

232 Learn C under Windows 95/NT

Designing Your Own Data Structures
Using Arrays (Model A)

This statement declares a two-dimensional array, containing 3*5 =
15f1 oats:

nmyArray[0] [O]
myArray[0] [1]
nyArray[0] [2]
myArray[0] [3]
nyArray[0] [4]
myArray[1] [0]
nyArray[1] [1]
nmyArray[1] [2]
nyArray[1] [3]
nmyArray[1] [4]
nyArray[2] [0]
nmyArray[2] [1]
nyArray[2] [2]
nmyArray[2] [3]
nyArray[2] [4]

Think of a two-dimensional array as an array of arrays. Thus,
nmyArr ay[O] is an array of five f | oats, as are myArray|[1] and

nyArray| 2].
Here’s a three-dimensional array:

f | oat nyArray[3][5][10];

How many f | oat s does this array contain? Tick, tick, tick. . .. Got
it? The answer: 3*5*10 = 150. This version of ny Ar r ay contains 150
fl oats.

By the Way C allows you to create arrays of any dimension, although you'll
rarely have a need for more than a single dimension.

Learn C under Windows 95/NT 233

Designing Your Own Data Structures
Using Arrays (Model A)

So why would you ever want a multidimensional array? If you
haven’t already guessed, the answer to this question is going to lead
us back to our CD tracking example.

Here are the declarations for our three CD tracking arrays:

#defi ne kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitl eLength 50

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength + 1];
char title[kMaxCDs][kMaxTitleLength + 1];

Once again, r at i ngcontains one char for each CD; art i st, on the
other hand, contains an array of chars for each CD. Each CD gets
an array of chars whose length is kMaxArti st Lengt h + 1 Each
array is large enough to hold an artist’s name up to 50 bytes long,
with one byte left over to hold the terminating zero byte. To restate
this, the two-dimensional array ar t i st is large enough to hold up
to 300 artist names, each of which can be up to 50 characters long,
not including the terminating byte.

A Sample Program: multiArray.cwp

The sample program nul t i Ar r ay brings this concept to life. The
program defines the two-dimensional array ar t i st (as described
earlier), prompts you to type in a series of artists, stores their names
in the two-dimensional ar t i st array, then prints out the contents
ofartist.

Open the Learn C Pr oj ect s directory, go inside the subdirectory
09.01 - nul ti Arrayand open the project mul ti Array. cwp.
Run rul ti Arr ay by selecting Run from the Project menu. The pro-
gram will first tell you how many bytes of memory are allocated for
the entire ar t i st array:

The artist array takes up 15300 bytes of nenory.

234 Learn C under Windows 95/NT

Designing Your Own Data Structures
Using Arrays (Model A)

As a reminder, here’s the declaration of arti st:

#defi ne kMaxCDs 300
#define kMaxArtistLength 50

char artist[kMaxCDs][kMaxArtistLength + 1];

By performing the #def i ne substitution yourself, you can see that
arti st is defined as a 300-by-51 array; 300 times 51 is 15,300,
matching the result reported by nul ti Array.

After nul ti Arrayreports thearti st array size, it enters a loop,
prompting you for your list of favorite musical artists:

Artist #1 (return to exit):

Enter an artist name, then enter a return. You'll be prompted for a

second artist name. Type in a few more names, then enter an extra
return. The extra return tells mul t i Ar r ay that you are done enter-
ing names.

The program will step through the array, using pri nt f () to list the
artists you've entered. In case your entire music collection consists
of a slightly warped vinyl copy of Leonard Nimoy singing some old
Dylan classics, feel free to use my list, shown in Figure 9.1.

Let’s take a look at the source code.

Stepping Through the Source Code

The program starts off with a standard #i ncl ude; <st di 0. h>
gives us access to both pri nt f () and get s(). After reading a line
of text from the input buffer, get s() converts it into a zero-termi-
nated string.

#i ncl ude <stdi o. h>

Learn C under Windows 95/NT 235

Designing Your Own Data Structures
Using Arrays (Model A)

Figure 9.1

| 72 multiarray
BThe artist array takes up 15388 hytes of memory.

MArtist #1 <(return to exit>»: Frank Zappa
Artist #2 (return to exitd: Elvisz Costello
HArtist #3 <(return to exit)>: Kirsty MacColl
BArtist #4 (return to exith:

Artist #1: Frank Zappa

Artist #2: Elvis Costello

BArtist #3: Kirsty MacColl

mul ti Arrayin action.

You’'ve seen these four #def i nes before:

#def i ne true 1
#def i ne fal se 0

#defi ne kMaxCDs 300
#define kMaxArtistLength 50

Here’s the function prototype for Pri nt Arti st s(), the function
we'll use to print out the arti st array. Notice anything unusual
about the declaration of ar t i st? More on that in a bit.

/***********************/

/* Function Prototypes */
/***********************/
void PrintArtists(short numArti sts,

char artist[][kMaxArtistLength + 1]);

236 Learn C under Windows 95/NT

Designing Your Own Data Structures
Using Arrays (Model A)

First, mai n() defines arti st, our two-dimensional array, which is
large enough to hold 300 artists. The name of each artist can be up to
50 bytes long, plus the zero terminating byte.

/**> rml n <*/
int main(void)

{
char artist[kMaxCDs][kMaxArtistLength + 1];

The number of artist names you’ve typed in is contained in

NumAr ti st s. Notice that numArti st sis ashort. Since kMaxCDs
is 300, even an unsi gned char would not be large enough for
NUMAr ti st s. Since the maximum value of a si gned short is
32767 (an implementation-dependent value), a shor t will be plenty
big enough.

short numArti sts;

Beginning as f al se, doneReadi ngwill get setto t r ue once we are
ready to drop out of our artist-reading loop; r esul t will hold the
result returned by get s():

char doneReadi ng, *result;

This pri nt f () prints out the size of the art i st array. Notice that
we’ve used the % d format specifier to print the result returned by
si zeof; % d indicates that the type you are printing is the size of a
| ong, which is true for si ze_t, the type returned by si zeof . If you
use % d, you won’t need the (i nt) typecast we used in earlier pro-
grams.

printf(“The artist array takes up % d bytes of
menory.\n\n”, sizeof(artist));

doneReadi ng = fal se;
numArtists = 0;

Learn C under Windows 95/NT 237

Designing Your Own Data Structures
Using Arrays (Model A)

Warning

Note that si ze_t is not guaranteed to be an unsi gned | ong al-
though it usually is. The only guarantee is that si ze_t isthe
same size as that returned by the si zeof operator. In our case,
si ze_t is defined as an unsi gned | ong, so the % d format
specifier will work just fine.

Here’s the loop that reads in the artist names. We’ll drop out of the
loop once doneReadi ng issettotrue.

while (! doneReading)
{

Inside the loop, we'll start off by printing a prompt that includes the
artist number. We want the artist number to start at 1, but we don’t
want to increment NUMAr t i St s until we are sure that the user has
entered an artist number, so we’ll just use NUMAr t i st S+1in this
printf().

printf(“Artist #%l (return to exit): “,
NUMArti sts+1);

Next, we'll call get s(); get s() is pretty much the same as the
ReadLi ne() function from the wor dCount program in Chapter 8.
This get s() reads characters from the input buffer until it encoun-
tersa‘ \ n’, then converts the read characters into a zero-terminated
string. get s() takes a single parameter, achar pointer that points
to the first byte of the memory where the finished string will be
written:

result = gets(artist[numArtists |);

Once it is done, get s() returns a pointer to the beginning of the
string (essentially the same pointer you passed in as a parameter),
allowing you to use the result of get s() as a parameter to another
function, such aspri ntf ().

238 Learn C under Windows 95/NT

Designing Your Own Data Structures
Using Arrays (Model A)

Warning

If an error occurs while reading from the input buffer, get s() re-
turns the constant NULL, C’s symbol for an invalid pointer. In all the
time I've been writing C code, I've never seen this happen, but you
never know.

Take a look at the parameter we passed to get s():
artist[numArtists]

What type is this parameter? Remember, ar t i st is a two-dimen-
sional array, and a two-dimensional array is an array of arrays.
Thus, arti st is an array of an array of chars; arti st [numAr -
tists] isanarray of chars, and so is exactly suited as a parameter
togets().

Imagine an array of chars named bl ap:
char blap[100];

You’d have no problem passing bl ap as a parameter to get s(),
right? In that case, get s() would read the characters from the input
buffer and place them in bl ap. Our arti st [0] is just like bl ap.
Both are pointers to an array of chars. bl ap[0] is the first char of
the array bl ap; likewise, arti st [0] [0] is the first char of the
array arti st[O0].

OK, back to the code. If get s() fails (which it won’t) or if the first
byte of the string we just read in is the zero terminator (more on this
in a sec), we'll set doneReadi ng tot r ue so we drop out of the
loop. If the read was successful and we got a string bigger than 0
bytes long, we'll increment numAr t i st sand go back to the top of
the loop.

if ((result == NULL) ||
(result[0] == “\0"))
doneReadi ng = true;

Learn C under Windows 95/NT 239

Designing Your Own Data Structures
Using Arrays (Model A)

el se
nunArti st s++;

Important There are two important questions, both relating to this expres-
sion:

(result[0] == *\0")

What is‘ \ 0’ , and why are we comparing it against the first byte of
the string stored inresul t? Just like * \' n’,* \ 0’ is a character
constant, a shorthand for a char with specific meaning. Here,

“\ 0’ is the zero terminator C places at the end of its strings. In
earlier programs, when we wanted to add a zero terminator at the
end of a string, we used the constant O; ‘ \ O’ is a character that
has a value of 0 and works just as well.

Using ‘ \ 0O’ makes it pretty clear that you are talking about the
zero terminator instead of just an arbitrary numerical value. Once
again, choose a style that makes sense to you and be consistent.

To answer the second question, we compare ‘ \ 0’ with the first
byte of the string returned by get s() to see whether the string
contains more than zero characters. A string that starts with the
terminator is said to be a zero-length string. That's what get s()
returns if the first character it encounters is a carriage return
¢\n).

By the way, a zero-length string is represented in C as two consec-

[

utive double-quotes: “ *“ .

Once we drop out of the loop, we print a dividing line, then call
Print Arti sts() to print the contents of our array of artist names.
The second parameter, ar t i st, is a pointer to the first element of
the arti st array, thatis, & arti st[0]).

240 Learn C under Windows 95/NT

Designing Your Own Data Structures
Using Arrays (Model A)

printf(“----\n");
PrintArtists(numArtists, artist);

return O;

}

Take a look at the definition of the second parameter of

Print Arti st s(). Notice that the first of the two dimensions is
missing (the first pair of brackets is empty). Although we could
have included the first dimension (kMax CDs), the fact that we were
able to leave it out makes a really interesting point. When memory
is allocated for an array, it is allocated as one big block. To access a
specific element of the array, the compiler uses the dimensions of
the array, as well as the specific element requested, to calculate an
offset into this block.

/********************************> PI’I ntAI’tI StS <*/

voidPrintArtists(short numArtists,
char artist[][kMaxArtistLength + 1])

{

In the case of ar t i st, the compiler allocated a block of memory 300
*51 = 15,300 bytes long. Think of this block as 300 char arrays, each
of which is 51 bytes long. To get to the first byte of the first array, we
just use the pointer that was passed in (art i st points to the first
byte of the first of the 300 arrays). To access the first byte of the sec-
ond array (in C notation, arti st [1] [0]), the compiler adds 51 to
the pointer artist. In other words, the start of the second array is 51
bytes farther in memory than the start of the first array. The start of
the 10th array is 9*51 = 459 bytes farther in memory than the start of
the first array.

Although it is nice to know how to compute array offsets in mem-
ory, the point is that the compiler calculates the ar t i st array offsets
using the second dimension and not the first dimension of ar t i st
(51 is used; 300 is not used).

Learn C under Windows 95/NT 241

Designing Your Own Data Structures
Using Arrays (Model A)

Important The compiler could use the first array bound (300) to verify that
you don’t reference an array element that is out of bounds. For
example, the compiler could complain if it sees this line of code:

artist[305][0] = ‘\0";

The compiler would tell you that you are trying to reference a
memory location outside the block of memory allocated for
artist.

Guess what. C compilers don’t do bounds checking of any kind. If
you want to access memory beyond the bounds of your array, no
one will stop you. This is part of the “charm” of C. C gives you the
freedom to write programs that crash in spectacular ways. Your job
IS to learn how to avoid such pitfalls.

OK, let’s finish up this code. Pri nt Arti st s() first checks to see
whether numAr t i st sis zero or less. If it is, an appropriate message
is printed:

/********************************> PI’I ntArtI StS <*/

void PrintArtists(short numArtists,
char artist[][kMaxArtistLength + 1])

{

short i

if (numArtists <= 0)
printf(“No artists to report.\n”);

If we've got at least one artist to print, we'll step through the array,
printing the artist number followed by the zero-terminated artist
string. Notice that we used %s to print each string; % is designed to
printa‘\ 0’ terminated string:

el se

242 Learn C under Windows 95/NT

Designing Your Own Data Structures
Using Arrays (Model A)

Figure 9.2

{
for (1=0; i<numArtists; i++)
printf(“Artist #%l: %\n”,
i +1, artist[i]);
}

Although I tried to make this code reasonably safe, there is defi-
nitely a bug in this program. Take a look at the output shown in Fig-
ure 9.2. Iran mul t i Arrayand then typed the digits “1234567890”
five times (for a total of 50 characters). I then typed “12” to put the
grand total at 52 characters. When I entered a return, get s() read
all 52 characters from the input buffer, copied them into the array
artist[0], and thenstucka‘\ 0’ at the end of the string. Do you
see the problem here? Here’s a hint. Each ar t i st subarray is ex-
actly 51 bytes long.

When get s() wrote the 53 bytes (52 bytes plus the ‘ \ 0’) starting at
arti st[0][0], the first 51 bytes fit just fine. The extra 2 bytes (the
character * 2’ and the ‘' \ 0’) were written to the next 2 bytes of
memory, which happen to correspond to the memory locations

¢ multiarray

The artist array takes up 15388 hytes of memory.
Artiszt #1 Creturn to exitd>: 1234%67890123456789012345678901234567890123456789012

Artist H#2 C(return to exitd: Jimi Hendrix
Artist #3 (return to exitd:

Artist #1: 123456789012345678981234567890123456789012345678981Jimi Hendrix
Artist #2: Jimi Hendrix

This output results from a bug in the program. Look at the end
of both lines labeled Arti st #1

Learn C under Windows 95/NT 243

Designing Your Own Data Structures
Using Arrays (Model A)

artist[1][0] andartist[1][1]. When get s() read the sec-
ond artist name, it copied the string “ Ji m Hendr i x” starting at
artist[1] [0]. Here’s where things start to get skoongy. The
string “ Ji m Hendr i x” overwrites the last two bytes of the first
string (the character * 2’ and the‘ \ 0’). Horrors! We just overwrote
the first string’s terminator.

When Print Arti st s() prints the first string, it keeps printing
until it comes to a terminating ‘ \ 0’ , which doesn’t happen until the
end of “ Ji m Hendr i X”. This is a pretty subtle bug. One solution is
to make the “width” of the array larger. Instead of 51 bytes for each
artist, how about 100 bytes? Although this solution reduces the
chances of an out-of-bounds error, it has the disadvantage of requir-
ing more memory and is still not perfect.

A better solution is to read each artist name from the input buffer
one character at a time. If you get 50 bytes of data and still haven't
reached the end of a name, slapa‘\ 0’ in the 51st byte and drop
the rest of the name in the bit bucket (that is, ignore the rest of the
name). Hmmm. . . . Something tells me that you'll be implementing
this solution as an exercise in the back of this chapter. Am I clairvoy-
ant? Could be.

Arrays and Memory

At the beginning of the chapter, we described a program that would
track your CD collection. The goal was to look at two different ap-
proaches to solving the same problem. The first approach, Model A,
uses three arrays to hold a rating, artist name, and title for each CD
in the collection:

#defi ne kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitl eLength 50

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength + 1];
char title[kMaxCDs][kMaxTitleLength + 1];

244 Learn C under Windows 95/NT

Designing Your Own Data Structures
Designing Data Structures (Model B)

Before we move on to Model B, let’s take a closer look at the mem-
ory used by the Model A arrays.

. The array r at i nguses 1 byte for each CD (enough for a 1-
byte rating from 1 to 10).

. The array ar t i st uses 51 bytes for each CD (enough for a
text string holding the artist’s name, up to 50 bytes in length,
plus the terminating byte).

. The array ti t | e also uses 51 bytes for each CD (enough for a
text string holding the CD’s title, up to 50 bytes in length,
plus the terminating byte).

Add those three, and you find that Model A allocates 103 bytes for
each CD. Since Model A allocates space for 300 CDs when it declares
its three key arrays, it uses 300 * 103 = 30,900 bytes.

Since the program really needs only 103 bytes for each CD, wouldn't
it be nice if you could allocate the memory for a CD when you need
it? With this type of approach, if your collection consisted of only 50
CDs, you’d have to use only 50 * 103 = 5150 bytes of memory in-
stead of 30,900.

As you'll see by the end of the chapter, C provides a mechanism for
allocating memory as you need it. Model B takes a first step toward
memory efficiency by creating a single data structure that contains
all the information relevant to a single CD. Later in the chapter,
you’ll learn how to allocate just enough memory for a single struc-
ture.

Designing Data Structures (Model B)

As stated earlier, our CD program must keep track of a rating (from
1 to 10), the CD artist’s name, and the CD’s title:

#defi ne kMaxCDs 300
#define kMaxArtistLength 50
#defi ne kMaxTitl eLength 50

char rating[kMaxCDs];
char artist[kMaxCDs][kMaxArtistLength + 1];

Learn C under Windows 95/NT 245

Designing Your Own Data Structures
Designing Data Structures (Model B)

char title[kMaxCDs][kMaxTitleLength + 1];

The struct Keyword

C provides the perfect mechanism for wrapping all three of these
variables into one tidy bundle. A st r uct allows you to associate
any number of variables together under a single name. Here’s an ex-
ample of a st r uct declaration:

#defi ne kMaxArti stLength 50
#define kMaxTitl eLength 50

struct CDInfo

{
char rating;
char artist|[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];

This st ruct type declaration creates a new type, called CDI nf o.
Just as you’d use a type such as shor t or f | oat to declare a vari-
able, you can use this new type to declare an individual st r uct.
Here’s an example:

struct CDInfo nyl nf o;

This line of code uses the previous type declaration as a template to
create an individual st r uct. The compiler uses the type declaration
to tell it how much memory to allocate for the st r uct, then allo-
cates a block of memory large enough to hold all of the individual
variables that make up the st r uct.

The variables that form the st r uct are known as fields. A st r uct
of type CDI nf o has three fields: achar named r at i ng, an array of
charsnamed ar ti st, and an array of charsnamedtit| e. To ac-
cess the fields of a st ruct, use the. oper at or:

246 Learn C under Windows 95/NT

Designing Your Own Data Structures
Designing Data Structures (Model B)

struct CDInfo nyl nf o;

nylnfo.rating = 7,

Notice the . between the st r uct name (nmyl nf o) and the field
name (r at i ng). The . following a st r uct name tells the compiler
that a field name is to follow.

A Sample Program: structSize.cwp

Here’s a program that demonstrates the declaration of a st r uct
type, as well as the definition of an individual st r uct. Open the
Learn C Projects directory, go inside the subdirectory 09. 02
- struct Si zeg and open the project st r uct Si ze. cwp. Run
struct Si ze by selecting Run from the Project menu.

Compare your output with the console window shown in Figure
9.3. They should be the same. The first three lines of output show
therating artist,andtitl efields. To the right of each field
name, you'll find printed the number of bytes of memory allocated
to that field. The last line of output shows the memory allocated to
the entire st r uct.

rating field: 1 hyte

artist field: 51 hytes
title field: 51 hytes

myInfo struct: 183 hytes

Figure 9.3 struct Si zeshows the size of a CDI nf ostruct.

Learn C under Windows 95/NT 247

Designing Your Own Data Structures
Designing Data Structures (Model B)

Stepping Through the Source Code

If you haven’t done so already, quit st r uct Si ze and take a minute
to look over the source code in st ruct Si ze. ¢c. Once you feel
comfortable with it, read on.

The program st r uct Si ze. cstarts off with our standard #i n-
cl ude, along with a brand new one:

#i ncl ude <stdi o. h>
#i ncl ude “structSi ze. h”

Notice the double quotes around “ st r uct Si ze. h”; they tell the
compiler to look for this include file in the same directory as the
source code file. The compiler compiles the source code it finds in
“struct Si ze. h” as if it were inside st r uct Si ze. c.

In general, angle brackets (<>) are used for system include files
(such as <st di 0. h>). Double quotes (“ “) should be used for in-
clude files that belong to your application.

Important As you've already seen, C include files typically end in the two
characters . h. Though you can give your include files any name
you like, the . h convention is one you should definitely stick with.
Include files are also known as header files, which is where the h
comes from.

Let’s take a look at st ruct Si ze. h. Select Open from the File
menu, then select and open st ruct Si ze. h

Important Include files typically contain things like #def i nes, global vari-
ables, global declarations, and function prototypes. By embedding
these things in an include file, you declutter your source code file
and, more important, make this common source code available to
other source code files through a single #i ncl ude.

The st ruct Si ze. h header file starts off with two #def i nes
you’ve seen before:

248 Learn C under Windows 95/NT

Designing Your Own Data Structures
Designing Data Structures (Model B)

#defi ne kMaxArtistLength 50
#define kMaxTitl eLength 50

Next comes the declaration of the st r uct type, CDI nf o:

/***********************/

/* Struct Declarations */

/***********************/

struct CDInfo

{
char rating;
char artist|[kMaxArtistLength + 1];
char title[l kMaxTitleLength + 1];
1

By including the header file at the top of the file (Where we might
place our globals), we’ve made the CDI nf 0 st r uct type available
to all of the functions inside st r uct Si ze. c. If we placed the

CDI nf o type declaration inside of mai n() instead, our program
would still have worked (as long as we placed the type declaration
before the definition of my| nf o), but we would then not have access
to the CDI nf o type outside of mai n().

That’s all that was in the header file st r uct Si ze. h. Back in

struct Si ze. ¢, mai n() starts by defining a CDI nf o st r uct
named ny| nf o, which has three fields: MYINFO.RATING, MY-

INFO.ARTIST, and nyl nfo. title.

/**> ITBI n <*/
int main(void)

{
struct CDInfo nyl nf o;

The next three statements print the size of the three my| nf o fields.
Notice that we are again using the % d format specifier to print the
value returned by si zeof:

Learn C under Windows 95/NT 249

Designing Your Own Data Structures
Designing Data Structures (Model B)

printf(“rating field: % d byte\n”,
sizeof (nylnfo.rating));

printf(“artist field: % d bytes\n”,
sizeof (nylnfo.artist));

printf(“title field: % d bytes\n”,
sizeof (nylnfo.title));

This next pri nt f () prints a separator line, purely for aesthetics.
Notice the way everything lines up in Figure 9.3?

printf(“ a-------- \n”);
The last pri nt f prints the size in bytes of the entire st r uct.

printf(“nylnfo struct: %d bytes”,
sizeof (nylnfo));

return O;

}

Passing a st ruct as a Parameter

Think back to the CD tracking program we’ve been discussing
throughout the chapter. We started off with three separate arrays,
each of which tracked a separate element: the rating field, the CD
artist, and the title of each CD.

We then introduced the concept of a structure that would group all
the elements of one CD together, in a single st r uct. One advantage
of astruct is that you can use a single pointer to pass all the infor-
mation about a CD. Imagine a routine called Pr i nt CD(), designed
to print the three elements that describe a single CD. Using the orig-
inal array-based model, we’d have to pass three parameters to

Print CI):

250 Learn C under Windows 95/NT

Designing Your Own Data Structures
Designing Data Structures (Model B)

void PrintCD(char rating, char *artist, char

*title)
{
printf(“rating: %\n”, rating);
printf(“artist: %\n", artist);
printf(“title: %\n", title);
}

Using the st r uct -based model, however, we could pass the info by
using a single pointer. As a reminder, here’s the CDI nf o st r uct
declaration again:

#define kMaxArti stLength 50
#define kMaxTitl eLength 50

struct CDI nfo

{
char rating;
char artist|[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
1

This version of mai n() defines a CDI nf 0 st ruct and passes its
address to a new version of Pri nt CD() (we’ll get to it next).

int main(void)

{
struct CDInfo nyl nf o;
PrintCD{ &mylnfo);
return O;

}

Just as has been the case in earlier programs, passing the address of
a variable to a function gives that function the ability to modify the

Learn C under Windows 95/NT 251

Designing Your Own Data Structures
Designing Data Structures (Model B)

original variable. Passing the address of my| nf o to Pri nt CIX()
gives Pri nt CD() the ability to modify the three my| nf o fields. Al-
though our new version of Pri nt CD() doesn’t modify ny| nf o, it’s
important to know that that opportunity exists. Here’s the new,

st r uct -based version of Pri nt CI)():

void PrintCD(struct CDInfo *myCDPtr)

{
printf(“rating: %\n”, (*nmyCDPtr).rating);
printf(“artist: %\n”, nyCDPtr->artist);
printf(“title: %\n”, nyCDPtr->title);

}

Notice that Pri nt CD() receives its parameter as a pointer to (ad-
dress of) a CDI nf o struct. The first pri nt f () uses the * operator
to turn the st r uct pointer back to the st r uct it points to, then
uses the . operator to access the r at i ng field:

(*nmyCDPtr).rating

C features a special operator, - >, that lets you accomplish the same
thing. The - > operator is binary, that is, it requires both a left and a
right operand. The left operand is a pointer to a st r uct, and the
right operand is the st r uct field. The notation myCDPt r - >arti st
is exactly the same as (*nyCDPt r) . rati ng.

Use whichever form you prefer. In general, most C programmers
use the - > operator to get from a st r uct’s pointer to one of the
st ruct’s fields.

Passing a Copy of the st ruct

Here’s a version of mai n() that passes the st r uct itself, instead of
its address:

int main(void)

{
struct CDInfo nyl nf o;

252 Learn C under Windows 95/NT

Designing Your Own Data Structures
Designing Data Structures (Model B)

Important

PrintCD(nylnfo);
}

Whenever the compiler encounters a function parameter, it passes a
copy of the parameter to the receiving routine. The previous version
of Pri nt CD() received a copy of the address of a CDI nf o st ruct.

In this new version of Pr i nt CD(), the compiler passes a copy of the
entire CDI nf o st r uct, not just a copy of its address. This copy of
the CDI nf o st ruct includes copies of the r at i ng field and the
artistandtitlearrays:

void PrintCD(struct CDInfo nyCD)

{
printf(“rating: %\n”, nyCD.rating);
printf(“artist: %\n”, nyCD. artist);
printf(“title: %\n”, nyCD. title);
}

When a function exits, all of its local variables (except for st ati ¢
variables, which we’ll cover in Chapter 11) are no longer available.
This means that any changes you make to a local parameter are
lost when the function returns. If this version of Pri nt CD() made
changes to its local copy of the CDI nf o st r uct, those changes
would be lost when Pri nt CD() returned.

Sometimes, you'll want to pass a copy of a st r uct. One advantage
this technique offers is that there’s no way that the receiving func-
tion can modify the original st r uct. Another advantage is that it
offers a simple mechanism for making a copy of ast ruct. A disad-
vantage of this technique is that copying a st r uct takes time and
uses memory. Time won’t usually be a problem, but memory usage
might be, especially if your st r uct gets pretty large. Just be aware
that whatever you pass as a parameter is going to get copied by the
compiler.

Learn C under Windows 95/NT 253

Designing Your Own Data Structures
Designing Data Structures (Model B)

Important

There’s a sample program in the Learn C Proj ect s directory,
inside a subdirectory named 09. 04 - par amAddr ess, that
should help show the difference between passing the address of a
st ruct and passing a copy of the st r uct. Basically, here’s how
the program works.

First, mai n() defines a CDI nf o st r uct named ny CD then prints
the address of nyCDs r at i ng field:

printf(“Address of nyCD.rating in nmain():
%d\n”, & nmyCD.rating));

Notice that we print an address using the % d format specifier. Al-
though there are other ways to print a variable’s address, this
works just fine for our purposes. Here’s the output of this

printf():
Address of nyCD.rating in main(): 26352526

Next, mai n() passes the address of nyCDand nmyCDas parame-
ters to a routine named Pr i nt Par am nf o():

Print Param nfo(&wyCD, nyCD);
Here’s the prototype for Pri nt Par am nf o():

voi d Print Param nfo(struct CDInfo *nyCDPtr,
struct CDI nfo myCDCopy);

The first parameter is a copy of the address of mai n()’s nyCD
st ruct. The second parameter is a copy of the same st r uct.
Pri nt Param nf o() prints the address of the r at i ng field of
each version of myCD

printf(“Address of nyCDPtr->rating in
PrintParam nfo(): %d\n”,

254 Learn C under Windows 95/NT

Designing Your Own Data Structures
Designing Data Structures (Model B)

& myCDPtr->rating));
printf(“Address of nmyCDCopy.rating in

PrintParam nfo(): %d\n”,

&(nmyCDCopy. rating));

Here are the results, including the line of output generated by
mai n():

Address of nyCD.rating in main(): 26352526

Address of nyCDPtr->rating in PrintParam nfo():
26352526

Address of nyCDCopy.rating in PrintParam nfo():
26352414

Notice that the r at i ng field accessed with a pointer has the same
address as the original r at i ng field in mai n()’s nyCDst r uct. If
Pri nt Par am nf o() uses the first parameter to modify the

r at i ngfield, it will, in effect, be changing mai n()’s r at i ng field.
If Pri nt Par am nf o() uses the second parameter to modify the
rat i ngfield, the r at i ng field will remain untouched.

By the way, most programmers use hexadecimal (or hex) nota-
tion when they print addresses. Hex notation represents numbers
as base 16 instead of the normal base 10 you are used to. Instead
of the 10 digits O through 9, hex features the 16 digits 0, 1, 2, 3, 4,
56,7,8,9,4a,b,c,d, e, andf. Each digit of a number represents a
successive power of 16 instead of successive powers of 10.

For example, the number 532 in base 10 is equal to 5*10% + 3*10%
+2%100 = 5¥100+3*10+2*1. The number 532 in hex is equal to
5%162 + 3*161 + 2*16° = 5*256+3*16+2*1 = 1330 in base 10. The
number f f in hex is equal to 15*16 + 15*1 = 255 in base 10. Re-
member, the hex digit f has a decimal (base 10) value of 15.

To represent a hex constant in C, precede it by the characters Ox.

The constant Oxf f has a decimal value of 255. The constant OxFF
also has a decimal value of 255. C doesn’t distinguish between up-
per- and lowercase when representing hex digits.

Learn C under Windows 95/NT 255

Designing Your Own Data Structures
Designing Data Structures (Model B)

To print an address in hex, use the format specifier %p instead of
% d. Modify par amAddr ess by using %p, just to get a taste of hex.

struct Arrays

Just as you can declare an array of chars ori nts, you can also de-
clare an array of st r ucts:

#defi ne kMaxCDs 300

struct CDInfo nmyCDs[kMaxCDs];

This declaration creates an array of 300 st r ucts of type CDI nf o.
The array is named my CDs. Each of the 300 st r uct s will have the
three fieldsrati ng,arti st,andti t| e. You access the fields of the
st ructs as you might expect. Here’s an example (note the use of
the all-important . operator):

nyCDs[10].rating = 9;

We now have an equivalent to our first CD-tracking data structure.
Whereas Model A used three arrays, we now have a solution that
uses a single array. As you’'ll see when you start writing your own
programs, packaging your data in a st r uct makes life a bit simpler.
Instead of passing three parameters each time you need to pass a
CD to a function, you can simply pass a st r uct.

From a memory standpoint, both CD tracking solutions cost about
the same. With three separate arrays, the cost is:

300 bytes /* rating array */

300 * 51 = 15,300 bytes /* artist array */
300 * 51 = 15,300 bytes /* artist array */
Tot al 30, 900 bytes

256 Learn C under Windows 95/NT

Designing Your Own Data Structures
Allocating Your Own Memory

With an array of st r ucts, the cost is:

300 * 104 = 31,200 bytes [/* Cost of array of 300
CDI nfo structs */

Why does the array of st r ucts take up 300 more bytes than the
three separate arrays? Easy. Each st r uct contains a byte of pad-
ding to bring its size from an odd number (103) to an even number
(104). Since the array contains 300 st r uct s, we accumulate 300
bytes of padding. Since 300 bytes is pretty negligible, these two
methods are reasonably close in terms of memory cost.

So what can we do to cut this memory cost down? Thought you'd
never ask!

Allocating Your Own Memory

One of the limitations of an array-based CD tracking model is that
arrays are not resizable. When you define an array, you have to
specify exactly how many elements make up your array. For exam-
ple, this code defines an array of 300 CDI nf ost r ucts:

#defi ne kMaxCDs 300

struct CDInfo nmyCDs[kMaxCDs |;

As we calculated earlier, this array will take up 31,200 bytes of mem-
ory, whether we use 1 array or 300 to track a CD. If you know in ad-
vance exactly how many elements your array requires, arrays are
just fine. In the case of our CD tracking program, this just isn't prac-
tical. For example, if my CD collection consists entirely of a test CD
that came with my stereo and a rare soundtrack recording of Gilli-
gan’s Island outtakes, a 300-st r uct array is overkill. Even worse,
what happens if I've got more than 300 CDs? No matter what num-
ber I pick for K Max CDs, there’s always the chance that it won’t prove
large enough.

The problem here is that arrays are just not flexible enough to do
what we want. Instead of trying to predict the amount of memory

Learn C under Windows 95/NT 257

Designing Your Own Data Structures
Allocating Your Own Memory

By the Way

we’ll need in advance, what we need is a method that will allow us
to get a chunk of memory the size of a CDI nf o st r uct, as we need
it. In more technical terms, we need to allocate and manage our own
memory.

When your application starts, some memory is used to hold the ob-
ject code that makes up your application. Still more memory is used
to hold such things as your application’s global variables. As your
application runs, some memory will be allocated to mai n(') local
variables. When nai n() calls a function, memory is allocated for
that function’s local variables. When that function returns, the mem-
ory allocated for its local variables is freed up, or made available to
be allocated again.

In the next few sections, you’ll learn about some functions you can
call to allocate a block of memory and to free the memory (to return
it to the pool of available memory). Ultimately, we’ll combine these
functions with a special data structure to provide a memory-effi-
cient, more flexible alternative to the array.

Using Standard Library Functions

mal | oc()

The Standard Library function mal | oc() allows you to to allocate a
block of memory of a specified size. To access mal | oc(), you'll
need to include the file <st dl i b. h>

#i ncl ude <stdlib. h>

The function mal | oc() takes a single parameter, the size of the re-
quested block, in bytes. mal | oc() returns a pointer to the newly al-
located block of memory. Here’s the function prototype:

void *malloc(size t size);

Note that the parameter is declared to be of type si ze_t, the
same type returned by si zeof. Think of si ze_t as equivalent to
an unsi gned | ong Note also that mal | oc() returns the type

258 Learn C under Windows 95/NT

Designing Your Own Data Structures
Allocating Your Own Memory

By the Way

(voi d *), apointer to avoi d. Avoi d pointer is essentially a ge-
neric pointer. Since there’s no such thing as a variable of type

voi d, the type (voi d *) is used to declare a pointer to a block of
memory whose type has not been determined.

In general, you'll convert the (voi d *) returned by mal | oc() to
the pointer type you really want. Read on to see an example of
this.

If mal | oc() can’t allocate a block of memory the size you re-
quested, it returns a pointer with the value NULL. NULL, a constant,
is usually defined to have a value of 0 and is used to specify an in-
valid pointer. In other words, a pointer with a value of NULL does
not point to a legal memory address. You'll learn more about NULL
and (voi d *) as we use them in our examples.

Here’s a code fragment that allocates a single CDI nf o st r uct:

struct CDInfo *myCDPt

myCDPtr = mall oc(sizeof(struct CDIinfo));

The first line of code declares a new variable, my CDPt r, which is a
pointer to a CDI nf 0 st ruct. At this point, myCDPt r doesn’t point
toa CDI nf o st ruct. You've just told the compiler that my CDPt r is
designed to point to a CDI nf o st ruct.

The second line of code calls mal | oc() to create a block of memory
the size of a CDI nf o struct; si zeofreturns itsresultas a

si ze_t, the type we need to pass as a parameter to mal | oc().
How convenient!

On the right side of the = operatorisa (voi d *) and on the left
sidea(struct CDI nfo *). The compiler automatically resolves
this type difference for us. We could have used a typecast here to
make this more explicit:

nmyCDPtr = (struct CDInfo *)mall oc(sizeof (struct

Learn C under Windows 95/NT 259

Designing Your Own Data Structures
Allocating Your Own Memory

CDInfo));

It really isn’t necessary, however, and besides, we won't get into
typecasting until Chapter 11!

If mal | oc() was able to allocate a block of memory the size of a
CDI nf o struct, myCDPt r contains the address of the first byte of
this new block. If mal | oc() was unable to allocate our new block
(perhaps there wasn’t enough unallocated memory left), my CDPt r
will be set to NULL.

if (nmyCDPtr == NULL)

printf(“Couldn’t allocate the new bl ock!\n”);
el se

printf(“Allocated the new bl ock!\n”);

If mal | oc() succeeded, my CDPt r points to a st r uct of type
CDI nf o. For the duration of the program, we can use ny CDPt r to
access the fields of this newly allocated st r uct:

nmyCDPtr->rating = 7;

It is important to understand the difference between a block of
memory allocated using mal | oc() and a block of memory that cor-
responds to a local variable. When a function declares a local vari-
able, the memory associated with that variable is temporary. As
soon as the function exits, the block of memory associated with that
memory is returned to the pool of available memory. A block of
memory that you allocate using mal | oc(), by contrast, sticks
around until you specifically return it to the pool of available mem-

ory.
free()

The Standard Library function f r ee() returns a previously allo-
cated block of memory back to the pool of available memory. Here’s
the function prototype:

260 Learn C under Windows 95/NT

Designing Your Own Data Structures
Allocating Your Own Memory

Warning

By the Way

void free(void *ptr);

This function takes a single argument, a pointer to the first byte of a
previously allocated block of memory, for example:

free(nyCDPtr);

This line returns the block allocated earlier to the free-memory pool.
Usemal | oc() to allocate a block of memory. Usef r ee() to free up
a block of memory allocated with mal | oc(). When a program exits,
the operating system automatically frees up all allocated memory.

Never pass an address to f r ee() that didn’t come from
mal | oc(). Never put a fork in an electrical outlet. Both will make
you extremely unhappy!

Keep Track of That Address!

The address returned by mal | oc() is critical. If you lose it, you've
lost access to the block of memory you just allocated. Even worse,
you can never free up the block, and it will just sit there, wasting
valuable memory, for the duration of your program.

One great way to lose a block’s address is to call mal | oc() inside
a function, saving the address returned by mal | oc() in a local
variable. When the function exits, your local variable goes away,
taking the address of your new block with it!

One way to keep track of a newly allocated block of memory is to
place the address in a global variable. Another way is to place the
pointer inside a special data structure known as a linked list.

Learn C under Windows 95/NT 261

Designing Your Own Data Structures
Working with Linked Lists

Working with Linked Lists

By the Way

Figure 9.4

The linked list is one of the most widely used data structures in C. A
linked list is a series of St r uct s, each of which contains, as a field, a
pointer. Each st r uct in the series uses its pointer to point to the
next st r uct in the series. Figure 9.4 shows a linked list containing
three elements.

A linked list starts with a master pointer. The master pointer is a
pointer variable, typically a global, that points to the first st r uct in
the list. This first st r uct contains a field, also a pointer, that points
to the second st r uct in the linked list. The second st r uct contains
a pointer field that points to the third element. The linked list in Fig-
ure 9.4 ends with the third element. The pointer field in the last ele-
ment of a linked list is typically set to NULL.

The notation used at the end of the linked list in Figure 9.4 is bor-
rowed from our friends in electrical engineering. The funky three-
line symbol at the end of the last pointer represents a NULL
pointer.

Global
Pointer

N

B [o N N Ny N B B

A linked list containing three elements.

Why Use Linked Lists?

Linked lists allow you to be extremely memory efficient. Using a
linked list, you can implement our CD-tracking data structure, allo-
cating exactly the number of st r uct s that you need. Each time a
CD is added to your collection, you'll allocate a new st r uct and
add it to the linked list.

262 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

A linked list starts out as a single master pointer. When you want to
add an element to the list, call mal | oc() to allocate a block of mem-
ory for the new element. Next, make the master pointer point to the
new block. Finally, set the new block’s next element pointer to NULL.

Creating a Linked List

The first step in creating a linked list is to design the main link, the
linked list st r uct. Here’s a sample:

#define kMaxArti stLength 50
#define kMaxTitl eLength 50

struct CDInfo

{
char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDInfo *next ;

The change here is the addition of a fourth field, a pointer to a
CDI nf o struct. The next field is the key to connecting two
CDI nfo structs. If myFi rstPtr isa pointer to one CDI nf o
struct and nySecondPt r is a pointer to a second st r uct, the
following line connects the two st r ucts:

nyFirstPtr->next = nmySecondPtr;

Once they are connected, you can use a pointer to the first st r uct
to access the fields in the second st r uct! For example:

nyFirstPtr->next->rating = 7,

This line sets the r at i ng field of the second st r uct to 7. Using the
next field to get from one st r uct to the next is also known as tra-
versing a linked list.

Learn C under Windows 95/NT 263

Designing Your Own Data Structures
Working with Linked Lists

By the Way

Our next (and final) program for this chapter will incorporate the
new version of the CDI nf o st r uct to demonstrate a more mem-
ory-efficient CD tracking program. This program is pretty long, so
you may want to take a few moments to let the dog out and answer
your mail.

There are many variants of the linked list. If you connect the last el-
ement of a linked list to the first element, you create a never-end-
ing, circular list. You can add a pr ev field to the st r uct and use it
to point to the previous element in the list (as opposed to the next
one). This technique allows you to traverse the linked list in two di-
rections and creates a doubly linked list.

As you gain more programming experience, you’ll want to check
out some books on data structures. Three books well worth explor-
ing are Algorithms in C by Robert Sedgewick, Data Structures and
C Programs by Christopher J. Van Wyk, and Volume 1 (subtitled
Fundamental Algorithms) of Donald Knuth’'s Computer Science
series. As always, these books are listed in the bibliography in Ap-
pendix F.

A Sample Program: cdTr acker . cwp

This program implements Model B of our CD tracking system. The
program uses a text-based menu, allowing you to quit, add a new
CD to the collection, or list all of the currently tracked CDs.

Open the Learn C Proj ects directory, go inside the subdirec-
tory 09. 05 - cdTracker,and open the project cdTr acker . cwp
Run cdTr acker Dby selecting Run from the Project menu. The con-
sole window will appear, showing the prompt:

Enter command (g=quit, n=new, |=list):

At this point, you have three choices. You can type a g, followed by
a carriage return, to quit the program. You can type an n, followed
by a carriage return, to add a new CD to your collection. Finally, you

264 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

can type an | , followed by a carriage return, to list all the CDs in
your collection.

Start by typing an | , followed by a carriage return. You should see
the message:

No CDs have been entered yet...
Next, the original command prompt should reappear:
Enter command (g=quit, n=new, |=list):

This time, type an n, followed by a carriage return. You will be
prompted for the artist’'s name and the title of a CD you’d like
added to your collection:

Enter Artist’s Nanme: Frank Zappa
Enter CD Title: Anyway the Wnd Bl ows

Next, you'll be prompted for a rating for the new CD. The program
expects a number between 1 and 10. Try typing something unex-
pected, such as the letter x, followed by a carriage return:

Enter CD Rating (1-10): X
Enter CD Rating (1-10): 10

The program checks your input, discovers it isn’t in the proper
range, and repeats the prompt. This time, type a number between 1
and 10, followed by a carriage return. The program returns you to
the main command prompt:

Enter command (g=quit, n=new, |=list):

Type the letter | , followed by a carriage return. The single CD you
just entered will be listed, and the command prompt will again be
displayed:

Learn C under Windows 95/NT 265

Designing Your Own Data Structures
Working with Linked Lists

Artist: Frank Zappa
Title: Anyway the Wnd Bl ows
Rating: 10

Enter command (g=quit, n=new, |=list):

Type an n, followed by a carriage return, and enter another CD. Re-
peat the process one more time, adding a third CD to the collection.
Now enter the letter | , followed by a carriage return, to list all three
CDs. Here’s my list:

Enter command (qg=quit, n=new, [=list):

Artist: Frank Zappa
Title: Anyway the Wnd Bl ows
Rating: 10

Artist: XTC
Title: The Bi g Express

Artist: Jane Siberry
Title: Bound by the Beauty
Rating: 9

Enter command (qg=quit, n=new, |=list):

Finally, enter a g, followed by a carriage return, to quit the program.
Let’s hit the source code.

266 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

Stepping Through the Source Code

The code for cdTr acker . cstarts by including three different files:
<stdl i b. h>givesusaccesstomal | oc() andfree();<stdi o. h>
gives us access to such routines as pri nt f (), get char (), and

gets():

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

The third include file is our own “ cdTr acker . h”, which starts off
with three #def i nes that you should know pretty well by now:

/***********/
/| * Defines */
/***********/
#defi ne kMaxCDs 300
#defi ne kiMaxArtistLength 50
#define kMaxTitl eLength 50

Next comes the new and improved CDI nf o struct declaration:

/***********************/

/* Struct Declarations */

/***********************/

struct CDInfo

{
char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDI nfo *next;

} *gFirstPtr, *glLastPtr;

Notice the two variables hanging off the end of this st r uct declara-
tion. This is a shorthand declaration of two globals, each of which is
a pointer to a CDI nf 0 st ruct. We'll use these two globals to keep
track of our linked list.

Learn C under Windows 95/NT 267

Designing Your Own Data Structures
Working with Linked Lists

By the Way

The global gFi r st Pt r will always point to the first st r uct in the
linked list; the global gLast Pt r will always point to the last

st ruct in the linked list. We’ll use gFi r st Pt r when we want to
step through the linked list, starting at the beginning. We’ll use
gLast Pt r when we want to add an element to the end of the list. As
long as we keep these pointers around, we’ll have access to the
linked list of memory blocks we’ll be allocating.

We could have split this declaration into two parts, like this:

struct CDInfo

{
char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDInfo *next ;

1

struct CDInfo *gFirstPtr, *gLastPtr;

Either form is fine, although the shorthand version in
cdTr acker . hdoes a better job of showing that gFi r st Pt r and
gLast Pt r belong with the CDI nf o st r uct declaration.

The header file cdTr acker . h ends with a series of function proto-
types:

/***********************/

/* Function Prototypes */
/***********************/

char Get Command(void);

struct CDInfo *ReadStruct (void);

void AddToList(struct CDInfo *curPtr);
void ListCDs(void);

void Flush(void);

268 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

Let’s get back to cdTr acker . c; mai n() defines a char named
comrand, which will be used to hold the single-letter command
typed by the user:

/***************************************> rml n <*/
int main(void)

{

char command;

Next, the variables gFi r st Pt r and gLast Pt r are set to a value of
NULL. As defined earlier, NULL indicates that these pointers do not
point to valid memory addresses. Once we add an item to the list,
these pointers will no longer be NULL:

gFirstPtr = NULL;
gLastPtr = NULL;

Next, mai n() enters a whi | e loop, calling the function

Cet Command(). Get Command() prompts you for a one-character
command:a ‘q’,‘n’,or‘|’.Once Get Conmand() returnsa‘ q’,
we drop out of the whi | e loop and exit the program.

while ((comand = GetCommand()) !'=‘q)
{

If Get Command() returns an ‘ n’, the user wants to enter informa-
tion on a new CD. First, we call ReadSt r uct (), which allocates
space for a CDI nf 0 st ruct, then prompts the user for the informa-
tion to place in the fields of the new st r uct. Once the st r uct is
filled out, ReadSt r uct () returns a pointer to the newly allocated
struct.

The pointer returned by ReadSt r uct () is passed on to
AddTolLi st (), which adds the new st r uct to the linked list:

switch(command)

{

Learn C under Windows 95/NT 269

Designing Your Own Data Structures
Working with Linked Lists

case ‘n’:
AddToLi st (ReadStruct());
br eak;

If Get Conmand() returns an‘ | ', the user wants to list all the CDs
in his or her collection. That’s what the function Li st CDs() does:

case ‘|':
Li st CDs();
br eak;

Before the program exits, it says “ Goodbye. . . ".

printf(“Coodbye...”);
}

Next up on the panel is Get Command(). Get Conmmrand() declares a
char named conmand, used to hold the user’s command:

/********************************> @t a)rmand <*/

char Get Command(void)
{

char command;

Because we want to execute the body of this next loop at least once,
we used a do loop instead of a whi | e loop. We'll first prompt the
user to enter a command, then use scanf () to read a character
from the input buffer. The function FI ush() will read characters,
one at a time, from the input buffer until it reads in a carriage return.
If we didn’t call FI ush(), any extra characters we typed after the
command (including the * \ n’) would be picked up the next time
through this loop, and extra prompt lines would appear, one for
each extra character. To see this effect, comment out the call to

270 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

Fl ush() and type more than one character when prompted for a

command:
do
{
printf(“Enter command (g=quit, n=new,
[=list): *“);
scanf(“%”, &conmmand);
Fl ush();
}
while ((command != ‘q’) & (command != ‘n’)
&& (command !'= ‘1));

We'll drop out of the loop once we geta‘q’ ,an‘n’,oran‘|’

By the Way Here’s a cool trick Keith Rollin (C guru extraordinaire) showed me.
Instead of ending the do loop with this statement:

while ((command '= ‘q’) & (command != ‘n’)
& (command !'= ‘1));

try this code instead:
while (! strchr(“gnl”, comand));

The two parameters of st r chr () are: a zero-terminated string
and an i nt containing a character. First, st r chr () searches the
string for the character and, if it was found, returns a pointer to the
character inside the string. If the character wasn'’t in the string,
strchr () returns NULL. Pretty cool, eh?

Once we drop out of the loop, we’ll print a separator line and return
the single-letter command:

printf(“\n---------- \n”);

Learn C under Windows 95/NT 271

Designing Your Own Data Structures
Working with Linked Lists

return(comand);

}

Next up is ReadSt r uct (). Notice the unusual declaration of the
function name:

/**********************************> ReadStruct <*/

struct CDInfo *ReadStruct(void)
{

This line says that ReadSt r uct () returns a pointer to a CDI nf o
struct:

struct CDInfo *ReadStruct(void)

ReadSt ruct () uses mal | oc() to allocate a block of memory the
size of a CDI nf 0 st ruct. The variable i nf oPtr will actas a
pointer to the new block. We'll use the variable numto read in the
rating, which we’ll eventually store ini nf oPtr->rati ng

struct CDInfo *infoPtr;
i nt num

ReadSt r uct () calls mal | oc() to allocate a CDI nf o st r uct, as-
signing the address of the block returned toi nf oPt r:

infoPtr = mall oc(sizeof(struct CDInfo));

If mal | oc() cannot allocate a block of the requested size, it will re-
turn a value of NULL. If this happens, we'll print an appropriate
message and call the Standard Library function exi t (). As its
name implies, exi t () causes the program to immediately exit.

if (infoPtr == NULL)
{

272 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

By the Way

printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);
}

The parameter you pass to exi t () will be passed back to the op-
erating system (or to whatever program launched your program).

If we're still here, mal | oc() must have succeeded. Next, we'll print
a prompt for the CD artist’s name, then call get s() to read a line
from the input buffer and place that line in the ar t i st field of the
newly allocated st r uct.

We then repeat the process to prompt for and read in the CD title:

printf(“Enter Artist’s Nanme: “);
gets(infoPtr->artist);

printf(“Enter CD Title: *);
gets(infoPtr->title);

This loop prompts the user to enter a number between 1 and 10. We
then use scanf () toread ani nt from the input buffer. Note that
we used a temporary i nt to read in the number instead of reading it
directly into i nf oPt r->rati ng. We did this because the %@ for-
mat specifier expectsani nt,and rati ng isdeclared asachar.
Once we read the number, we call Fl ush() to get rid of any other
characters (including the * \ n”):

do

{
printf(“Enter CD Rating (1-10): *“);
scanf(“%”, &num);
Fl ush();

}

while ((num< 1) || (num> 10));

Learn C under Windows 95/NT 273

Designing Your Own Data Structures
Working with Linked Lists

Warning

This do loop is not as careful as it could be. If scanf () encoun-
ters an error of some kind, numwill end up with an undefined
value. If that undefined value happens to be between 1 and 10, the
loop will exit, and an unwanted value will be entered inther at i ng
field. Although that might not be such a big deal in our case, we
probably would want to drop out of the loop or, at the very least,
print some kind of error message if this happens.

Here’s another version of the same code:

do
{
printf(“Enter CD Rating (1-10): *“);
if (scanf(“%l”, &um) != 1)
{
printf(“Error returned by
scanf()!\n”);
exit(-1);
3
Fl ush();
}

while ((num< 1) || (num> 10));

Now, scanf () returns the number of items it read. Since we’ve
asked it to read a single i nt, this version prints an error message
and exits if we don’t read exactly one item. This is a pretty simplis-
tic error strategy, but it does make a point. Pay attention to error
conditions and to function return values.

Once a number between 1 and 10 is read in, it is assigned to the
rat i ngfield of the newly allocated st r uct:

infoPtr->rating = num

274 Learn C under Windows 95/NT

Designing Your Own Data Structures
Working with Linked Lists

Finally, a separating line is printed, and the pointer to the new
st ruct is returned:

printf(“\n---------- \n”);

return(infoPtr);

}

AddToLi st () takes a pointer to a CDI nf o struct asa parame-
ter. It uses the pointer to add the st r uct to the linked list:

/********************************> AddTOLI St <*/

void AddToList(struct CDInfo *curPtr)
{

If gFi r st Pt r is NULL, the list must be empty. If it is, make
gFi rst Ptr point to the new struct:

if (gRirstPtr == NULL)
gFirstPtr = curPtr;

If gFi r st Pt r is not NULL, there’s at least one element in the linked
list. In that case, make the next field of the very last element on the
list point to the new st ruct:

el se
gLastPtr->next = curPtr;

In either case, setglLast Pt r to point to the new “last element in the
list.” Finally, make sure that the next field of the last element in the
list is NULL. You'll see why we did this in the next function,

Li st CDs().

gLastPtr = curPtr;
curPtr->next = NULL;

Learn C under Windows 95/NT 275

Designing Your Own Data Structures
Working with Linked Lists

Li st CDs() lists all the CDs in the linked list. The variable cur Pt r
is used to point to the link element currently being looked at:

/*********************************> L| StCDS <*/
void ListCDs(void)

struct CDIinfo *curPtr;
If no CDs have been entered yet, we’ll print an appropriate message:

if (gFirstPtr == NULL)

{
printf(“No CDs have been entered yet...\n");
printf(“\n---------- \n”)

}

Otherwise, we’ll use a f or loop to step through the linked list. The
f or loop starts by setting cur Pt r to point to the first element in the
linked list and continues as long as cur Pt r is not NULL. Each time
through the loop, cur Pt r is set to point to the next element in the
list. Since we make sure that the last element’s next pointer is al-
ways set to NULL, we know that when cur Pt r is equal to NULL, we
have been through every element in the list and that we are done:

el se

{
for (curPtr=gFirstPtr; curPtr!=NULL; curPtr
cur Ptr->next)

{

Next, the first two pri nt f () routines use the %s format specifier
to print the strings in the fieldsarti st andtitl e:

276 Learn C under Windows 95/NT

Designing Your Own Data Structures
What’s Next?

printf(“Artist: %\n”, curPtr->artist);
printf(“Title: %\n”, curPtr->title);

Next, the r at i ng field and a separating line are printed, and it’s
back to the top of the loop:

printf(“Rating: %l\n”, curPtr->rating);

printf(“\n---------- \n”)

}
}
}

Fl ush() uses get char () to read characters from the input buffer
until it reads in a carriage return. Fl ush() is a good utility routine
to have around:

/***********************************> Fl ush <*/

void Flush(void)

{
while (getchar() !'= *\n")
}
By the Way FI ush() was based on the Standard Library function f f | ush(),

which flushes the input buffer associated with a specific file. Since
we haven't gotten into files yet, we wrote our own version, but as
you can see, it wasn't that difficult.

What's Next?

This chapter covered a wide range of topics, from #i ncl udes to
linked lists. The intent of the chapter, however, was to attack a real-
world programming problem: in this case, a program to catalog
CDs. The chapter showed several design approaches, discussing the

Learn C under Windows 95/NT 277

Designing Your Own Data Structures
Exercises

pros and cons of each. Finally, the chapter presented a prototype for
a CD tracking program. The program allows you to enter informa-
tion about a series of CDs and, on request, will present a list of all
the CDs tracked.

One problem with this program, however, is that once you exit, you
lose all of the data you entered. The next time you run the program,
you have to start all over again.

Chapter 10 offers a solution to this problem. The chapter introduces
the concept of files and file management, showing you how to save
your data from memory out to your disk drive and how to read
your data back in again. The chapter updates cdTr acker, storing
the CD information collected in a file on your disk drive.

Exercises

What's wrong with each of the following code fragments:
struct Enpl oyee

{

Q=

char nane[20];
i nt enpl oyeeNunber
1
. while (getchar() == *'\n") ;
c. #include “stdio.h”
d. struct Link
{
nane[50];
Li nk* next ;
1
e. Struct Link
{
struct Linknext;
struct Link prev;

}
f. St epAndPrint(char *line)

{
while (*line '=0)
i ne++;

278 Learn C under Windows 95/NT

Designing Your Own Data Structures
Exercises

printf(“9%”, line);

Update nul ti Array so it gets its input one byte at a time. If
more characters are entered than will fit in the st r uct,
terminate the string with as many bytes as will fit, and ignore
the rest.

Update cdTr acker . cso it maintains its linked list in order
from the lowest rating to the highest rating. If two CDs have
the same rating, the order is unimportant.

Update cdTr acker . ¢, adding a pr ev field to the CDI nf o
st ruct so it maintains a doubly linked list. As before, the
next field will point to the next link in the list. Now,
however, the pr ev field should point to the previous link in
the list. Add to the menu an option that prints the list
backward, from the last st r uct in the list to the first.

Learn C under Windows 95/NT 279

Designing Your Own Data Structures
Exercises

280 Learn C under Windows 95/NT

10
Working with Files

Chapter 9 introduced cdTr acker, a program designed to keep
track of your compact disc collection. The program cdTr acker al-
lowed you to enter a new CD, as well as to list all existing CDs.
However, cdTr acker didn’t save the CD information when it ex-
ited. If you ran cdTr acker, entered information on 10 CDs, and
then quit, your information would be gone. The next time you ran
cdTr acker, you'd have to start from scratch.

The solution to this problem is somehow to save all of the CD infor-
mation before you quit the program. This chapter will show you
how. Chapter 10 introduces the concept of files for the long-term
storage of your program’s data.

What Is a File?

A file is a series of bytes residing in some storage media. Files can be
stored on your hard drive, on a floppy disk, or even on a CD-ROM.
The word processor you keep on your hard drive resides in a file.
Each document you create with your word processor also resides in
a file.

The CD that contains this book contains many different files. The
CodeWarrior compiler lives in its own file. Each of the Learn C
projects consists of at least two files: a project file and at least one
source code file. When you compile and link a project, you produce
anew kind of file, an executable file. All of these are examples of the
same thing: a collection of bytes known as a file.

All of the files on your computer share a common set of traits. For
example, each file has a size. The file aut oexec. bat has a size of
441 bytes. The file Wi nmi ne. exe has a size of 24,176 bytes. Each of
these files resides on a hard disk drive attached to my computer.

Learn C under Windows 95/NT 281

Working with Files
Working with Files, Part One

Working with Files, Part One

By the Way

Important

In the C world, each file consists of a stream of consecutive bytes.
When you want to access the data in a file, you first open the file
using a Standard Library function named f open(), pronounced
eff-open. Once your file is open, you can read data from the file or
write new data back into the file, using Standard Library functions,
such as f scanf () and f pri ntf (). Once you are done working
with your file, you'll close it by using the Standard Library function
fclose().

Opening and Closing a File
Here's the function prototype for f open(), found in the file

<stdi 0. h>

FILE *fopen(const char *name, const char *node);

The const keyword marks a variable or a parameter as read-only.
In other words, f open() is not allowed to modify the array of char-
acters pointed at by namne or node. Here’s another example:

const int nylnt = 27;

This declaration creates an i nt named nyl nt and assigns it a
value of 27 (we’ll talk in Chapter 11 about definitions that also ini-
tialize). More important, the value of nmyl nt is now permanently
set, and ny| nt is now read-only. As long as nyl nt remains in
scope, you can’t change its value.

The first parameter, nane, tells f open() which file you want to
open. For example, the filename“ My Data Fi | e” tellsf open() to
look in the current directory (the directory containing the currently
running application) for a file named My Data Fil e.

The backslash character (\) has a special meaning in a Windows
file. A single backslash refers to the current directory, and a pair of

282 Learn C under Windows 95/NT

Working with Files
Working with Files, Part One

Warning

backslashes refers to a subdirectory’s parent directory. For exam-
ple, the file name \\ My Dat a Fi | e refers to a file named My
Dat a Fi | ein the directory containing the current subdirectory.
The file name \ f ol der\fil e refersto afile namedfileina
subdirectory named f ol der, which is in the current directory.

Be aware that different operating systems use different file-naming
conventions. UNIX uses a/ instead ofa\ and// instead of \ \.
The Macintosh uses : and: : instead of \ and \\. Check with
your operating system’s technical manuals and experiment for
yourself!

The second parameter, node, tells f open() how you’ll be accessing
the file. The three basic file modes are “r”, “W’, and “ a”, for read,
write, and append, respectively.

Using “r” tells f open() that you want to read data from the file
and that you won’t be writing to the file at all. The file must already
exist in order to use this mode. In other words, you can’t use the
mode “r” to create a file.

The mode “ W' tells f open() that you want to write to the specified
file. If the file doesn’t exist yet, a new file with the specified name is
created. If the file does exist, f open() deletes it and creates a new
empty file for you to write into.

This last point bears repeating. Calling f open() with a mode of
“w’ will delete the contents of an existing file, essentially starting
you over from the beginning of the file. Be careful!

The mode“ a”, similar to“w’, tellsf open() that you want to write
to the specified file and to create the file if it doesn’t exist. If the file

does exist, however, the data you write to the file is appended to the
end of the file.

If f open() successfully opens the specified file, it allocates a

st ruct of type FI LEand returns a pointer to the FI LE st ruct,
which contains information about the open file, including the cur-
rent mode (“r”, “W', “a”, or whatever), as well as the current file

Learn C under Windows 95/NT 283

Working with Files
Working with Files, Part One

By the Way

position. The file position, acting like a bookmark in a book, is a
pointer into the file. When you open a file for reading, for example,
the file position points to the first byte in the file. When you read the
first byte, the file position moves to the next byte.

It’s not really important to know the details of the FI LE struct.
All you need to do is keep track of the FI LE pointer returned by

f open(). By passing the pointer to a Standard Library function that
reads or writes, you'll be sure that the read or write takes place in
the right file and at the right file position. You'll see how all this
works as we go through the chapter sample code.

Here’s a sample f open() call:

FILE *fp;

if ((fp = fopen(“My Data File”, “r”)) == NULL)
{

printf(“File doesn’t exist!!!\n”);

exit(1);
}

This code first calls f open(), attempting to open the file named My
Dat a Fi | efor reading. If f open() cannot open the file for some
reason (perhaps you’ve asked it to open a file that doesn’t exist or
you've already opened the maximum number of files), it returns
NULL. In that case, we'll print an error message and exit.

There is a limit to the number of simultaneously open files. This
limit is implemented as a constant, FOPEN_MAX defined in the file
<st di 0. h>

If f open() does manage to open the file, it will allocate the memory
fora FI LE struct, and f p will point to that st r uct. We can then
pass f p to routines that read from the file. Once we’re done with the
file, we'll pass f p to the function f cl ose():

int fclose(FILE *stream);

284 Learn C under Windows 95/NT

Working with Files
Working with Files, Part One

By the Way

By the Way

Next, f cl ose() takes a pointer to a FI LE as a parameter and at-
tempts to close the specified file. If the file is closed successfully,

f cl ose() frees up the memory allocated to the FI LE st ruct and
returns a value of 0. It is very important that you match every

f open() with a corresponding f cl ose(); otherwise, you'll end up
with unneeded FI LE st r ucts floating around in memory.

In addition, once you've passed a FI LE pointer to f cl ose(), that
FI LE pointer no longer points to aFI LE st r uct. If you want to ac-
cess the file again, you'll have to make another f open() call.

If f cl ose() fails, it returns a value of —1. Many programmers ig-
nore the value returned by f cl ose(), since there’s not a whole lot
you can do about it. On the other hand, you can never have too
much error checking in your code, so you might consider checking
the value returned by f cl ose() and, at the very least, printing an
appropriate error message if f cl ose() fails.

Reading a File

Once you open a file for reading, the next step is to read data from
the file. There are several Standard Library functions to help you do
just that. For starters, the function f get c() reads a single character
from a file’s input buffer. Here’s the function prototype:

int fgetc(FILE *fp);

The single parameter is the FI LE pointer returned by f open().
After reading a single character from the file, f get c() advances the
file position pointer. If the file position pointer is already at the end
of the file, f get c() returns the constant EOF.

Although f get c()) returns an i nt, the following also works just
fine:

char C;

Learn C under Windows 95/NT 285

Working with Files
Working with Files, Part One

c = fgetc(fp);

When the C compiler encounters two different types on each side
of an assignment operator, it does its best to convert the value on
the right-hand side to the type of the left-hand side before doing
the assignment. As long as the type of the right-hand side is no
larger than the type of the left-hand side (as is the case here, as
ani nt is at least as large as a char), this won’t be a problem.

We'll get into the specifics of typecasting in Chapter 11.

The function f get s() reads a series of characters into an array of
chars. Here’s the function prototype:

char *fgets(char *s, int n, FILE *fp);

The first parameter is a pointer to an array of char s that you've al-
ready allocated. Don’t just declare a (char *) and passitin to

f get s(). Instead, allocate an array of char s large enough to hold
the largest block of char s you might end up reading in, then pass a
pointer to that array as the first parameter (you'll see an example in
a second).

The second parameter is the maximum number of characters you’'d
like to read. The function f get s() stops reading once it reads in
n-1 chars orif it encounters an end-of-fileora‘ \ n’ before it reads
n-1 chars.Iff get s() successfully readsn-1 chars, itappends a
0 terminator to the char array (that’s why the array has to be at
leastn charsinsize). If f get s() encountersa‘ \ n’ before it reads
n-1 chars, it stops reading after the ‘ \ n’ is read, then adds the 0
terminator to the array, right after the * \ n’ . If f get s() encounters
an end-of-file before it reads n- 1 chars, it adds the 0 terminator to
the array, right after the last character read. If f get s() encounters
an end-of-file before it reads in any chars, it returns NULL. Other-
wise, f get s() returns a pointer to the char array.

Finally, the third parameter is the FI LE pointer returned by
f open(). Here’s an example:

286 Learn C under Windows 95/NT

Working with Files
Working with Files, Part One

#defi ne kiMaxBufferSi ze 200

FI LE *fp;
char buffer[kMaxBufferSize];

if ((fp = fopen(“My Data File”, “r”)) == NULL)
{

printf(“File doesn’t exist!!!\n”);

exit(l);
}

if (fgets(buffer, kMaxBufferSize, fp) == NULL)
{
if (feof(fp))
printf(“End-of-file!ll\n”);
el se
printf(“Unknown error!!!i\n”);
}
el se
printf(“File contents: %\n”, buffer);

Notice that the example calls a function named f eof () if f get s()
returns NULL. NULL is returned no matter what error f get s() en-

counters. The function f eof () returns t r ue if the last read on the
specified file resulted in an end-of-file and a f al se otherwise.

The function f scanf () is similar to scanf (), reading from a file
instead of the keyboard. Here’s the prototype:

i nt fscanf(FILE *fp, const char* format, ...);

The first parameter is the FI LE pointer returned by f open(). The
second parameter is a format specification embedded inside a char-
acter string. The format specification tells f scanf () what kind of
data you want read from the file. The . . . operator in a parameter
list tells the compiler that zero or more parameters may follow the
second parameter. Likescanf () and pri ntf (), f scanf () uses

Learn C under Windows 95/NT 287

Working with Files
Working with Files, Part One

the format specification to determine the number of parameters it
expects to see. Be sure to pass the correct number of parameters;
otherwise, your program will get confused.

These are a few of the file-access functions provided by the Standard
Library. Check out the Standard Library function summaries found
in Appendix D in this book and in electronic form on the book’s CD
(search for the file name C Li brary Ref er ence) Even better, get
yourself a copy of C: A Reference Manual by Harbison and Steele and
check out Chapter 15, “Input/Output Facilities.”

In the meantime, the next section provides an example that uses the
functions f open() and f get c() to open a file and display its con-
tents.

printFile.cw

This program opens a file named My Data Fi | e, reads in all the
data from the file, one character at a time, and prints each character
in the console window. Open the Learn C Proj ect s directory,
go inside the subdirectory 10. 01 - printFil e, and open the
projectprintFil e.cwp. RunprintFile by selecting Run from
the Project menu. Compare your output with the console window
shown in Figure 10.1. They should be the same.

Quit the application and return to CodeWarrior. Let’s take a look at
the data file read in by pri nt Fi | e. Select Open from the File
menu. CodeWarrior will prompt you for a text file to open. Select
the file named My Data Fi | e. A window will open, allowing you
to edit the contents of the file named My Dat a Fi | e. Feel free to
make some changes to the file and run the program again. Make
sure not to change the name of the file, however.

Let’s take a look at the source code.

Stepping Through the Source Code

Open the source code file pri nt Fi | e. ¢ by double-clicking on its
name in the project window. Take a minute to look over the source
code. Once you feel comfortable with it, read on.

288 Learn C under Windows 95/NT

Working with Files
Working with Files, Part One

Figure 10.1

This is the first line of the file named "My Data File'.

Thiz iz the second line of the file.
This iz the third and final line?

The pri nt Fi | eoutput, showing the contents of the file My
Data File.

The source code starts off with the usual #i ncl ude:
#1 ncl ude <stdi o. h>

Then, mai n() defines two variables: f p is our FI LEpointer, and ¢ is
an i nt that will hold the char s we read from the file:

int main(void)
{

FILE *fp;

i nt (o

This call of the function f open() opens the file named My Dat a
Fi | e for reading, returning the file pointer to the variable f p:

fp = fopen(“My Data File”, “r”);

Learn C under Windows 95/NT 289

Working with Files
Working with Files, Part One

By the Way

If f p is not NULL, the file was opened successfully:

if (fp !'= NULL)
{

The whi | e loop continuously calls f get c(), passing it the file
pointer f p. Next, f get ¢() returns the next character in f p’s input
buffer. The returned character is assigned to c. If ¢ is not equal to
ECF, put char () is called, taking c as a parameter:

while ((c = fgetc(fp)) !'= EOF)
putchar(c);

Now, put char () prints the specified character to the console win-
dow. We could have accomplished the same thing by using
printf():

printf(“%”, c);

As you program, you'll often find two different solutions to the
same problem. Should you use put char () or pri ntf ()? If per-
formance is critical, pick the option that is more specific to your
particular need. In this case, pri nt f () is designed to handle
many different data types, whereas put char () is designed to
handle one data type, an i nt . Chances are, the source code for
put char () is simpler and more efficient than the source code for
pri ntf () when it comes to printing ani nt. If performance is crit-
ical, you might want to use put char () instead of pri ntf (). If
performance isn’t critical, go with your own preference.

Once we are done, we'll close the file by calling f cl ose(). Remem-
ber to always balance each call of f open() with a corresponding
call tof cl ose().

290 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

fclose(fp);
}

return O;

}

stdi n,stdout,and stderr

C provides you with three FI LE pointers that are always available
and always open. st di n represents the keyboard, st dout repre-
sents the console window, and st der r represents the file where the
user wants all error messages sent. These three pointers are nor-
mally associated with command line—oriented operating systems,
such as UNIX and DOS, but it’s definitely worth knowing about
them.

In pri nt Fi | e we used the function f get c() to read a character
from a previously opened file. The following line will read the next
character from the keyboard’s input buffer:

c = fgetc(stdin);

Thus, f get c(stdi n) isequivalent to calling get char ().

As you'll see in the next few sections, whenever C provides a mech-
anism for reading or writing to a file, C also provides a similar
mechanism for reading from st di n or writing to st dout . You prob-
ably won’t use st di nand st dout in your code, but it’s good to
know what they are and what they do.

Working with Files, Part Two

So far, you've learned how to open a file by using f open() and how
to read from a file by using f get c(). You've seen, once again, that
you can often use two different functions to solve the same problem.

Now let’s look at some functions that allow you to write data out to
a file.

Learn C under Windows 95/NT 291

Working with Files
Working with Files, Part Two

By the Way

Writing to a File

The Standard Library offers several functions that write data out to
a previously opened file. This section will introduce three of them:
fputc(),fputs(),andfprintf().

The first, f put c(), takes an i nt holding a character value and
writes the character out to the specified file. The function f put c()
is declared as follows:

int fputc(int ¢, FILE *fp);

If f put c() successfully writes the character out to the file, it returns
the value passed to it in the parameter c. If the write fails for some
reason, f put ¢() returns the value ECF.

Note that:
fputc(c, stdout);
Is the same as calling:

putchar(c);

The function f put s() is similar to f put c() but writes out a zero-
terminated string instead of a single character. This function is de-
clared as follows:

int fputs(const char *s, FILE *fp);

f put s() writes out all the characters in the string but does not
write out the terminating 0. If the write succeeds, f put s() returns a
0. If the write fails, f put s() returns EOF.

The third function, f pri nt f (), works just like pri nt f (). Instead
of sending its output to the console window, f pri nt f () writes its
output to the specified file. It is declared as follows:

292 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

int fprintf(FILE *fp, const char *format, ...);

The first parameter specifies the file to be written to. The second is
the format-specification text string. Any further parameters depend
on the contents of that string.

A Sample Program: cdFi | er. cwp

In Chapter 9, we ran cdTr acker , a program designed to help you
track your compact disc collection. The big shortcoming of

cdTr acker is its inability to save your carefully entered CD data.
As you quit the program, the CD information you entered gets dis-
carded, forcing you to start over the next time you run cdTr acker.

Our next program, cdFi | er, solves this problem by adding two
special functions to cdTr acker . ReadFi | e() opens a file named
cdDat a, reads in the CD data in the file, and uses the data to build a
linked list of cdl nf o structs. Wit eFi | e() writes the linked list
back out to the file.

Open the Learn C Proj ects directory, go inside the subdirec-
tory 10. 02 - cdFi | er, and open the project cdFi | er. cwp.
Check out the cdFi | er. cwp project window shown in Figure 10.2.
Notice that there are two separate source code files. Your project can
contain as many source code files as you like. Just make sure that
only one of the files has a function named mai n(), since that’s
where your program will start.

The file mai n. c is almost identical to the file cdTr acker . ¢ from
Chapter 9. The file f i | es. ¢ contains the functions that allow
cdFi | er to read and write the file cdDat a.

Learn C under Windows 95/NT 293

Working with Files
Working with Files, Part Two

Figure 10.2

i CDFILER.CWP _ O] x|
|i ' File | Code| Datal ﬁ
= & Oroup 1 D A
% main.c 0 0f m
Lo Mesc o cLD DB
- ¢ Group 2 ; i 0=
Ansicx86.lib 0 0 ®
¢ 0did2.lib 0 1] ®
¢ Hernel32.lib 0i 1] 3]
¢ Mwcrtllib 0 1] ®
¢ User32lib i 1]] *|
7 filerz) 0 0 ﬁ

The cdFi | er. cwpproject window.

Exploring cdDat a

Before you run the program, take a quick look at the file cdDat a.
Select Open from the File menu. When prompted for a text file to
open, select the file cdDat a. A text editing window for cdDat a will
appear on the screen. At first glance, the contents of the file may not
make much sense, but the text does follow a well-defined pattern:

Frank Zappa
Anyway the Wnd Bl ows

8

Edith Pi af

The Voice of the Sparrow
10

Joni Mtchell

For the Roses

9

The file is organized in three-line clusters. Each cluster contains a
one-line CD artist, a one-line CD title, and a one-line numerical CD
rating.

294 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

Important

Warning

The layout of your data files is as important a part of the software
design process as the layout of your program’s functions. The file
described here follows a well-defined pattern. As you lay out a file
for your next program, think about the future. Can you live with
one-line CD titles? Do you want the ability to add a new CD field,
perhaps the date of the CD’s release?

The time to think about these types of questions is at the begin-
ning of your program’s life, during the design phase.

Running cdFi | er

Before you run cdFi | er, close the cdDat a text editing window.

To create this window, CodeWarrior had to open the file cdDat a. If
you don’t close the window before you run the program, the file will
remain open. When you run cdFi | er, it will also open the file.
You'll have the same file open in two places. That is not a good
idea. Although CodeWarrior allows you to do this, your results can
be somewhat unpredictable.

Once the window is closed, runcdFi | er by selecting Run from the
Project menu. The console window will appear, prompting you for a
:q1,‘ni’0r‘|i:

Enter command (g=quit, n=new, I=list): |

Typel , followed by a carriage return. This will list the CDs cur-
rently in the program’s linked list. If you need a refresher on linked
lists, now would be a perfect time to turn back to Chapter 9.

Enter command (q=quit, n=new, I=list): |

Learn C under Windows 95/NT 295

Working with Files
Working with Files, Part Two

Artist: Frank Zappa
Title: Anyway the Wnd Bl ows
Rating: 8

Artist: Edith Piaf
Title: The Voi ce of the Sparrow
Rating: 10

Artist: Joni Mtchell

Title: For the Roses
Rating: 9
Enter command (g=quit, n=new, |=list):

Whereas Chapter 9’s cdTr acker started with an empty linked list,
cdFi | er starts with a linked list built from the contents of the
cdDat afile. The CDs you just listed should match the CDs you saw
when you edited the cdDat afile.

Let’s add a fourth CD to the list. Type n, followed by a carriage re-
turn:

Enter command (g=quit, n=new, I=list): n

Enter Artist’s Nane: Adrian Bel ew
Enter CD Title: M. Misic Head
Enter CD Rating (1-10): 8

Enter command (qg=quit, n=new, |=list):

Next, type | to make sure that your new CD made it into the list:

296 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

Enter command (g=quit, n=new, [=list): |

Artist: Frank Zappa
Title: Anyway the Wnd Bl ows

Artist: Edith Piaf
Title: The Voice of the Sparrow
Rating: 10

Artist: Joni Mtchell
Title: For the Roses
Rating: 9

Artist: Adrian Bel ew
Title: M. Misic Head
Rating: 8

Enter command (g=quit, n=new, |=list):

Finally, type q, followed by a carriage return. This causes the pro-
gram to write the current linked list back out to the file cdDat a. To
prove that this worked, run cdFi | er one more time. When
prompted for a command, typel to list your current CDs. You
should find your new CD nestled at the bottom of the list. Let’s see
how this works.

Stepping Through the Source Code

The file cdFi | er. hcontains source code that will be included by
both mai n. cand fi | es. c. The first four #def i nes should be fa-
miliar to you. The fifth creates a constant containing the name of the
file containing our CD data:

Learn C under Windows 95/NT 297

Working with Files
Working with Files, Part Two

/***********/
[* Defines */
/***********/
#defi ne true 1
#defi ne fal se 0

#defi ne kMaxArtistLength 50
#define kMaxTitl eLength 50

#defi ne kCDFi | eNane “cdDat a”

This CDI nf 0 struct isidentical to the one found incdTr acker :

/***********************/

/* Struct Decl arations */

/***********************/

struct CDInfo

{
char rating;
char artist|[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDInfo *next ;

b

Just as we did in cdTr acker, we’ve declared two globals to keep
track of the beginning and end of our linked list. The ext er n key-
word at the beginning of the declaration tells the C compiler to link
this declaration to the definition of these two globals, which can be
found in mai n. c. If you removed the ext er nkeyword from this
line, the compiler would first compile f i | es. ¢, defining space for
both pointers. When the compiler went to compile mai n. ¢, it would
complain that these globals were already declared.

The ext er n mechanism allows you to declare a global without allo-
cating memory for it. Since the ext er n declaration doesn’t allocate
memory for your globals, you'll need another declaration (usually

298 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

found in the same file as mai n()) that does allocate memory for the
globals. You'll see that declaration in mai n. c:

/***********************/

/* d obal Declarations */

/***********************/

extern struct CDInfo *gFirstPtr, *glLastPtr;

Next comes the list of function prototypes. By listing all the func-
tions in this #i ncl ude file, we make all functions available to be
called from all other functions. As your programs get larger and
more sophisticated, you might want to create a separate include file
for each of your source code files. Some programmers create one in-
clude file for globals, another for defines, and another for function
prototypes.

/********************************/

/* Function Prototypes - main.c */
/********************************/

char Get Command(void);

struct CDInfo *ReadStruct (void);

void AddToList(struct CDInfo *curPtr);
void ListCDs(void);

void ListCDslnReverse(void);

void Flush(void);

/*********************************/

/* Function Prototypes - files.c */

/*********************************/

void WiteFile(void);

void ReadFile(void);

char ReadStructFronFile(FILE *fp, struct CDInfo
*InfoPtr);

Learn C under Windows 95/NT 299

Working with Files
Working with Files, Part Two

The file mai n. c is almost exactly the same as the file cdTr acker. c
from Chapter 9. There are four differences, however. First, we in-
clude the file cdFi | er . hinstead of cdTr acker . h:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdFiler.h”

Next, we include the definitions of our two globals directly in this
source code file, to go along with the ext er n declarations in

cdFi | er. h. This definition is where the memory gets allocated for
these two global pointers:

/***********************/

/* dobal Definitions */

/***********************/

struct CDInfo *gFirstPtr, *glLastPtr

The last two differences are contained in mai n(). Before we enter
the command-processing loop, we call ReadFi | e() to read in the
cdDat afile and turn the contents into a linked list:

/**> n-al n <*/
int main(void)

{

char command;

gFirstPtr = NULL;
gLast Ptr = NULL;

ReadFi | e();
while ((command = GetCommand()) '=‘q)
{

switch(conmmand)

{

300 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

case ‘n’:
AddToLi st (ReadStruct());
br eak;
case ‘| ’:
Li st CDs() ;
br eak;

Once we drop out of the loop, we call Wi t eFi | e() to write the
linked list out to the file cdDat a:

WiteFile();
printf(“Coodbye...”);
return O;

}

For completeness, here’s the remainder of cdMai n. c. Each of these
functions is identical to its cdTr acker . ¢ counterpart:

/**********************************> Cﬁt Corrrrand <*/

char Get Command(void)
{

char command;

do
{
printf(“Enter command (g=quit, n=new,
I=list): *“);
scanf(“%”, &conmmand);
Fl ush();
}
while ((command !'= Q") &k (command != ‘n’)
&% (command !'= *1"));

Learn C under Windows 95/NT 301

Working with Files
Working with Files, Part Two

printf(“\n---------- \n”) ;
return(conmmand);

}

/********************************> ReadStruct <*/

struct CDInfo *ReadStruct(void)

{

struct CDInfo *InfoPtr;

i nt num

infoPtr = mall oc(sizeof(struct CDInfo));

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

printf(“Enter Artist’s Name: *“);

gets(infoPtr->artist);

printf(“Enter CD Title: “);

gets(infoPtr->title);

do

{
printf(“Enter CD Rating (1-10): *“);
scanf(“%”, &num);
Fl ush();

}

while ((num< 1) || (num> 10));
infoPtr->rating = num

prlntf(“\n __________ \nn)’

302 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

return(infoPtr);

}

/***********************************> AddTOLI St <*/

void AddToList(struct CDInfo *curPtr)

{
if (gFirstPtr == NULL)
gFirstPtr = curPtr;
el se
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

/*************************************> L| StCDS <*/
void ListCDs(void)

struct CDInfo *curPtr:

if (gFirstPtr == NULL)

{ printf(“No CDs have been entered yet...\n”);
printf(“\n---------- \n”);

}

el se

{

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr =
cur Ptr->next)
{
printf(“Artist: 9%\n”, curPtr->artist);
printf(“Title: %\n”, curPtr->title);
printf(“Rating: %\n”, curPtr->rating);

printf(“\n---------- \n”);

Learn C under Windows 95/NT 303

Working with Files
Working with Files, Part Two

/***********************************> Fl ush <*/

void Flush(void)

{
while (getchar() !'= *\n")

The file f i | es. c starts out with the same #i ncl udes as mai n. c:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdFiler.h”

Wit eFi | e() first checks to see whether there are any CDs to write
out. If gFi r st Pt r is NULL (the value it was set to in mai n()), no
CDs have been entered yet, and we can just return:

/**********************************> WItE‘FI | e <*/
void WiteFile(void)
{

FILE *fp;

struct CDInfo *InfoPtr

i nt num

if (gFirstPtr == NULL)
return;

Next, we’ll open the file cdDat a for writing. If f open() returns
NULL, we know that it couldn’t open the file, and we’ll print out an
error message and return:

304 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

if ((fp = fopen(kCDFileNane, “w)) == NULL)
{
printf(“***ERROR Could not wite CD filel”);
return;

}

This f or loop steps through the linked list, setting i nf oPt r to
point to the first st r uct in the list, then moving it to point to the
next struct, and so on, untili nf oPt r is equal to NULL. Since the
last st ruct in our list sets its next pointer to NULL, i nf oPt r will
be equal to NULL when it points to the last st r uct in the list and the
third f or statement is executed:

for (infoPtr=gFirstPtr; infoPtr!=NULL,;
I nfoPtr=i nfoPtr->next)

{

Each time through the list, we call f pri nt f () to print the arti st
string, followed by a carriage return, and then the t i t | e string, fol-
lowed by a carriage return. Remember, each of these strings was
zero-terminated, a requirement if you plan on using the % format
specifier:

fprintf(fp, “%\n”, infoPtr->artist);
fprintf(fp, “9%\n”, infoPtr->title);

Finally, we convert ther at i ngfield to ani nt by assigning it to the
i nt numthen print it (as well as a following carriage return) to the
file by using f pri nt f (). We converted the char to ani nt because
the %l format specifier was designed to work with an i nt, not a
char:

num = i nfoPtr->rating;
fprintf(fp, “%\n”, num);
}

Learn C under Windows 95/NT 305

Working with Files
Working with Files, Part Two

Once we finish writing the linked list into the file, we’ll close the file
by calling f cl ose():

fclose(fp);
}

ReadFi | e() starts by opening the file cdDat a for reading. If we
can’t open the file, we’ll print an error message and return, leaving
the list empty:

/************************************> Readl:l | e <*/

void ReadFile(void)

{

FILE *fp;

struct CDInfo *infoPtr;

i nt i

if ((fp = fopen(kCDFil eName, “r”)) == NULL)

{
printf(“***ERROR Could not read CD file!”);
return;

}

With the file open, we’ll enter a loop that continues as long as
ReadSt ruct FronFi | e() returnst r ue. By using the do- whi | e
loop, we'll execute the body of the loop before we call

ReadSt r uct FronFi | e() for the first time. This is what we want.
The body of the loop attempts to allocate a block of memory the size
of a CDI nf o struct.If the mal | oc() fails, we’ll bail out of the
program:

do
{

infoPtr = mall oc(sizeof(struct CDInfo));

if (infoPtr == NULL)

306 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Two

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

}
while (ReadStructFronFile(fp, infoPtr));

ReadSt ruct FronFi | e() will return f al se when it reaches the
end of the file, when it can’t read another set of CDI nf o fields. In
that case, we'll close the file and free up the last block we just allo-
cated, since we have nothing to store in it:

fclose(fp);
free(infoPtr);

}

ReadSt ruct FronFi | e() uses a funky form of f scanf () to read
in the first two CDI nf o fields. Notice the use of the format descrip-
tor “ 94 "\ n] \ n”. This tells f scanf () to read characters from the
specified file until it reaches an ‘ \ n’, then to read the ‘ \ n’ charac-
ter and stop. The characters [*\ n] represent the set of all characters
except ‘ \ n’ . Note that the % format specifier places a zero-termi-
nating byte at the end of the characters it reads in:

/************************> ReadStruct FI’OI’TFI|e <*/
char ReadStructFronFile(FILE *fp, struct CDInfo

*InfoPtr)
{
I nt num
if (fscanf(fp, “%Y™\n]\n”", infoPtr->artist)
= EOF)
{

Learn C under Windows 95/NT 307

Working with Files
Working with Files, Part Two

By the Way

The square brackets inside a format specifier give you much
greater control over scanf (). For example, the format specifier
“94 abcd] ” would tell scanf () to keep reading as long as it was
readingan‘a’ ,a‘b’,a‘c’,ora‘d .Thefirst non- [abcd]
character would be left in the input buffer for the next part of the
format specifier or for the next read operation to pick up.

If the first character in the set is the character , the set represents
the characters that do not belong to the set. In other words, the for-
mat specifier “ %4 ~abcd] ” tells scanf () to continue reading as
long as it doesn’t encounter any of the characters*a’,* b’ ,‘c’,
or‘d .

If f scanf () reaches the end of the file, we'll return f al se, letting
the calling function know that there are no more fields to read. If

f scanf () succeeds, we'll move on to theti t | e field, using the
same technique. If this second f scanf () fails, we’ve got a problem,
since we read an arti st but couldn’tread atitl e.

if (fscanf(fp, “ABY™\n]\n", infoPtr->title)
== ECOF)
{
printf(“Mssing CDtitlel\n”);
return fal se;

}

If we got both thearti st andtitl e we'll use a more normal for-
mat specifier to pick up an i nt and the third carriage return:

else if (fscanf(fp, “%\n”, &um) == ECF)
{

printf(“Mssing CD rating!'\n”);

return fal se;

}

308 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

If we picked up the i nt, we’ll use the assignment operator to con-
vert thei nt toachar and add the now complete st r uct to the list
by passing it to AddToLi st ():

el se

{
infoPtr->rating = num
AddToList(infoPtr);
return true;

}
}

el se
return fal se;

Working with Files, Part Three

Important

Now that you've mastered the basics of file reading and writing,
there are a few more topics worth exploring before we leave this
chapter. We'll start off with a look at some additional file-opening
modes.

The “Update” Modes

So far, you've encountered the three basic file-opening modes: “r”,
“W’, and “a”. Each of these modes has a corresponding update
mode, specified by adding + to the mode. The three update
modes—"r +”,“w+”, and “a+”—allow you to open a file for both
reading and writing.

Alhough the three update modes do allow you to switch between
read and write operations without reopening the file, you must first
call f set pos(), fseek(),rewi nd(),orfflush() before you
make the switch. (See Appendix C or the C Library Reference on
the CD.)

Learn C under Windows 95/NT 309

Working with Files
Working with Files, Part Three

In other words, if your file is opened using one of the update
modes, you can't call f scanf () and then call f pri ntf () (or call
fprintf () followed by f scanf ()) unless you call f set pos(),
fseek(),rewi nd(),orfflush() in between.

In Harbison and Steele’s C: A Reference Manual, there’s a great chart
that summarizes these modes quite nicely. My version of the chart is
shown in Figure 10.3. Before you read on, take a minute to look the
chart over to be sure you understand the different file modes.

By the Way C also allows a file mode to specify whether a file is limited to
ASCII characters (text mode) or is allowed to hold any type of data
at all (binary mode). To open a file in text mode, just append at at
the end of the mode string (asin“rt” or “w+t ”). To open afile in

binary mode, append a b at the end of the mode string (asin “r b”
or “w+b”).

If you use a file mode that doesn’t include at or a b, check your
development environment manuals to find out which of the two
types is the default.

Mode Rules " " "a" "r+" "w+" "a+"
Named file must already exist yes no no yes no no
Existing file's contents are lost no yes no no yes no
Read OK yes no no yes yes yes
Write OK no yes yes yes yes Yyes
Write begins at end of file no no yes no no yes

Figure 10.3 My version of the Harbison and Steele file mode chart

showing the rules associated with the six basic file-opening
modes.

310 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

Random File Access

So far, each of the examples presented in this chapter has treated
files as a sequential stream of bytes. When cdFi | er read from a
file, it started at the beginning of the file and read the contents, one
byte at a time or in larger chunks, but from the beginning straight
through until the end. This sequential approach works fine if you in-
tend to read or write the entire file all at once. As you might have
guessed, there is another model.

Instead of starting at the beginning and streaming through a file,
you can use a technique called random file access. The Standard Li-
brary provides a set of functions that let you reposition the file posi-
tion indicator to any location within the file, so that the next read or
write you do occurs exactly where you want it to.

Imagine a file filled with 100 | ongs, each 4 bytes long. The file
would be 400 bytes long. Now suppose that you wanted to retrieve
the 10th | ong in the file. Using the sequential model, you would
have to do 10 reads to get the 10th | ong into memory. Unless you
read the entire file into memory, you'll continually be reading a se-
ries of | ongs to get to the | ong you want.

Using the random-access model, you would first calculate where in
the file the 10th | ong starts, jump to that position in the file, and
then just read that | ong. To move the file position indicator just be-
fore the 10th | ong, you’d skip over the first nine | ongs (9*4 = 36
bytes).

The fseek(),ftell (),and rew nd()
Functions

There are five functions that you'll need to know about in order to
randomly access your files. One of those functions, f seek(), moves

the file position indicator to an offset you specify, relative to the be-
ginning of the file, the current file position, or the end of the file:

int fseek(FILE *fp, long offset, int wherefrom);

You'll pass your FI LE pointer as the first parameter, a | ong offset as
the second parameter, and one of SEEK_SET, SEEK_CUR or

Learn C under Windows 95/NT 311

Working with Files
Working with Files, Part Three

By the Way

SEEK_ENDas the third parameter. SEEK_SET represents the begin-
ning of the file, SEEK_CURrepresents the current position, and
SEEK_ENDrepresents the end of the file (in which case you'll proba-
bly use a negative offset).

The function f t el | () takes a FI LE pointer as a parameter and re-
turns a | ong containing the value of the file position indicator:

long ftell(FILE *fp);

The function r ewi nd() takes a FI LE pointer as a parameter and re-
sets the file position indicator to the beginning of the file:

void rew nd(FILE *fp);

The functions f set pos() and f get pos() were introduced as
part of ISO C and allow you to work with file offsets that are larger
than will fit in a | ong. You can look these two functions up in the
usual places.

A Sample Program: di noEdi t. cwp

The last sample program in this chapter, di noEdi t is a simple ex-
ample of random file access. The program allows you to edit a series
of dinosaur names stored in a file named My Di nos. Each dinosaur
name in this file is 20 characters long. If the dinosaur name is shorter
than 20 characters, the appropriate number of spaces is added to the
name to bring the length up to 20. This is done to make the size of
each item in the file a fixed length. You'll see why this is important
as we go through the source code. For now, let’s take di noEdi t for
a spin.

Open the Learn C Proj ects directory, go inside the subdirec-
tory 10. 03 - di noEdi t, and open the project di noEdi t . cwp.
Run di noEdi t by selecting Run from the Project menu. The pro-
gram will count the number of dinosaur names in the file My Di nos
and will use that number to prompt you for a dinosaur number to
edit:

312 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

Enter nunber froml to 5 (0 to exit):

Since the file My Di nos on your CD has five dinosaur names, enter
a number from 1 to 5:

Enter nunber froml to 5 (0 to exit): 3

If you enter the number 3, for example, di noEdi t will fetch the
third dinosaur name from the file, then ask you to enter a new name
for the third dinosaur. If you enter a return without typing a new
name, the existing name will remain untouched. If you type a new
name, di noEdi t will overwrite the existing name with the new
name:

Dino #3: Galim nus
Ent er new name: Euopl ocephal us

Either way, di noEdi t will prompt you to enter another dinosaur
number. Reenter the same number, so you can verify that the change
was made in the file:

Enter nunber froml to 5 (0 to exit): 3
Di no #3: Euopl ocephal us

Enter new nane:

Enter nunber from1l to 5 (0 to exit): O
Goodbye. . .

Let’s take a look at the source code.

Stepping Through the Source Code

The file di noEdi t . h starts off with a few #def i nes: true,

fal se, kD noRecordSi ze, kMaxLi neLength,

kDi noFi | eNarme. kDi noRecor dSi ze defines the length of each
dinosaur record. KMaxLi neLengt h defines the length of an array
of chars we’ll use to read in any new dinosaur names.

Learn C under Windows 95/NT 313

Working with Files
Working with Files, Part Three

kDi noFi | eNarre is the name of the dinosaur file. Note that the di-
nosaur file doesn’t contain any carriage returns, just 5 * 20 = 100
bytes of pure dinosaur pleasure!

/***********/
[* Defines */
/***********/
#define true 1
#define false O

#defi ne kDi noRecordSi ze 20
#defi ne kMaxLi neLength 100
#defi ne kDi noFi | eNane “My Di nos”

Next come the function prototypes for the functions in nai n. c:

/********************************/

/* Function Prototypes - main.c */
/********************************/

i nt Get Nunber(void);

i nt Get Nunber O Di nos(void);

void ReadD noNanme(int nunber, char *di noNane);
char Get NewDi noNane(char *di noNane);

void WiteD noNane(int nunber, char *di noNane);
void Flush(void);

void DoError(char *nessage);

First, mai n. ¢ starts with four #i ncl udes: <st dl i b. h>gives us ac-
cess to the function exi t (); <st di 0. h>gives us access to a num-
ber of functions, including pri nt f () and all the file-manipulation
functions, types, and constants; and <st r i ng. h>gives us access to
the function st r | en(). You've already seen what “ di noEdi t . h”
brings to the table:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

314 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

By the Way

#i ncl ude <string. h>
#i ncl ude “di noEdit. h”

If you ever want to find out which of the functions you call are de-
pendent on which of your include files, just comment out the #i n-
cl ude statement in question and recompile. The compiler will
spew out an error message (or a whole bunch of messages) telling
you it couldn’t find a prototype for a function you called.

mai n() basically consists of a loop that first prompts for a dinosaur
number at the top of the loop, then processes the selection in the
body of the loop:

/**> rml n <*/
int main(void)
{

i nt nunber ;

FILE *fp;

char di noNane[kDi noRecordSi ze+l];

CGet Nunber () prompts for a dinosaur number between 0 and the
number of dinosaur records in the file. If the user types 0, we’ll drop
out of the loop and exit the program:

while ((nunmber = GetNunber()) !'=0)
{

If we made it here, Get Nunber () must have returned a legitimate
record number. ReadDi noNane() takes the dinosaur number and
returns the corresponding dinosaur name from the file. The re-
turned dinosaur name is then printed:

ReadDi noNanme(nunber, di noNane);

printf(“Dino #%: %\n”, nunber, dinoNane);

Learn C under Windows 95/NT 315

Working with Files
Working with Files, Part Three

CGet NewDi noNane() prompts the user for a new dinosaur name to
replace the existing name. Get NewDi noNang() returnst r ue if a
name is entered and f al se if the user just entered a return. If the
user entered a name, we’ll pass it on to Wi t eDi noNane(), which
will write the name in the file, overwriting the old name:

if (Get NewDi noNanme(di noNanme))
Wi teD noNane(nunber, dinoNane);
}

printf(“Coodbye...”);

return O;

}

Get Nunber () starts off with a call to Get Nunber Of Di nos(). Asits
name implies, Get Nunber Of Di nos() goes into the dinosaur file
and returns the number of records in the file:

/***********************************> @t Nurrber <*/

i nt Get Nunber(void)
{

i nt nunmber, nunDi nos;

nunDi nos = Get Nunber O Di nos() ;

Get Nunber () then continuously prompts for a dinosaur number
until the user enters a number between 0 and nunDi nos:

do
{
printf(“Enter number from1 to % (0 to
exit): “,nunDi nos);
scanf(“%”, &nunber);
Fl ush();

316 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

}
while ((nunber < 0) || (nunber > nunDi nos));

return(nunber);

}

Get Nunber O Di nos() starts our file-management adventure.
First, we’ll open My Di nos for reading only:

/*************************> (‘£t NunberGD nos <*/
i nt Get Nunber O Di nos(void)

{
FILE *fp;
long filelLength;
if ((fp = fopen(kD noFileName, “r”)) == NULL)
DoError(“Couldn’t open file...Goodbye!”);
Important Notice that we’'ve passed an error message to a function called

DoEr r or () instead of printing it with pri nt f (). There are several
reasons for doing this. First, since DoEr r or () executes two lines
of code (calls of printf () and exi t()), each DoError () call
saves a bit of code.

More important, this approach encapsulates all our error handling
in a single function. If we want to send all error messages to a log
file, all we have to do is edit DoEr r or () instead of hunting down
all the error messages and attaching a few extra lines of code.

Next, we'll call f seek() to move the file position indicator to the
end of the file. Can you see what’s coming?

if (fseek(fp, OL, SEEK END) !'= 0)
DoError(“Couldn’t seek to end of
file...Goodbye!”);

Learn C under Windows 95/NT 317

Working with Files
Working with Files, Part Three

Now, we'll call ft el | () to retrieve the current file position indica-
tor, which also happens to be the file length! Cool!

if ((fileLength = ftell(fp)) == -1L)
DoError(“ftell () failed...Goodbye!”);

Now that we have the file length, we can close the file:
fclose(fp);

Finally, we'll calculate the number of dinosaur records by dividing
the file length by the number of bytes in a single record. For simplic-
ity’s sake, we’ll convert the number of records to ani nt before we
return it. That means that we can’t deal with a file that contains
more than 32,767 dinosaur records. How many dinosaurs can you
name?

return((int)(fileLength / kD noRecordSize));
}

ReadDi noNane() first opens the file for reading only.

/********************************> ReadD nol\lan-e <*/
void ReadD noName(int nunber, char *di noNane)
{

FILE *fp;

| ong byt esToSki p;

if ((fp = fopen(kDi noFileName, “r”)) == NULL)
DoError(“Couldn’t open file...Goodbye!”);

Since we’ll be reading the nunber th dinosaur, we have to move the
file position indicator to the end of the (nunber - 1) th dinosaur.
That means that we’ll need to skip over (nunber - 1) dinosaur
records:

318 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

byt esToSkip = (long) ((nunber-1) *
kDi noRecor dSi ze) ;

We'll use f seek() to skip that many bytes from the beginning of
the file (that’s what the constant SEEK SET s for):

i1f (fseek(fp, bytesToSkip, SEEK SET) != 0)
DoError(“Couldn’t seek in file...Goodbye!”);

Finally, we'll call f r ead() to read the dinosaur record into the array
of char s pointed to by di noName. The first f r ead() parameter is
the pointer to the block of memory where the data will be read. The
second parameter is the number of bytes in a single record. Since

f read() expects both the second and third parameters to be of type
si ze_t, we'll use a typecast to make the compiler happy. (Gee, by
the time we talk about typecasting in Chapter 11, you'll already be
an expert!) The third parameter is the number of records to read in.
We want to read in one record of kDi noRecor dSi ze bytes. The
last parameter is the FI LE pointer we got from f open().

Because f r ead() returns the number of records read, we expect to
return a value of 1, since we asked f r ead() to read one record. If
that doesn’t happen, something is dreadfully wrong (perhaps the
file got corrupted or that Pepsi you spilled in your hard drive is fi-
nally starting to take effect).

if (fread(dinoNane, (size_ t)kD noRecordSi ze,
(size t)1, fp) I'=1)
DoError(“Bad fread()...Goodbye!”);

Once again, we close the file when we’'re done working with it.

fclose(fp);
}

Learn C under Windows 95/NT 319

Working with Files
Working with Files, Part Three

Get NewDi noNane() starts by prompting for a new dinosaur name,
then calling get s() to read in a line of text:

/******************************> @t l\bV\D nONaITE <*/
char Get NewDi noNane(char *di noNane)

{
char |line[kMaxLineLength];
i nt i, naneLen;
printf(“Enter new nanme: “);

gets(line);

If the line was empty (if the user just entered a carriage return), we’ll
return f al se, letting the calling function know that the user has, in
effect, decided not to replace the dinosaur name:

if (line[0] == “\0")
return fal se;

Our next step is to fill the di noNane array with spaces. We'll then
call st rl en() to find out how many characters the user typed in.
We'll copy those characters back into the di noNane array, leaving
di noNane with a dinosaur name, followed by a bunch of spaces:

for (i=0; i<kD noRecordSize; i++)
di noNane[i] = * *;

strl en() takes a pointer to a zero-terminated string and returns
the length of the string, not including the 0 terminator:

naneLen = strlen(line);

If the user typed a dinosaur name larger than 20 characters long,
we'll copy only the first 20 characters:

320 Learn C under Windows 95/NT

Working with Files
Working with Files, Part Three

i f (naneLen > kDi noRecordSi ze)
nanmeLen = kDi noRecor dSi ze;

Here’s where we copy the characters from| i ne into di noName:

for (i=0; i<naneLen; i++)
di noNanme[i] = line[i];

Finally, we’ll return true to let the calling function know that the
name is ready:

return true;

}

W i t eDi noNane() opens the file for reading and writing. Since we
used a mode of “r +” instead of “ W+”, we won’t lose the contents of
My Di nos (in other words, My Di nos won’t be deleted and recre-
ated):

/*******************************> WlteD nONarTE <*/
void WiteD noNane(int nunber, char *di noNane)
{

FILE *fp;

| ong byt esToSki p;

if ((fp = fopen(kD noFileNane, “r+”)) == NULL)
DoError(“Couldn’t open file...Goodbye!”);

Next, we calculate the number of bytes we need to skip to place the
file position indicator at the beginning of the record we want to
overwrite, then call f seek() to move the file position indicator:

byt esToSki p = (I ong) ((nunber-1) *
kDi noRecor dSi ze);

Learn C under Windows 95/NT 321

Working with Files
Working with Files, Part Three

if (fseek(fp, bytesToSkip, SEEK SET) !'= 0)
DoError(“Couldn’t seek in file...Goodbye!”);

We then call f wri t e() to write the dinosaur record back out. Note
that f wri t e() works exactly the same way as f r ead(), including
returning the number of records written:

if (fwite(dinoName, (size_t)kD noRecordSize,
(size_t)1, fp) I=1)
DoError(“Bad fwite()...Goodbye!”);

fclose(fp);
}

You’'ve seen this function before:

/***************************************> Fl ush <*/

void Flush(void)

{
while (getchar() '= ‘\n")

DoEr r or () prints the error message, adding a carriage return, then
exits:

/*************************************> mError <*/

void DoError(char *nessage)

{
printf(“9%\n”, nmessage);
exit(0);

}

322 Learn C under Windows 95/NT

Working with Files
What’s Next?

What's Next?

Exercises

Chapter 11 tackles a wide assortment of programming topics. We'll
look at typecasting, the technique used to translate from one type to
another. We'll cover recursion, the ability of a function to call itself.
We'll also examine function pointers, variables that can be used to
pass a function as a parameter.

1. What's wrong with each of the following code fragments:
a. FILE *fp:

fp = fopen(“w, “My Data File”);
if (fp !'= NULL)
printf(“The file is open.”);
b. char nyData = 7,
FILE *fp;

fp = fopen(“r”, “My Data File”);

fscanf(“Here’s a nunber: %", &nyData);
c. FI LE *fp;

char *li ne;

fp = fopen(“My Data File”, “r”);
fscanf(fp, “%”, & ine);

d. FILE *fp;
char |ine[100];

fp = fopen(“My Data File”, “wW);
fscanf(fp, “%”, line);

Learn C under Windows 95/NT 323

Working with Files
Exercises

2. Write a program that reads in and prints a file with the
following format:

. The first line in the file contains a single i nt. Call it X.
. All subsequent lines contain a list of X i nts separated
by tabs.

If the first number in the file is 6, all subsequent lines will
have sixi nt s per line. There is no limit to the number of lines
in the file. Keep reading and printing lines until you reach the

end of the file.

You can printeach i nt as you encounter it or, for extra credit,
allocate an array of i nt s large enough to hold one line’s
worth of i nts, then pass that array to a function that prints
ani nt array.

3. Modify cdFi | er. cwpso that memory for the arti st and
titl elines is allocated as the lines are read in. First, you'll
need to change the CDI nf 0 st r uct declaration as follows:

struct CDInfo
{
char rating;
char *arti st
char *title;
struct CDInfo *next;
b
In addition to calling mal | oc() to allocate a CDI nf o
struct, you'll call mal | oc() to allocate space for the
artistandtitl estrings. Don’t forget to leave enough
space for the terminating 0 at the end of each string.

324 Learn C under Windows 95/NT

11

Advanced Topics

Congratulations! By now, you’ve mastered most of the fundamental
C programming concepts. This chapter will fill you in on some use-
ful C programming tips, tricks, and techniques that will enhance
your programming skills. We'll start with a look at typecasting, C’s
mechanism for translating one data type to another.

What Is Typecasting?

There often will be times when you find yourself trying to convert a
variable of one type to a variable of another type. For example, the
following code fragment causes the linei is equal to 3toap-
pear in the console window:

float f;
i nt i

f = 3.5;
= f;
printf(“i is equal to %", i);

Notice that the original value assigned to f was truncated from 3.5
to 3 when the value in f was assigned to i . This truncation was
caused when the compiler saw an i nt on the left side and a f | oat
on the right side of this assignment statement:

i = f;

The compiler automatically translated the f | oat to ani nt.In gen-
eral, the right-hand side of an assignment statement is always trans-

Learn C under Windows 95/NT 325

Advanced Topics

What Is Typecasting?

lated to the type on the left-hand side when the assignment occurs.
In this case, the compiler handled the type conversion for you.

Typecasting is a mechanism you can use to translate the value of an
expression from one type to another. A typecast, or just plain cast,
always takes this form:

(type) expression
The t ype is any legal C type. Look at the following code fragment:

float f;

f = 1.5;

The variable f gets assigned a value of 1.5. Now look at this code
fragment:

float f;

f = (int)l.5;

The value of 1.5 is cast as an i nt before being assigned to f . Just as
you might imagine, casting af | oat as ani nt truncates the f | oat,
turning the value 1.5 into 1. In this example, two casts were per-
formed. First, the f | oat value 1.5 was cast to the i nt value 1. When
this i nt value was assigned to the f | oat f, the value was cast to
the f | oat value 1.0.

Cast with Care

Use caution when you cast from one type to another. Problems can
arise when casting between types of a different size. Consider this
example:

i nt i
char c¢;

326 Learn C under Windows 95/NT

Advanced Topics
What Is Typecasting?

By the Way

i = 500;
cC =i;

Here, the value 500 is assigned to the i nt i.So far, so good. Next,
the value ini is cast to a char as itis assigned to the char c. See
the problem? Since a char can hold values only between —128 and
127, assigning a value of 500 to ¢ doesn’t make sense.

So what happens to the extra byte or bytes when a larger type is
cast to a smaller type? The matching bytes are typecast, and the
value of any extra bytes is lost.

For example, when a 2-byte i nt is cast to a 1-byte char, the left-
most byte of the i nt (the byte with the more significant bits, the
bits valued 28 through 215) is dropped, and the rightmost byte (the
bits valued 20 through 27) is copied into the char.

Look at this:

i nt i
char C;

i = 500:;
cC =i;

Theint i has avalue of 0Xx01E4, which is hex for 500. After the
second assignment, the char ends up with the value OxE4, which
has a value of 244 if the char was unsigned or —12 if the char is
signed.

To learn more about type conversions, check out Section 6.2 of
Harbison and Steele’s C: A Reference Manual.

Learn C under Windows 95/NT 327

Advanced Topics

What Is Typecasting?

Figure 11.1

Casting with Pointers

Typecasting can also be used when working with pointers. The no-
tation (i nt *) myPtr casts the variable myPt r as a pointer to an
i nt. Casting with pointers allows you to link st r uct s of different
types. For example, suppose that you declared two st r uct types,
as follows:

struct Dog

{
struct Dog *next;
b

struct Cat

{
struct Cat *next;
P

By using typecasting, you could create a linked list that contains
both Cat s and Dogs. Figure 11.1 shows a Dog whose next field
points to a Cat . Imagine the source code you’d need to implement
such a linked list.

Consider this source code:

struct Dog nyDog;
struct Cat nyCat;

nyDog. next = &nyCat; /* <—€Conpiler conplains */
myCat . next = NULL,;
| 1

nmyDog. next points to nyCat, and nyCat . next points to NULL.

328 Learn C under Windows 95/NT

Advanced Topics
What Is Typecasting?

In the first assignment statement, a pointer of one type is assigned to
a pointer of another type: &y Cat is a pointer to a st r uct of type
Cat; myDog. next is declared to be a pointer to a st r uct of type
Dog. To make this code compile, we’ll need a typecast:

struct Dog nyDog;
struct Cat nyCat;

nmyDog. next = (struct Dog *)(&nmyCat);
myCat . next NULL;

If both sides of an assignment operator are arithmetic types (such as
float, i nt,and char), the compiler will automatically cast the

right-hand side of the assignment to the type of the left-hand side. If
both sides are pointers, you'll have to perform the typecast yourself.

There are a few exceptions to this rule. If the pointers on both sides
of the assignment are the same type, no typecast is necessary. If the
pointer on the right-hand side is either NULL or of type (voi d *),
no typecast is necessary. Finally, if the pointer on the left-hand side
is of type (voi d *), no typecast is necessary.

The type (voi d *) is sort of a wild card for pointers. It matches up
with any pointer type. For example, here’s a new version of the Dog
and Cat code:

struct Dog
{

void *next;
} o
struct Cat
{

void *next:;
} o

struct Dog nyDog;
struct Cat nyCat;

Learn C under Windows 95/NT 329

Advanced Topics

Unions

By the Way

Unions

&nyCat ;
NULL;

nmyDog. next
nmy Cat . next

This code lets Dog. next point toa Cat st r uct without a typecast.
If you are not sure what type your pointers will be pointing to, de-
clare your pointers as (voi d *).

The rules for typecasting are fairly complex and beyond the scope
of this book. To learn more about type conversions, check out Sec-
tions 6.2 through 6.4 in C: A Reference Manual by Harbison and
Steele. If you plan on moving on to C++ (and you should), check
out the discussion of type conversions in Learn C++ under Win-
dows 95/NT by yours truly.

C offers a special data type, known as a union, which allows a sin-
gle variable to disguise itself as several different data types. A
uni on data type is declared just like a st r uct. Here’s an example:

uni on Nunber

{
i nt i
float f;
char *s;
} nyNunber;

This declaration creates a uni on type named Nunber, as well as an
individual Nunber named nyNunber. If this were a st r uct decla-
ration, you’d be able to store three different values in the three fields
of the st ruct. A uni on, on the other hand, lets you store one and
only one of the uni on’s fields in the uni on. Here’s how this works.

When a uni onis declared, the compiler allocates the space required
by the largest of the uni on’s fields, sharing that space with all of the
uni on’s fields. If an i nt requires 4 bytes, af | oat 4 bytes, and a

330 Learn C under Windows 95/NT

Advanced Topics
Unions

Warning

pointer 4 bytes, my Nunber is allocated exactly 4 bytes. You can store
anint,afl oat, orachar pointer in myNurber. The compiler al-
lows you to treat myNunber as any of these types. To refer to ny-
Nunber as ani nt, refer to:

nyNunber . i

To refer to myNunber as a f | oat, refer to:
myNunber . f

To refer to myNunber as a char pointer, refer to:
nmyNunber . s

You are responsible for remembering which form the uni onis cur-
rently occupying.

If you store an i nt in myUni on by assigning a value to

nmyUni on. i, you'd best remember that fact. If you proceed to store
afl oat inmyUni on. f, you've just trashed your i nt . Remember,
there are only 4 bytes allocated to the entire uni on.

In addition, storing a value as one type and then reading it as an-
other can produce unpredictable results. For example, if you
stored a f | oat in myNunber . f, the field myNunber . i would not
be the same as (i nt) (nyNunber. f).

One way to keep track of the current state of the uni onis to declare
ani nt to go along with the uni on, as well as a #def i ne for each of
the uni on’s fields:

#defi ne kUni onCont ai nsl nt 1
#defi ne kUni onCont ai nsFl oat 2

Learn C under Windows 95/NT 331

Advanced Topics

Unions

#defi ne kUni onCont ai nsPoi nter 3

uni on Number
{
i nt i
float f;
char *s;
} nyNunber;

i nt nyUni onTag;

If you are currently using nyUni onas a f | oat, assign the value
kUni onCont ai nsFl oat to myUni onTag Later in your code, you
can use myUni onTag when deciding which form of the uni on you
are dealing with:

if (nmyUnionTag == kUni onCont ai nslnt)
Dol nt Stuff(myUnion.i);

else if (nmyUnionTag == kUni onCont ai nsFl oat)
DoFl oat Stuff(myUnion.f);

el se
DoPoi nter Stuff(nmyUnion.s);

Why Use Unions?

In general, a uni on is most useful when dealing with two data
structures that share a set of common fields but differ in some small
way. For example, consider these two st r uct declarations:

struct Pitcher

{
char nane[40];
i nt t eam
i nt stri keouts;
i nt runsAl | owed;
o

332 Learn C under Windows 95/NT

Advanced Topics
Unions

struct Batter

{
char nane[40];
i nt t eam
i nt runsScor ed;
i nt honeRuns;
}os

These st r ucts might be useful if you were tracking the pitchers
and batters on your favorite baseball team. Both st r uct s share a set
of common fields: the array of char s named namne and the i nt
named t eam Both st r ucts have their own unique fields as well.
The Pi t cher struct contains a pair of fields appropriate for a
pitcher: st ri keout sand r unsAl | owed. The Batt er struct
contains a pair of fields appropriate for a batter: r unsScor edand
homeRuns.

One solution to your program would be to maintain two types of
structs:aPitcher and a Bat t er. There is nothing wrong with
this approach. There is an alternative, however. You can declare a
single st r uct that contains the fields common to Pi t cher and
Bat t er, with a uni on for the unique fields:

#define kMets 1
#defi ne kReds 2

#define kPitcher 1
#defi ne kBatter 2

struct Pitcher

{

i nt stri keouts;
i nt runsAl | owed;

b

struct Batter

{

Learn C under Windows 95/NT 333

Advanced Topics
Unions

i nt runsScor ed;
i nt honeRuns;

b
struct Pl ayer
{
i nt type;
char nane[40];
i nt t eam
uni on
{
struct Pitcher pStats;
struct Batter bSt at s;
Py
1

Here’s an example of a Pl ayer declaration:
struct Pl ayer nyPl ayer ;

Once you created the Pl ayer st ruct, you would initialize the
t ype field with one of either kPi t cher or kBat t er:

nyPl ayer.type = kBatter;
You would access the nanme and t eamfields like this:

nyPl ayer.team = kMet s;
printf(“Stepping up to the plate: %",
nyPl ayer. nane);

Finally, you’'d access the uni on fields like this:

if (nyPlayer.type == kPitcher)
nyPl ayer. u. pStats. stri keouts = 20;

334 Learn C under Windows 95/NT

Advanced Topics
Function Recursion

The u was the name given to the uni on in the declaration of the

Pl ayer type. Every Pl ayer you declare will automatically have a
uni on named u built into it. The uni on gives you access to either a
Pitcher struct named pStatsoraBatter struct named
bSt at s. The preceding example references the st r i keout sfield of
the pSt at s field.

uni ons provide an interesting alternative to maintaining multiple
data structures. Try them. Write your next program using a uni on
or two. If you don’t like them, you can return them for a full refund.

Function Recursion

Some programming problems are best solved by repeating a mathe-
matical process. For example, to learn whether a number is prime
(see Chapter 6), you might step through each of the even integers
between 2 and the number’s square root, one at a time, searching for
a factor. If no factor is found, you have a prime. The process of step-
ping through the numbers between 2 and the number’s square root
is called iteration.

In programming, iterative solutions are fairly common. Almost
every time you use a f or loop, you are applying an iterative ap-
proach to a problem. An alternative to the iterative approach is
known as recursion. In a recursive approach, instead of repeating a
process in a loop, you embed the process in a function and have the
function call itself until the process is complete. The key to recursion
is a function calling itself.

Suppose that you wanted to calculate 5 factorial (also known as 5!).
The factorial of a number is the product of each integer from 1 up to
the number. For example, 5 factorial is:

5 =5*4*3* 2*1=120
Using an iterative approach, you might write some code like this:

#i ncl ude <stdi o. h>

Learn C under Windows 95/NT 335

Advanced Topics

Function Recursion

By the Way

int main(void)

{
i nt i, num
l ong fac;
num = 5;
fac = 1;

for (i=1;, i<=num i++)
fac *=1i;

printf(“% factorial is %d.”, num fac);

return O;

If you are interested in trying this code, it is provided on disk in the
Learn C Proj ect sdirectory, under the subdirectory named
11.01 - iterate

If you ran this program, you’d see this line printed in the console
window:

5 factorial is 120.

As you can see from the source code, the algorithm steps through
(iterates) the numbers 1 through 5, building the factorial with each
successive multiplication.

A Recursive Approach

You can use a recursive approach to solve the same problem. For
starters, you'll need a function to act as a base for the recursion, a
function that will call itself. There are two things you'll need to

336 Learn C under Windows 95/NT

Advanced Topics
Function Recursion

build into your recursive function. First, you'll need a mechanism to
keep track of the depth of the recursion. In other words, you'll need
a variable or a parameter that changes, depending on the number of
times the recursive function calls itself.

Second, you'll need a terminating condition, something that tells the
recursive function when it’s gone deep enough. Here’s one version
of a recursive function that calculates a factorial:

int factorial(int num)
{
if (num> 1)
num *= factorial (num- 1);

return(num);

}

factori al () takes a single parameter, the number whose factorial
you are trying to calculate. First, f act ori al () checks to see
whether the number passed to it is greater than 1. If it is not, f ac-
torial () calls itself, passing 1 less than the number passed into it.
This strategy guarantees that, eventually, f act ori al () will get
called with a value of 1.

Figure 11.2 shows this process in action. The process starts with a
calltofactorial ():

result = factorial(3);

Take a look at the leftmost f act ori al () source code in Figure 11.2.
factorial () is called with a parameter of 3. The i f statement
checks to see whether the parameter is greater than 1. Since 3 is
greater than 1, the following statement is executed:

num *= factorial (num- 1);

Learn C under Windows 95/NT 337

Advanced Topics
Function Recursion

This statement calls f act ori al () again, passing a value of n- 1, or
2, as the parameter. This second call of f act ori al () is pictured in
the center of Figure 11.2.

int factorial? int num 2

if ¢ num > 1 2
num #= factorialt num - 1 7;

returnd num ;

H

int factoriald int num 3

if ¢ num x> 172
num k= factorial ¢ num — 1 2;

returnd num J;

int factorialt int num 2

h

i £~ Fails, since num == 1]
if ¢ hum > 1 2
num #= factoriald num — 1 »;

returnl num 3

Figure 11.2 The recursion process caused by the call factorial(3).

Important It's important to understand that this second call to f act ori al ()
is treated just like any other function call that occurs in the middle
of a function. The calling function’s variables are preserved while
the called function runs. In this case, the called function is just an-
other copy of f actori al ().

This second call of f act ori al () takes a value of 2 as a parameter.
Thei f statement compares this value to 1 and, since 2 is greater
than 1, executes the statement:

num *= factorial (num- 1);

338 Learn C under Windows 95/NT

Advanced Topics
Function Recursion

This statement calls f act or i al () yet again, passing hum 1, or 1,
as a parameter. The third call of f act ori al () is portrayed on the
rightmost side of Figure 11.2.

The third call of f act ori al () starts with an i f statement. Since
the input parameter was 1, the i f statement fails. Thus, the recur-
sion termination condition is reached. This third call of

factori al () now returns a value of 1.

At this point, the second call of f act ori al () resumes, completing
the statement:

num *= factorial (num- 1);

Since the call of f act ori al () returned a value of 1, this statement
is equivalent to:

num *= 1;:

This leaves numwith the same value it came in with, namely, 2. This
second call of f act ori al () returns a value of 2.

At this point, the first call of f act or i al () resumes, completing the
statement:

num *= factorial (num- 1);

Since the second call of f act ori al () returned a value of 2, this
statement is equivalent to:

num *= 2;:

Since the first call of f act ori al () started with the parameter num
taking a value of 3, this statement sets numto a value of 6. Finally,
the original call of f act ori al () returns a value of 6. This is as it
should be, since 3 factorial =3 *2* 1 = 6.

Learn C under Windows 95/NT 339

Advanced Topics
Binary Trees

Important The recursive version of the factorial program is also provided on
disk. You'll find it in the Learn C Proj ect s directory, under the
subdirectory named 11. 02 - recur se. Open the project and
follow the program through, line by line.

Binary Trees

As you learn more about data structures, you'll discover new appli-
cations for recursion. For example, one of the most-used data struc-
tures in computer programming is the binary tree (Figure 11.3). As
you’ll see later, binary trees were just made for recursion. The binary
tree is similar to the linked list. Both consist of st r uct s connected
by pointers embedded in each st r uct.

Linked lists are linear. Each st r uct in the list is linked by pointers
to the st r uct behind it and in front of it in the list. Binary trees al-
ways start with a single st r uct, known as the root st r uct, or root
node. Where the linked-list St r uct s we’ve been working with con-
tain a single pointer, named next, binary-tree st r ucts each have
two pointers, usually known as | ef t and ri ght.

Check out the binary tree in Figure 11.3. Notice that the root node
has a left child and a right child. The left child has its own left child,
but its r i ght pointer is set to NULL. The left child’s left child has
two NULL pointers. A node with two NULL pointers is known as a
leaf node, or terminal node.

Binary trees are extremely useful. They work especially well when
you are trying to sort data having a comparative relationship. This
means that if you compare two pieces of data, you'll be able to judge
the first piece as greater than, equal to, or less than the second piece.
For example, numbers are comparative. Words in a dictionary can
be comparative, if you consider their alphabetical order. The word
iquana is greater than aardvark but less than xenophobe.

Here’s how you might store a sequence of words, one at a time, in a
binary tree. We'll start with this list of words:

340 Learn C under Windows 95/NT

Advanced Topics
Binary Trees

Figure 11.3

opul ent
ent r opy
sal ubri ous
r at chet
coul onb
yokel
tortuous

Root of
Binary Tree

]

[

o

| -
e—— ——
| i
< [+
——
| 1
1 . e

=

A binary tree. Why binary? Each node in the tree contains two

pointers.

Figure 11.4 shows the word opul ent added to the root node of the

binary tree. Since it is the only word in the tree so far, both the left
and right pointers are set to NULL.

Learn C under Windows 95/NT 341

Advanced Topics
Binary Trees

opulent

[=

Figure 11.4 The word opul ent is entered into the binary tree.

Figure 11.5 shows the word ent r opy added to the binary tree. Since
ent r opy is less than opul ent (that is, comes before it alphabeti-
cally), ent r opy is stored as opul ent’s left child.

opulent

1
L

entropy

[

Figure 11.5 The word ent r opy is less than the word opul ent and is added
as its left child in the binary tree.

Next, Figure 11.6 shows the word sal ubr i ous added to the tree.
Since sal ubri ousis greater than opul ent, it becomes opul ent’s
right child.

opulent
r—
entropy salubrious

[[=

o

Figure 11.6 The word sal ubri ousis greater than the word opul ent and is
added to its right in the tree.

342 Learn C under Windows 95/NT

Advanced Topics
Binary Trees

Figure 11.7

By the Way

Figure 11.7 shows the word r at chet added to the tree. First,

rat chet is compared to opul ent. Since r at chet is greater than
opul ent, we follow the right pointer. Since there’s a word there al-
ready, we’ll have to compare r at chet to this word. Since r at chet
is less than sal ubri ous, we’ll store it as sal ubri ous’s left child.

opulent
r—
entropy salubrious
1 | : |
1 4 | 4
) ratchet

[=

The word r at chet is greater than opul ent but less than
sal ubri ousand is placed in the tree accordingly.

Figure 11.8 shows the binary tree after the remainder of the word list
has been added. Do you understand how this scheme works? What
would the binary tree look like if coul omb were the first word on
the list? The tree would have no left children and would lean
heavily to the right. What if yokel were the first word entered? As
you can see, this particular use of binary trees depends on the order
of the data. Randomized data starting with a value close to the aver-
age produces a balanced tree. If the words had been entered in al-
phabetical order, you would have ended up with a binary tree that
looked like a linked list.

Data structure theory is one of my favorite topics in all of computer
science. I'd like to rattle on and on about variant tree structures
and binary tree balancing algorithms, but my editors would like me
to get this book out sometime this year. This shouldn’t stop you,
though. Go to your library and check out a book on data structures
and another on sorting and searching algorithms (which we’ll get

Learn C under Windows 95/NT 343

Advanced Topics

Binary Trees

Figure 11.8

By the Way

to in a minute). My favorite books on these topics are listed in the
bibliography in Appendix F.

opulent
r—
entropy salubrious
' ——
coulomb ratchet yokel
e—— ——
= — . = — - JT—
)) tortuous
|
1 .

The words coul onb, yokel , and t or t uous are added to the
tree.

Searching Binary Trees

Now that your word list is stored in the binary tree, the next step is
to look up a word in the tree. This is known as searching the tree.
Suppose you wanted to look up the word t or t uous in your tree.
You'd start with the root node, comparing t or t uous with opu-

| ent. Since t or t uous is greater than opul ent, you'd follow the
right pointer to sal ubri ous. You’d follow this algorithm down to
yokel and finally t or t uous.

Searching a binary tree is typically much faster than searching a
linked list. In a linked list, you search through your list of nodes,
one at a time, until you find the node you are looking for. On aver-
age, you'll end up searching half of the list. In a list of 100 nodes,
you'll end up checking 50 nodes on average. In a list of 1000

344 Learn C under Windows 95/NT

Advanced Topics
Binary Trees

nodes, you'll end up checking 500 nodes on average.

In a balanced binary tree, you reduce the search space in half
each time you check a node. Without getting into the mathematics
(check Knuth’s The Art of Computer Programming, Volume 3, for
more info), the maximum number of nodes searched is approxi-
mately | og,n, where n is the number of nodes in the tree. On av-
erage, you'll search | og,n/ 2 nodes. In a list of 100 nodes, you'll
end up searching 3.32 nodes on average. In a list of 1000 nodes,
you’'ll end up checking about 5 nodes on average.

As you can see, a binary tree provides a significant performance
advantage over a linked list.

A binary tree that contained just words may not be very interesting,
but imagine that these words were names of great political leaders.
Each st r uct might contain a leader’s name, biographical informa-
tion, and, perhaps, a pointer to another data structure containing
great speeches. The value, name, or word that determines the order
of the tree is said to be the key.

You don’t always search a tree based on the key. Sometimes, you'll
want to step through every node in the tree. For example, suppose
that your tree contained the name and birth date of each of the pres-
idents of the United States. Suppose also that the tree was built
using each president’s last name as a key. Now suppose that you
wanted to compose a list of all presidents born in July. In this case,
searching the tree alphabetically won’t do you any good. You'll have
to search every node in the tree. This is where recursion comes in.

Recursion and Binary Trees

Binary trees and recursion were made for each other. To search a
tree recursively, the recursing function has to visit the current node,
as well as call itself with each of its two child nodes. The child nodes
will do the same thing with themselves and their child nodes. Each
part of the recursion stops when a terminal node is encountered.

Check out this piece of code:

Learn C under Windows 95/NT 345

Advanced Topics

Binary Trees

struct Node

{
i nt val ue;
struct Node *|eft;
struct Node *right;

} nyNode;

Searcher(struct Node *nodePtr)

{
if (nodePtr !'= NULL)

{
Vi si t Node(nodePtr);
Searcher(nodePtr->left);
Sear cher (nodePtr->right);

}
}

The function Sear cher () takes a pointer to a tree node as its pa-
rameter. If the pointer is NULL, we must be at a terminal node, and
there’s no need to recurse any deeper. If the pointer points to a
Node, the function Vi si t Node() is called. Vi si t Node() performs
whatever function you want performed for each node in the binary
tree. In our current example, Vi si t Node() could check to see
whether the president associated with this node was born in July. If
so, Vi si t Node() might print the president’s name in the console
window.

Once the node is visited, Sear cher () calls itself twice, once pass-
ing a pointer to its left child and once passing a pointer to its right
child. If this version of Sear cher () were used to search the tree in
Figure 11.8, the tree would be searched in the order described in Fig-
ure 11.9. This type of search is known as a preorder search, because
the node is visited before the two recursive calls take place.

346 Learn C under Windows 95/NT

Advanced Topics
Binary Trees

Figure 11.9

opulent
——
2 fa7
entropy salubrious
3 {5 e *__l
coulomb i ratchet yokel
e——
| 1
[_ < [_ . e

——
{7
) tortuous
———
| 1
1 . e

A preorder search of a binary tree. This search was produced
by the first version of Sear cher ().

Here's a slightly revised version of Sear cher (). Withoutlooking at
Figure 11.10, can you predict the order in which the tree will be
searched? This version of Sear cher () performs an inorder search
of the tree:

Searcher(struct Node *nodePtr)

{
if (nodePtr !'= NULL)

{
Searcher(nodePtr->left);
Vi si t Node(nodePtr);
Searcher(nodePtr->right);
}
}

Learn C under Windows 95/NT 347

Advanced Topics

Binary Trees

Figure 11.10

]
opulent
——
2 G
entropy salubrious
coulomb i ratchet yokel
e——
| 1 | 1
1 < 1 . e

——
{6
) tortuous
———
| 1
1 . e

An inorder search of the same tree.

Here’s a final look at Sear cher (). This version performs a
postorder search of the tree (Figure 11.11):

Searcher(struct Node *nodePtr)

{
if (nodePtr !'= NULL)

{
Sear cher(nodePtr->left);
Sear cher (nodePtr->right);
Vi si t Node(nodePtr);

}
}

Recursion and binary trees are two extremely powerful program-
ming tools. Learn how to use them—they’ll pay big dividends.

348 Learn C under Windows 95/NT

Advanced Topics
Function Pointers

T
opulent
——
2 el
entropy salubrious
1 {3} s *__l
coulomb i ratchet yokel
e——
| 1
1 < 1 . e

——
2
) tortuous
———
| 1
1 . e

Figure 11.11 A postorder search of the same tree.

Function Pointers

Next on the list is the subject of function pointers. Function pointers
are exactly what they sound like: pointers that point to functions.
Up to now, the only way to call a function was to place its name in
the source code:

MyFunction();

Function pointers give you a new way to call a function. Function
pointers allow you to say, “Execute the function pointed to by this
variable.” Here’s an example:

int(*nyFuncPtr)(float);

This line of code declares a function pointer named nyFuncPtr,
which is a pointer to a function that takes a single parameter, a

Learn C under Windows 95/NT 349

Advanced Topics

Function Pointers

f1 oat, and that returns an i nt. The parentheses in the declaration
are all necessary. The first pair tie the * to myFuncPt r, ensuring that
myFuncPt r is declared as a pointer. The second pair surround the
parameter list and distinguish myFuncPt r as a function pointer.

Suppose we had a function called Deal TheCar ds() that took a

f 1 oat as a parameter and returned ani nt . This line of code assigns
the address of Deal TheCar ds() to the function pointer
myFuncPtr:

nmyFuncPtr = Deal TheCar ds;

Notice that the parentheses were left off the end of

Deal TheCar ds(). This is critical. If the parentheses were there, the
code would have called Deal TheCar ds(), returning a value to

my FuncPt r. You may also have noticed that the & operator wasn’t
used. When you refer to a function without using the parentheses at
the end, the compiler knows that you are referring to the address of
the function.

Now that you have the function’s address in the function pointer,
there’s only one thing left to do—call the function. Here’s how it’s
done:

int result;

result = (*nyFuncPtr)(3.5);

This line calls the function Deal TheCar ds(), passing it the param-
eter 3.5 and returning the function value to thei nt resul t. You
could also have called the function this way:

int result;

result = nyFuncPtr(3.5);

Some older (non-ANSI compliant) compilers can’t handle this form,
but it is easier on the eye.

350 Learn C under Windows 95/NT

Advanced Topics
Initializers

By the Way

Initializers

There’s a lot you can do with function pointers. You can create an
array of function pointers. How about a binary tree of function
pointers? You can pass a function pointer as a parameter to an-
other function. Taking this one step further, you can create a func-
tion that does nothing but call other functions. Cool!

For your enjoyment, there’s a function-calling example on the
source code disk. You'll find the project in the Learn C Proj ects
directory, inside the 11. 03 - funcPtr subdirectory. The pro-
gram is pretty simple, but it should serve as a useful reference when
you start using function pointers in your own programs.

When you declare a variable, you can also provide an initial value
for the variable at the same time. The format for integer types, float-
ing-point types, and pointers is as follows:

type variable = initializer;

In this case, the initializer is just an expression. Here are a few exam-
ples:

fl oat nyFloat = 3.14159;
i nt mylnt = 9 * 27,
i nt *IntPtr = &mylnt;

If you plan on initializing a more complex variable, such as an array,
st ruct, or uni on, you'll use a slightly different form of initializer,
embedding the elements used to initialize the variable between
pairs of curly braces. Consider these two array declarations:

i nt nylnts[] = { 10, 20, 30, 40 };
float nyFloats[5] ={ 1.0, 2.0, 3.0 };

Learn C under Windows 95/NT 351

Advanced Topics

Initializers

By the Way

The first line of code declares an array of four i nts, setting

nyl nt s[0] to 10, nyl nt s[1] to 20, myl nt s 2] to 30, and

myl nt s[3] to 40. If you leave out the array dimension, the compiler
makes it just large enough to contain the listed data.

The second line of code includes a dimension but not enough data
to fill the array. The first three array elements are filled with the
specified values, but nyFl oat s[3] and nmyFl oat s[4] are initial-
ized to 0.0.

If you don’t provide enough values in your initializer list, the com-
piler initializes all the remaining elements to their default initial-
ization value. For integers, the default initialization value is O; for
fl oats, 0.0; and for pointers, NULL.

Here’s another example:
chars[20] = “Hell0”;

What a convenient way to initialize an array of char s! Here’s an-
other way to accomplish the same thing;:

chars[20] ={ *H, ‘e, I, ‘1", "o, "\0 },;

Once again, if you leave out the dimension, the compiler will allo-
cate just enough memory to hold your text string, including a byte
to hold the 0 terminator. If you include the dimension, the compiler
will allocate that many array elements, then fill the array with what-
ever data you provide. If you provide more data than will fit in the
array, your code won’t compile.

Here’s a st ruct example:

struct Nunbers

{

352 Learn C under Windows 95/NT

Advanced Topics
The Remaining Operators

int i, j;
float f:
}

struct Numbers nyNuns = { 1, 2, 3.01 },;

As you can see, the three initializing values were wrapped in a pair
of curly braces. This leaves myNuns. i with a value of 1, nyNuns. |

with a value of 2, and nyNuns. f with a value of 3.01. If you have a

struct, uni on, or array embedded in your st r uct, you can nest a
curly wrapped list of values inside another list. For example:

struct Nunbers
{
int i, j;
float f[4];
}

struct Numbers nyNunsl = { 1, 2, {3.01, 4.01,
5.01, 6.01} };

The Remaining Operators

If you go back to Chapter 5 and review the list of operators shown
in Figure 5.7, you'll likely find a few operators you are not yet famil-
iar with. Most of the ones we’ve missed were designed specifically
to set the individual bits within a byte. For example, the | operator
(not to be confused with its comrade, the logical | | operator) takes
two values and “ORs” their bits together, resolving to a single value.
This operator is frequently used to set a particular bit to 1.

Check out this code:

short nmyShort ;

nyShort = 0x0001 | nyShort;

Learn C under Windows 95/NT 353

Advanced Topics
The Remaining Operators

This code sets the rightmost bit of myShort to 1, no matter what its
current value is. This line of code, based on the | = operator, does the
exact same thing:

myShort | = 0x0001,;

The & operator takes two values and “ANDs” their bits together, re-
solving to a single value. This operator is frequently used to set a
particular bit to 0 (more frequently referred to as clearing a bit).

Check out this code:

short nmyShort ;

nmyShort = OXFFFE & mnyShort;

This code sets the rightmost bit of myShor t to 0, no matter what its
current value is. It might help to think of OXFFFEas
1111111111111110in binary. The next line of code, based on the &= op-
erator, does the exact same thing:

nmyShort &= OxFFFE;

The " operator takes two values and “XORs” their values together.
It goes along with the ~= operator. The ~ operator takes a single
value and turns all the 1s into Os and all the Os into 1s. The &, | , *,
and ~ operators are summarized in Figure 11.12.

A B A&B AIB AMB ~A

1 1 1 1 0 0
1 0 0 1 1 0
0 1 0 1 1 1
0 0 0 0 0 1

Figure 11.12 A summary of the & | ,”, and ~ operators.

354 Learn C under Windows 95/NT

Advanced Topics
The Remaining Operators

By the Way

Warning

The previous examples assumed that a shor t is 2 bytes (16 bits)
long. Of course, this makes for some implementation-dependent
code. Here’s a more portable example.

short nmyShort ;

nyShort = (~1) & nmyShort;

This code sets the rightmost bit of my Shor t, no matter how many
bytes are used to implement a shor t. You could also write this as:

nmyShort &= (~1);

The last of the binary operators, <<, >>, <<=, and >>=, are used to
shift bits within a variable, either to the left or to the right. The left
operand is usually an unsi gnedvariable, and the right operand is a
positive integer specifying how far to shift the variable’s bits.

For example, this code shifts the bits of my Shor t 2 bits to the right:

unsi gned short nyShort = 0x0100;

myShort = nyShort >> 2; /* equal to nmyShort >>= 2;*/

Notice that my Shor t starts off with a value of 0000000100000000
and ends up with a value of 0000000001000000 (in hex, that’s
0x0040). Notice that zeros get shifted in to make up for the leftmost
bits that are getting shifted over and that the rightmost bits are lost
when they shift off the end.

These operators were designed to work with unsi gned values
only. Check with your compiler to see how it handles shifting of
si gned values.

Learn C under Windows 95/NT 355

Advanced Topics
The Remaining Operators

The last two operators we need to cover are the, and : ? operators.
The , operator gives you a way to combine two expressions into a
single expression. The , operator is binary, and both operands are
expressions. The left expression is evaluated first and the result dis-
carded. The right expression is then evaluated and its value re-
turned. Here’s an example:

for (i=0, j=0; i<20 && j<40; i++,j+=2)
DoSonet hing(i, |);

This f or loop is based on two variables instead of one. Before the
loop is entered, i andj are both set to 0. The loop continues as long
asi islessthan20and j isless than 40. Each time through the loop,
| isincremented by 1, and j is incremented by 2.

The ? and : operators combine to create something called a condi-
tional expression. A conditional expression consists of a logical ex-
pression (an expression that evaluates to eithert rue or f al se),
followed by the ? operator, followed by a second expression, fol-
lowed by the : operator, followed by a third expression:

| ogi cal -expression ? expression2 : expression3

If the logical expression evaluates to t r ue, expr essi on2gets eval-
uated, and the entire expression resolves to the value of

expr essi on2. If the logical expression evaluates to f al se,

expr essi on3 gets evaluated, and the entire expression resolves to
the value of expr essi on3 Here’s an example:

IsPrime(num) ? DoPrinmeStuff(num)
DoNonPrimeStuff(num);

As you can see, a conditional expression is really a shorthand way
of writing an i f - el se statement. Here’s the i f - el se version of
the previous example:

if (IsPrime(num))

356 Learn C under Windows 95/NT

Advanced Topics
Creating Your Own Types

Warning

DoPrinmeStuff(num);
el se
DoNonPri meStuff(num);

Some people like the brevity of the ?: operator combination. Others
find it difficult to read. As always, make your choice and stick with
it.

A word of advice: Don't overuse the ?: operator. For example,
suppose that you wanted to use ?: to generate a number’s abso-
lute value. You might write code like this:

I nt val ue;

value - (value<0) ? (-value) : (value);

Although this code works, take a look at this code translated into
itsi f - el seform:

i nt val ue;

if (value<0)

val ue (-val ue);

el se

val ue (val ue);

As you can see, the ?: operator can lead you to write source code
that you would otherwise consider pretty darn silly.

Creating Your Own Types

The t ypedef statement lets you use existing types to create brand
new types you can then use in your declarations. You'll declare this
new type just as you would a variable, except that you'll precede the

Learn C under Windows 95/NT 357

Advanced Topics
Creating Your Own Types

declaration with the word t ypedef, and the name you declare will
be the name of a new type. Here’s an example:

t ypedef int *| nt Poi nt er;

| nt Poi nt er nyl nt Poi nt er;

The first line of code creates a new type named | nt Poi nt er. The
second line declares a variable named ny| nt Poi nt er, which is a
pointer to ani nt.

Here’s another example:

typedef float (*FuncPtr)(int *);

FuncPtr myFunchPtr;

The first line of code declares a new type named FuncPt r. The sec-
ond line declares a variable named nmyFuncPt r, which is a pointer
to a function that returns a f | oat and that takes a single i nt as a
parameter.

Enumerated Types

In a similar vein, the enumstatement lets you declare a new type
known as an enumerated type. An enumerated type is a set of
named integer constants, collected under a single type name. A se-
ries of examples will make this clear.

enum Weekdays
{
Monday,
Tuesday,
Wednesday,
Thur sday,
Fri day

358 Learn C under Windows 95/NT

Advanced Topics
Creating Your Own Types

enum Weekdays whi chDay;

whi chDay = Thur sday;

This code starts off with an enumdeclaration. The enumis given the
name Weekdays and consists of the constants Monday, Tuesday,
Wednesday, Thur sday, and Fri day. The second line of code uses
this new enumerated type to declare a variable named whi chDay,
an integer variable that can take on any of the Weekday's constants,
as evidenced by the last line of code, which assigns the constant
Thur sday to whi chDay.

Here’s another example:

enum Col ors
{

red,

green = 5,

bl ue,

magent a,

yell ow = blue + 5
} nyCol or;

myCol or = bl ue;

This code declares an enumerated type named Col or s. Notice that
some of the constants in the Col or s list are accompanied by initial-
izers. When the compiler creates the enumeration constants, it num-
bers them sequentially, starting with 0. In the previous example,
Monday has a value of 0, Tuesday has a value of 1, and so on, with
Fri day having a value of 4.

In this case, the constant r ed has a value of 0. But the constant

gr een has a value of 5. Things move along from there, with bl ue
and magent ahaving values of 6 and 7, respectively. Next, yel | ow
has a value of bl ue+5, which is 11.

This code also declares an enumeration variable named nmy Col or,
which is then assigned a value of bl ue.

Learn C under Windows 95/NT 359

Advanced Topics
Static Variables

By the Way You can declare an enumerated type without the type name:
enum
{
chocol at e,
strawberry,
vanil |l a
1
i nt i ceCreantl avor = vanill a;

This code declares a series of enumeration constants with values
of 0, 1, and 2. We can assign the constants to an i nt, as we did
with i ceCr eanf| avor. This comes in handy when you need a set
of integer constants but have no need for a tag name.

Static Variables

Normally, when a function exits, the storage for its variables is freed
up, and their values are no longer available. By declaring a local
variable as st at i ¢, the variable’s value is maintained across multi-
ple calls of the same function. Here’s an example:

int StaticFunc(void)

{
static int nyStatic = 0;

return nyStatic++;

}

This function declares an i nt named ny St at i ¢ and initializes it to
a value of 0. The function returns the value of ny St at i ¢ and incre-
ments my St at i ¢ after the return value is determined. The first time
this function is called, it returns 0, and my St at i cis left with a value

360 Learn C under Windows 95/NT

Advanced Topics
Static Variables

By the Way

By the Way

of 1. The second time St at i cFunc() is called, it returns 1, and ny-
St at i cis left with a value of 2.

Take a few minutes and try this code out for yourself. You'll find it in
the Learn C Proj ect s directory in the subdirectory 11. 04 -
stati c.

One of the keys to this function is the manner in which mySt at i c
received its initial value. Imagine if the function looked like this:

int StaticFunc(void)

{
static int nyStatic;

nyStatic = 0; /|* <—Bad idea.... */

return nyStatic++,

}

Each time through the function, we’d be setting the value of
my St at i ¢ back to 0. This function will always return a value of 0.
Not what we want, eh?

The difference between the two functions? The first version sets the
value of ny St at i ¢ to 0 by initialization (the value is specified
within the declaration). The second version sets the value of

mySt at i ¢ to 0 by assignment (the value is specified after the decla-
ration). If a variable is marked as st at i ¢, any initialization is done
once and once only. Be sure that you set the initial value of your

st at i ¢ variable in the declaration and not in an assignment state-
ment.

One way to think of st at i ¢ variables is as global variables that
are limited in scope to a single function.

Learn C under Windows 95/NT 361

Advanced Topics

More on Strings

More on Strings

The last topic we'll tackle in this chapter is string manipulation. Al-
though we’ve done some work with strings in previous chapters,
there are a number of Standard Library functions that haven’t been
covered. Each of these functions requires that you include the file
<string. h> Here are a few examples.

strcpy()

The function st r cpy() is declared as follows:
char *strcpy(char *dest, const char *source);

This function copies the string pointed to by sour ce into the string
pointed to by dest, copying each of the characters in sour ce, in-
cluding the terminating 0 byte. That leaves dest as a properly ter-
minated string. The function returns the pointer dest.

An important thing to remember about st r cpy() is that you are re-
sponsible for ensuring that sour ce is properly terminated and that
enough memory is allocated for the string returned in dest . Here’s
an example of st r cpy() in action:

char nane[20];

strcpy(nanme, “Dave Mark”);

This example uses a string literal as the source string. The string is
copied into the array nane. The return value was ignored.

strcat ()
The function st r cat () is declared as follows:

char *strcat(char *dest, const char *source);

362 Learn C under Windows 95/NT

Advanced Topics
More on Strings

The function st r cat () appends a copy of the string pointed to by
sour ce onto the end of the string pointed to by dest. As was the
case with st rcpy(), strcat () returns the pointer dest . Here’s an
example of st r cat () in action:

char nane[20];

strcpy(nane, “Dave “);
strcat(nane, “Mark”);

The call of st r cpy() copies the string “ Dave “ into the array
name. The call of st r cat () copies the string “ Mar k” onto the end
of dest, leaving dest with the properly terminated string “ Dave
Mar k”. Again, the return value was ignored.

strcnp()

The function st r cnp() is declared as follows:
int strcnp(const char *sl1, const char *s2);

This function compares the strings s1 and s2 and returns 0 if the
strings are identical, a positive number if s1 is greater than s2, and
anegative number if S2 is greater than s 1. The strings are compared
one byte at a time. If the strings are not equal, the first byte that is
not identical determines the return value. Here’s a sample:

if (strcnp(“Hello”, *“Goodbye”))
printf(“The strings are not equal!”);

Notice that the i f succeeds when the strings are not equal.

strlen()
The function st r | en() is declared as follows:

size_t strlen(const char *s);

Learn C under Windows 95/NT 363

Advanced Topics

What’s Next?

This function returns the length of the string pointed to by s. Look
at this call, for example:

l ength = strlen(“Aardvark”);

The value returned is 8, the number of characters in the string, not
counting the terminating zero.

More Standard Library

There is a lot more to the Standard Library than what we’ve covered
in the book. Having made it this far, consider yourself an official C
programmer. You now have a sworn duty to dig in to the C Library
Reference that came on the CD. Start off with Chapter 15, which
covers the functions declared in <st r i ng. h> Find out what the
difference is between st r cnp() and st r ncnp(). Wander around.
Get to know the Standard Library. You will be making extensive use
of it.

If you haven’t done so already, go out and buy a copy of C: A Refer-
ence Manual by Harbison and Steele. When it comes to a definitive
answer to a C programming question, having Harbison and Steele
by your side is the next best thing to having Keith Rollin’s home
phone number.

What's Next?

Exercises

Chapter 12 answers the question, Where do you go from here? Do
you want to learn to create programs with that special Windows
look and feel? Would you like more information on data structures
and C programming techniques? Chapter 12 offers some sugges-
tions to help you find your programming direction.

1. What's wrong with each of the following code fragments:

a. struct Dog

364 Learn C under Windows 95/NT

Advanced Topics
Exercises

struct Dog

struct Cat
{

struct Cat

struct Dog
struct Cat

nmyDog. next
nmy Cat . next
I nt

t ypedef

FunchPtr

uni on Nunber

{
I nt
f | oat
char

Nunber

nmyUni on. f

*next ;

*next ;

my Dog;
myCat ;

(struct Dog) &mryCat ;
NULL;

*MyFunc(void);

int (*FuncPtr)();

myFuncPtr = MyFunc;

myUni on;

3.5;

Learn C under Windows 95/NT 365

Advanced Topics
Exercises

d. struct Pl ayer
{
I nt type;
char name[40];
i nt team
uni on
{
i nt nyl nt;
fl oat nyFl oat ;
Py
} nyPl ayer;

nyPl ayer.team = 27;

nyPl ayer. nylnt = -42;

nyPl ayer. nyFl oat = 5.7;
e. int *myFuncPtr(int);

nmyFuncPtr = nai n;
*myFuncPtr () ;
f. char s[20];
strcpy(s, “Hello “);
if (strecnp(s, “Hello”))
printf(“The strings are the sane!”);

g. char *s;

s = malloc(20);

366 Learn C under Windows 95/NT

Advanced Topics
Exercises

strcpy(“Heeeers Johnny!”, s);
char *s;

strcpy(s, “Aardvark”);
voi d DoSoneStuff(void)

{

/* stuff done here */

int main(void)

{
i nt ii;
for (ii =0; ii < 10; ii++)
DoSoneSt uf f ;
return O;
}

Write a program that reads in a series of integers from a file,
storing the numbers in a binary tree in the same fashion as
the words were stored earlier in the chapter. Store the first
number as the root of the tree. Next, store the second number
in the left branch if it is less than the first number or in the
right branch if it is greater than or equal to the first number.
Continue this process until all the numbers are stored in the
tree.

Now write a series of functions that print the contents of the
tree using preorder, inorder, and postorder recursive
searches.

Learn C under Windows 95/NT 367

Advanced Topics
Exercises

368 Learn C under Windows 95/NT

12

Where Do You Go
from Here?

Now that you've mastered the fundamentals of C, you're ready to
dig into the specifics of Windows programming. As you’ve run the
example programs in the previous chapters, you've probably no-
ticed that none of the programs sport the look and feel that make a
Windows program a Windows program.

For one thing, all of the interaction between you and your program
focuses on the keyboard and the console window. None of the pro-
grams take advantage of the mouse. None offer color, pull-down
menus, or a selection of different fonts. These are all part of the Win-
dows user interface.

The Windows Graphical User Interface

User interface is the part of your program that interacts with the
user. So far, your user interface skills have focused on writing to and
reading from the console window, using such functions as
printf(), scanf(),andgetchar(). The advantage of this
type of user interface is that each of those functions is available on
every machine that supports the C language. Programs written
using the Standard C Library are extremely portable.

However, console-based user interfaces tend to be limited. With a
console-based interface, you can’t use an elegant graphic to make a
point. Text-based interfaces can’t provide animation or digital
sound. In a nutshell, the console-based interface is simple and, at the
same time, simple to program. Windows’ graphical user interface
(GUI) offers an elegant, more sophisticated method of working with
a computer.

Learn C under Windows 95/NT 369

Where DoYou Go from Here?

The Windows API

Since Windows was introduced, a PC just wouldn’t be the same
without windows, pull-down and pop-up menus, icons, push but-
tons, and scroll bars. You can and should add these user interface el-
ements to your C programs. The difficult part is deciding which
features to use and where to use them.

Once you've identified the pieces of the Windows interface you
want in your program, you're ready to take advantage of the func-
tions made available by the Windows application programming in-
terface (API).

The Windows API

The Windows API contains functions that create windows on the
screen and others that draw text in these windows. There are func-
tions for drawing shapes, lines, and dots in color and in black and
white. There’s a set of functions that allows you to implement your
own pull-down menus. The Windows API is extremely robust and
powerful.

The Windows API provides mechanisms to create, display and con-
trol the various components of a program’s user interface. That’s
why Windows programs have such a consistent look and feel. The
CodeWarrior IDE that you have been using is an example of an ap-
plication created with the Windows API. Take a look at the IDE’s
Open dialog in Figure 12.1. Notice the close resemblance to other
such dialogs from different applications. Also available through the
Windows API are routines to do message handling, text and graph-
ics drawing, and icon manipulation, as well as a long list of other ca-
pabilities.

370 Learn C under Windows 95/NT

Where DoYou Go from Here?
The Windows API

Figure 12.1

Open

Look in: I £3) projects

[project:

] project?

Filz name: | Open

Files of type: I Froject Files j Cancel

The CodeWarrior IDE Open dialog.

HelloWorld.cwp

Our final project, a revamped version of our earlier hello world pro-
gram, presents a simple Windows application. Although Hel-
loWorld doesn’t do much, it does the display the basics involved in
actually displaying and manipulating a Windows window.

Go into the Learn C Proj ect s directory, then into the subdirec-
tory named 12. 01 - Hel | oWor | d, and open the project named
Hel | oWor | d. cwp.

Run the project by selecting Run from the Project menu. Once
CodeWarrior compiles your source code, the window in Figure 12.2
will appear at the top of your screen. This particular program does
not display any menus. To exit the program, double click on the
window’s close box in the upper right corner of the window.

Learn C under Windows 95/NT 371

Where Do You Go from Here?
Getting Started with Windows Programming

M Hello World [_[O] x]

Hello World

Figure 12.2 Window displayed by the HelloWorld program.

Getting Started with Windows Programming

The next step in your programming education is to learn how to use
the Windows APl in your own programs. You've taken the first step
by buying this Discover Programming CD. Now, you're ready to
start using the Windows API. Fortunately, there’s a lot of literature
available to help ease you through the Windows programming
learning curve.

By the Way If you plan on moving to C++, check out the sequel to this book,
called Learn C++ under Windows 95/NT. It assumes that you know
C and gets you started with C++.

372 Learn C under Windows 95/NT

Where DoYou Go from Here?
Go Get 'Em

Go Get 'Em

Well, that’s about it. I hope you enjoyed reading this book as much
as I enjoyed writing it. Above all, I hope you are excited about C.
Now that you have C under your belt, go out there and write some
source code.

Enjoy!

Learn C under Windows 95/NT 373

Where DoYou Go from Here?
Go Get 'Em

374 Learn C under Windows 95/NT

A

Glossary

algorithm: The technical approach used to solve a problem.

ANSI C: The standard version of the C programming language es-
tablished by the American National Standards Institute.

append: A mode used when opening a file for writing. Append
mode specifies that any data written to the file is written after any
existing data.

argument: Another word for parameter.

array: A variable containing a sequence of data of a particular type.
For example, you can declare an array of 50 i nt s.

array element: The smallest addressable unit of an array. In an
array of 50 i nt's, each i nt represents an element of the array.

ASCII character set: A set of 128 standard characters defined by
the American Standard Code for Information Interchange.

backslash combination or backslash sequence: A single character
represented by the combination of the backslash (\) and another
character. For example, the sequence‘ \ n’ represents a new line
character.

backward compatibility: A computer design that allows a newer
generation of computers to run the previous generation of software.

balanced tree: A binary tree that maintains a uniform depth. The
more unbalanced a tree becomes, the less efficient some tree-search-
ing algorithms become.

bell curve: A bell-shaped statistical curve that represents a normal
probability distribution. Plotting the possible rolls of a pair of six-
sided dice yields a bell curve.

binary: A system of mathematics based on the two digits 0 and 1.
Computers use binary to represent the value stored in memory.

Learn C under Windows 95/NT 375

Glossary

binary tree: A data structure that consists of a series of nodes, each
of which features a left and right pointer. These two pointers point
to other nodes, linking the group of nodes into a tree-like structure.

bit: The smallest unit of computer memory, a bit has a value of ei-
ther 0 or 1.

bit bucket: A euphemism used to indicate a place where lost data
goes. If your data went into the bit bucket, you'll never see it
again—it is irretrievably lost.

block: A sequence of memory.

call: Cause a function to be executed. When a function is called, its
code gets executed and control is then returned to the calling func-
tion.

case-sensitive: Sensitive to the difference between upper- and
lower-case letters. C is a case-sensitive language and therefore dis-
tinguishes between names such as MyFunct i on() and

MYFUNCTI ON().

cast: See typecast.

Central Processing Unit (CPU): The integrated circuit that controls
the processing of a computer. The PC family of computers is driven
by the Intel x86 series CPU.

child: A node in a tree pointed to by another node. The node that
points to a child node is known as the child’s parent.

clearing a bit: Changing the value of a bit to 0.

code optimization: A process used by a compiler to increase the ef-
ficiency of the object code it generates.

comparative operator: An operator that compares its left side with
its right side, producing a value of either TRUE or FALSE

comparative relationship: The relationship between the two sides
of a comparative operator that determines whether the operator re-
turns a value of TRUE or FALSE

compiler: A program that translates source code into the machine
code understood by a computer.

compound statements: Statements made up of several parts, and
possibly including other statements.

376 Learn C under Windows 95/NT

Glossary

conditional expression: An expression built around the ? and :
operators.

console: A terminal or window that receives the output from Stan-
dard Library functions, such as pri nt f () and echoes the input
from the keyboard.

constant: A program value that doesn’t change: 27, 1.1414, and
“\'n’ are all examples of constants.

convention: A standard agreed upon by a group of people. For ex-
ample, most Windows programmers follow the convention of using
Hungarian notation to name their variables.

counter: A variable whose sole purpose is to keep a running count
of an event. The variable that changes each time through a f or loop
is a counter.

CPU: See Central Processing Unit.

deallocate: The opposite of allocate. Memory is typically allocated
using mal | oc() and deallocated using f r ee().

declaration: A statement used to define a new variable, function, or
type. A variable declaration establishes both the name and type of
the variable.

decrement: Decrease in value. Typically, decrementing a variable
decreases its value by 1.

default initialization value: The value used to initialize a global
variable. The default initialization value for ani nt is 0 and for a
pointer is NULL.

definition: A declaration that causes memory to be allocated for
the item being declared.

dereference: Use a pointer to retrieve the contents of the memory
location that the pointer points to.

dictionary: The table used by the compiler to hold the list of
#def i ne substitutions contained in the source code being com-
piled.

dimension: The number of array elements associated with an ar-
ray.

Learn C under Windows 95/NT 377

Glossary

doping: The process of using a laser beam to create impurities in
the silicon of an integrated circuit.

exceeding the bounds: Exceeding the bounds of an array means
trying to access an inappropriate element of the array, such as the
51sti nt in an array of 50 i nt s.

expression: A combination of variables and operators that resolves
to a single value.

field: Anelementof astruct. A field is normally accessed using
either the . or - > operator.

file: A series of bytes residing on some storage media. For example,
a file might be stored on a floppy disk, a hard drive, or even a CD-
ROM.

file position: The current location in a file, indicating the next byte
that will be returned by a read operation or the location where a
read operation will place its first byte.

floating-point numbers: Numbers that contain a decimal point.
For example, 3.5, -27.6874, and 3.14159 are all floating-point num-
bers.

flow control: The ability to control the order in which your pro-
gram’s statements are executed.

format specifier: A sequence of bytes, starting with % that deter-
mines the format of data being read or written.

format specifier modifier: A sequence of bytes that adds more de-
tail to a format specifier. For example, %6d is a format specifier and
the 6 in %6d is the format specifier modifier.

fractional part: The part of a floating point to the right of the deci-
mal point.

function: A sequence of source code that accomplishes a specific
task. C functions have a title and a body. The title contains the func-
tion’s name and parameters. The body contains the function’s code.

function declaration: A line containing a function’s return value,
name, and parameter list, followed by a semicolon. The function
declaration is also known as a function prototype and is used by the
compiler to perform type checking.

378 Learn C under Windows 95/NT

Glossary

function parameter: A class of variable that allows data sharing be-
tween a calling function and a called function.

function pointer: A variable containing a pointer to a function.
Function pointers can be used to call the function they point to.

function prototype: See function declaration.

function return value: The value returned by a function. Functions
of type voi d are the only types of functions that do not return a
value.

function specifier: The first line of a function, basically, a function
declaration without the semicolon.

global variable: A variable that is accessible from inside every
function in your program.

graphical user interface (GUI): A user interface that features
graphical elements, such as pictures, icons, and windows. Windows
is a great example of a graphical user interface.

header file: A file that is included by another source code file using
the #i ncl ude mechanism. Header files typically end with . h.

hexadecimal notation or hex notation: A notation that represents
numbers in base 16 instead of the traditional base 10.

increment: Increase in value. Typically, incrementing a variable in-
creases its value by 1.

index: The number used to refer to an individual array element. An
array index usually appears between the brackets following the
array name.

indices: The plural of index.

infinite loop: A loop that repeats indefinitely. This is usually a bad
thing.

initialization: The process of assigning a value to a variable for the
first time.

initialized: Containing a known value.

inorder search: A binary tree search that recursively searches a
node’s left child, visits the node itself, then recursively searches the
node’s right child.

Learn C under Windows 95/NT 379

Glossary

input buffer: A block of memory designed to accumulate input
from the keyboard for later retrieval by your program.

input device: A device that allows a user to provide input to your
program. The mouse and the keyboard are both input devices.

integer: A whole number, such as 1, -26, or 3,876,560.

integer part: The part of a floating-point number to the left of the
decimal point.

ISO C: The international standard for C established by the Interna-
tional Standards Organization. ISO C is based on ANSI C.

iteration: The process of stepping through a list or array. In C, iter-
ation frequently starts at 0 and proceeds to some upper limit.

key: The field in a tree struct that determines the search order of
the tree.

keyboard accelerator: A key combination used to perform a func-
tion, most often to duplicatea common menu options.

lI-value: The left-hand side of an assignment statement.

leaf node: A terminal node of a tree. In a binary tree, a leaf node
has two NULL pointers.

library: A file containing precompiled object code used as part of a
project. The routines in the Standard Library are compiled into a se-
ries of libraries.

linked list: A data structure consisting of two or more st r ucts,
linked together by pointers.

linking: The process of joining the elements in a project into its ul-
timate form. For example, a series of compiled files might be linked
into an application.

literal: A constant of any type. The number 123 is an example of an
I nt literal. “ Hel | 0” is an example of a literal text string.

loading: The process of copying a library’s object code into the
project file.

local variable: A variable declared within a function (as opposed to
a global variable).

380 Learn C under Windows 95/NT

Glossary

localize: Customize your software so it is readable in a specific
country, using a specific language. For example, you might localize
your program for use in Japan by replacing the English, ASCII text
by the multibyte character system used in Japan.

logical operator: The set of operators that resolve to eithert r ue or
fal se.!, & and | | are examples of logical operators.

loop: Any repeating source code sequence. do, whi | €, and f or are
examples of C loop statements.

machine language: A machine readable translation of your source
code. Machine language is also known as object code.

macro: A #def i ne that takes a parameter.
master pointer: The pointer to the first element in a linked list.

memory: A portion of a computer, composed of specially designed
integrated circuits, used for the temporary storage of programs and
data.

modification: The code within a loop that modifies the value of the
loop’s expression. Without modification, the loop will never termi-
nate.

multi-dimensional array: An array declared with more than one
index.

My Computer: A Windows utility that displays the components of
your computer system in the form of folders and icons.

object code: See machine language.

open a file: Perform the necessary work prior to accessing a file’s
data. Files can be opened using several different modes, among
them read, write, and append.

operator: A special character (or set of characters) that represents a
specific computer operation. =, ++, and / are examples of operators.

out of bounds: See exceeding the bounds.

output: The result of your program. In this book, all the output ap-
peared in a console window.

pad byte or padding: Characters appended to a block of memory
used to bring the block up to a predetermined size. Space characters

Learn C under Windows 95/NT 381

Glossary

are frequently used to pad a string to a fixed record size. Pad bytes
are used to bring a St r uct up to a specific alignment in memory.

parameter: See function parameter.

parameter list: The list of parameters associated with a function. A
function’s parameter list is found in the function specifier.

pointer: A special variable, designed specifically to hold the ad-
dress of another variable.

pointer arithmetic: The process of incrementing or decrementing a
pointer to point to a new memory location.

pointer variable: See pointer.

postfix notation: The use of the ++ or - - operator following a vari-
able. In postfix notation, the value of the variable is returned before
the variable is incremented or decremented.

postorder search: A binary tree search that recursively searches a
node’s left child, recursively searches the node’s right child, then
visits the node itself.

prefix notation: The use of the ++ or - - operator preceding a vari-
able. In prefix notation, the variable is incremented or decremented
before the value of the variable is returned.

preorder search: A binary tree search that visits a node, then recur-
sively searches the node’s left and right children.

prime number: A number whose only factors are 1 and itself. 2, 3,
5, and 7 are the only primes less than 10.

processor: See Central Processing Unit.

project file: A special file CodeWarrior uses to gather information
about your project. The project object code is stored in the project
file.

project window: A window listing each of the source code files as-
sociated with the project. The project window also lists the current
size of the object code associated with each source code file.

prompt: A text string that tells the user what your program expects
him or her to do. For example, a prompt might ask the user to type
in a number between 1 and 10.

Random Access Memory (RAM): See memory.

382 Learn C under Windows 95/NT

Glossary

random file access: Accessing the data in a file by seeking to a spe-
cific location, as opposed to reading a byte at a time from the begin-
ning of the file.

read a file: The process of transferring the data stored in a file into
your program.

Read-Only Memory (ROM): A memory chip that can be read but
not written to.

recursion: The process that occurs when a function calls itself. Re-
cursive functions normally feature a parameter that keeps track of
the depth of the recursion (the number of times the function has
called itself). The recursive function will stop calling itself once a
terminating condition has been met.

return: What a function does when it is ready to exit. When a func-
tion returns, its nonstatic local variables go out of scope (can no
longer be accessed).

return type: The data type returned by a function.
ROM: See Read-Only Memory.
root node: The first node in a tree. A root node has no parents.

scientific or exponential notation: A notation for representing
numbers as a floating point number times a power of 10. For exam-
ple, 2.5e3 is equal to 2.5 times 10 to the third power, which is equal
to 2500.

searching: The process of traversing a tree or list to look for a par-
ticular feature or value.

sequential stream of bytes: A stream of bytes, one right after an-
other. Accessing a stream sequentially is the opposite of random file
access.

shift bits: Move the bits within a byte either to the left or to the
right.

signed: A variable capable of storing both positive and negative
values.

simple statement: An assignment statement or function call. Sim-
ple statements never have substatements.

Learn C under Windows 95/NT 383

Glossary

source code: A sequence of statements that tells the computer what
to do. Source code is written in a specific programming language,
such as C or Pascal.

source code editor: A program that allows you to review and mod-
ify your source code. CodeWarrior has a built-in source code editor.

Standard Library: A set of built-in functions that comes with every
ANSI standard compiler.

star operator: Another name for the * operator (the pointer derefer-
encing operator).

statement: A combination of function calls, operators, and vari-
ables that performs a set of computer operations. Statements are
usually followed by a semicolon.

step through: Usually associated with an array or a linked list.
Stepping through an array or linked list means performing an oper-
ation on each element of the array or linked list.

stream: A sequence of bytes, normally associated with a file.
string constant: A string literal, such as “ Hel | 0”.

string manipulation: The process of copying or altering a string
variable. String manipulation is normally performed on a O-termi-
nated string embedded in an array of chars.

syntax error: An error in your source code that prevents the com-
piler from compiling your code. CodeWarrior reports syntax errors
by printing an error message in a separate window.

terminal node: Another name for a leaf node.

termination: The condition within a loop that allows the loop to
exit.

trace: A process that allows you to map the flow of your program’s
code. You can trace your program’s execution using the CodeWar-
rior debugger.

traversal: The process of stepping through a linked list, binary tree,
or similar data structure. Traversals usually follow a specific pat-
tern, such as preorder, inorder, or postorder.

two’s complement notation: The notation used by a compiler to
represent si gned integers.

384 Learn C under Windows 95/NT

Glossary

type: The class a variable belongs to. A variable’s type determines
the type of data that can be stored in the variable. char, i nt, and
f1 oat are examples of variable types.

typecast: A C mechanism for converting a variable from one type
to another.

typecasting: The process of applying a typecast to a variable.
typo: Slang for a typographical error.

unary: Usually used with respect to an operator, this indicates that
the operator has a single operand.

union: A data structure that allows multiple fields but dedicates all
its memory to one of the fields.

unsigned: A variable capable of storing only values greater than or
equal than zero.

update mode: The file opening modes that allow you to switch be-
tween reading and writing without reopening the file. Update
modes are specified by including a + in the mode specifier.

user interface: The part of your program that interacts with the
user.

variable: A container for your program’s data. Variables have a
name and a type.

variable scope: Within a program, a variable’s scope determines
where in the program the variable can be accessed. Local variables
are only accessible within the function they are declared in. Global
variables are accessible throughout the file they are declared in.

variable type: See type.

white space: Aninvisible character, such as a space, tab, or carriage
return. White space is ignored by the compiler.

whole number: An integer, as opposed to a floating point number.
-256, 22, and 1,000,000 are all whole numbers, but 3.14159 is not a
whole number.

wide character data types: Data types designed to hold characters
represented by more than one byte. ISO supports wide character
types, ANSI does not.

Learn C under Windows 95/NT 385

Glossary

wide string data types: String data types based on wide character
data types. To learn more about these, see the writeup in Harbison
and Steele’s C: A Reference Manual.

Windows Application Programming Interface (API): A set of func-
tions that allows you to access and incorporate the features of Win-
dows in your programs.

Windows Explorer: A Windows utility that displays the contents of
the computer in a tree-view format.

write a file: The process of transferring data stored in your pro-
gram’s variables out to a disk file.

386 Learn C under Windows 95/NT

Source Code
Listings

02.01 - hello hello.c

#i ncl ude <stdi o. h>

int main(void)

{
printf(“Hello, world!'\n”);
return O;
}
04.01 - hello2 hello2.c

#i ncl ude <stdi o. h>
void SayHello(void);
int main(void)
{

SayHel 1 o();

return O;

}

voi d SayHello(void)
{

Learn C under Windows 95/NT 387

Source Code Listings

printf(“Hello, world!'\n”);
}
04.02 - hello3
#i ncl ude <stdio. h>
voi d SayHel |l o(void);
int main(void)
{
SayHel 1 o();
SayHel | o();
SayHel 1 o();
return O;
}
voi d SayHell o(void)
{
printf(“Hello, world!'\n”);

}

05.01 - operator

hello3.c

operator.c

#i ncl ude <stdi o. h>

int main(void)

{
int nmylnt;

mylnt = 3 * 2;

388 Learn C under Windows 95/NT

Source Code Listings

printf(“nylnt ---> %\n", nylnt);

mylnt += 1;
printf(“nylnt ---> %\n", nylnt);

nmylnt -=5;
printf(“nylnt ---> %\n", nylnt);
mylnt *= 10;
printf(“nylnt ---> %\n", nylnt);
nylnt /= 4;
printf(“nylnt ---> %\n", nylnt);
nylnt /= 2;
printf(“nylnt ---> 9% l", nylnt);
return O;

}

05.02 - postfix postfix.c

#i ncl ude <stdi o. h>

int main(void)

{
i nt nyl nt;
mylnt = 5;
printf(“nylnt ---> %\n", nylnt++);
printf(“nylnt ---> 9", ++nylnt);
return O;

}

Learn C under Windows 95/NT 389

Source Code Listings

05.03 - slasher slasher.c

#i ncl ude <stdi o. h>

int main(void)

{
printf(*“0000000000\r”);

printf(“11111\n”);
printf(“0000\Db\bll\n");

printf(“Here’s a backslash...\\...for you.\n"”);

printf(“Here’s a double quote...\”...for
you.\n”);
printf(“Here are a few tabs...\t\t\t\t...for
you.\n”);
printf(“Here are a few beeps...\a\a\a\a...for
you.”);
return O;
}
06.01 - truthTester truthTester.c

#i ncl ude <stdi o. h>

#define true 1
#defi ne fal se 0

int main(void)
{
int hasCar, hasTi mreToG veRi de;
i nt not hi ngEl seOn, newEpi sode, itsARerun;

390 Learn C under Windows 95/NT

Source Code Listings

hasCar = true;
hasTi meToG veR de = true;

if (hasCar && hasTi neToG veRi de)

printf(“Hop in - I’'Il give you a ride!'\n”);
el se
printf(“I’ve either got no car, no tinme, or
bot h!\n”);

not hi ngEl seOn = true;
newkpi sode = true;

i f (newkpi sode || nothingEl seOn)
printf(“Let’s watch Star Trek!\n”);
el se
printf(“Sonething else is on or |I’ve seen
this one.\n");

not hi ngEl seOn = true;
itsARerun = true;

if (nothingElseOn || (! itsARerun))
printf(“Let’s watch Star Trek!\n”);
el se
printf(“Sonething else is on or |I’ve seen
this one.\n”);

return O;

06.02 - loopTester loopTester.c

#i ncl ude <stdi o. h>

int main(void)

Learn C under Windows 95/NT 391

Source Code Listings

int i;
i = 0;
while (i++ < 4)
printf(“while: i=%\n", 1);
printf(“After while loop, i=%.\n\n", i);
for (i =0; i < 4; i++)
printf(“first for: i=%\n", i);
printf(“After first for loop, i=%.\n\n", i);
for (i =1; i <=4; i++)
printf(“second for: i=%\n", i);
printf(“After second for loop, i=%.\n", i);
return O
}
06.03 - isOdd isOdd.c

#i ncl ude <stdi o. h>

int main(void)

{
int i;
for (i =1; i <= 20; i++)
{
printf(“The nunber % is “, i);

if ((i %2) ==0)
printf(“even”);
el se

392 Learn C under Windows 95/NT

Source Code Listings

printf(“odd”);

if ((i %3) ==0)
printf(“ and is a nultiple of 3");

printf(“.\n");
}

return O

}

06.04 - nextPrime nextPrime.c

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

#define true 1
#defi ne fal se 0

int main(void)

{

int startingPoint, candidate, last, i;
int isPrine;

startingPoint = 19;

if (startingPoint < 2)

{
candi date = 2;
}
else if (startingPoint == 2)
{
candi date = 3;
}
el se
{
candi date = startingPoint;

Learn C under Windows 95/NT 393

Source Code Listings

if (candidate %2 == 0)* Test only odd/

/* nunbers */
candi dat e- - ;
do
{
isPrime = true;/* Assume gl orious success */
candi date += 2;/* Bunp to the next nunber */
/* to test */
| ast = sqgrt(candidate);/* W'll check to*/
/* see if candidate has */
/* any factors, from2 to*/
/* last Loop through odd */
/* nunbers only */
for (i =3, (i <=last) & isPrine; i += 2)
{
if ((candidate %i) == 0)
isPrinme = fal se;
}
} while (! isPrine);
}
printf(“The next prine after % is % .
Happy?\ n”,
startingPoi nt, candidate);
return O;
}
06.05 - nextPrime2 nextPrime2.c

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

#def i ne true 1
#def i ne fal se 0

int main(void)

{

394 Learn C under Windows 95/NT

Source Code Listings

I nt candi date, isPrine, i, |ast;
printf(“Primes from1l to 100: 2, “);

for (candi date=3; candi dat e<=100; candi date+=2)
{

i sPrime = true;

| ast = sqgrt(candidate);

for (1 =3; (i <=1last) && isPrine; i += 2)
{
if ((candidate %i) == 0)
isPrime = fal se;

}
if (isPrinme)
printf(“%, “, candidate);
}
return O;
}
06.06 - nextPrime3 nextPrime3.c

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

#defi ne true 1
#defi ne fal se 0

int main(void)
{
int prinelndex, candidate, isPrine, i, |ast;

printf(“Prime #1 is 2.\n");

candi date = 3;

Learn C under Windows 95/NT 395

Source Code Listings

prinmel ndex = 2;

while (prinmelndex <= 100)
{

isPrime = true;
| ast = sqgrt(candidate);

for (1 =3; (i <=1last) && isPrine; i += 2)

{
if ((candidate %i) == 0)
isPrime = fal se;

}

if (isPrime)
{
printf(“Prinme #% is %.\n”, prinelndex,
candi date);
pri mel ndex++;

}

candi dat e+=2;

}

return O;

}

07.01 - drawDots drawDots.c

#i ncl ude <stdi o. h>

/***********************/

/* Function Prototypes */

/***********************/

void Drawbots(int nunDots);

int main(void)

396 Learn C under Windows 95/NT

Source Code Listings

{
DrawDot s(30);

return O;

}

void DrawbDots(int nunDots)
{

int i;

for (i =1, i <= nunDots; i++)
printf(“.”);

07.02 - squarelt squarelt.c

#i ncl ude <stdi o. h>

/***********************/

/* Function Prototypes */

/***********************/

void Squarelt(int nunber, intsquarePtr);

int main(void)

{ i nt square;
Squarelt(5, &square);
printf(“5 squared is %.\n”, square);
return O;

}

Learn C under Windows 95/NT 397

Source Code Listings

void Squarelt(int nunber, intsquarePtr)

{

*squarePtr = nunber * nunber

}

07.03 - addThese addThese.c

#i ncl ude <stdi o. h>

/***********************/

/* Function Prototypes */

/***********************/

i nt AddTheseNunbers(int nunl, int nun?);

int main(void)

{
int sum
sum = AddTheseNunbers(5, 6);

printf(“The sumis %l.”, sum);

return O;

}

i nt AddTheseNunmbers(int nunml, int nun®)
{

return(nunml + nun);

}

07.04 - listPrimes listPrimes.c

#i ncl ude <stdi o. h>

398 Learn C under Windows 95/NT

Source Code Listings

#i ncl ude <mat h. h>

#defi ne true 1
#define fal se 0

/***********************/

/* Function Prototypes */

/***********************/

int IsltPrinme(int candidate);

int main(void)

{
int i;
for (1 =1; i <=50; i++)
{
if (IsltPrinme(i))
printf(“% is a prine nunber.\n", i);
}
return O;
}

int IsltPrime(int candidate)

{

int i, |ast;

if (candidate < 2)
return fal se;

el se

{
| ast = sqgrt(candidate);
for (i =2, i <=last; i++)
{

if ((candidate %i) == 0)

Learn C under Windows 95/NT 399

Source Code Listings

return fal se;

}
}

return true;

}

07.05 - power power.c

#i ncl ude <stdi o. h>

#defi ne true 1
#defi ne fal se 0

/***********************/

/* Function Prototypes */

/***********************/

void DoPower(int *resultPtr, int base, int
exponent);

/***********/

/* d obals */

/***********/

i nt gPrintTracel nfo;

int main(void)

{
i nt power;
gPrintTracelnfo = fal se;

if (gPrintTracelnfo)
printf(“---> Starting main()...\n");

DoPower (&power, 2, 5);

400 Learn C under Windows 95/NT

Source Code Listings

printf(“2 to the 5th = %.\n", power);

DoPower (&power, 3, 4
h %.\n”, power);

printf(“3 to the 4t

I~

DoPower (&power, 5, 3
d %l.\n”, power);

printf(“5 to the 3r

I~

if (gPrintTracelnfo)
printf(“---> Leaving main()...\n”);

return O;

void DoPower(int *resultPtr, int base, int
exponent)

{

int i;

if (gPrintTracelnfo)
printf(“\t---> Starting DoPower()...\n”);

*resultPtr = 1;
for (I =1, I <= exponent; i++)
*resultPtr *= base;

if (gPrintTracelnfo)
printf(“\t---> Leaving DoPower()...\n”);

07.06 - power2 power2.c

#i ncl ude <stdi o. h>

#def i ne true 1
#define fal se 0

Learn C under Windows 95/NT 401

Source Code Listings

/***********************/

/* Function Prototypes */

/***********************/

i nt DoPower(int base, int exponent);

/***********/

/* d obals */

/***********/

i nt gPrintTracel nfo;

int main(void)

{

i nt power;

gPrintTracelnfo = fal se;

if (gPrintTracelnfo)

printf(“---> Starting main()...\n");

printf(“2 to the 5th
printf(“3 to the 4th
printf(“5 to the 3rd

if (gPrintTracelnfo)
printf(“---> Leaving

return O

%d.\ n”, DoPower (2,
%l.\ n”, DoPower (3,
%d.\ n”, DoPower (5,

main()...\n");

i nt DoPower(int base, int exponent)

{

int i, result;

w b~ O
— — —

N N N

402 Learn C under Windows 95/NT

Source Code Listings

if (gPrintTracelnfo)
printf(“\t---> Starting DoPower()...\n”);

result = 1;
for (i =1; i <= exponent; i++)

result *= base;

if (gPrintTracelnfo)
printf(“\t---> Leaving DoPower()...\n”);

return result;

07.07 - nonPrimes nonPrimes.c

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

#defi ne true 1
#defi ne fal se 0

/***********************/

/* Function Prototypes */

/***********************/

int IsltPrinme(int candidate);

int main(void)

{
int i;
for (i =1; i <= 50; i++)
{
if (! IsltPrinme(i))
{

if ((i %3) ==0)

Learn C under Windows 95/NT 403

Source Code Listings

printf(“% is not a prinme nunber and is a

multiple of 3.\n”, i);
el se
printf(“%l is not a prine nunber.\n”, i);
}
}
return O;

}

int IsltPrine(int candidate)

{
int i, |ast;
if (candidate < 2)
return fal se;
el se
{
| ast = sqgrt(candidate);
for (i =2; i <=last; i++)
{
if ((candidate %i) == 0)
return fal se;
}
}
return true;
}
08.01 - floatSizer floatSizer.c

#i ncl ude <stdi o. h>

int main(void)

404 Learn C under Windows 95/NT

Source Code Listings

fl oat nyFl oat;

doubl e

nmyDoubl e;

| ong doubl emyLongDoubl e;

nmy Fl oat

nmyDoubl e

= 12345. 67890123456789;

= 12345.

67890123456789;

nyLongDoubl e = 12345. 67890123456789;

printf(“sizeof(float) = %\n”, (int)sizeof(

fl oat

))

printf(“sizeof(double) = %l\n”, (int)sizeof(
double));
printf(“sizeof(long double) = %\n\n",

(int)sizeof(

printf(

printf(“nyDoubl e

“myFl oat

| ong double));

= %\n", nyFloat);
= %\n", nmyDouble);

printf(“myLongDouble = %\n\n”, nyLongDouble);

printf(

printf(“nyDoubl e

“myFl oat

= 9%@25. 16f\n”, nyFloat);
= 9@5.16f\n”, nyDouble);

printf(“myLongDouble = 9%25.16f\n\n",
nmyLongDoubl e);

printf(
printf(
printf(
printf(

printf(

nmy Fl oat
printf(

nyFl oat
printf(

“nyFl oat
“nyFl oat
“nyFl oat
“nyFl oat

“nyFl oat

= 100000;
“nyFl oat

%40. 1f\n”, nyFl oat);
% 2f\n”, nyFloat);

% 12f\n”, nyFloat);
% 9f\n\n”, nyFloat);

%\n\n", nyFloat);

%\ n”, nyFloat);

= 1000000;

“nyFl oat

= %\n”, nyFloat);

Learn C under Windows 95/NT 405

Source Code Listings

return O

}

08.02 - intSizer

#i ncl ude <stdi o. h>

int main(void)

{

printf(“sizeof(char) = %\ n”,

char));

printf(“sizeof(short) = %l\n”,
short));

printf(“sizeof(int) = %\n”,
))

printf(“sizeof(long) = %l\n",
long));

return O;

}

08.03 - typeOverflow

#i ncl ude <stdi o. h>

int main(void)

{

unsi gned charcount er;

for (counter=1; counter<=1000;
printf(“%\n”, counter);

return O;

}

intSizer.c

(int)sizeof (
(int)sizeof (
(int)sizeof(int

(int)sizeof (

typeOverflow.c

counter ++)

406 Learn C under Windows 95/NT

Source Code Listings

08.04 - ascii ascii.c

#i ncl ude <stdi o. h>

/***********************/

/* Function Prototypes */

/***********************/

void PrintChars(char Iow, char high);

int main(void)

{
PrintChars(32, 47);
Print Chars(48, 57);
Print Chars(58, 64);
Print Chars(65, 90);
PrintChars(91, 96);
Print Chars(97, 122);
Print Chars(123, 126);

return O

void PrintChars(char |ow, char high)

{
charc;
printf(“% to % ---> ", low, high);
for (¢ =low, c <= high; c++)

printf(“%”, c);

printf(“\'n”);

Learn C under Windows 95/NT 407

Source Code Listings

08.05 - dice

#i ncl ude <stdlib. h>
#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

/***********************/

/* Function Prototypes */

/***********************/

int Roll One(void);
void PrintRolls(introlls[]);
void PrintX(inthowany);

int main(void)

{

I nt rolls[13], twoDice, i;
srand(clock()):

for (i=0; i<=12; i++)
rolls[i] = 0;

for (i=1;, i <= 1000; i++)
{
twoDice = Roll One() + Roll One();

++ rolls[twoDice];

}

PrintRolls(rolls);

return O;

dice.c

408 Learn C under Windows 95/NT

Source Code Listings

int Roll One(void)
{

}

return (rand() %6) + 1;

void PrintRolls(introlls[])

{
i nt i
for (1=2; i<=12; i++)
{
printf(“oRd (98d): “, i, rolls[i]);
PrintX(rolls[i] / 10);
printf(“\'n”);
}
}

void PrintX(inthowvany)

{
int i:
for (i1=1; i<=howMany; i ++)
printf(“x”);
}
08.06 - name name.c

#i ncl ude <string. h>
#i ncl ude <stdi o. h>

int main(void)

{

char nane[50];

Learn C under Windows 95/NT 409

Source Code Listings

printf(“Type your first nane, please: “);
scanf(“9%”, nane);

printf(“Welcone, %.\n”, nane);

printf(“Your nane is % characters |long.”,

(int)strlen(name));

return O

08.07 - wordCount wordCount.c

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

#define true 1

#define fal se 0

#defi ne kMaxLi neLength 200
#defi ne kZeroByte 0

/***********************/

/* Function Prototypes */

/***********************/

void ReadLine(char *line);
i nt CountWrds(char *line);

/**************************************> rml n <*/
int main(void)

{
char |line[kMaxLineLength];

i nt numhor ds;

printf(“Type a line of text, please:\n”);

410 Learn C under Windows 95/NT

Source Code Listings

ReadLi ne(line);
numAords = CountWbrds(line);

printf(“\'n---- This line has % word”, numAbrds) ;

if (numMrds '= 1)
printf(“s”);

printf(“ ----\n%\n", line);

return O

/************************************> Readl_l ne <*/

voi d ReadLine(char *line)

{
while ((*line = getchar()) !'= ‘\n")
i ne++;
*line = kZeroByte;
}

/**********************************> Count\Mrds <*/
int CountWords(char *line)

{
i nt numMdrds, i nWord;

numMrds = 0O;
i nWord = fal se;

while (*line != kZeroByte)

{
if (! isspace(*line))
{
if (! inwWrd)
{
numMAbr ds++;

Learn C under Windows 95/NT 411

Source Code Listings

i nWbrd = true;

}
}
el se
i nWbord = fal se;
i ne++;
}
return numhbrds:
}
08.08 - dice2 dice2.c

#i ncl ude <stdlib. h>
#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

#def i ne kMaxRol | 18
#defi ne kM nRol | 3

/***********************/

/* Function Prototypes */

/***********************/

int Roll One(void);
void PrintRolls(introlls[]);
void PrintX(inthowany);

int main(void)
{
I nt rolls[kMaxRoll + 1], threeD ce, i;
srand(clock()):

for (i=0; i<=kMaxRoll; i++)

412 Learn C under Windows 95/NT

Source Code Listings

rolls[i] = 0;

for (i=1; i <= 1000; i++)
{

threeDice = Roll One() + Roll One() + Roll One();

++ rolls[threeDice];

}

PrintRolls(rolls);

return O;

int Roll One(void)

{
return (rand() %6) + 1;

}

void PrintRolls(introlls[])

{
i nt i
for (i=kMnRoll; i<=kMaxRoll; i++)
{
printf(“o®d (98d): “, i, rolls[i]);
PrintX(rolls[i] / 10);
printf(“\'n”);
}
}

void PrintX(inthowvany)
{

int i:

for (i1=1; i<=howMany; i ++)

Learn C under Windows 95/NT 413

Source Code Listings

printf(“x”);

08.09 - wordCount2 wordCount2.c

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

#define true 1

#define fal se 0

#defi ne kMaxLi neLength 200
#defi ne kZeroByte 0

/***********************/

/* Function Prototypes */

/***********************/

void ReadLine(char *line);
i nt CountWbrds(char *line);
void PrintWrds(char *line);

/**> ITBI n <*/
int main(void)

{
char line[kMaxLineLength];

I nt numhdr ds;
printf(“Type a line of text, please:\n”);

ReadLi ne(line);
nunmMrds = CountWbrds(line);

printf(“\'n---- This line has % word”, numAbrds) ;

if (numMords '= 1)
printf(“s”);

414 Learn C under Windows 95/NT

Source Code Listings

printf(“ ----\n%\n", line);

printf(“\n---- Here are the words ----");
PrintWords(line);

return O

/************************************> Readl_l ne <*/

voi d ReadLine(char *line)

{
while ((*line = getchar()) !'= ‘\n")
i ne++;
*line = kZeroByte;
}

/**********************************> Count \Mr dS <*/

i nt CountWords(char *line)

{
i nt nunWor ds, | nWrd;

nunmAdrds = 0O;
i nWord = fal se;

while (*line !'= kZeroByte)
{ if (! isspace(*line))
{ if (! inWrd)
{ numMAbr ds++;
I nWord = true;

Learn C under Windows 95/NT 415

Source Code Listings

el se
i nWord = fal se;

| i ne++;

}

return nunhords;

}

/**********************************> Prl nt \Mr dS <*/

void PrintWrds(char *line)
{

I nt I NV\r d;

i nWrd = fal se;

while (*line != kZeroByte)

{ if (! isspace(*line))
{ if (! inwWrd)
{
putchar(‘\n’);
i nWbrd = true;
}
putchar(*line);
}
el se
i nWord = fal se;
i ne++;
}
}
09.01 - multiArray multiArray.c

416 Learn C under Windows 95/NT

Source Code Listings

#i ncl ude <stdi o. h>

#define true 1
#define fal se 0
#defi ne kMaxCDs 300
#defi ne kMaxArti st Lengt h50

/***********************/

/* Function Prototypes */

/***********************/

void PrintArtists(short numArti sts,

char artist[][kMaxArtistLength + 1]);

/***************************************> I’THI n <*/

int main(void)

{

char artist[kMaxCDs][kMaxArtistLength + 1];
short nunmArti sts;
char doneReadi ng, *result;

printf(“The artist array takes up % d bytes of
menory.\n\n”, sizeof(artist));

doneReadi ng = fal se;
numArtists = 0;

while (! doneReading)
{
printf(“Artist #%l (return to exit): “,
NuMArti sts+1);
result = gets(artist][numArtists |);

if ((result == NULL) ||
(result[0] == *\0"))
doneReadi ng = true;

el se

Learn C under Windows 95/NT 417

Source Code Listings

NUMArti st s++;

}
printf(“----\n");
PrintArtists(numArtists, artist);

return O;

/********************************> PI’I ntArtI StS <*/

void PrintArtists(short numArtists,
char artist[][kMaxArtistLength + 1])

{
short i;
if (numArtists <= 0)
printf(“No artists to report.\n”);
el se
{
for (1=0; i<numArtists; i++)
printf(“Artist #%l: %\n”,
i +1, artist[i]);
}
}
09.02 - structSize structSize.h

#define kMaxArtistLength 50
#define kMaxTitl eLength 50

/***********************/

[* Struct Declarations */

/***********************/

struct CDInfo

418 Learn C under Windows 95/NT

Source Code Listings

char rating;
char artist[kMaxArtistLength + 1];
char title] kMaxTitleLength + 1];

09.02 - structSize structSize.c

#i ncl ude <stdi o. h>
#i ncl ude “structSi ze. h”

/***************************************> n-al n <*/

int main(void)

struct CDI nf oyl nf o;

printf(“rating field: % d byte\n”,
sizeof (nylnfo.rating));

printf(“artist field: % d bytes\n”,
sizeof (nylnfo.artist));

printf(“title field: % d bytes\n”,
sizeof (nylnfo.title));

printf(* e \n”)

printf(“nylnfo struct: %d bytes”,
sizeof (nylnfo));

return O;

09.03 - structSize2 structSize2.h

/***********************/

Learn C under Windows 95/NT 419

Source Code Listings

/* Struct Decl arations */

/***********************/

struct LongShort Short

{

| ong nyLong;
short nyShort1;

short nyShort 2;

b
struct ShortLongShort
{
short nyShort1;
| ong nyLong;
short nyShort 2;
b
struct Doubl eChar
{
doubl e nyDoubl e;
char nmnyChar;
b

struct Char Doubl eChar
{
char nyChar1l;
doubl e nyDoubl e;
char nyChar 2;

b

struct Doubl eChar Char
{
doubl e nyDoubl e;
char nyChar1l;
char nyChar 2;

b

420 Learn C under Windows 95/NT

Source Code Listings

09.03 - structSize2 structSize2.c

#i ncl ude <stdi o. h>
#i ncl ude “structSi ze2. h”

/**> ITBI n <*/
int main(void)

{
printf(“char: % d byte\n”, sizeof(char));

printf(“short: %d bytes\n”, sizeof(short));
printf(“long: % d bytes\n”, sizeof(long));
printf(“double: %d bytes\n\n”,

si zeof (double));

printf(“LongShortShort: %d bytes\n”,
si zeof (struct LongShort Short));

printf(“ShortLongShort: %d bytes\n”,
si zeof (struct ShortLongShort));

printf(“Doubl eChar: % d bytes\n”,
si zeof (struct Doubl eChar));

printf(“CharDoubl eChar: %d bytes\n”,
si zeof (struct Char Doubl eChar));

printf(“Doubl eCharChar: %d bytes\n”,
si zeof (struct Doubl eCharChar));

return O;

09.04 - paramAddress paramAddress.h

/***********/

/* Defines */

Learn C under Windows 95/NT 421

Source Code Listings

/***********/

#defi ne kMaxCDs 300
#define kMaxArtistLength 50
#defi ne kMaxTitl eLength 50

/***********************/

[* Struct Declarations */

/***********************/

struct CDInfo
{

char rating;
char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];

b

/***********************/

/* Function Prototypes */

/***********************/

void PrintParam nfo(struct CDInfo *nyCDPtr,
struct CDI nfo nyCDCopy);

09.04 - paramAddress paramAddress.c

#i ncl ude <stdio. h>
#i ncl ude “paramAddress. h”

/**> rml n <*/
int main(void)

{
struct CDI nf anyCD;

printf(“Address of nyCD.rating in
mai n() : % d\ n”,
&(nyCD.rating));

422 Learn C under Windows 95/NT

Source Code Listings

Pri nt Paranm nfo(&yCD, nyCD);

return O;

}

/************************> Prl ntStrUCtAddreSSES <*/
void PrintParam nfo(struct CDInfo *nyCDPtr,
struct CDI nfo myCDCopy)
{
printf(“Address of nyCDPtr->rating in
PrintParam nfo(): %d\n”,
& myCDPtr->rating));

printf(“Address of nmyCDCopy.rating in
PrintParam nfo(): %d\n”,
&(nmyCDCopy. rating));

09.05 - cdTracker cdTracker.h

/***********/
/* Defines */
/***********/
#defi ne kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitl eLength 50

/***********************/

/* Struct Declarations */

/***********************/

struct CDInfo
{

char rating;

Learn C under Windows 95/NT 423

Source Code Listings

char artist[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDI nf & next;

} *gFirstPtr, *glLastPtr;

/***********************/

/* Function Prototypes */
/***********************/

char Get Command(void);

struct CDI nfd*ReadStruct(void);

void AddToList(struct CDInfo *curPtr);
void ListCDs(void);

void Flush(void);

09.05 - cdTracker cdTracker.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdTracker. h”

/**> ITBI n <*/
int main(void)

{

char command;

gFirstPtr = NULL;
gLast Ptr = NULL;

while ((command = GetCommand()) !'= ‘q)
{
switch(conmand)
{
case ‘n’:
AddToLi st (ReadStruct());
br eak;

424 Learn C under Windows 95/NT

Source Code Listings

case ‘|':
Li st CDs();
br eak;

}
}

printf(“Goodbye...”);

return O

/**********************************> Cﬁt Corrrrand <*/

char Get Command(void)

{
char command,
do
{
printf(“Enter command (g=quit, n=new,
I=list): *“);
scanf(“%”, &conmmand);
Fl ush();
}
while ((command !'= Q) & (command != ‘n’)
&& (command !'= *1"));
printf(“\n---------- \n”);
return(command);
}

/**********************************> ReadStI'UCt <*/

struct CDI nfo*ReadStruct(void)

{
struct CDInfoinfoPtr;

i nt nuni

Learn C under Windows 95/NT 425

Source Code Listings

infoPtr = mall oc(sizeof(struct CDInfo));

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

printf(“Enter Artist’s Name: *“);

gets(infoPtr->artist);

printf(“Enter CD Title: “);

gets(infoPtr->title);

do

{
printf(“Enter CD Rating (1-10): *“);
scanf(“%”, &num);
Fl ush();

}

while (((num< 1) || (num>10));
infoPtr->rating = num
pr|ntf(“\n __________ \nn)’

return(infoPtr);

/***********************************> AddTOLI St <*/

void AddToList(struct CDInfo *curPtr)
{
if (gFirstPtr == NULL)
gFirstPtr = curPtr;
el se
gLastPtr->next = curPtr;

426 Learn C under Windows 95/NT

Source Code Listings

gLastPtr = curPtr,;
curPtr->next = NULL;

/*************************************> LI StC[)S <*/

void ListCDs(void)

{
struct CDI nfadcurPtr;
if (gFirstPtr == NULL)
{
printf(“No CDs have been entered yet...\n”);
printf(“\n---------- \n”);
}
el se
{
for (curPtr=gFirstPtr; curPtr!=NULL; curPtr =
cur Ptr->next)
{
printf(“Artist: %\n”, curPtr->artist);
printf(“Title: %\n", curPtr->title);
printf(“Rating: %\n”, curPtr->rating);
printf(“\n---------- \n”);
}
}
}

/************************************> Fl ush <*/

void Flush(void)

{
while (getchar() !'= ‘\n")

Learn C under Windows 95/NT 427

Source Code Listings

09.06 - multiArray2 multiArray2.c

#i ncl ude <stdi o. h>

#define true 1
#define fal se 0
#defi ne kMaxCDs 300
#define kMaxArtistLength 50

/***********************/

/* Function Prototypes */
/***********************/
void ReadLine(char *line);
void Flush(void);
void PrintArtists(short numArtists,
char artist[][kMaxArtistLength + 1]);

/**> rml n <*/
int main(void)
{
char artist[kMaxCDs][kMaxArtistLength + 1];
short numArtists;
char doneReadi ng;

printf(“The artist array takes up %d bytes of
menory.\n\n”, sizeof(artist));

doneReadi ng = fal se;
numArtists = O;

while (! doneReading)
{
printf(“Artist #% (return to exit): *“,
NUMArti sts+1);
ReadLi ne(artist][numArtists]);

428 Learn C under Windows 95/NT

Source Code Listings

if (artist[numArtists][0] == “\0")
doneReadi ng = true;
el se
NUMArti st s++;
}
printf(“----\n");

PrintArtists(numArtists, artist);

return O;

/************************************> Readl_l ne <*/

void ReadLine(char *line)

{
char c;
short nuntChar sRead:
nuntChar sRead = O;
while (((c = getchar()) !'=*'\n") &&
(++nunthar sRead <= kMaxArti stLength))
{
*line = c;
| i ne++;
}
*line = 0O;
i f (nunCharsRead > kMaxArtistLength)
Fl ush();
}

/***************************************> Fl ush <*/

Learn C under Windows 95/NT 429

Source Code Listings

void Flush(void)

{
while (getchar() !'= *\n")

/********************************> PI’I ntArtI StS <*/

void PrintArtists(short numArtists,
char artist[][kMaxArtistLength + 1])

{
shorti;
if (numArtists <= 0)
{
printf(“No artists to report.\n”);
return;
}
el se
{
for (i=0; i<numArtists; i++)
printf(“Artist #%l: %\n”,
I +1, artist[i]);
}
}
09.07 - cdTracker2 cdTracker2.h

/***********/

/| * Defines */

/***********/

#defi ne kMaxCDs 300
#defi ne kiMaxArtistLength 50
#define kMaxTitl eLength 50

/***********************/

430 Learn C under Windows 95/NT

Source Code Listings

/* Struct Declarations */

/***********************/

struct CDInfo

{
char rating;
char artist|[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDI nf d*next;

} *gFirstPtr, *glLastPtr

/***********************/

/* Function Prototypes */
/***********************/

char Get Command(void);

struct CDI nfo*ReadStruct(void);

void AddToList(struct CDInfo *curPtr);

void InsertlinList(struct CDInfo *after MeCDPtT,
struct CDInfo *newCDPtr);

void ListCDs(void);

void Flush(void);

09.07 - cdTracker2 cdTracker2.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdTracker 2. h”

/**> ITHI n <*/
int main(void)

{

char command;

gFirstPtr = NULL;
gLast Ptr = NULL;

Learn C under Windows 95/NT 431

Source Code Listings

while ((command = GetCommand()) '=‘q)
{
switch(conmmand)
{
case ‘n’:
AddToLi st (ReadStruct());
br eak;
case ‘|’
Li st CDs();
br eak;
}
}
printf(“Goodbye...”);
return O;

}

/**********************************> @t Commnd <*/
char Get Command(void)
{

char command;

do
{
printf(“Enter command (g=quit, n=new,
l=list): “);
scanf(“%”, &conmmand);
Fl ush();
}
while ((command != 'q’) & (command != ‘n’)
&& (command !'= ‘1));
printf(“\n---------- \n”);
return(conmand);

432 Learn C under Windows 95/NT

Source Code Listings

/**********************************> ReadStruct <*/

struct CDI nfo*ReadStruct(void)

{
struct CDI nfoinfoPtr;

I nt num
infoPtr = malloc(sizeof(struct CDInfo));

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

printf(“Enter Artist’s Nanme: “);
gets(infoPtr->artist);

printf(“Enter CD Title: *);
gets(infoPtr->title);

do

{
printf(“Enter CD Rating (1-10): “);
scanf(“%”, &um);
Fl ush();

}
while ((num< 1) || (num> 10));
infoPtr->rating = num

printf(“\n---------- \n”)

return(infoPtr);

/***********************************> AddTOLI St <*/

Learn C under Windows 95/NT 433

Source Code Listings

void AddToList(struct CDInfo *curPtr)

{
struct CDI nf o beforePtr;

/*First check to see if the list is enpty */
if (gFirstPtr == NULL)
InsertlnList(NULL, curPtr);
else if (curPtr->rating <= gFirstPtr->rating)
/ *Next check to see if curPtr should be the new */
[*first item?*/
InsertlnList(NULL, curPtr);
el se
/[*Wal k through the list till you find the first */
/*rating higher than us */

{
beforePtr = gFirstpPtr;

while ((beforePtr->next !'= NULL) &&
(beforePtr->next->rating < curPtr->rating))

{

beforePtr = beforePtr->next;

}

InsertlnList(beforePtr, curPtr);

/********************************> I nsert I nl_l St <*/

void InsertlnList(struct CDInfo *after MeCDPtLTI,
struct CDInfo *newCDPtr)
{
if (afterMeCDPtr == NULL)
[* This means we want to insert the new one as */
[* the first in the list */
{
newCDPt r - >next = gFirstPtr;
gFirstPtr = newCDPtr;
I f (gLastPtr == NULL)

434 Learn C under Windows 95/NT

Source Code Listings

gLastPtr = newCDPtr ;
}
else if (afterMeCDPtr == glLastPtr)
[* This neans we want to insert the new one as */
/* the last in the list */
{
gLast Ptr - >next newCDPt r ;
newCDPt r - >next = NULL;
gLastPtr = newCDPtr ;
}

el se

{
newCDPt r - >next = after MeCDPtr - >next ;
after MeCDPt r - >next = newCDPtr ;

/**********************************> |_| StC[)S <*/
void ListCDs(void)

{
struct CDInfo‘curPtr;

if (gFirstPtr == NULL)

{ printf(“No CDs have been entered yet...\n”);
prlntf(“\n __________ \nn)’

}

el se

{

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr =
curPtr->next)

{
printf(“Artist: %\n”, curPtr->artist);
printf(“Title: %\n", curPtr->title);
printf(“Rating: %\n”, curPtr->rating);

Learn C under Windows 95/NT 435

Source Code Listings

prlntf(“\n __________ \nn)’

}
}
}

/*************************************> Fl ush <*/

void Flush(void)

{
while (getchar() !'= ‘\n")
}
09.08 - cdTracker3 cdTracker3.h

/***********/

[* Defines */

/***********/

#defi ne kMaxCDs 300
#define kMaxArti stLength 50
#define kMaxTitl eLength 50

/***********************/

[* Struct Declarations */

/***********************/

struct CDI nfo
{

char rating;
char artist|[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDI nf o next, *prev;

} *gFirstPtr, *gLastPtr;

/***********************/

/* Function Prototypes */

436 Learn C under Windows 95/NT

Source Code Listings

/***********************/

char Get Command(void);

struct CDI nfd*ReadStruct(void);

void AddToList(struct CDInfo *curPtr);
void ListCDs(void);

void ListCDslnReverse(void);

void Flush(void);

09.08 - cdTracker3 cdTracker3.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdTracker 3. h”

/**> ITBI n <*/

int main(void)

{

char command;

gFirstPtr = NULL;
gLast Ptr = NULL;

while ((command = GetCommand()) '="'q)
{
switch(command)
{
case ‘n’:
AddToLi st (ReadStruct());
br eak;
case ‘|’
Li st CDs();
br eak;
case ‘r’:
Li st CDsl nReverse();
br eak;
}

Learn C under Windows 95/NT 437

Source Code Listings

}
printf(“Goodbye...”);

return O

}

/*********************************> Cﬁt Con-rmnd <*/
char Get Command(void)
{

char command;

do
{
printf(“Enter command (g=quit, n=new, |=list,
r=list reverse): *“);
scanf(“9%”, &command);
Fl ush();
}
while ((command != Q) & (command != ‘n’)
&& (command !'= ‘1’) && (command != ‘r’));
printf(“\n---------- \n”);
return(command);

/*********************************> ReadStI'UCt <*/

struct CDI nfo*ReadStruct(void)

{
struct CDInfoinfoPtr;

I nt num
infoPtr = mall oc(sizeof(struct CDInfo));

if (infoPtr == NULL)
{

438 Learn C under Windows 95/NT

Source Code Listings

printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

printf(“Enter Artist’s Name: *“);

gets(infoPtr->artist);

printf(“Enter CD Title: “);

gets(infoPtr->title);

do

{
printf(“Enter CD Rating (1-10): *“);
scanf(“%”, &num);
Fl ush();

}

while (((num< 1) || (num> 10));

infoPtr->rating = num

return(infoPtr);

/***********************************> AddTOLI St <*/

voi dAddToLi st (struct CDInfo *curPtr)
{
if (gRirstPtr == NULL)
gFirstPtr = curPtr;
el se
gLast Ptr->next = curPtr;

curPtr->prev = glLastPtr;

gLastPtr = curPtr,;
curPtr->next = NULL;

Learn C under Windows 95/NT 439

Source Code Listings

/***********************************> L| StCDS <*/
void ListCDs(void)

{
struct CDInforcurPtr;

if (gFirstPtr == NULL)

{
printf(“No CDs have been entered yet...\n”);
printf(“\n---------- \n”);
}
el se
{
for (curPtr=gFirstPtr; curPtr!=NULL;
curPtr = curPtr->next)
{
printf(“Artist: %\n”, curPtr->artist);
printf(“Title: %\n", curPtr->title);
printf(“Rating: %\n”, curPtr->rating);
printf(“\n---------- \n");
}
}

/****************************> LI StCE)SInReVerse <*/
void ListCDslnReverse(void)

{
struct CDInfocurPtr;

if (gLastPtr == NULL)

{
printf(“No CDs have been entered yet...\n");
printf(“\n---------- \n”);

}

440 Learn C under Windows 95/NT

Source Code Listings

el se
{
for (curPtr=gLastPtr; curPtr!=NULL
curPtr = curPtr->prev)
{
printf(“Artist: 9%\n”, curPtr->artist);
printf(“Title: %\n”, curPtr->title);
printf(“Rating: %\n”, curPtr->rating);

printf(“\n---------- \n”);

/*************************************> Fl ush <*/

void Flush(void)

{

while (getchar() !'= *\n")

10.01 - printFile

printFile.c

#i ncl ude <stdi o. h>

int main(void)
{

FI LE*f p;

int c:

fp = fopen(“My Data File”, “r”);

if (fp != NULL)

{

while ((c = fgetc(fp)) !'= EOF)

Learn C under Windows 95/NT 441

Source Code Listings

putchar(c);

fclose(fp);
}

return O;

}

10.02 - cdFiler cdFiler.h

/***********/
[* Defines */
/***********/
#defi ne true 1
#defi ne fal se 0

#defi ne kMaxArtistLength 50
#define kMaxTitl eLength 50

#def i ne kCDFi | eNane “cdDat a”

/***********************/

/* Struct Declarations */

/***********************/

struct CDInfo

{
char rating;
char artist|[kMaxArtistLength + 1];
char title[kMaxTitleLength + 1];
struct CDI nf ¢ next;

b

/***********************/

/* d obal Declarations */

/***********************/

442 Learn C under Windows 95/NT

Source Code Listings

extern struct CDInfdgFirstPtr, *glLastPtr

/********************************/

/* Function Prototypes - main.c */
/********************************/

char Get Command(void);

struct CDI nfo*ReadStruct(void);

void AddToList(struct CDInfo *curPtr);
void ListCDs(void);

void ListCDslnReverse(void);

void Flush(void);

/*********************************/

/* Function Prototypes - files.c */

/*********************************/

void WiteFile(void);

void ReadFile(void);

char ReadStructFronFile(FILE *fp, struct CDI nfo
*InfoPtr);

10.02 - cdFiler files.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdFiler.h”

/***********************************> W| teFI | e <*/
void WiteFile(void)
{

FILE *fp;

struct CDI nfoinfoPtr;

i nt numn

if (gFirstPtr == NULL)

Learn C under Windows 95/NT 443

Source Code Listings

return,;

if ((fp = fopen(kCDFileNane, “w)) == NULL)
{
printf(“***ERROR Could not wite CD filel”);
return;

}

for (infoPtr=gFirstPtr; infoPtr!=NULL;
i nfoPt r=i nfoPtr->next)

{
fprintf(fp, “9%\n”, infoPtr->artist);
fprintf(fp, “%\n”, infoPtr->title);

num = i nfoPtr->rating;
fprintf(fp, “%\n”, num);
}
fclose(fp);

/************************************> ReadFI | e <*/

void ReadFile(void)

{

FILE *fp;
struct CDI nfoinfoPtr;
i nt i

if ((fp = fopen(kCDFileName, “r”)) == NULL)
{
printf(“***ERROR Could not read CD file!”);
return;

}

do

{
i nfoPtr

mal | oc(sizeof(struct CDInfo));

444 Learn C under Windows 95/NT

Source Code Listings

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);
}
}
while (ReadStructFronFile(fp, infoPtr));
fclose(fp);
free(infoPtr);

/**************************> ReadStruct FFOI‘TFI|€‘ <*/
char ReadStructFronFile(FILE *fp, struct CDI nfo

*InfoPtr)
{ .
i nt num
i1f (fscanf(fp, “%Y™\n]\n”, infoPtr->artist)
= EOF)
{

if (fscanf(fp, “AY™\n]\n", infoPtr->title)

printf(“Mssing CDtitle!\n”);
return fal se;
}
else if (fscanf(fp, “%\n”, &um) == ECF)
{
printf(“Mssing CDrating!'\n”);
return fal se;

}

el se

{
infoPtr->rating = num
AddToList(infoPtr);

Learn C under Windows 95/NT 445

Source Code Listings

return true;

}
}

el se
return fal se;

10.02 - cdFiler main.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdFiler.h”

/***********************/

/* dobal Definitions */

/***********************/

struct CDInfo'gFirstPtr, *glLastPtr;

/**> ITBI n <*/
int main(void)

{

char command;

gFirstPtr = NULL;
gLast Ptr = NULL;

ReadFi | e();
while ((command = GetCommand()) '= ‘q)
{
switch(conmand)
{
case ‘n’:
AddToLi st (ReadStruct());
br eak;

446 Learn C under Windows 95/NT

Source Code Listings

case ‘|':
Li st CDs();
br eak;

}
}

WiteFile();
printf(“Goodbye...”);

return O

/**********************************> Cﬁt Con-n-and <*/
char Get Command(void)

char command;

do
{
printf(“Enter command (g=quit, n=new,
I=list): *“);
scanf(“%”, &conmmand);
Fl ush();
}
while ((command !'= ‘q") && (conmand != ‘n’)
&% (command !'= *1"));
printf(“\n---------- \n”);
return(command);

/********************************> ReadStI'UCt <*/

struct CDI nfo*ReadStruct(void)

{
struct CDInfoinfoPtr;

Learn C under Windows 95/NT 447

Source Code Listings

i nt numn
infoPtr = mall oc(sizeof(struct CDInfo));

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

printf(“Enter Artist’s Name: *“);

gets(infoPtr->artist);

printf(“Enter CD Title: “);
gets(infoPtr->title);

do

{
printf(“Enter CD Rating (1-10): *“);
scanf(“%”, &num);
Fl ush();

}

while ((num< 1) || (num> 10));

infoPtr->rating = num

return(infoPtr);

/**********************************> AddTOLI St <*/

void AddToList(struct CDInfo *curPtr)

{
if (gFirstPtr == NULL)
gFirstPtr = curbPtr;
el se

448 Learn C under Windows 95/NT

Source Code Listings

gLast Ptr->next = curPtr;

gLastPtr = curPtr,;
curPtr->next = NULL;

/********************************> LI StC[)S <*/

void ListCDs(void)

{
struct CDI nfadcurPtr;
if (gFirstPtr == NULL)
{
printf(“No CDs have been entered yet...\n”);
printf(“\n---------- \n”);
}
el se
{
for (curPtr=gFirstPtr; curPtr!=NULL; curPtr =
cur Ptr->next)
{
printf(“Artist: %\n”, curPtr->artist);
printf(“Title: %\n", curPtr->title);
printf(“Rating: %\n”, curPtr->rating);
printf(“\n---------- \n”);
}
}
}

/*************************************> Fl ush <*/

void Flush(void)

{
while (getchar() !'= ‘\n")

Learn C under Windows 95/NT 449

Source Code Listings

10.03 - dinoEdit dinoEdit.h

/***********/
[* Defines */
/***********/
#define true 1
#defi ne fal se 0

#defi ne kDi noRecordSi ze 20
#defi ne kMaxLi neLength 100
#defi ne kDi noFi | eNane “My Di nos”

/********************************/

/* Function Prototypes - main.c */
/********************************/

i nt Get Nunber(void);

i nt Get Nunber O Di nos(void);

void ReadD noNanme(int nunber, char *di noNane);
char Get NewDi noNanme(char *di noNane);

void WiteDi noNane(int nunber, char *di noNane);
void Flush(void);

void DoError(char *nessage);

10.03 - dinoEdit main.c

#incl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude “di noEdit. h”

/**> ITBI n <*/
int main(void)

{

450 Learn C under Windows 95/NT

Source Code Listings

i nt nunber ;
FI LE*f p;
char di noNane[kDi noRecordSi ze+l];

while ((nunber = GetNunber()) !'=0)

{
ReadDi noNanme(nunber, di noNane);

printf(“Dino #%: %\n”, nunber, dinoNanme);

i f (Get NewDi noNanme(di noNane))
Wi teD noNane(nunber, dinoNane);

}

printf(“Goodbye...”);

return O;

/********************************> Cﬁt Nun-ber <*/

i nt Get Nunber(void)
{

i nt nunber, nunDi nos;

nunDi nos = Get Nunber O Di nos() ;

do
{
printf(“Enter nunmber froml1l to % (0 to
exit): “, nunDinos);
scanf(“%”, &nunber);
Fl ush();

}
while ((nunber < 0) || (nunber > nunDi nos));

return(numnber);

Learn C under Windows 95/NT 451

Source Code Listings

/****************************> (_‘ﬁt Nun-berGD nos <*/
i nt Get Nunber O Di nos(void)

{
FI LE*f p;
| ongfil eLengt h;
if ((fp = fopen(kD noFileName, “r”)) == NULL)
DoError(“Couldn’t open file...Goodbye!”);
if (fseek(fp, OL, SEEK END) != 0)
DoError(“Couldn’t seek to end of
file...Goodbye!”);
if ((fileLength = ftell(fp)) == -1L)
DoError(“ftell () failed...Goodbye!”);
fclose(fp);
return((int)(fileLength / kD noRecordSi ze));
}

/********************************> ReadD nol\lan-e <*/
void ReadD noName(int nunber, char *di noNane)

{
FI LE*f p;
| ong byt esToSki p;

if ((fp = fopen(kDi noFileName, “r”)) == NULL)
DoError(“Couldn’t open file...Goodbye!”);

byt esToSki p = (I ong) ((nunber-1) *
kDi noRecor dSi ze) ;

if (fseek(fp, bytesToSkip, SEEK SET) !'= 0)
DoError(“Couldn’t seek in file...Goodbye!”);

452 Learn C under Windows 95/NT

Source Code Listings

if (fread(dinoNane, (size_t)kD noRecordSi ze,
(size_t)1, fp) I=1)
DoError(“Bad fread()...Goodbye!”);

fclose(fp);
}

/******************************> @t I\EV\D nONarTE <*/
char Get NewDi noNane(char *di noNane)

{
char line[kMaxLineLength];

I nt I, nanmeLen;
printf(“Enter new nane: “);
gets(line);

if (line[0] == “\0")
return fal se;

for (i=0; i<kD noRecordSize; i++)
di noNane[i] ="' *;

nameLen = strlen(line);

i f (nanmeLen > kDi noRecordSi ze)
nanmeLen = kDi noRecor dSi ze;

for (i=0; i<nanelLen; i++)
di noNane[i] = line[i];

return true;

/*******************************> WI teD noNarre <*/

Learn C under Windows 95/NT 453

Source Code Listings

void WiteD noNane(int nunber, char *di noNane)

{

FI LE*f p;
| ong bytesToSki p;

if ((fp = fopen(kDi noFileNanme, “r+”)) == NULL)
DoError(“Couldn’t open file...Goodbye!”);

byt esToSki p = (1 ong) ((nunber-1) *
kDi noRecor dSi ze) ;

if (fseek(fp, bytesToSkip, SEEK SET) !'= 0)
DoError(“Couldn’t seek in file...Goodbye!”);

if (fwite(dinoNanme, (size_t)kDi noRecordSize,
(size t)1, fp) I'=1)
DoError(“Bad fwite()...CGoodbye!”);

fclose(fp);

/**************************************> Fl ush <*/

void Flush(void)

{

while (getchar() !'= ‘\n")

/*************************************> EbError <*/

void DoError(char *nessage)

{

}

printf(“%\n”, message);
exit(0);

454 Learn C under Windows 95/NT

Source Code Listings

10.04 - fileReader fileReader.c

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#def i ne true 1
#defi ne fal se 0

/***********************/

/* Function Prototypes */

/***********************/

void DoError(char *nessage);

I nt ReadLi neOf Nuns(FILE *fp, int nunsPerlLine, int
*IintArray);

void PrintLineOfNuns(int nunsPerLine, int
*IintArray);

/**> rTHI n <*/
int main(void)
{

FI LE *fp;

I nt *Int Array, nunsPerLi ne;

size_t arraySi ze;

fp = fopen(“My Data File”, “r”);

if (fp == NULL)
DoError(“Couldn’t open file!”);

if (fscanf(fp, “%l”, &unsPerLine) !'= 1)
DoError(“Bad fscanf() call!”);

if (nunsPerLine <= 0)
DoError(“Too fewitens per line!”);

arraySi ze = nunsPerLine * sizeof(int);

Learn C under Windows 95/NT 455

Source Code Listings

if ((intArray = malloc(arraySize)) == NULL)
DoError(“Couldn’t malloc() int array!”);

whil e (ReadLi neOf Nuns(fp, nunsPerlLine,
intArray))
PrintLi neOf Nuns(nunsPerLine, intArray);

free(intArray);

return O;

/****************************> Readl_l ned NUITB <*/

i nt ReadLi neOf Nuns(FILE *fp, int nunsPerlLine, int
*IntArray)

{

int i;

for (i=0; i<nunsPerlLine; i++)

{
if (fscanf(fp, “%”, & intArray[i])) !'=1

return fal se;

}

return true;

}

/*****************************> Prl nt LI ned NUITB <*/

void PrintLineO'Nunms(int nunsPerlLine, int
*IntArray)

{

int i;

for (i=0; i<nunsPerlLine; i++)

456 Learn C under Windows 95/NT

Source Code Listings

printf(“%\t”, intArray[i]);

printf(“\'n”);
}

/************************************> mError <*/

void DoError(char *nessage)

{
printf(“%\n”, nmessage);
exit(0);

}

10.05 - cdFiler2 cdFiler2.h

/***********/

[* Defines */

/***********/

#define true 1
#defi ne fal se 0

#defi ne kMaxLi neLength 200
#defi ne kCDFi | eNane “cdDat a”

/***********************/

[* Struct Declarations */

/***********************/

struct CDI nfo

{
char rating;
char *artist;
char *title;
struct CDI nf o next;
b

Learn C under Windows 95/NT 457

Source Code Listings

/***********************/

/* d obal Declarations */

/***********************/

extern struct CDInfdgFirstPtr, *glLastPtr;

/********************************/

/* Function Prototypes - main.c */
/********************************/

char Get Command(void);

struct CDI nfd*ReadStruct(void);

void AddToList(struct CDInfo *curPtr);
void ListCDs(void);

void ListCDslnReverse(void);

void Flush(void);

char *Mal | ocAndCopy(char *line);

void ZeroLine(char *line);

/*********************************/

/* Function Prototypes - files.c */

/*********************************/

void WiteFile(void);

void ReadFile(void);

char ReadStructFronFile(FILE *fp, struct CDInfo
*infoPtr);

10.05 - cdFiler2 files.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude “cdFiler2.h”

/***********************************> WlteFlle <*/
void WiteFile(void)
{

458 Learn C under Windows 95/NT

Source Code Listings

FILE *fp;
struct CDI nfaoinfoPtr:
i nt nuni

if (gFirstPtr == NULL)
return;

if ((fp = fopen(KCDFil eNanme, “w)) == NULL)
{
printf(“***ERROR Could not wite CD filel”);
return;

}

for (infoPtr=gFirstPtr; infoPtr!=NULL;
i nfoPtr=i nfoPtr->next)

{
fprintf(fp, “%\n”, infoPtr->artist);
fprintf(fp, “%\n”, infoPtr->title);
num = i nfoPtr->rating;
fprintf(fp, “%\n”, num);

}

fclose(fp);

/***********************************> ReadFI | e <*/

void ReadFile(void)

{

FILE *fp;
struct CDInfoinfoPtr;

if ((fp = fopen(kCDFileName, “r”)) == NULL)
{
printf(“***ERROR Could not read CD file!”);
return;

}

Learn C under Windows 95/NT 459

Source Code Listings

do
{

infoPtr = malloc(sizeof(struct CDInfo));

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

}
while (ReadStructFronFile(fp, infoPtr));

fclose(fp);
free(infoPtr);

/**************************> ReadStruct FFOI‘TFI|€‘ <*/
char ReadStructFronFile(FILE *fp, struct CDInfo

{

*InfoPtr)

i nt numn
char line[kMaxLineLength];

ZeroLine(line);
if (fscanf(fp, “UY™\n]\n”", line) !'= EOF)
{
infoPtr->artist = Mall ocAndCopy(|ine);
ZeroLine(line);

if (fscanf(fp, “UY™\nJ\n”", line) == EOF)
{
printf(“Mssing CDtitle!\n”);
return fal se;

}

el se

{

460 Learn C under Windows 95/NT

Source Code Listings

infoPtr->title = Mall ocAndCopy(line);

if (fscanf(fp, “%\n”, &um) == ECOF)
{
printf(“Mssing CDrating!'\n”);
return fal se;

}

el se

{
infoPtr->rating = num
AddToList(infoPtr);
return true;

}
}
}

el se
return fal se;

10.05 - cdFiler2 main.c

#i ncl ude <string. h>
#incl ude <stdlib. h>
#i ncl ude <stdi o. h>
#include “cdFiler2.h”

/***********************/

/* A obal Definitions */

/***********************/

struct CDInfogFirstPtr, *glLastPtr;

/**> rml n <*/
int main(void)

{

char command;

Learn C under Windows 95/NT 461

Source Code Listings

gFirstPtr = NULL;
gLast Ptr = NULL;

ReadFi | e();

while ((command = GetCommand()) '=‘q)
{

switch(conmmand)

{
case ‘n’:
AddToLi st (ReadStruct());
br eak;
case ‘| ’:
Li st CDs();
br eak;

}
}

WiteFile();
printf(“Goodbye...”);

return O;

/**********************************> @t Corrrmnd <*/

char Get Command(void)
{

char command;

do
{
printf(“Enter command (g=quit, n=new,
l=list): “);
scanf(“%”, &command);
Fl ush();

462 Learn C under Windows 95/NT

Source Code Listings

}

while ((command !'= ‘q’) && (command != ‘n’)
& (command !'= ‘1"));

prlntf(“\n __________ \nn)’

return(command);

/**********************************> ReadStruct <*/

struct CDI nfo*ReadStruct(void)

{
struct CDI nfoinfoPtr;

i nt numn
char line[kMaxLineLength];

infoPtr = mall oc(sizeof(struct CDInfo));

if (infoPtr == NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

printf(“Enter Artist’s Name: *“);
gets(line);
infoPtr->artist = Mall ocAndCopy(line);

printf(“Enter CD Title: *);
gets(line);
infoPtr->title = Mall ocAndCopy(line);

do

{
printf(“Enter CD Rating (1-10): *“);
scanf(“%”, &num);
Fl ush();

}

Learn C under Windows 95/NT 463

Source Code Listings

while (((num< 1) || (num>10));
infoPtr->rating = num
pr|ntf(“\n __________ \n")’

return(infoPtr);

/*********************************> AddTOLI St <*/

void AddToList(struct CDInfo *curPtr)

{
if (gFirstPtr == NULL)
gFirstPtr = curbPtr;
el se
gLast Ptr->next = curPtr;

gLastPtr = curPtr,;
curPtr->next = NULL;

/************************************> L| StCDS <*/
void ListCDs(void)

{
struct CDInforcurPtr;

if (gFirstPtr == NULL)

{ printf(“No CDs have been entered yet...\n”);
prlntf(“\n __________ \nu);

}

el se

{

for (curPtr=gFirstPtr; curPtr!=NULL; curPtr =
cur Ptr->next)

{

464 Learn C under Windows 95/NT

Source Code Listings

printf(“Artist: %\n”, curPtr->artist);
printf(“Title: %\n”, curPtr->title);
printf(“Rating: %\n”, curPtr->rating);

prlntf(“\n __________ \nn)’

/*************************************> Fl ush <*/

void Flush(void)

{
while (getchar() !'= *‘\n")

/*******************************> Ival | OCAndCOpy <*/

char *Mal | ocAndCopy(char *line)

{

/*
This function takes a string as a paraneter and
mal l oc()s a new bl ock of nenory the size of the
string, with an extra byte for the O-term nator.

strcpy() is called to copy the string into the
new bl ock of nmenory and the pointer to the new
bl ock is returned...

*/
char *pointer;
if ((pointer = malloc(strlen(line)+l1)) ==

NULL)

{
printf(“Qut of nenory!!! Goodbye!\n”);
exit(0);

}

strcpy(pointer, line);

Learn C under Windows 95/NT 465

Source Code Listings

return pointer;

}

/************************************> ZerOLI ne <*/

void ZeroLine(char *line)

{
i nt i
for (i=0; i<kMaxLineLength; i++)
line[1] = O;
}
11.01 - iterate iterate.c

#i ncl ude <stdi o. h>

int main(void)
{
i nt i, num
|l ong fac;

num = 5;
fac 1;

for (i=1; i<=num i++)
fac *= i;

printf(“%l factorial is %d.”, num fac);

return O;

466 Learn C under Windows 95/NT

Source Code Listings

11.02 - recurse recurse.c

#i ncl ude <stdio. h>
long factorial(Iong num);

int main(void)

{

| ong num = 5L, fac;

printf(“%d factorial is %d.”, num
factorial (num));

return O;

}

long factorial(|ong num)

{
if (num> 1)
num *= factorial (num- 1);

return(num);

}

11.03 - funcPtr funcPtr.c

#i ncl ude <stdio. h>

int Squarelt(int num);
int main(void)

{ i nt (*nmyFuncPtr)(int);

i nt num = 5;

myFuncPtr = Squarelt;

Learn C under Windows 95/NT 467

Source Code Listings

printf(“%l squared is %.”, num
(*myFuncPtr)(num));

return O;

}

int Squarelt(int num)

{

return(num?* num);

}

11.04 - static static.c

#i ncl ude <stdi o. h>
int StaticFunc(void);

int main(void)

{

i nt i
for (i=1;, i<=5; i++)

printf(“%\n”, StaticFunc());

return O;

}

int StaticFunc(void)

{
static intnyStatic = O;

return nyStatic++,;

}

468 Learn C under Windows 95/NT

Source Code Listings

11.05 - treePrinter treePrinter.h

/***********/

[* Defines */

/***********/

#define true 1
#defi ne fal se 0

#def i ne kNunbersFil eName “treePrinter nunbers”

/***********************/

/* Struct Declarations */

/***********************/

struct Node
{

i nt nunber ;
struct Node*left, *right;

b

/***********************/

/* d obal Declarations */

/***********************/

extern struct Nodeé gRoot NodePtr;

/********************************/

/* Function Prototypes - main.c */

/********************************/

void BuildTree(void);
i nt Get Nunber FronFile(int *nunPtr, FILE *fp);
void DoError(char *nessage);

/*********************************/

Learn C under Windows 95/NT 469

Source Code Listings

/* Function Prototypes - tree.c */

/*********************************/

void AddNunmber ToTree(int num);

void AddNodeToTree(struct Node *newNodePtr,
struct Node **curNodePtrPtr);

void DescendTreePreorder(struct Node *nodePtr);

void DescendTreelnorder(struct Node *nodePtr);

void DescendTreePostorder(struct Node *nodePtr);

void VisitNode(struct Node *nodePtr);

11.05 - treePrinter main.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#i nclude “treePrinter.h”

/***********************/

/* A obal Definitions */

/***********************/

struct Node*gRoot NodePtr;

/**> ITHI n <*/
int main(void)

{
gRoot NodePtr = NULL
Bui | dTree();

printf(“Preorder: “);
DescendTr eePr eor der (gRoot NodePtr);

printf(“\nlnorder: “);
DescendTr eel nor der (gRoot NodePtr);

printf(“\nPostorder: “);

470 Learn C under Windows 95/NT

Source Code Listings

}

DescendTr eePost or der (gRoot NodePtr);
printf(“\'n\nCGoodbye...”);

return O;

/***********************************> BUI | dTr ee <*/

void BuildTree(void)

{

i nt num
FILE *fp;
if ((fp = fopen(kNunbersFileNanme, “r”)) ==
NULL)
DoError(“Could not read nunbers filel\n”);
printf(“Numbers: ‘)

whil e (Get Number FronFile(&um fp))
{

printf(“%d, “, num);
AddNunber ToTree(num);
}
printf(“\n------- \n");
fclose(fp);

/***************************> @t Nun-berFronFlle <*/
int GetNunberFronFile(int *nunPtr, FILE *fp)

{

if (fscanf(fp, “%\n”, nunPtr) == EOF)
return fal se;
el se

Learn C under Windows 95/NT 471

Source Code Listings

return true;

/************************************> mError <*/

void DoError(char *nessage)

{
printf(“9%\n”, nmessage);
exit(0);

}

11.05 - treePrinter tree.c

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>
#include “treePrinter.h”

/***************************> AddNunberToTree <*/
void AddNunber ToTree(int num)

{
struct Node*nodePtr
nodePtr = mall oc(sizeof(struct Node));

if (nodePtr == NULL)
DoError(“Could not allocate nenory!\n”);

nodePt r - >nunber = num
nodePtr->l eft = NULL;
nodePtr->right = NULL;

AddNodeToTr ee(nodePtr, &gRoot NodePtr);

/*****************************> Add'\bdeToTree <*/

472 Learn C under Windows 95/NT

Source Code Listings

void AddNodeToTree(struct Node *newNodePtr,

/*

*/
{

struct Node **curNodePtrPtr)

This recursive function inserts a new tree node
(pointed to by newNodePtr) into the subtree
pointed to by the pointer pointed to by

cur NodePtr. W use two | evels of pointer here so
we can change the val ue of the pointer passed

in. See the call to AddNodeToTree a few |ines up.

Here's the al gorithm AddNodeToTree first checks
to see if *curNodePtrPtr is NULL. If so, this is
where the new node bel ongs: *curNodePtrPtr is
set to point to the new node and we are done.

If not, we'll check the node *curNodePtrPtr does
point to and repeat the search in either the
left or right child, depending on whether the
new nunber being added to the tree is |less than
or greater than/equal to the current node.

To help with the notation, think of:
*cur NodePt r Pt r
as equivalent to

gRoot NodePt r

i f (*curNodePtrPtr == NULL)
*cur NodePtrPtr = newNodePtr;
else if (newNodePtr->nunber < (*curNodePtrPtr)-
>nunber)
AddNodeToTree(newNodePtr, &((*curNodePtrPtr)-
>left));
el se
AddNodeToTr ee(newNodePtr, &((*curNodePtrPtr)-
>right));

Learn C under Windows 95/NT 473

Source Code Listings

/*************************> mscendTreePreorder <*/
void DescendTreePreorder(struct Node *nodePtr)

{
if (nodePtr == NULL)
return;

Vi si t Node(nodePtr);
DescendTr eePreorder(nodePtr->left);
DescendTr eePreorder (nodePtr->right);

}

/**************************> mscendTreel norder <*/
voi d DescendTreel norder(struct Node *nodePtr)
{
if (nodePtr == NULL)
return;

DescendTr eePreorder(nodePtr->left);
Vi si t Node(nodePtr);
DescendTr eePreorder (nodePtr->right);

}

/************************> mscendTreePostorder <*/
voi d DescendTreePostorder(struct Node *nodePtr)
{
if (nodePtr == NULL)
return;

DescendTr eePreorder(nodePtr->left);
DescendTr eePreorder (nodePtr->right);
Vi si t Node(nodePtr);

}

474 Learn C under Windows 95/NT

Source Code Listings

/***********************************> VI Sl t ’\bde <*/

void VisitNode(struct Node *nodePtr)
{

}

printf(“%, “, nodePtr->nunber);

12.01 - HelloWorld HelloWorld.c

#i ncl ude <wi ndows. h>

LRESULT CALLBACK WhdProc (HWND hwWhd, Ul NT i Message,
WPARAM wPar am LPARAM | Par am ;

//**

i nt APl ENTRY W nMai n(H NSTANCE hl nst ance,
HI NSTANCE hPrevl nst ance,
LPSTR | pCndLi ne, int nCrdShow)

{
static char szAppNane[] = "Hellowrld" ;
HWAD hwd ;
MG nmessage ;
WNDCLASSEX wndcl ass ;
wndcl ass. cbSi ze = si zeof (wndcl ass);
wndcl ass. styl e = CS_HREDRAW | CWHRAW
wndcl ass. | pf nWhdPr oc = WhdPr oc;
wndcl ass. cbC sExtra = 0;
wndcl ass. cbWhdExtr a = 0;
wndcl ass. hl nst ance = hlnstance ;

wndcl ass. hl con =

Loadl con(NULL, | DI _APPLI CATI ON);
wndcl ass. hCur sor =

LoadCur sor (NULL, | DC_ARROW ;
wndcl ass. hbr Background =

(HBRUSH) Get St ockObj ect (WHI TE_BRUSH) ;
wndcl ass. | pszMenuNanme = NULL;

Learn C under Windows 95/NT 475

Source Code Listings

}

wndcl ass. | pszC assNane
wndcl ass. hl conSm =
Loadl con (NULL, |DI _APPLI CATI ON);

szAppNane;

Regi st er O assEx (&wndcl ass);

hwhd = Creat eW ndow (szAppNane, /'l class
"Hello Worl d", /'l caption
W5 OVERLAPPEDW NDOW Il style
CW USEDEFAULT, /'l x pos
CW USEDEFAULT, /'l y pos
CW USEDEFAULT, /'l x size
CW USEDEFAULT, Il y size
NULL, /| parent w ndow handl e
NULL, /'l wi ndow nenu handl e
hl nstance, // instance handl e
NULL) ; /'l creation paraneters

ShowW ndow(hwhd, nCndShow) ;
Updat eW ndow hWhd) ;

while (Get Message(&ressage, NULL, 0, 0))
{

Tr ansl at eMessage(&ressage) ;
Di spat chMessage(&essage) ;
}

return nessage. wPar am

//***

LRESULT CALLBACK WhdProc (HWND hWhd, Ul NT i Message,

{

WPARAM wPar am LPARAM | Par am

HDC hdc;
PAI NTSTRUCT ps;
RECT rect;

476 Learn C under Windows 95/NT

Source Code Listings

switch (i Message)

{
case WM CREATE:
return O;
case WM PAI NT
hdc = Begi nPai nt (hwhd, &ps);
CetdientRect(hwd, &rect);
Dr awText (hdc, "Hello World", -1, &rect,
DT_SI NGLELI NE | DT_CENTER |
DT_VCENTER) ;
EndPai nt (hWhd, &ps);
return O;
case WM DESTROY:
Post Qui t Message(0) ;
return O;
}

return Def WndowProc(hWhd, i Message,
wParam | Param) ;

Learn C under Windows 95/NT 477

Source Code Listings

478 Learn C under Windows 95/NT

M C Syntax Summary

The if Statement

syntax:
if (expression)
st at enent
example:
i f (nunEnpl oyees > 20)
BuyNewBui | di ng() ;
alternate syntax:
if (expression)
st at enent
el se
st at enent
example:
if (tenperature < 60)
Wear AJacket () ;
el se
Bri ngASweat er () ;

The while Statement

syntax:

while (expression)
st at enent

example:
while (FireTooLow())

Learn C under Windows 95/NT 479

C Syntax Summary

AddAnot her Log() ;

The for Statement

syntax:

for (expressionl ; expression2 ; expression3)
st at enent

example:

i nt i, myArray[100];

for (i=0; i<100; i++)
nyArray[i] = 0;

The do Statement
syntax:
do

st at enent
while (expression) ;
example:
do

Cal | MeAt Least Once() ;

while (KeepGoing())

The switch Statement
syntax:
switch (expression)
{
case constant:
statenents

480 Learn C under Windows 95/NT

C Syntax Summary

case constant:
statenents

defaul t:
statenents

}
example:
switch (theYear)
{
case 1066:
printf(“Battle of Hastings”);
br eak;
case 1492:
printf(“Colunbus sailed the ocean bl ue”
)
br eak;
case 1776:
printf(“Declaration of |Independence\n”
);
printf(“A very inportant docunent!!!”);
br eak;
defaul t:

printf(“Don’t know what happened duri ng
this year”);

}

The break Statement
syntax:

br eak;

Learn C under Windows 95/NT 481

C Syntax Summary

example:

i =1;

while (i <=9)

{
PlayAnl nning(i);
if (ItsRaining())
br eak;
i ++;
}

The return Statement

syntax:

return,

example:

if (Fatal Error())
return,

alternate syntax:

return(expression);

example:

I nt AddThese(int numl, int nunR)

{

return(numl + nun);

482 Learn C under Windows 95/NT

D

Selections from the
Standard Library

This appendix contains excerpts reprinted from the C Library Refer-
ence found on the CodeWarrior disk and is being reprinted with per-
mission from MetroWerks. This is only part of the C Library Reference
so make sure you check out the original.

atof(), atoi(), atol()
Purpose

Synopsis

Remarks

Return value

Convert a character string to a numeric value.

#i ncl ude <stdlib. h>

doubl e atof (const char *nptr);
int atoi (const char *nptr);

long int atol (const char *nptr);

The at of () function converts the character
array pointed to by npt r to a floating point
value of type doubl e.

The at oi () function converts the character
array pointed to by npt r to an integer value.
The at ol () function converts the character
array pointed to by npt r to an integer of type
| ong int.

All three functions skip leading white space
characters.

All three functions set the global variable

er r no to ERANGEIf the converted value cannot
be expressed in their respective type.

at of () returns a floating point value of type
doubl e.

at oi () returns an integer value of type i nt.

at ol () returns an integer value of type | ong
i nt.

Learn C under Windows 95/NT 483

Selections from the Standard Library

See also errno

.h

stdio.h: scanf()

bsearch()

Purpose Efficient sorted array searching.

Synopsis #i ncl
voi d

ude <stdlib. h>
*psearch(const void *key,
const void *base,

size_t nnmenb,

size t size,

int (*conpare)

(const void *,

const void *))

Remarks The bsear ch() function efficiently searches a

sorted

array for an item using the binary search

algorithm.
The key argument points to the item to search

for.

The base argument points to the first byte of
the array to search. The array must already be

sorted
compa

in ascending order based on the
rison requirements of the function

pointed to by the conpar e argument.
The nmenb argument specifies the number of
array elements to search.

The si

ze argument specifies the size of an

array element.
The conpar e argument points to a

progra

mmer-supplied function that takes two

pointers to different array elements and

compa

res them based on the key. If the two

elements are equal, conpar e must return a
zero. The conpar e function must return a
negative value if the first element is less than

the sec

ond. Likewise, the function must return

a positive value if the first argument is greater
than the second.

484 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

exit()

bsear ch() returns a pointer to the element in
the array matching the item pointed to by key.
If no match was found, bsear ch() returns a
null pointer (NULL).

stdlib.h: qgsort()

Purpose

Synopsis

Remark

Return value

See also

fclose()

Terminate a program normally.

#i ncl ude <stdlib. h>
void exit(int status);

The exi t () function calls every function in
stalled with at exi t () in the reverse order of
their installation, flushes the buffers and closes
all open streams, then calls the Toolbox system
call Exi t ToShel |.

exi t () does not return any value to the
operating system. The status argument is kept
to conform to the ANSI C Standard Library
specification.

stdlib.h: abort(), atexit()

Purpose

Synopsis

Remarks

Close an open file.

#i ncl ude <stdi o. h>
int fclose(FILE *strean);

The f cl ose() function closes a file created by
f open(), freopen(),ortnmpfil e().The
function flushes any buffered data to its file and
closes the stream. After calling f cl ose(),
stream is no longer valid and cannot be used
with file functions unless it is reassigned using
fopen(),freopen(),ortnpfile().

All of a program’s open streams are flushed
and closed when a program terminates
normally.

Learn C under Windows 95/NT 485

Selections from the Standard Library

Return value

See also

feof()

fcl ose() closes then deletes a file created by
tmpfile().

fcl ose() returns a zero if it is successful and
returns a -1 if it fails to close a file.

stdio.h: fopen(), freopen(),

tnpfile()
stdlib.h: exit(), abort()

Purpose

Synopsis

Remarks

Return value

See also

ferror()

Check the end-of-file status of a stream.

#i ncl ude <stdi o. h>
i nt feof (FILE *strean);

The f eof () function checks the end-of-file
status of the last read operation on stream. The
function does not reset the end-of-file status.

f eof () returns a nonzero value if the stream is
at the end-of-file and return zero if the stream is
not at the end-of-file.

stdio.h: clearerr(), ferror()

Purpose

Synopsis

Remarks

Return value

See also

Check the error status of a stream.

#i ncl ude <stdi o. h>
int ferror (FILE *stream;

The f er r or () function returns the error status
of the last read or write operation on stream.
The function does not reset its error status.

ferror () returns a nonzero value if stream’s
error status is on, and returns zero if stream’s
error status is off.

stdio.h: clearerr(), feof()

486 Learn C under Windows 95/NT

Selections from the Standard Library

fflush()

Purpose

Synopsis
Remarks
Return value

See also

fgetc()

Empty a stream’s buffer to its file.

#i ncl ude <stdi o. h>
int fflush(FILE *strean);

The f f 1 ush() function empties stream’s
buffer to the file associated with stream.

fflush() returns a nonzero value if it is
unsuccessful and returns zero if it is successful.

stdio.h: setvbuf()

Purpose

Synopsis

Remarks

Return value

See also

fgetpos()

Read the next character from a stream.

#i ncl ude <stdi o. h>
int fgetc(FILE *stream;

The f get ¢ () function reads the next character
from stream and advances its file position
indicator.

f get c() returnsthe character asani nt.If the
end-of-file has been reached, f get ¢() returns
EOF

stdio.h: getc(), getchar()

Purpose

Synopsis

Remarks

Get a stream’s current file position indicator
value.

#i ncl ude <stdi o. h>
I nt fgetpos(FlILE *stream
fpos_t *pos);

The f get pos() function is used in conjunction
with the f set pos() function to allow random
access to a file. The f get pos() function gives
unreliable results when used with streams
associated with a console

Learn C under Windows 95/NT 487

Selections from the Standard Library

Return value

See also

fgets()

(stdin, stderr, stdout).

While thef seek() andft el | () functions use
long integers to read and set the file position
indicator, f get pos() and f set pos() use

f pos_t values to operate on larger files. The

f pos_t type, defined in st di 0. h, can hold file
position indicator values that do not fit in a

| ong int.

The f get pos() function stores the current
value of the file position indicator for stream in
the f pos_t variable pos points to.

f get pos() returns zero when successful and
returns a nonzero value when it fails.

stdio. h: fseek(), fsetpos(),
ftell ()

Purpose

Synopsis

Remarks

Return value

Read a character array from a stream.

#i ncl ude <stdi o. h>
char *fgets(char *s, int n,
FI LE *strean);

The f get s() function reads characters
sequentially from stream beginning at the
current file position, and assembles them into s
as a character array. The function stops reading
characters when n characters have been read.
The f get s() function finishes reading
prematurely if it reaches a newline (' \ n’)
character or the end-of-file.

Unlike the get s() function, f get s() appends
the newline character (‘ \ n’) to s. It also null
terminates the character array.

f get s() returns a pointer to s if it is
successful. If it reaches the end-of-file before
reading any characters, s is untouched and
f get s() returns a null pointer (NULL). If an

488 Learn C under Windows 95/NT

Selections from the Standard Library

See also

fopen()

error occurs f get s() returns a null pointer

and the contents of S may be corrupted.

stdio.h: gets(), fprintf(),
printf()

Purpose

Synopsis

Remarks

Return value

See also

Open a file as a stream.

#i ncl ude <stdi o. h>
FI LE *f open(const char *fil enane,
const char *node);

The f open() function opens a file specified by
filename, and associates a stream with it. The

f open() function returns a pointer to a FI LE
This pointer is used to refer to the file when
performing I/O operations.

The mode argument specifies how the file is to
be used. Table 7 describes the values for mode.
A file opened with an update mode (“ +”) is
buffered, so it cannot be written to and then
read from (or vice versa) unless the read and
write operations are separated by an operation
that flushes the stream’s buffer or the last read
or write reached the end-of-file. The f seek(),
fsetpos(), rewi nd(),andffl ush()
functions flush a stream’s buffer.

All file modes, except the append modes (“ a”,
“a+”,“ab”,“ab+"), set the file position
indicator to the beginning of the file. The
append modes set the file position indicator to
the end-of-file.

f open() returns a pointer to a FI LEif it
successfully opens the specified file for the
specified operation. f open() returns a null
pointer (NULL) when it is not successful.

stdio.h: fclose()

Learn C under Windows 95/NT 489

Selections from the Standard Library

fprintf()
Purpose

Synopsis

Remarks

Return value

See also

fputc()

Send formatted text to a stream.

#i ncl ude <stdi o. h>
int fprintf(FILE *stream
const char *format, ...);

The f pri nt f () function writes formatted text
to stream and advances the file position
indicator. Its operation is the same as

pri nt f () with the addition of the stream
argument. Refer to the description of
printf().

f printf () returns the number of arguments
written or a negative number if an error occurs.

stdio.h: printf(), sprintf(),
viprintf(), vprintf(),
vsprintf()

Purpose

Synopsis

Remarks

Return value

See also

fputs()

Write a character to a stream.

#i ncl ude <stdi o. h>
int fputc(int ¢, FILE *stream;

The f put c() function writes character ¢ to
stream and advances stream’s file position
indicator. Although the c argumentisani nt, it
is converted to a char before being written to
stream. f put c() is written as a function, not as
a macro.

f put c() returns the character written if it is
successful, and returns EOF if it fails.

stdio.h: putc(), putchar()

Purpose

Write a character array to a stream.

490 Learn C under Windows 95/NT

Selections from the Standard Library

Synopsis

Remarks

Return value

See also

fread()

#i ncl ude <stdio. h>
int fputs(const char *s,
FI LE *strean);

The f put s() function writes the array pointed
to by s to stream and advances the file position
indicator. The function writes all charactersin s
up to, but not including, the terminating null
character. Unlike put s(), f put s() does not
terminate the output of s with a newline
“\n").

f put s() returns a zero if successful, and
returns a nonzero value when it fails.

stdio.h: puts()

Purpose

Synopsis

Remarks

Return value

See also

free()

Read binary data from a stream.

#i ncl ude <stdi o. h>

size_t fread(void *ptr, size_t size,
size_t nnenb,
FILE *strean);

The f r ead() function reads a block of binary
or text data and updates the file position
indicator. The data read from stream are stored
in the array pointed to by pt r. The si ze and
nenb arguments describe the size of each item
and the number of items to read, respectively.
The f r ead() function reads nnenb items
unless it reaches the end-of-file or a read error
occurs.

fread() returns the number of items read
successfully.

stdio.h: fgets(), fwite()

Purpose

Release previously allocated memory to heap.

Learn C under Windows 95/NT 491

Selections from the Standard Library

Synopsis

Remarks

See also

freopen()

#i ncl ude <stdlib. h>
void free(void *ptr);

The f r ee() function releases a previously
allocated memory block, pointed to by pt r, to
the heap. The pt r argument should hold an
address returned by the memory allocation
functions cal | oc(), mal | oc(), or

real | oc(). Once the memory block pt r
points to has been released, it is no longer valid.
The pt r variable should not be used to
reference memory again until it is assigned a
value from the memory allocation functions.

stdlib.h: calloc(), malloc(),
real | oc()
Refer to the example for cal | oc()

Purpose

Synopsis

Remarks

Return value

See also

fscanf()

Redirect a stream to another file.

#i ncl ude <stdi o. h>

FILE *freopen(const char *fil enane,
const char *node,
FILE *strean);

The f r eopen() function changes the file
stream associated with another file. The
function first closes the file the stream is
associated with, and opens the new file,
filename, with the specified mode, using the
same stream.

f open() returns the value of stream, if it is
successful. If f open() fails it returns a null
pointer (NULL).

stdio.h: fopen()

Purpose

Read formatted text from a stream.

492 Learn C under Windows 95/NT

Selections from the Standard Library

Synopsis

Remarks

Return value

See also

fseek()

#i ncl ude <stdi o. h>
int fscanf(FILE *stream
const char *format, ...);

The f scanf () function reads programmer-
defined, formatted text from stream. The
function operates identically to the scanf ()
function with the addition of the stream
argument indicating the stream to read from.
Refer to the scanf () function description.

f scanf () returns the number of items read. If
there is an error in reading data that is
inconsistent with the format string, f scanf ()
sets er r no to a nonzero value. f scanf ()
returns ECOF if it reaches the end-of-file.

errno. h
stdio.h: scanf()

Purpose

Synopsis

Remarks

Move the file position indicator.

#i ncl ude <stdio. h>
I nt fseek(FILE *stream |ong offset,
i nt whence);

The f seek() function moves the file position
indicator to allow random access to a file.

The function moves the file position indicator
either absolutely or relatively. The whence
argument can be one of three values defined in
stdi 0. h: SEEK SET, SEEK CUR
SEEK_END

The SEEK_SET value causes the file position
indicator to be set offset bytes from the
beginning of the file. In this case offset must be
equal or greater than zero.

The SEEK_CURvalue causes the file position
indicator to be set offset bytes from its current
position. The offset argument can be a negative
or positive value.

Learn C under Windows 95/NT 493

Selections from the Standard Library

Return value

See also

fsetpos()

The SEEK_ENDvalue causes the file position
indicator to be set offset bytes from the end of
the file. The offset argument must be equal or
less than zero.

The f seek() function undoes the last

unget c() call and clears the end-of-file status
of stream.

f seek() returns zero if it is successful and
returns a nonzero value if it fails.

stdi o. h: fgetpos(),
ftell ()

fset pos(),

Purpose

Synopsis

Remarks

Return value

Set the file position indicator.

#i ncl ude <stdi o. h>
int fsetpos(FILE *stream
const fpos_t *pos);

The f set pos() function sets the file position
indicator for stream using the value pointed to
by pos. The function is used in conjunction
with f get pos() when dealing with files
having sizes greater than what can be
represented by the long int argument used by
fseek().

f set pos() undoes the previous call to

unget ¢() and clears the end-of-file status.

f set pos() returns zero if it is successful and
returns a nonzero value if it fails.

See also stdio.h: fgetpos(), fseek(),
ftell()

ftell()

Purpose Return the current file position indicator value.

Synopsis #i ncl ude <stdio. h>

long int ftell (FILE *strean);

494 Learn C under Windows 95/NT

Selections from the Standard Library

Remarks

Return value

See also

fwrite()

Theftel | () function returns the current
value of stream’s file position indicator. It is
used in conjunction with f seek() to provide
random access to a file.

The function will not work correctly when it is
given a stream associated to a console file, such
as st di n, st dout, or st der r, where a file
indicator position is not applicable. Also,
ftell () cannot handle files with sizes larger
than what can be represented withal ong i nt.
In such a case, use the f get pos() and

f set pos() functions.

ftell (), when successful, returns the current
file position indicator value. If it fails, f t el | ()
returns - 1L and sets the global variable er r no
to a nonzero value.

errno. h
stdio. h: fgetpos()

Purpose

Synopsis

Remarks

Return value

See also

Write binary data to a stream.

#i ncl ude <stdi o. h>

size t fwite(const void *ptr,
size_t size, size_t nnenb,
FILE *strean);

The f wri t e() function writes nmenb items of
size bytes each to stream. The items are
contained in the array pointed to by pt r. After
writing the array to stream, f wri t e()
advances the file position indicator accordingly.

fwrite() returns the number of elements
successfully written to stream.

stdio.h: fread()

Learn C under Windows 95/NT 495

Selections from the Standard Library

getc()
Purpose Read the next character from a stream.
Synopsis #i ncl ude <stdio. h>

int getc(FILE *strean);
Remarks

Return value

See also

getchar()

The get ¢() function reads the next character
from stream, advances the file position
indicator, and returns the character as an i nt
value. Unlike the f get ¢() function, get c() is
implemented as a macro.

get c() returns the next character from the
stream or returns ECF if the end-of-file has been
reached or a read error has occurred.

stdio.h: fgetc(), fputc(),
getchar (), putchar()

Purpose

Synopsis
Remarks

Return value

Get the next character from stdin.

#i ncl ude <stdi o. h>

i nt getchar(void);

The get char () function reads a character
from the st di n stream.

get char () returns the value of the next
character from st di nas ani nt if itis
successful. get char () returns EOF if it reaches
an end-of-file or an error occurs.

put char ()

See also stdio.h: fgetc(), getc(),
gets()
Purpose Read a character array from stdin.
Synopsis #i ncl ude <stdio. h>

char *gets(char *s);
Remarks

The get s() function reads characters from
st di nand stores them sequentially in the

496 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

malloc()

character array pointed to by s. Characters are
read until either a new i ne or an end-of-file is
reached.

Unlike fget s(), the programmer cannot
specify a limit on the number of characters to
read. Also, get s() reads and ignores the

new i ne character (‘ \ n’) so that it can
advance the file position indicator to the next
line. The new i ne character is not stored s.
Like f get s(), get s() terminates the
character string with a null character.

If an end-of-file is reached before any characters
are read, get s() returns a null pointer (NULL)
without affecting the character array ats. If a
read error occurs, the contents of S may be
corrupted.

get s() returns s if it is successful and returns
a null pointer if it fails.

stdio.h: fgets()

Purpose

Synopsis
Remarks

Return value

See also

memchr()

Allocate a block of heap memory.

#i ncl ude <stdlib. h>
void *mal |l oc(size t size);

The mal | oc() function allocates a block of
contiguous heap memory-size bytes.

mal | oc() returns a pointer to the first byte of
the allocated block if it is successful and returns
a null pointer if it fails.

stdlib.h: <calloc(), free(),
real | oc()

Purpose

Search for an occurrence of a character.

Learn C under Windows 95/NT 497

Selections from the Standard Library

Synopsis

Remarks

Return value

See also

memcmp()

#i ncl ude <string. h>
voi d *nmenchr(const void *s,
size_t n);

int c,

The menthr () function looks for the first
occurrence of ¢ in the first n characters of the
memory area pointed to by s.

menchr () returns a pointer to the found
character, or a null pointer (NULL) if ¢ cannot be
found.

string.h: strchr(), strrchr()

Purpose

Synopsis

Remarks

Return value

See also

memcpy()

Compare two blocks of memory.

#i ncl ude <string. h>
I nt mencnp(const void *sl

const void *s2, size t n);

The mencnp() function compares the first n
characters of s1 to S2 one character at a time.

mencnp() returns a zero if all n characters
pointed to by s1 and s2 are equal.

mencnp() returns a negative value if the first
nonmatching character pointed to by s1 is less
than the character pointed to by s2.

mencnp() returns a positive value if the first
nonmatching character pointed to by s1 is
greater than the character pointed to by s2.

string.h: strcnp(), strncnp()

Purpose

Synopsis

Copy a contiguous memory block.

#i ncl ude <string. h>

voi d *nmenctpy(const void *dest,
const void *source,
size_t n);

498 Learn C under Windows 95/NT

Selections from the Standard Library

Remarks

The mencpy() function copies the first n
characters from the item pointed to by source to
the item pointed to by dest . The behavior of
mencpy() is undefined if the areas pointed to
by dest and source overlap. The memmove()
function reliably copies overlapping memory
blocks.

Return valuememcpy() returns the value of dest.

See also

memmove()

Purpose

Synopsis

Remarks

Return value

See also

perror()

string.h: memove(), strcpy(),

strncpy()
Refer to the example for nenthr ().

Copy an overlapping contiguous memory
block.

#i ncl ude <string. h>
voi d *nmenmove(voi d *dest,
const void *source, size_t n);

The menmove() function copies the first n
characters of the item pointed to by sour ce to
the item pointed to by dest.

Unlike nentpy(), the mermove() function
safely copies overlapping memory blocks.

menmmove() returns the value of dest.

string. h: nmencpy(), nenset(),
strcpy(), strncpy()

Purpose

Synopsis

Remarks

Output an error message to st derr.

#i ncl ude <stdi o. h>
voi d perror(const char *s);

The per r or () function outputs the character
array pointed to by s and the value of the
global variable er r noto st derr.

Learn C under Windows 95/NT 499

Selections from the Standard Library

See also

printf()

abort. h: abort()
errno. h

Purpose

Synopsis

Remarks

Output formatted text.

#i ncl ude <stdi o. h>
int printf(const char *format,

)

The pri nt f () function outputs formatted text.
The function takes one or more arguments, the
first being format, a character array pointer. The
optional arguments following format are items
(integers, characters, floating point values, etc.)
that are to be converted to character strings and
inserted into the output of format at specified
points.

The pri nt f () function sends its output to

st dout.

The format character array contains normal text
and conversion specifications. Conversion
specifications must have matching arguments
in the same order in which they occur in
format.

A conversion specification describes the format
its associated argument is to be converted to. A
specification starts with a percent sign (%,
optional flag characters, an optional minimum
width, an optional precision width, and the
necessary, terminating conversion type.
Doubling the percent sign (%84 results in the
output of a single %

An optional flag character modifies the
formatting of the output; it can be left or right
justified, and numerical values can be padded
with zeroes or output in alternate forms. More
than one optional flag character can be used in
a conversion specification. Table 8 describes the
flag characters.

500 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

The optional minimum width is a decimal digit
string. If the converted value has more
characters that the minimum width, it is
expanded as required. If the converted value
has fewer characters than the minimum width,
it is, by default, right justified (padded on the
left). If the - f | ag character is used, the
converted value is left justified (padded on the
right).

The optional precision width is a period
character (.) followed by decimal digit string.
For floating point values, the precision width
specifies the number of digits to print after the
decimal point. For integer values, the precision
width functions identically to, and cancels, the
minimum width specification. When used with
a character array, the precision width indicates
the maximum width of the output.

A minimum width and a precision width can
also be specified with an asterisk (*) instead of
a decimal digit string. An asterisk indicates that
there is a matching argument, preceding the
conversion argument, specifying the minimum
width or precision width.

The terminating character, the conversion type,
specifies the conversion applied to the
conversion specification’s matching argument.
Table 9 describes the conversion type
characters.

A conversion type can be prefixed withanh, I,
or L. Using h indicates that the corresponding
argument is a shorti nt or unsi gned short

i nt.Thel indicates the argumentisal ong

i nt orunsi gned | ong i nt. The L indicates
the argumentisa | ong doubl e

printf(),likefprintf(),sprintf(),
viprintf(),andvprintf(), returns the
number of arguments that were successfully
output. pri nt f () returns a negative value if it
fails.

Learn C under Windows 95/NT 501

Selections from the Standard Library

See also stdio.h: fprintf(), sprintf(),
vprintf(), vprintf()
putc()
Purpose Write a character to a stream.
Synopsis #i ncl ude <stdio. h>
int putc(int ¢, FILE *strean);
Remarks The put ¢() function outputs ¢ to stream and

Return value

See also

putchar()

advances stream’s file position indicator.
The put c¢() works identically to the f put c()
function, except that it is written as a macro.

put c() returns the character written when
successful and return EOF when it fails.

stdio.h: fputc(), putchar()

Purpose

Synopsis
Remarks

Return value

Write a character to st dout .

#i ncl ude <stdi o. h>

int putchar(int c);

The put char () function writes character ¢ to
st dout.

put char () returns c if it is successful and
returns ECF if it fails.

See also stdio.h: fputc(), putc()
puts()
Purpose Write a character string to st dout.
Synopsis #i ncl ude <stdio. h>

i nt puts(const char *s);
Remarks

The put s() function writes a character string
array to st dout, stopping at, but not including,

502 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

qsort()

the terminating null character. The function
also appends a newline (‘ \ n’) to the output.

put s() returns zero if successful and returns a
nonzero value if it fails.

stdio.h: fputs()

Purpose

Synopsis

Remarks

See also

Sort an array.

#i ncl ude <stdlib. h>

voi d gsort(voi d *base, size_t nnenb,
size_t size, int (*conpare)
(const void *, const void *))

The gsort () function sorts an array using the
quicksort algorithm. It sorts the array without
displacing it; the array occupies the same
memory it had before the call togsort ().

The base argument is a pointer to the base of
the array to be sorted.

The nmenb argument specifies the number of
array elements to sort.

The size argument specifies the size of an array
element.

The compare argument is a pointer to a pro
grammer-supplied compare function. The
function takes two pointers to different array
elements and compares them based on the key.
If the two elements are equal, compare must
return a zero. The compare function must
return a negative number if the first element is
less than the second. Likewise, the function
must return a positive number if the first
argument is greater than the second.

stdlib.h: Dbsearch()

Learn C under Windows 95/NT 503

Selections from the Standard Library

rand()
Purpose Generate a pseudo-random integer value.
Synopsis #i ncl ude <stdlib. h>
int rand(void);
Remarks

Return value

A sequence of calls to ther and() function
generates and returns a sequence of
pseudo-random integer values from 0 to
RAND MAX The RAND MAXmacro is defined in
stdlib.h

By seeding the random number generator
using sr and(), different random number
sequences can be generated with r and().

r and() returns a pseudo-random integer value
between 0 and RAND NMAX

See also stdlib.h: srand()
remove()
Purpose Delete a file.
Synopsis #i ncl ude <stdio. h>
i nt renmove(const char *fil enane);
Remarks The r enove() function deletes the named file

Return value

See also

renamel()

specified by filename.

r enove() returns 0 if the file deletion is
successful, and returns a nonzero value if it
fails.

stdio. h: fopen(), rename()

Purpose

Synopsis

Change the name of a file.

#i ncl ude <stdi o. h>
i nt renanme(const char *old,
const char *new);

504 Learn C under Windows 95/NT

Selections from the Standard Library

Remarks

Return value

See also

rewind()

The r enanme() function changes the name of a
file, specified by ol d to the name specified by
new

r ename() returns a nonzero if it fails and
returns zero if successful.

stdio.h: freopen(), renove()

Purpose
Synopsis

Remarks

See also

scanf()

Reset the file position indicator to the
beginning of the file.

#i ncl ude <stdi o. h>
void rew nd(FI LE *stream;

The r ewi nd() function sets the file indicator
position of stream such that the next write or
read operation will be from the beginning of
the file. It also undoes any previous call to
unget c() and clears stream’s end-of-file and
error status.

stdio. h: fseek(), fsetpos()

Purpose

Synopsis

Remarks

Read formatted text.

#i ncl ude <stdio. h>
I nt scanf(const char *format, ...);

The scanf () function reads text and converts
the text read to programmer specified types.
The format argument is a character array
containing normal text, white space (space, tab,
newline), and conversion specifications. The
normal text specifies literal characters that must
be matched in the input stream. A white space
character indicates that white space characters
are skipped until a non-white-space character is
reached. The conversion specifications indicate
what characters in the input stream are to be

Learn C under Windows 95/NT 505

Selections from the Standard Library

Return value

See also

converted and stored.

The conversion specifications must have
matching arguments in the order they appear
in format. Because scanf () stores data in
memory, the matching conversion specification
arguments must be pointers to objects of the
relevant types.

A conversion specification consists of the
percent sign (%) prefix, followed by an optional
maximum width or assignment suppression,
and ending with a conversion type. A percent
sign can be skipped by doubling it in format;
9%signifies a single %in the input stream.

An optional width is a decimal number
specifying the maximum width of an input
field. scanf () will not read more characters
for a conversion than is specified by the width.
An optional assignment suppression character
(*) can be used to skip an item by reading it but
not assigning it. A conversion specification
with assignment suppression must not have a
corresponding argument.

The last character, the conversion type, specifies
the kind of conversion requested. Table 10
describes the conversion type characters.

The conversion type may be preceded by u, U,
|, or L. When used with integer conversion
types, u and Uspecify unsi gned integers. The
| and L, when used with integer conversions,
signify | ong integers. When used with floating
point conversions, | signifies a doubl eand L
signifiesa | ong doubl e

scanf () returns the number of items
successfully read and returns ECOF if a
conversion type does not match its argument or
an end-of-file is reached.

stdio.h: printf(), sscanf()

506 Learn C under Windows 95/NT

Selections from the Standard Library

setbuf()

Purpose

Synopsis

Remarks

See also

setvbuf()
Purpose

Synopsis

Remarks

Change the bulffer size of a stream.

#i ncl ude <stdi o. h>
voi d set buf (FILE *stream
char *buf);

The set buf () function allows the
programmer to set the buffer size for stream. It
should be called after stream is opened, but
before it is read from or written to.

The function makes the array pointed to by buf
the buffer used by stream. The buf argument
can either be a null pointer or point to an array
of size BUFSI Z defined in st di 0. h.

If buf is a null pointer, the stream becomes
unbuffered.

stdio. h: setvbuf()
stdlib.h: malloc()

Change the buffering scheme for a stream.

#i ncl ude <stdi o. h>
i nt setvbuf (FILE *stream char *buf,
i nt node, size_t size);

The set vbuf () allows the manipulation of the
buffering scheme as well as the size of the
buffer used by stream. The function should be
called after the stream is opened but before it is
written to or read from.

The buf argument is a pointer to a character
array. The size argument indicates the size of
the character array pointed to by buf . The most
efficient buffer size is a multiple of BUFSI Z
defined in st di 0. h.

If buf is a null pointer, then the operating
system creates its own buffer of size bytes.

The mode argument specifies the buffering

Learn C under Windows 95/NT 507

Selections from the Standard Library

Return value

See also

sprintf()

scheme to be used with stream nodecan
have one of three values defined in st di 0. h:
_| OFBE _| OLBF and _| ONBF
_| OFBF specifies that stream be
buffered.
_| OLBF specifies that stream be line
buffered.
_| ONBF specifies that stream be
unbuffered.

set vbuf () returns zero if it is successful and
returns a nonzero value if it fails.

stdio.h: setbuf()
stdlib.h: malloc()

Purpose

Synopsis

Remarks

Return value

See also

srand()

Format a character string array.

#i ncl ude <stdi o. h>
int sprintf(char *s,
const char *format, ...);

The spri nt f () function works identically to
pri nt f () with the addition of the s parameter.
Output is stored in the character array pointed
to by s instead of being sent to st dout. The
function terminates the output character string
with a null character.

For information on how to use spri nt f ()
refer to the description of pri ntf ().

spri nt f () returns the number of characters
assigned to s, not including the null character.

stdio.h: fprintf(), printf()

Purpose

Synopsis

Set the pseudo-random number generator seed.

#i ncl ude <stdlib. h>
voi d srand(unsi gned int seed);

508 Learn C under Windows 95/NT

Selections from the Standard Library

Remarks

See also

sscanf()

The sr and() function sets the seed for the
pseudo-random number generator to seed.
Each seed value produces the same sequence of
random numbers when it is used.

stdlib.h: rand()

Purpose

Synopsis

Remarks

Return value

See also

strcat()

Read formatted text into a character string.

#i ncl ude <stdi o. h>
i nt sscanf(char *s,
const char *format, ...);

The sscanf () operates identically to scanf ()
but reads its input from the character array
pointed to by s instead of st di n. The character
array pointed to s must be null terminated.
Refer to the description of scanf () for more
information.

scanf () returns the number of items
successfully read and converted and returns
EOF if it reaches the end of the string or a
conversion specification does not match its
argument.

stdio.h: fscanf(), scanf()

Purpose

Synopsis

Remarks

Concatenate two character arrays.

#i ncl ude <string. h>
char *strcat(char *dest,
const char *source);

The st r cat () function appends a copy of the
character array pointed to by source to the end
of the character array pointed to by dest . The
dest and sour ce arguments must both point
to null terminated character arrays.

Learn C under Windows 95/NT 509

Selections from the Standard Library

Return value

See also

strchr()

strcat () null terminates the resulting
character array.

st rcat () returns the value of dest .

string.h: strncat()

Purpose

Synopsis

Remarks

Return value

See also

stremp()

Search for an occurrence of a character.

#i ncl ude <string. h>

char *strchr(const char *s, int c);

The st r chr () function searches for the first
occurrence of the character ¢ in the character
array pointed to by s. The s argument must
pointtoanul | term nat edcharacter array.

st rchr () returns a pointer to the successfully
located character. If it fails, st r chr () returns a
null pointer (NULL).

string.h: nmenchr(), strrchr()

Purpose

Synopsis

Remarks

Return value

See also

Compare two character arrays.

#i ncl ude <string. h>
int strcnp(const char *sl
const char *s2);

The st r cnp() function compares the character
array pointed to by s1 to the character array
pointed to by s2. Both s1 and $2 must point to
null terminated character arrays.

strcnp() returns azeroif s1 and S2 are equal,
a negative value if s1 is less than s2, and a
positive value if s1 is greater than s2.

string.h: nencnp(),
strncnp()

strcoll (),

510 Learn C under Windows 95/NT

Selections from the Standard Library

strepy()

Purpose

Synopsis

Remarks

Return value

See also

strcoll()

Copy one character array to another.

#i ncl ude <string. h>
char *strcpy(char *dest,
const char *source);

The st r cpy() function copies the character
array pointed to by sour ce to the character
array pointed to dest . The source argument
must point to a null terminated character array.
The resulting character array at dest is null
terminated as well.

If the arrays pointed to by dest and sour ce
overlap, the operation of st r cpy() is
undefined.

st rcpy() returns the value of dest .

string.h: nencpy(), nmenmove(),
strncpy()

Purpose

Synopsis

Remarks

Return value

Compare two character arrays according to
locale.

#i ncl ude <string. h>
int strcoll (const char *s1,
const char *s2);

The st rcol | () function compares two
character arrays based on the collating
sequence set by the | ocal e. hheader file.
The MetroWerks C implementation of
strcol | () compares two character arrays
using st r cnp(). Itis included in the string
library to conform to the ANSI C Standard
Library specification.

strcol | () returns zeroif slisequaltos2, a
negative value if S1 is less than s2, and a
positive value if s1 is greater than s2.

Learn C under Windows 95/NT 511

Selections from the Standard Library

See also

strcspn()

| ocal e. h
string. h: nmencnp(), strcnp(),
strncnp()

Purpose

Synopsis

Remarks

Return value

See also

strerror()

Count characters in one character array that are
not in another.

#i ncl ude <string. h>
size_ t strcspn(const char *sl
const char *s2);

The st r cspn() function counts the initial
length of the character array pointed to by s1
that does not contain characters in the character
array pointed to by s2. The function starts
counting characters at the beginning of s1 and
continues counting until a character in s2
matches a character in s 1.

Both s1 and s2 must point to null terminated
character arrays.

st rcspn() returns the length of characters in
s1 that does not match any characters in s2.

string. h: strpbrk(), strspn()

Purpose

Synopsis

Remarks

Return an error message in a character array.

#i ncl ude <string. h>
char *strerror(int errnum,;

The st r er r or () function returns a pointer to
a null terminated character array that contains
an error message. The er r numargument has no
effect on the message returned by
strerror();itisincluded to conform to the
ANSI C Standard Library specification.

512 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

strlen()

strerror () returns a pointer to a null
terminated character array containing an error
message.

Purpose

Synopsis

Remarks

Return value

strncat()

Compute the length of a character array.

#i ncl ude <string. h>
size_t strlen(const char *s);

The st rl en() function computes the number
of characters in a null terminated character
array pointed to by s. The null character (' \ 0")
is not added to the character count.

strl en() returns the number of characters in
a character array not including the terminating
null character.

Purpose

Synopsis

Remarks

Return value

Append a specified number of characters to a
character array.

#i ncl ude <string. h>
char *strncat (char *dest,
const char *source, size_t n);

The st r ncat () function appends a maximum
of n characters from the character array pointed
to by source to the character array pointed to by
dest. The dest argument must point to a null
terminated character array. The source
argument does not necessarily have to point to
a null terminated character array.

If a null character is reached in source before n
characters have been appended, st r ncat ()
stops.

When done, st r ncat () terminates dest with
a null character (‘ \ 0’).

st rncat () returns the value of dest.

Learn C under Windows 95/NT 513

Selections from the Standard Library

See also

string.h: strcat()

strncmp()
Purpose

Synopsis

Remarks

Return value

See also

strncpy()

Compare a specified number of characters.

#i ncl ude <string. h>
I nt strncnp(const char *sl
const char *s2, size_t n);

The st rncnp() function compares n
characters of the character array pointed to by
s1 to n characters of the character array
pointed to by s2. Both s1 and s2 do not
necessarily have to be null terminated character
arrays.

The function stops prematurely if it reaches a
null character before n characters have been
compared.

st rncnp() returns a zero if the firstn
characters of s1 and S2 are equal, a negative
value if s1 is less than s2, and a positive value
if s1 is greater than s2.

string.h: nmencnp(), strcnp()

Purpose

Synopsis

Remarks

Copy a specified number of characters.

#i ncl ude <string. h>
char *strncpy(char *dest,
const char *source, size_t n);

The st r ncpy () function copies a maximum of
n characters from the character array pointed to
by sour ce to the character array pointed to by
dest. Neither dest nor sour ce must
necessarily point to null terminated character
arrays. Also, dest and sour ce must not
overlap.

If a null character (‘ \ 0’) is reached in sour ce

514 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

strpbrk()

before n characters have been copied,
strncpy() continues padding dest with null
characters until n characters have been added
to dest.

The function does not terminate dest with a
null character if n characters are copied from
source before reaching a null character.

st rncpy() returns the value of dest .

string. h: nmencpy(), nmenmove(),
strcpy()

Purpose

Synopsis

Remarks

Return value

See also

strrchr()

Look for the first occurrence of an array of
characters in another.

#i ncl ude <string. h>
char *strpbrk(const char *sl
const char *s2);

The st r pbr k() function searches the character
array pointed to by s1 for the first occurrence
of a character in the character array pointed to
by s2.

Both s1 and s2 must point to null terminated
character arrays.

st r pbr k() returns a pointer to the first
character in s1 that matches any character in
s2, and returns a null pointer (NULL) if no
match was found.

string. h: strcspn()

Purpose

Synopsis

Search for the last occurrence of a character.

#i ncl ude <string. h>
char *strrchr(const char *s, int c);

Learn C under Windows 95/NT 515

Selections from the Standard Library

Remarks

Return value

See also

strspn()

The st rrchr () function searches for the last
occurrence of € in the character array pointed
to by s. The s argument must point to a null
terminated character array.

strrchr () returns a pointer to the character
found or returns a null pointer (NULL) if it fails.

string.h: nenchr(), strchr()

Purpose

Synopsis

Remarks

Return value

Count characters in one character array that are
in another.

#i ncl ude <string. h>
size_t strspn(const char *sl,
const char *s2);

The st r spn() function counts the initial
number of characters in the character array
pointed to by s1 that contains characters in the
character array pointed to by s2. The function
starts counting characters at the beginning of
s1 and continues counting until it finds a
character that is not in s2.

Both s1 and s2 must point to null terminated
character arrays.

st r cspn() returns the number of characters in
s1 that matches the characters in s2.

strscpn()

See also string. h: strpbrk(),
strstr()
Purpose Search for a character array within another.
Synopsis #i ncl ude <string. h>
char *strstr(const char *sli,
const char *s2);
Remarks

The st r st r () function searches the character
array pointed to by s1 for the first occurrence

516 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

strtok()

of the character array pointed to by s2.
Both s1 and s2 must point to null terminated
(*\ 0") character arrays.

strstr () returns a pointer to the first
occurrence of S2 in S1 and returns a null
pointer (NULL) if S2 cannot be found.

string.h: nenchr(), strchr()

Purpose

Synopsis

Remarks

Extract tokens within a character array.

#i ncl ude <string. h>
char *strtok(char *str,
const char *sep);

The st rt ok() function tokenizes the character
array pointed to by st r. The sep argument
points to a character array containing token
separator characters. The tokens in st r are
extracted by successive calls to st rt ok().

The first call to st rt ok() causes it to search for
the first character in st r that does not occur in
sep. The function returns a pointer to the
beginning of this first token. If no such
character can be found, st rt ok() returns a
null pointer (NULL).

If, on the first call, st r t ok() finds a token, it
searches for the next token.

The function searches by skipping characters in
the token in st r until a character in sep is
found. This character is overwritten with a null
character to terminate the token string, thereby
modifying the character array contents. The
function also keeps its own pointer to the
character after the null character for the next
token. Subsequent token searches continue in
the same manner from the internal pointer.
Subsequent calls tost rt ok() withaNULLstr
argument cause it to return pointers to

Learn C under Windows 95/NT 517

Selections from the Standard Library

Return value

subsequent tokens in the original st r character
array. If no tokens exist, st r t ok() returns a
null pointer. The sep argument can be different
for each call to st rt ok().

Both st r and sep must be null terminated
character arrays.

When first called st rt ok() returns a pointer
to the first token in st r or returns a null pointer
if no token can be found.

Subsequent calls tost rt ok() withaNULLstr
argument causes St rt ok() to return a pointer
to the next token or return a null pointer (NULL)
when no more tokens exist.

st rt ok() modifies the character array pointed
toby str.

tmpfile()
Purpose

Synopsis

Remarks

Return value

See also

tmpnam()

Open a temporary file.

#i ncl ude <stdi o. h>
FILE *tnpfil e(void);

The t npfi | e() function creates and opens a
binary file that is automatically removed when
it is closed or when the program terminates.

t npfil e() returns a pointer to the FI LE
variable of the temporary file if it is successful.
If it fails, t npfi | e() returns a null pointer
(NULL).

stdio. h: fopen(), tnpnam()

Purpose

Synopsis

Remarks

Create a unique temporary filename.

#i ncl ude <stdio. h>
char *tnpnan({char *s);

The t npnan() functions creates a valid file
name character string that will not conflict with

518 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

tolower(), toupper()

Purpose

Synopsis

Remarks

Return value

any existing filename. A program can call the
function up to TMP_MAXtimes before
exhausting the unique filenames t mpnant()
generates. The TMP_MAXmacro is defined in
stdio. h

The s argument can either be a null pointer or
pointer to a character array. The character array
must be at least L_t npnamcharacters long. The
new temporary filename is placed in this array.
The L_t npnammacro is defined in st di 0. h.
If s is NULL, t mpnan() returns with a pointer
to an internal static object that can be modified
by the calling program.

Unlike t mpf i | e(), a file created using a
filename generated by the t npnan{() function
is not automatically removed when it is closed.

t npnan() returns a pointer to a character array
containing a unique, nonconflicting filename. If
s is a null pointer (NULL), the pointer refers to
an internal static object. If s points to a
character array, t npnan{() returns the same
pointer.

stdio.h: fopen(), tnpfile()

Character conversion macros.

#i ncl ude <ctype. h>
int tolower(int c);
int toupper(int c);

The t ol ower () macro converts an uppercase
letter to its lowercase equivalent. Non-
uppercase characters are returned unchanged.
The t oupper () macro converts a lowercase
letter to its uppercase equivalent and returns all
other characters unchanged.

t ol ower () returns the lowercase equivalent of
uppercase letters and returns all other

Learn C under Windows 95/NT 519

Selections from the Standard Library

See also

ungetc()

characters unchanged.

t oupper () returns the uppercase equivalent
of a lowercase letter and returns all other
characters unchanged.

ctype. h: isal pha(),
i supper ()

i sl ower (),

Purpose

Synopsis

Remarks

Return value

See also

viprintf()

Place a character back into a stream.

#i ncl ude <stdi o. h>

int ungetc(int c, FILE *strean);

The unget ¢ () function places character c back
into stream’s buffer. The next read operation
will read the character placed by unget c().
Only one character can be pushed back into a
buffer until a read operation is performed.

The function’s effect is ignored when an
fseek(),fsetpos(),orrew nd() operation
is performed.

unget c() returns c if it is successful and
returns ECF if it fails.

stdio.c: fseek(),
rew nd()

fset pos(),

Purpose

Synopsis

Remarks

Write formatted output to a stream.

#i ncl ude <stdi 0. h>

int viprintf(FILE *stream
const char *format,
va_list arg);

The vf pri nt f () function works identically to
the fprintf () function. Instead of the
variable list of arguments that can be passed to
fprintf(),viprintf() acceptsits
arguments in the array of typeva_| i st

520 Learn C under Windows 95/NT

Selections from the Standard Library

Return value

See also

vprintf()

processed by the va_st art () macro from the
st dar g. hheader file.

vfprint f () returns the number of characters
written or ECF if it failed.

stdio.h: fprintf(), printf()
stdarg. h

Purpose

Synopsis

Remarks

Return value

See also

vsprintf()

Write formatted output to st dout.

#i ncl ude <stdi o. h>
int vprintf(const char *format,
va_list arg);

The vpri nt f () function works identically to
the pri nt f () function. Instead of the variable
list of arguments that can be passed to
printf(),vprintf() acceptsits arguments
in the array of type va_l i st processed by the
va_st art () macro from the st dar g. hheader
file.

vpri nt f () returns the number of characters

written or a negative value if it failed.

stdio.h: fprintf(), printf()
stdarg. h

Purpose

Synopsis

Remarks

Write formatted output to a string.

#i ncl ude <stdi o. h>

int vsprintf(char *s,
const char *format,
va_list arg);

The vspri nt f () function works identically to
the spri nt f () function. Instead of the
variable list of arguments that can be passed to
sprintf(),vsprintf() acceptsits

Learn C under Windows 95/NT 521

Selections from the Standard Library

Return value

See also

arguments in the array of type va_l i st
processed by the va_st ar t () macro from the
st dar g. hheader file.

vspri nt f () returns the number of characters
written to s or EOF if it failed.

stdio.h: printf(), sprintf()
stdarg. h

522 Learn C under Windows 95/NT

Answers to
Selected Exercises

Chapter 4
1.

i@ Ermors & Warnings [[O]]
@ 1 i Ermors and wamings for "HELLOZ. A"

"W Error

Y “hella? .o

> “
2.
i@ Errors & Warnings M=
@ 1 1 Erors and wamings for "HELLOZ, ClP™ E

EQ Varning : function has no prototvpe

hello? - line 8 i

OLink Error : Indefined symbol: _main in file:
maincrt . o

Learn C under Windows 95/NT 523

Answers to Selected Exercises

3.
i@ Emors & Warnings HE E
@ 3 1} Errors and wamings for "HELLOZ. Ci/P" E

:H.: Error B
hello? o line 9 Hellof).
. declaration syntax error

hello? o line 11 return 0O:
Error . declaration =yntax error
hello? o line 12 1 =
k7| _>I_I
b]
4,
i@ Emors & Warnings HE E
@ 1 i Errors and wamings for "HELLOZ. CiP”
"W Error '

ale hella? = 1 111E' EE

]
Chapter 5
1. a Missing quotes around “ Hel | o, Wor | d”.
b. Missing comma between two variables.
C. =+ should be += (although this will compile with some

older compilers).

524 Learn C under Windows 95/NT

Answers to Selected Exercises

Chapter 6
1.

a.

b.

P e oan o

Missing second parameter to pri nt f (). Note that
this error won’t be caught by the compiler and is
known as a run-time error.

Another run-time error. This time, you are missing the
% in the first argument topri nt f ().

This time, we’ve either got an extra\ or are missing an
n following the \ in the first pri nt f () parameter.
The left- and right-hand sides of the assignment are
switched.

The declaration of anot her | nt follows a
nondeclaration.

70
-6
-1

The i f statement’s expression should be surrounded
by parentheses.

Weincrementi inside the f or loop’s expression, then
decrement it in the body of the loop. This loop will
never end!

The whi | e loop has parentheses but is missing an
expression.

The do statement should follow this format:

do

st at enent

while (expression) ;

Each case in this swi t ch statement contains a text
string, which is illegal. Also, case def aul t should
read def aul t.

The pri nt f () will never get called.

This is probably the most common mistake made by
C programmers. The assignment operator (=) is used

Learn C under Windows 95/NT 525

Answers to Selected Exercises

h.
2.
3.
Chapter 7
1. a.
b.
C.
2.
3.
Chapter 8
1. a.
b.
C.
d.
e.

instead of the logical equality operator (==). Since the
assignment operator is perfectly legal inside an
expression, the compiler won't find this error, an
annoying little error you'll encounter again and again!
Once again, this code will compile, but it likely is not
what you wanted. The third expression in the f or
loop is usually an assignment statement—something
to move i toward its terminating condition. The
expression i * 20 is useless here, since it doesn’t
change anything.

Look in the folder 06. 05 - next Pri nme2
Look in the folder 06. 06 - next Pri ne3

Final value is 25.

Final value is 512. Try changing the f or loop from 2 to
3. Notice that this generates a number too large for a 2-
byte i nt to hold.

Final value is 1024.

Look in the folder 07. 06 - power 2
Look in the folder 07. 07 - nonPri nes

If the char type defaults to si gned (very likely), ¢
can hold values only from —128 to 127. Even if your
char does default to unsi gned, this is dangerous
code. At the very least, use an unsi gned char. Even
better, use ashort, i nt,orl ong.

Use % , %, or %€ to print the value of a f | oat, not %.
The text string “ @” is composed of two characters: * &’
and the terminating zero byte. The variable ¢ is only a
single byte in size. Even if ¢ were 2 bytes long, you
can’t copy a text string this way. Try copying the text
one byte at a time into a variable large enough to hold
the text string and its terminating zero byte.

Once again, this code uses the wrong approach to
copying a text string, and there is not enough memory
allocated to hold the text string and its zero byte.

The #def i ne of kMaxAr r aySi zemust come before

526 Learn C under Windows 95/NT

Answers to Selected Exercises

f.
8.
h.
i.
2.
3.
Chapter 9
1. a.
b.

the first non-#def i ne reference to it.
The following definition creates an array ranging from
c[O] toc[kMaxArraySi ze- 1]:

char c[kMaxArraySi ze];

The reference to c[kMaxAr r aySi ze] is out of
bounds.
The problem occurs in the line:

chPtr++ = 0;

This line assigns the pointer variable cPt r a value of 0
(making it point to location 0 in memory), then
increments it to 1 (making it point to location 1 in
memory). This code will not compile. Here’s a more
likely scenario:

*cPtr++ = 0;

This code sets the char that cPt r points to to 0, then
increments CPt r to point to the next char in the array.
The problem here is with the statement:

C++;

You can’t increment an array name. Even if you could,
if you increment ¢, you no longer have a pointer to the
beginning of the array! A more proper approach is to
declare an extra char pointer, assign ¢ to this char
pointer, then increment the copy of ¢, rather than ¢
itself.

You don’t need to terminate a #def i ne with a
semicolon. This statement defines

“kMaxArraySi ze” to“ 200; ", probably not what we
had in mind.

Look in the folder 08. 08 - di ce2
Look in the folder 08. 09 - wor dCount 2

The semicolon after enpl oyeeNunber is missing.
This code is really pretty useless. If the first character
returned by get char () is‘ \ n’, the ; will get
executed; otherwise, the loop just exits. Try changing

Learn C under Windows 95/NT 527

Answers to Selected Exercises

C.
d.
e.
f.
2.
3.
4.
Chapter 10
1. a.
b.
C.
d.

the == to ! = and see what happens.

This code will work, since the double quotes around
the header file name tell the compiler to search the
local directory in addition to the places it normally
searches for system header files. On the other hand, it
is considered better form to place angle brackets
around a system header file: <st di 0. h>.

The name field is missing its type. As it turns out, this
code will compile, but it might not do what you think
it does. Since the type is missing, the C compiler
assumes that you want an array of i nt's. Even though
it compiles, this is bad form!

Both next and pr ev should be declared as pointers.
There are several problems with this code. First, the
whi | e loop is completely useless. Also, the code
should use * \ 0’ instead of 0 (although that’s really a
question of style). Finally, by the time we get to the
printf (), line points beyond the end of the string!

Look in the folder 09. 06 - di ce2
Look in the folder 09. 07 - cdTr acker 2
Look in the folder 09. 08 - cdTr acker 3

The arguments to f open() appear in reverse order.
Once again, the arguments to f open() are reversed.
In addition, the first parameter to f scanf () contains
a prompt, as if you were calling pri nt f (). Also, the
second parameter to f scanf () is defined as a char,
yet the % format specifier is used, telling f scanf ()
to expect an i nt. This will cause f scanf () to store a
value of size i nt in the space allocated for a char. Not
good!

The | i neis declared as a char pointer instead of as
an array of chars. No memory was allocated for the
string being read in by f scanf (). Also, since |l i neis
a pointer, the & in the f scanf () call shouldn’t be
there.

This code is fine except for one problem. The file is

528 Learn C under Windows 95/NT

Answers to Selected Exercises

Chapter 11
1.

a.

opened for writing, yet we are trying to read from the
file by using f scanf ().

Look in the folder 10. 04 - fi | eReader.
Look in the folder 10. 05 - cdFiler2

In the next-to-last line, the address of myCat is cast to
a struct. Instead, the address should be cast to a
(struct Dog *).

The t ypedef defines FuncPt r to be a pointer to a
function that returns an i nt. MyFunc() is declared to
return a pointer to ani nt, notani nt.

The declaration of Nunber is missing the keyword
uni on. Here’s the corrected declaration:

uni on Nunber myUni on;

The Pl ayer uni onfields must be accessed using u.
Instead of nyPl ayer . nyl nt, refer to

nyPl ayer . u. nyl nt. Instead of myPl ayer . myFl oat,
refer to nyPl ayer . u. nyFl oat.

First off, myFuncPt r is not a function pointer and not
a legal I-value. As is, the declaration just declares a
function named nmyFuncPt r. This declaration fixes
that problem:

int (*nyFuncPtr)(int);

Next, mai n() doesn’t take a single i nt as a
parameter. Besides that, calling mai n() yourself is a
questionable practice. Finally, to call the function
pointed to by nyFuncPt r, use either myFuncPtr () ;
or (*myFuncPtr) () ; instead of *myFuncPtr () ;.
The function st r cnp() returns zero if the strings are
equal. The i f would fail if the strings were the same.
The message passed to pri nt f () is wrong.

The parameters passed to st r cpy() should be
reversed.

No memory was allocated for s. When st r cpy()

Learn C under Windows 95/NT 529

Answers to Selected Exercises

copies the string, it will be writing over unintended
memory.

i. This is a common problem that tons of people,
including battle-scarred veterans, run into. The
function call in the loop is not a function call. Instead,
the address of the function DoSoneSt uf f is
evaluated. Because this address is not assigned to
anything or used in any other way, the result of the
evaluation is discarded. The expression
“ DoSomeSt uf f ; ” is effectively a no-op, making the
entire loop a no-op.

2. Look in the folder 11. 05 - treePrinter

530 Learn C under Windows 95/NT

M Bibliography

1. The C Programming Language, Brian W. Kernighan and
Dennis M. Ritchie, 1988, Prentice Hall, Englewood
Cliffs, NJ.

2. C: A Reference Manual, Fourth Edition, Samuel
Harbison, 1994, Prentice Hall, Englewood Cliffs, NJ.

3. Algorithms in C, Robert Sedgewick, 1990, Addison-
Wesley Publishing Company, Reading, MA.

4, Data Structures and C Programs, Second Edition,
Christopher J. Van Wyk, 1990, Addison-Wesley
Publishing Company, Reading, MA.

5. The Art of Computer Programming, Volume 1:
Fundamental Algorithms, Second Edition, Donald E.
Knuth, 1973, Addison-Wesley Publishing Company,
Reading, MA.

6. Learn C++ on the PC, Dave Mark, 1993, Addison-
Wesley Publishing Company, Reading, MA.

7. The Art of Computer Programming, Volume 3: Sorting
and Searching, Donald E. Knuth, 1973, Addison-Wesley
Publishing Company, Reading, MA.

Learn C under Windows 95/NT 531

Bibliography

532 Learn C under Windows 95/NT

	Table of Contents
	Chapter 1 - Welcome Aboard
	What's in the Package?
	Why Learn C?
	What Should You Know to Get Started?
	What Equipment Will You Need?
	The Lay of the Land
	The Chapters
	Conventions Used in This Book
	Strap Yourself In...

	Chapter 2 - Using CodeWarrior
	Opening a Project
	Compiling a Project
	What's Next?

	Chapter 3 - Programming Basics
	Reasons for Programming
	Programming Languages
	The Programming Process
	Flavors of Object Code
	What's Next?

	Chapter 4 - C Basics: Functions
	C Functions
	ISO C and the Standard Library
	Same Program, Two Functions
	Generating Some Errors
	What's Next?
	Exercises

	Chapter 5 - C Basics: Variables and Operators
	An Introduction to Variables
	Operators
	Operator Order
	Sample Programs
	Sprucing Up Your Code
	What's Next?
	Exercises

	Chapter 6 - Controlling Your Program's Flow
	Flow Control
	Expressions
	Sample Programs
	What's Next?
	Exercises

	Chapter 7 - Pointers and Parameters
	What Is a Pointer?
	Pointer Basics
	Function Parameters
	What Do Parameters Have to Do with Pointers?
	Global Variables and Function Returns
	More Sample Programs
	What's Next?
	Exercises

	Chapter 8 - Variable Data Types
	Other Data Types
	Working with Characters
	Arrays
	Text Strings
	#define
	A Sample Program: wordCount
	What's Next?
	Exercises

	Chapter 9 - Designing Your Own Data Structures
	Using Arrays (Model A)
	Designing Data Structures (Model B)
	Allocating Your Own Memory
	Working with Linked Lists
	What's Next?
	Exercises

	Chapter 10 - Working with Files
	What Is a File?
	Working with Files, Part One
	Working with Files, Part Two
	Working with Files, Part Three
	What's Next?
	Exercises

	Chapter 11 - Advanced Topics
	What Is Typecasting?
	Unions
	Function Recursion
	Binary Trees
	Function Pointers
	Initializers
	The Remaining Operators
	Creating Your Own Types
	Static Variables
	More on Strings
	What's Next?
	Exercises

	Chapter 12 - Where Do You Go from Here?
	The Windows Graphical User Interface
	The Windows API
	Getting Started with Windows Programming
	Go Get 'Em

	Appendix A - Glossary
	Appendix B - Source Code Listings
	Appendix C - C Syntax Summary
	Appendix D - Selections from the Standard Library
	Appendix E - Answers to Selected Exercises
	Appendix F - Bibliography

