
Learn C under
Windows

95/NT®

Dave Mark



Table of Contents

Learn C under Windows 95/NT   1

Table of Contents
1 Welcome Aboard  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .5

What’s in the Package?   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 5
Why Learn C?  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 5
What Should You Know to Get Started?  .   .   .   .   .   .   .   .   .   .   .   . 6
What Equipment Will You Need? .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 7
The Lay of the Land.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 7
The Chapters.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 8
Conventions Used in This Book.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   10
Strap Yourself In . . ..   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   11

2 Using CodeWarrior  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Opening a Project.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   13
Compiling a Project .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   14
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   16

3 Programming Basics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Reasons for Programming  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   17
Programming Languages   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   17
The Programming Process .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   19
Flavors of Object Code    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   26

4 C Basics:  Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
C Functions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   29
ISO C and the Standard Library    .   .   .   .   .   .   .   .   .   .   .   .   .   .   34
Same Program, Two Functions  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   36
Generating Some Errors .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   43
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   46
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   47

5 C Basics:  Variables and Operators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49
An Introduction to Variables .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   49
Operators  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   57



Table of Contents

2   Learn C under Windows 95/NT 

Operator Order.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   66
Sample Programs .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   69
Sprucing Up Your Code  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   82
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   87

6 Controlling Your Program’s Flow.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
Flow Control.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   89
Expressions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   92
Sample Programs .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 121
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 129
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 130

7 Pointers and Parameters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  133
What Is a Pointer?   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 133
Pointer Basics   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 136
Function Parameters   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 145
What Do Parameters Have to Do with Pointers?   .   .   .   .   .   .   . 151
Global Variables and Function Returns   .   .   .   .   .   .   .   .   .   .   . 155
More Sample Programs  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 164
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 174
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 174

8 Variable Data Types .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  177
Other Data Types .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 177
Working with Characters   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 189
Arrays    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 196
Text Strings   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 206
#define  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 214
A Sample Program: wordCount.   .   .   .   .   .   .   .   .   .   .   .   .   .   . 219
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 226
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 227

9 Designing Your Own Data Structures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  231
Using Arrays (Model A) .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 231
Designing Data Structures (Model B)   .   .   .   .   .   .   .   .   .   .   .   . 245
Allocating Your Own Memory  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 257



Table of Contents

Learn C under Windows 95/NT   3

Working with Linked Lists .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 262
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 277
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 278

10 Working with Files .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  281
What Is a File?  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 281
Working with Files, Part One .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 282
Working with Files, Part Two.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 291
Working with Files, Part Three  .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 309
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 323
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 323

11 Advanced Topics.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  325
What Is Typecasting?  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 325
Unions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 330
Function Recursion .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 335
Binary Trees  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 340
Function Pointers .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 349
Initializers .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 351
The Remaining Operators  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 353
Creating Your Own Types  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 357
Static Variables .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 360
More on Strings    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 362
What’s Next?.   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 364
Exercises    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 364

12 Where Do You Go from Here? .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  369
The Windows Graphical User Interface   .   .   .   .   .   .   .   .   .   .   . 369
The Windows API   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 370
Getting Started with Windows Programming.   .   .   .   .   .   .   .   . 372
Go Get ’Em   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   . 373



Table of Contents

4   Learn C under Windows 95/NT 

A Glossary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  375

B Source Code Listings.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  387

C C Syntax Summary .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  479

D Selections from the Standard Library .  .  .  .  .  .  .  .  .  .  .  .  .  .  483

E Answers to Selected Exercises   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  523

F Bibliography .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  531



Learn C under Windows 95/NT 5

1
Welcome Aboard
Welcome! By opening this book, you have taken the first step to-
ward learning the C programming language. As you make your 
way through the book, you’ll learn one of the most popular and 
powerful programming languages of all time. You will be glad you 
took this step. 

Before we start programming, there are a few questions worth ad-
dressing at this point.

What’s in the Package?
Learn C under Win 95/NT  is an electronic book. The book is filled 
with all kinds of interesting facts, figures, and programming exam-
ples,  all designed to teach you how to program in C.

In addition to this electronic book, the Discover Programming  CD-
ROM  contains everything you’ll need to run each of the book’s pro-
gramming examples on your own computer. As you look through 
the disc, you’ll find CodeWarrior, one of the most popular develop-
ment environments, along with each of the programs presented in 
the book, so you don’t have to type in the examples yourself. We’ve 
also included a boatload of cool shareware and commercial software 
demos. Such a deal!

Why Learn C?
There are many reasons for learning C. Perhaps the biggest reason is 
C’s popularity as a programming language. C is probably the hot-
test programming language around. In fact, many of the best-selling 
Windows applications were written in C. If you are just getting 
started in programming, C is a great first programming language. If 
you already know a programming language, such as BASIC or Pas-
cal, you’ll find C a worthy addition to your language set.



Welcome Aboard
What Should You Know to Get Started?

6   Learn C under Windows 95/NT

C is everywhere. Almost every computer made today supports the 
C language. Once you learn C, you’ll be able to create your own pro-
grams for fun and profit. You can use C to create utilities, games, 
and tools that do exactly what you want them to do. You can even 
use C to write the next great spreadsheet, word processor, or utility. 
Who knows? You might even make $80 gazillion in the process!

Whatever your reasons, learning to program in C will pay you divi-
dends the rest of your programming life.

What Should You Know to Get Started?
For the most part, the only prerequisite to using this book is a basic 
knowledge of Windows. Do you know how to double-click on an 
application to start it up? Does the file selection dialog in Figure 1.1 
look familiar? Do you know how to use a word processor like Word-
Perfect or Microsoft Word? If you can use Windows to run programs 
and edit documents, you have everything you need to get started 
learning C.

Figure 1.1 A file selection dialog.

If you know nothing about programming, don’t worry. The first few 
chapters of this book will bring you up to speed. If you have some 
programming experience (or even a lot), you might want to skim 



Welcome Aboard
What Equipment Will You Need?

Learn C under Windows 95/NT 7

the first few chapters, then dig right into the C fundamentals that 
start in Chapter 4.

What Equipment Will You Need?
Although it is possible to learn C just by reading a book, you’ll get 
the most out of this book if you run each example program as you 
read how it works. To do this, you’ll need a PC with at least a 486-
based processor and 16 megabytes of memory. CodeWarrior will 
run with Windows 95 and Windows NT 4.0.

The Lay of the Land
This book was designed with several different readers in mind. If 
you’re new to programming, you’ll want to read every chapter. As 
you make your way through the book, try not to skip over material 
you don’t understand. Ask. Make a commitment to finish this book. 
You can do it!

If you have some programming experience but know nothing about 
C, read Chapter 2, then skim through Chapter 3.   If Chapter 3 is 
cake to you, jump right to Chapter 4. You’ll probably find that the 
concepts presented in the first few chapters are pretty straightfor-
ward. Read at your own speed until you reach a comfortable depth. 
The farther into the book you get, the more complex the concepts 
become.

If you get stuck, there are a lot of places you can turn to for help. On-
line services, such as CompuServe and America Online feature pro-
gramming development forums filled with friendly folks who are 
usually more than glad to help someone just getting started. If you 
have access to the Internet, you can subscribe to newsgroups, such 
as “comp.lang.c” and “comp.os.ms-windows.programmer.win32,” 
where you’ll be able to post your questions and, hopefully, find an-
swers to them. Better yet, find a friend who’s been down this road 
before, someone you can get together with, face-to-face, to help you 
through the tougher concepts.

Whether you have programming experience or not, you might find 
it helpful to have a copy of a good C reference by your side as you 
make your way through this book. Two particularly useful books 



Welcome Aboard
The Chapters

8   Learn C under Windows 95/NT

are The C Programming Language by Kernighan and Ritchie (affec-
tionately known as K&R) and C: A Reference Manual by Harbison 
and Steele (also known as H&S). K&R is the granddaddy of all C 
references and is the book that got me started in C programming. 
Although K&R tends to be a little dense, it is filled with great sam-
ple code. As you master each new concept in this book, take a look 
at how K&R treats the same subject.

H&S covers much of the same ground as K&R but at a slightly dif-
ferent level. If you can swing the cost, consider picking up both of 
these books. They’ll prove to be valuable additions to your C pro-
gramming library. You’ll find descriptions of both books (along with 
a bunch of others) in the bibliography in Appendix F.

The Chapters
This book is made up of 12 chapters and 6 appendixes. Chapter 1 
provides an overview of the book and gets you started down the 
right path.

Chapter 2 covers the basics of using CodeWarrior to open a project 
and then convert the project’s source code into an executable appli-
cation.  

Chapter 3 is for those of you with little or no programming experi-
ence. Chapter 3 answers some basic questions, such as Why write a 
computer program? and How do computer programs work? We’ll 
look at all the elements that come together to create a computer pro-
gram, elements such as source code, a compiler, and the computer 
itself. Even if you’re a seasoned Pascal programmer, you might 
want to read through this chapter, just to review the basics.

Chapter 4 opens the door to C programming by focusing on one of 
the primary building blocks of C: the function. You’ll run some sam-
ple programs and discover one of the cruelest, least-liked, yet most 
important parts of programming: the syntax error.

Chapter 5 explores the foundation of C programming: variables and 
operators. When you finish this chapter, you will have a fundamen-
tal understanding of programming. You’ll know how to declare a 
variable and how to use operators to store data in the variable.



Welcome Aboard
The Chapters

Learn C under Windows 95/NT 9

Chapter 6 introduces the concept of flow control. You’ll learn how to 
use C programming constructs, such as if, while, and for, to con-
trol the direction of your program. You’ll learn how your program 
can make decisions based on data that you feed into it.

Chapter 7 starts off with the concept of pointers, which you’ll use in 
almost every C program you write. Pointers allow you to imple-
ment complex data structures, opening up a world of programming 
possibilities.

Chapter 8 introduces data types. You’ll learn about arrays and 
strings and the common bond they share. At this point, you are in 
real danger of becoming a C guru. Careful!

Chapter 9 tackles data structures. You’ll learn how to design and 
build the right data structure for the job. Your knowledge of point-
ers is sure to get a workout in this chapter.

Chapter 10 teaches you how to work with disk files. You’ll learn 
how to open a file and read its contents into your program. You’ll 
also learn how to write your program’s data out to a file.

Chapter 11 is a potpourri of miscellaneous C programming issues. 
This chapter tries to clear up any programming loose ends. You’ll 
learn about recursion, binary trees, and something not every C pro-
grammer knows about: C function pointers.

Chapter 12 prepares you for your next step along the programming 
path. You’ll learn a little about what makes Windows programs spe-
cial, as well as find out how you can write your own programs that 
sport that special Windows look and feel.

Appendix A is a glossary of the technical terms used in this book.

Appendix B contains a complete listing of all the examples used in 
this book. This section will come in handy as a reference as you 
write your own C programs. Need an example of an if-else state-
ment in action? Turn to the examples in Appendix B.

Appendix C is another useful reference. It describes the syntax of 
each of the C statement types introduced in the book. Need an exact 
specification of a switch statement? Check out Appendix C.

Appendix D provides a description of the Standard Library func-
tions introduced in this book. The Standard Library is a set of func-
tions available as part of every standard C development 



Welcome Aboard
Conventions Used in This Book

10   Learn C under Windows 95/NT

environment, no matter what type of computer it’s being used with. 
Need to know how to call one of the Standard Library functions in-
troduced in the book? Use Appendix D.

Appendix E provides answers to the exercises presented at the end 
of each chapter.

Appendix F is a bibliography of useful programming titles.

Conventions Used in This Book
As you read this book, you’ll encounter a few standard conventions 
intended to make it easier to read. For example, technical terms ap-
pearing for the first time are in boldface. You’ll find most of these 
terms in the glossary in Appendix A.

By the Way Occasionally, you’ll come across a block of text set off in its own lit-
tle box, like this. These blocks are called tech blocks and are in-
tended to add technical detail to the subject being discussed. For 
the most part, each tech block will fit in one of three categories: 
“By the Way,” “Important,” and “Warning.” As the names imply, 
these blocks have different purposes. “By the Way” tech blocks are 
intended to be informative but not crucial. “Important” tech blocks 
should be read beginning to end and the information within tucked 
into a reasonably responsive part of your brain. “Warning” tech 
blocks are usually trying to caution you about a potentially disas-
trous programming problem you should be on the lookout for. 
Read and heed these warnings.

All of the source code examples in this book are presented using a 
special font, known as the code font. This font is also used for 
source code fragments that appear in the middle of running text.

At the end of each chapter from Chapter 4 on, you’ll find a set of ex-
ercises designed to reinforce the concepts presented in that chapter. 
Go through each of the exercises. It will be time well spent. As men-
tioned earlier, Appendix E contains answers to selected chapter ex-
ercises.



Welcome Aboard
Strap Yourself In . . .

Learn C under Windows 95/NT 11

Strap Yourself In . . .
That’s about it. Let’s get started. . . .



Welcome Aboard
Strap Yourself In . . .

12   Learn C under Windows 95/NT



Learn C under Windows 95/NT  13

2
Using CodeWarrior
In this chapter, we’ll go over the basics of using CodeWarrior to 
open a project and then convert the project’s source code into a real 
double-clickable application.

Opening a Project
Let’s take CodeWarrior for a spin. Open the Learn C Projects  
directory on your hard drive; then open the subdirectory named 
02.01 - hello. You should see a window with three files. Two of 
the files in this window, hello.cwp and hello.c, contain the in-
gredients you’ll use to build your very first C application.  (The 
third file, hello.exe, is the finished C application.)

Double-click on the file hello.cwp. A window just like the one 
shown in Figure 2.1 should appear. This window is called the 
project window. It contains information about the files used to 
build our  application.   Since this information is stored in the

Figure 2.1 The hello.cwp project window.



Using CodeWarrior
Compiling a Project

14   Learn C under Windows 95/NT

file hello.cwp, this file is also known as a project file. A file that 
ends in the characters .cwp is a CodeWarrior project file.

Warning If a window with the title hello.c appeared instead of the one 
shown in Figure 2.1, you double-clicked on the wrong file. Quit 
CodeWarrior and double-click on the file hello.cwp instead of 
hello.c.

The project window in Figure 2.1 is divided into two parts, each 
marked by a down-pointing triangle on the extreme left side of the 
window. The first part (labeled source) names the files that contain 
the project source code. Source code is a set of instructions that de-
termine what your application will do and when it will do it. This 
project contains a single source code file, named hello.c.

Let’s take a look at the source code in hello.c. Double-click on the 
label hello.c, being careful not to double-click on the word 
source. A source code window will appear containing the source 
code in the file hello.c (Figure 2.2). This is your first C program. 
This program tells the computer to display the text “Hello, 
world!” in a window. Don’t worry about the how or why of it right 
now. We’ll get into all that later on. For now, let’s turn this source 
code into an application.

Compiling a Project
Go to the Project menu and select Run. If you look closely, you’ll see 
numbers appear in each row of the project window. Then, a new 
window, labeled hello, will appear on the screen.  When you se-
lected Run from the Project menu, CodeWarrior converted your 
source code into an application named hello.exe and then ran 
hello.exe. The application hello.exe, in turn, created the new 
window (Figure 2.3). 



Using CodeWarrior
Compiling a Project

Learn C under Windows 95/NT  15

Figure 2.2 The source code window with the source code from the file 
hello.c.

Figure 2.3 The window created by the hello.exe program.



Using CodeWarrior
What’s Next?

16   Learn C under Windows 95/NT

This window is not a CodeWarrior window, but a DOS console win-
dow.  This window only gets displayed for an instant.  You can 
make the window of your console application remain visible until 
you hit any key by adding the following line of code:

getchar();

If you execute hello.exe directly from the DOS window, the text 
“Hello, world!” will be output directly to the same window.

What’s Next?
Now that you’ve learned the basics of  CodeWarrior, let’s take a lit-
tle closer look at the programming process. Get comfortable and 
turn the page. Here we go. . . .



Learn C under Windows 95/NT  17

3
Programming Basics 
Before we dig into the specifics of C programming, we’ll spend a 
few minutes reviewing the basics of programming in general. We’ll 
answer such basic questions as, Why write a computer program? 
and How do computer programs work? We’ll look at all of the ele-
ments that come together to create a computer program, such as 
source code, a compiler, and the computer itself.

If you’ve already done some programming, skim through this chap-
ter. If you feel comfortable with the material, skip ahead to Chapter 
4. Most of the issues covered in this chapter are not specific to C.

Reasons for Programming
Why write a computer program? There are many reasons. Some 
programs are written in direct response to a problem too complex to 
solve by hand. For example, you might write a program to calculate 
the constant π to 5000 decimal places or to determine the precise 
moment to fire the boosters that will bring the space shuttle home 
safely.

Other programs are written as performance aids, allowing you to 
perform a regular task more efficiently. You might write a program 
to help you balance your checkbook, keep track of your baseball 
card collection, or lay out this month’s issue of Dinosaur Today.

All of these examples share a common theme. All  are examples of 
the art of programming. 

Programming Languages
Your goal in reading this book is to learn how to use the C program-
ming language to create programs of your own. Before we get into 
C, however, let’s take a minute to look at some other popular pro-
gramming languages.



Programming Basics
Programming Languages

18   Learn C under Windows 95/NT

Some Alternatives to C
As mentioned in Chapter 1, C is probably the most popular pro-
gramming language around. There’s very little you can’t do in C, 
once you know how. On the other hand, a C program is not neces-
sarily the best solution to every programming problem.

For example, suppose that you are trying to build a database to 
track your company’s inventory. Rather than writing a custom C 
program to solve your problem, you might be able to use an off-the-
shelf package, such as FoxPro or dBase, to construct your database. 
The programmers who created these packages solved most of the 
knotty database management problems you’d face if you tried to 
write your program from scratch. The lesson here: Before you tackle 
a programming problem, examine all the alternatives. You might 
find one that will save you time or money or that will prove to be a 
better solution to your problem.

Some applications feature their own proprietary scripting language. 
For instance, Microsoft Excel lets you write programs that operate 
on the cells within a spreadsheet. Some word processing programs 
let you write scripts that control just about every word processing 
feature in existence. Although proprietary scripting languages can 
be quite useful, they aren’t much help outside their intended envi-
ronments. You wouldn’t find much use for the Excel scripting lan-
guage outside Excel, for example.

What About Pascal?
There are a lot of programming languages out there. In the late 
1970s and early 1980s, C’s popularity was still growing, and the un-
disputed ruler of the programming universe was Pascal. Pascal re-
mains an excellent programming language, but it has now fallen far 
behind C in popularity. To prove this to yourself, go to your favorite 
bookstore and compare the number of C books and Pascal books 
(assuming you can still find a Pascal book). Better yet, dig out the 
employment section from last Sunday’s paper and count the num-
ber of computer ads calling for C or C++ experience (we’ll get to 
C++ in a minute) versus those calling for Pascal experience. These 
two exercises should convince you that you are on the right track.



Programming Basics
The Programming Process

Learn C under Windows 95/NT  19

What About C++?
If there is a pretender to the programming language throne, it has to 
be a language called C++ (pronounced C-Plus-Plus). Simply put, 
C++ is an object-oriented version of C and is extremely popular 
with both Windows and Macintosh programmers. Someday, you 
will want to learn C++. Thankfully, you can learn C first, and all that 
C knowledge will count toward your C++ education. Learn C now 
and spend some time practicing your newfound craft. Once you 
have some C experience under your belt, make learning C++ your 
next priority.

The Programming Process
In Chapter 2, you went through the process of opening a project, 
and converting the project’s source code into an executable applica-
tion.  Let’s take a closer look at that process.

Writing Your Source Code
No matter what their purposes, most computer programs start as 
source code. Your source code will consist of a sequence of instruc-
tions that tell the computer what to do. Source code is written in a 
specific programming language, such as C. Each programming lan-
guage has a specific set of rules defining what is and isn’t “legal” in 
that language.

Your mission in reading this book is to learn how to create useful, ef-
ficient, and, best of all, legal C source code.

If you were using everyday English to program, your source code 
might look like this:

Hi, Computer!

Do me a favor. Ask me for five numbers, add them to-
gether, then tell me the sum.

If you wanted to run this program, you’d need a programming tool 
that understood source code written in English. Since CodeWarrior 
doesn’t understand English but does understand C, let’s look at a C 
program that does the same thing:



Programming Basics
The Programming Process

20   Learn C under Windows 95/NT

int main( void )
{
int index, num, sum;

sum = 0;

for ( index=1; index<=5; index++ )
{
printf( “Enter number %d --->”, index );
scanf( “%d”, &num );
sum = sum + num;

}

printf( “The sum of these numbers is %d.”, sum );

return 0;
}

If this program doesn’t mean anything to you, don’t panic. Just keep 
reading. By the time you finish reading this book, you’ll be writing 
C code like a pro.

Compiling Your Source Code
Once your source code is written, your next job is to hand it off to a 
compiler. The compiler translates your C source code into instruc-
tions that make sense to your computer. These instructions are 
known as machine language, or object code. Source code is for you, 
machine language/object code is for your computer.

CodeWarrior uses the project file to keep track of all your source 
and object code. As an example, the project file shown in Figure 3.1 
contains the names of three files. The first two files contain C source 
code. The third file, known as a library, contains object code. Think 
of a library as a source code file that has already been compiled.



Programming Basics
The Programming Process

Learn C under Windows 95/NT  21

Figure 3.1 A CodeWarrior project file containing three files.

By the Way A library starts life as source code. The source code is compiled 
and the resulting object code stored in a file. This object code can 
then be included in other projects. By using a library, you get ac-
cess to some useful source code without having to go through the 
time and effort of recompiling the source code into object code.

When you ask CodeWarrior to run your project, CodeWarrior steps 
through each of the files referenced by your project file (Figure 3.2). 
If a file contains source code, the source code is sent to a compiler, 
and the resulting object code is copied into the project file. If the file 
is a library, the compilation step is skipped, and the library’s object



Programming Basics
The Programming Process

22   Learn C under Windows 95/NT

Figure 3.2 CodeWarrior sends source code through a compiler to 
generate object code, then copies the object code into the 
project file. Object code from libraries bypasses the 
compilation step.

code is copied into the project file. Once all the object code is in 
place, it gets combined (in a process known as linking) and copied 
into your application file. Finally, CodeWarrior runs your applica-
tion.

Remember, when you run these applications, the output will be dis-
played in a DOS console window that appears for only a moment.  
To make the window remain open, append the line

getchar();

to the end of your program.



Programming Basics
The Programming Process

Learn C under Windows 95/NT  23

By the Way If the compilation process seems confusing to you, don’t worry. 
Each programming example comes complete with step-by-step di-
rections that show you how to compile your code. Once you feel 
more comfortable with the programming process, give this section 
another read.

Let’s take a look at a real-life example, a project file named 
hello.cwp. Figure 3.3 shows the hello.cwp project window. The 
project window lists all the files that CodeWarrior uses to build the 
hello application. Notice that the list is divided into two parts. The 
top part lists the project’s source code files (there’s only one), and 
the lower part lists the project’s libraries (there are five).

Each of the six files listed in the project window is found on your 
hard drive. You’ll find the file hello.c in the same subdirectory as 
the project file (hello.cwp). The five library files are located with 
the rest of the CodeWarrior files, in the Lib subdirectory of the 
CodeWarrior directory. To convince yourself of this, select Find from 
the Start Menu (or select Find from the Tools Menu in the Windows 
Explorer, or use Search from the File Menu in the File Manager) to 
search for these libraries on your hard drive. They were copied onto 
your hard drive when you installed CodeWarrior.

Figure 3.3 The hello.cwp project window, before compilation.



Programming Basics
The Programming Process

24   Learn C under Windows 95/NT

Warning When you find the libraries, don’t move them or mess with them in 
any way. CodeWarrior knows where these libraries live and won’t 
be able to run your project if it can’t find them.

When you select Run from the Project menu, CodeWarrior steps 
through each of the project’s files. In the case of hello.c, CodeWar-
rior first checks to see whether hello.c has been modified since 
the last time it was compiled. If it has, the source code in hello.c is 
passed to CodeWarrior’s C compiler, and the resulting object code is 
stored in the file hello.cwp.

In the case of each of the five libraries, CodeWarrior first checks to 
see whether the object code from the library file has already been 
copied into hello.cwp. If it has not been copied, the object code 
gets copied over. This process is known as loading. Source code gets 
compiled and libraries get loaded (insert silly drinking reference 
here).

Figure 3.4 is a snapshot of the project window after all the project 
files were updated. Notice that where there used to be a solid block 
of zeroes, there are now all kinds of numbers. The Code column tells 
you how much object code is stored in hello.cwp for each file in 
the project. For example, the object code for the file hello.c is 56 
bytes long, and the object code for the library Ansicx86.lib is 
50,365 bytes long. Why such a big difference? The source code in 
hello.c is tiny. As you get farther along in the book, watch that 
number start to climb!



Programming Basics
The Programming Process

Learn C under Windows 95/NT  25

Figure 3.4 The updated project window.

By the Way You’ll find these same five libraries in every one of the programs in 
this book. Together, these libraries contain everything needed to 
create the window that appears every time you run one of the 
book’s programs.

The row labeled source summarizes the numbers for all the source 
code in the project. The row labeled libraries summarizes the 
numbers for the project libraries. If you add the code sizes for all 
five libraries, you’ll get the number 74,175. So where does the num-
ber 72K come from? One kilobyte, or 1K, is equal to 1024 bytes; 
74,175 divided by 1024 is approximately 72.4. Roughly speaking, 
74,175 bytes is around 72K.

As the compiler goes through your source code, it sets aside certain 
pieces of your source code as data. For example, the text string 
“Hello, world!\n” is stored in the project file as data, not as part 
of the object code. As you can see in Figure 3.4, this string takes up 
15 bytes of memory (look in the column labeled Data). You’ll learn 
all about text strings later in the book.



Programming Basics
Flavors of Object Code

26   Learn C under Windows 95/NT

By the Way  Since CodeWarrior stores the object code inside the project file on 
your hard drive, your project files will take up more room with a 
compiled program than with an uncompiled program. To save 
space, select Remove Binaries from the Project menu when you 
are done with a project. This item tells CodeWarrior to delete any 
object code it may have stored in the project file. Don’t worry; Re-
move Binaries won’t affect your source code. It’ll just slim down 
your project file.

Flavors of Object Code 
Just as there are many different programming languages, there are 
many different flavors of object code. In order for your application 
to run, the object code it was built on must be compatible with the 
central processing unit (also known as the CPU, or processor), 
which is the brains of your computer.

IBM PCs and PC-compatibles use processors built by Intel. These 
processors include the 8086, 80286, 80386, 80486, the Pentium, and 
the Pentium Pro. Macintosh computers are based on processors 
from Motorola. These include the 68000, 68020, 68030, 68040, and 
the PowerPC 601 and 604.

Each of these processors understands a specific set of machine lan-
guage instructions. The 80486 understands 80486 machine language 
instructions but not 68000 machine language instructions. Similarly, 
the 68000 does not understand 80486 machine language instruc-
tions. That’s one reason why you can’t just copy a Windows applica-
tion onto a Macintosh hard drive and run it. It’s also one reason why 
you can’t copy a Mac application onto a Windows machine and run 
it.

What’s Next?
At this point, don’t worry too much about the details.  For now, 
focus on the basics. Understanding how to write C source code is far 
more important than the intricacies of the project file.



Programming Basics
What’s Next?

Learn C under Windows 95/NT  27

Ready to get into some source code? Get out your programming 
gloves;  we’re about to go to code!



Programming Basics
What’s Next?

28   Learn C under Windows 95/NT



Learn C under Windows 95/NT  29

4
C Basics:  Functions
Every programming language is designed to follow strict rules that 
define the language’s source code structure. The C programming 
language is no different. The next few chapters will explore the syn-
tax of C.

Chapter 3 discussed some fundamental programming topics, in-
cluding the process of translating source code into machine code 
through a tool called the compiler. This chapter focuses on one of 
the primary building blocks of C programming, the function.

C Functions
C programs are made up of functions. A function is a chunk of 
source code that accomplishes a specific task. You might write a 
function that adds a list of numbers or that calculates the radius of a 
given circle. Here’s an example of a function:

int main( void )
{
printf( “I am a function and my name is 
main!!!\n” );

return 0;
}

This function, called main(), prints a message in a window.

Important Throughout this book, we’ll refer to a function by placing a pair of 
parentheses after its name. This will help distinguish between 
function names and variable names. For example, doTask() re-



C Basics: Functions
C Functions

30   Learn C under Windows 95/NT

fers to a function, whereas the name doTask refers to a variable. 
Variables are covered in Chapter 5. 

The Function Definition
Functions start off with a function specifier, in this case:

int main( void )

A function specifier consists of a return type, the function name, 
and a pair of parentheses wrapped around a parameter list. We’ll 
talk about the return type and the parameter list later. For now, the 
important thing is to be able to recognize a function specifier and be 
able to pick out the function’s name from within the specifier.

Following the specifier comes the body of the function. The body is 
always placed between a pair of curly braces: { }. These braces are 
known in programming circles as “left-curly” and “right-curly.” 
Here’s the body of main():

{
printf( “I am a function and my name is 
main!!!\n” );

return 0;
}

The body of a function consists of a series of statements, with each 
statement followed by a semicolon (;). If you think of a computer 
program as a detailed set of instructions for your computer, a state-
ment is one specific instruction. The printf() featured in the body 
of main() is a statement. It instructs the computer to display some 
text on the screen.

As you make your way through this book, you’ll learn C’s rules for 
creating efficient, compilable statements. Creating efficient state-
ments will make your programs run faster with less chance of error. 



C Basics: Functions
C Functions

Learn C under Windows 95/NT 31

The more you learn about programming (and the more time you 
spend at your craft), the more efficient you’ll make your code.

Syntax Errors and Algorithms
When you ask the compiler to compile your source code, the com-
piler does its best to translate your source code into object code. 
Every so often, however, the compiler will hit a line of source code 
that it just doesn’t understand. When this happens, the compiler re-
ports the problem to you and does not complete the compile. The 
compiler will not let you run your program until every line of 
source code compiles.

As you learn C, you’ll find yourself making two types of mistakes. 
The simplest type, called a syntax error, prevents the program from 
compiling. The syntax of a language is the set of rules that deter-
mines what will and will not be read by the compiler. Many syntax 
errors are the result of a mistyped letter, or typo. Another common 
syntax error occurs when you forget the semicolon at the end of a 
statement.

Syntax errors are usually fairly easy to fix. If the compiler doesn’t 
tell you exactly what you need to fix, it will usually tell you where in 
your code the syntax error occurred and give you enough informa-
tion to spot and repair the error.

The second type of mistake is a flaw in your program’s algorithm. 
An algorithm is the approach used to solve a problem. You use algo-
rithms all the time. For example, here’s an algorithm for sorting 
your mail:

1.  Start by taking the mail out of the mailbox.
2.  If there’s no mail, you’re done! Go watch TV.
3.  Take a piece of mail out of the pile.
4.  If it’s junk mail, throw it away; then go back to step 2.
5.  If it’s a bill, put it with the other bills; then go back to step 2.
6.  If it’s not a bill and not junk mail, read it; then go back to 
step 2.

This algorithm completely describes the process of sorting through 
your mail. Notice that the algorithm works, even if you didn’t get 
any mail. Notice also that the algorithm always ends up at step 2, 
with the TV on.



C Basics: Functions
C Functions

32   Learn C under Windows 95/NT

Figure 4.1 is a pictorial representation, or flowchart, of the mail-sort-
ing algorithm. Much as you might use an outline to prepare for 
writing an essay or a term paper, you might use a flowchart to flesh 
out a program’s algorithm before you start writing the program. 

Figure 4.1 An algorithm for sorting your mail.

This flowchart uses two types of boxes. Each rectangular box por-
trays an action, such as taking mail out of the mailbox or throwing 
junk mail into the trash. Each diamond-shaped box poses a yes/no 
question. An action box has a single arrow leading from it to the 
next box to read, once you’ve finished taking the appropriate action. 
A question box has two arrows leading out of it: one showing the 
path to take if the answer to the question is yes and the other show-
ing the path to take if the answer is no. Follow the flowchart 
through, comparing it to the algorithm as described.

In the C world, a well-designed algorithm results in a well-behaved 
program. On the other hand, a poorly designed algorithm can lead 
to unpredictable results. Suppose, for example, that you wanted to 
write a program that added three numbers  and printed the sum at 
the end. If you accidentally printed one of the numbers instead of 
the sum of the numbers, your program would still compile and run. 
The result of the program would be in error, however (you printed 

Read Mail

Place Bill
on Hall Table

Recycle the
Darn Thing

Look at a
Piece of Mail

All Done!
Go Watch TV.

Take Mail
Out of Mailbox

Any
Mail
Left?

Is it
Junk
Mail?

Is it
a Bill?

no

yes

no

no

yes yes



C Basics: Functions
C Functions

Learn C under Windows 95/NT 33

one of the numbers instead of the sum), because of a flaw in your 
program’s algorithm.

The efficiency of your source code, referred to earlier, is a direct re-
sult of good algorithm design. Keep the concept of algorithm in 
mind as you work your way through the examples in the book.

Calling a Function
In Chapter 3, you looked at hello, a program with a single func-
tion, main(). As a refresher, here’s the source code from hello:

#include <stdio.h>

int main( void )

{

printf( “Hello, world!\n” );

return 0;

}

You ran hello by selecting Run from the Project menu. CodeWar-
rior started by executing the first line in the function named 
main(). In this case, the first line in main() was the call to the func-
tion printf(). Whenever your source code calls a function, each 
statement in the called function is executed before the next state-
ment of the calling function is executed.

Confused? Look at Figure 4.2. In this example, main() starts with a 
call to the function MyFunction(). This call to MyFunction() will 
cause each statement inside MyFunction() to be executed. Once 
the last statement in MyFunction() has been executed, control is 
returned to main(). Now, main() can call AnotherFunction().



C Basics: Functions
ISO C and the Standard Library

34   Learn C under Windows 95/NT

Figure 4.2 When main() calls MyFunction(), all of the statements inside 
MyFunction() get executed before main() calls 
AnotherFunction().

Every C program you write will have a main() function. Your pro-
gram will start running with the first line in main() and, unless 
something unusual happens, end with the last line in main(). 
Along the way, main() may call other functions, which may, in 
turn, call other functions, and so on.

ISO C and the Standard Library
The American National Standards Institute (ANSI) established a na-
tional standard for the C programming language. This standard be-
came known as ANSI C. Later, the International Standards 
Organization (ISO) adopted this standard, and ANSI C evolved into 
the international standard known as ISO C. Part of this standard is 
a specific definition of the syntax of the C language.

By the Way Since the term ISO C is still catching on, you’ll still hear most C 
programmers refer to the ANSI C standard. The main difference 
between the two standards is that ISO C has extra functions in its 
Standard Library to handle multibyte and wide characters. ISO C 

main()
{
        MyFunction();
        AnotherFunction();
}

MyFunction()
{

}

AnotherFunction()
{

}



C Basics: Functions
ISO C and the Standard Library

Learn C under Windows 95/NT 35

or ANSI C—either term is fine. The important thing to be aware of 
is that a strict C standard does exist.

As we stated earlier, the syntax of a language provides a set of rules 
defining what is and isn’t legal source code. For example, ISO C tells 
you when you can and can’t use a semicolon. ISO C tells you to use 
a pair of parentheses after the name of your function, regardless of 
whether your function has any parameters. You get the idea. The 
greatest benefit to having an international standard for C is portabil-
ity. With a minimum of tinkering, you can get an ISO C program 
written on one computer up and running on another computer. 
When you finish with this book, you’ll be able to program in C on 
any computer that has an ISO C compiler.

Another part of the ISO C standard is the Standard Library, a set of 
functions available to every ISO C programmer. As you may have 
guessed, the printf() function you’ve seen in our source code ex-
amples is part of the Standard Library. Take a look at the 
hello.cwp project window (Figure 4.3). In the libraries section, the 
file Ansicx86.Lib   contains the Standard Library. Remember, 
when you see ANSI, think ISO!

We’ll spend a great deal of time working with the Standard Library 
in this book. Once you get comfortable with the Standard Library 
functions presented here, check out the Standard Library C Refer-
ence on the Discover Programming  CD. Spend some time going 
through each of the Standard Library functions to get a sense of the 
variety of functions offered.



C Basics: Functions
Same Program, Two Functions

36   Learn C under Windows 95/NT

Figure 4.3 The hello.cwp project window, with the Standard Library 
highlighted.

Same Program, Two Functions
As you start writing your own programs, you’ll find yourself de-
signing many individual functions. You might need a function that 
puts a form up on the screen for the user to fill out. You might need 
a function that takes a list of numbers as input, providing the aver-
age of those numbers in return. Whatever your needs, you will defi-
nitely be creating a lot of functions. Let’s see how it’s done.

Our first program, hello, consisted of a single function, main(), 
that passed the text string “Hello, world!\n” to printf(). Our 
second program, hello2, captures that functionality in a new func-
tion, called SayHello().

By the Way You’ve probably been wondering why the characters \n keep ap-
pearing at the end of all our text strings. Don’t worry; there’s noth-
ing wrong with your copy of the book. The \n is perfectly normal. It 
tells printf() to move the cursor to the beginning of the next line 
in the text window, sort of like pressing the return key in a text edi-
tor.



C Basics: Functions
Same Program, Two Functions

Learn C under Windows 95/NT 37

The sequence \n is frequently referred to as a carriage return, or 
just plain return. By including a return at the end of a printf(), 
we know that the next line we print will appear at the beginning of 
the next line in the text window.

Opening hello2.cwp
Using the Windows Explorer or My Computer, open the Learn C 
Projects directory, open the subdirectory named 04.01 - 
hello2, and double-click on the project file hello2.cwp. A project 
window named hello2.cwp will appear, as shown in Figure 4.4. 

Figure 4.4 The project window for hello.cwp.

If you double-click on the name hello2.c in the project window, a 
source code editing window will appear, containing source code re-
markably similar to this:

#include <stdio.h>



C Basics: Functions
Same Program, Two Functions

38   Learn C under Windows 95/NT

void SayHello( void );

int main( void )

{

SayHello();

return 0;

}

void SayHello( void )

{

printf( “Hello, world!\n” );

}

hello2 starts off with this line of source code:

#include <stdio.h>

You’ll find this line (or a slight variation) at the beginning of each 
one of the programs in this book. It tells the compiler to include the 
source code from the file stdio.h as it compiles hello2.c. The file 
stdio.h contains information we’ll need if we are going to call 
printf() in this source code file. You’ll see the #include (pro-
nounced pound-include) mechanism used throughout this book, 
and we’ll talk about it in detail later. For now, get used to seeing this 
line of code at the top of each of our source code files.

The two lines following the #include are blank. This is completely 
cool. Since the C compiler ignores all blank lines, you can use them 
to make your code a little more readable. I like to leave a few blank 
lines (at least) between each of my functions.

This line of code appears next:



C Basics: Functions
Same Program, Two Functions

Learn C under Windows 95/NT 39

void SayHello( void );

Although this line might look like a function specifier, don’t be 
fooled! If this were a function specifier, it would not end with a 
semicolon, and it would be followed by a left-curly brace ({) and the 
rest of the function. This line is known as a function prototype, or 
function declaration. You’ll include a function prototype for every 
function, other than main(), in your source code file.

To understand why, it helps to know that a compiler reads your 
source code file from the beginning to the end, a line at a time. By 
placing a complete list of function prototypes at the beginning of the 
file, you give the compiler a preview of the functions it is about to 
compile. The compiler uses this information to make sure that calls 
to these functions are made correctly.

By the Way This will make a lot  more sense to you once we get into the sub-
ject of parameters in Chapter 7. For now, get used to seeing func-
tion prototypes at the beginning of all your source code files.

Next comes the function main(). main() first calls the function 
SayHello():

int main( void )

{

SayHello();

At this point, the lines of the function SayHello() get run. When 
SayHello() is finished, main() can move on to its next line of 
code. The keyword return tells the compiler to return from the cur-
rent function, without executing the remainder of the function. We’ll 
talk about return in Chapter 7. Until then, the only place you’ll see 
this line is at the end of main().

return 0;

}

Following main() is another pair of blank lines, followed by the 
function SayHello(). SayHello() prints the string “Hello, 
world!” in a window, then returns control to main().



C Basics: Functions
Same Program, Two Functions

40   Learn C under Windows 95/NT

void SayHello( void )

{

printf( “Hello, world!\n” );

}

Let’s step back for a second and compare hello to hello2. In 
hello, main() called printf() directly. In hello2, main() calls 
a function that calls printf(). This extra layer demonstrates a 
basic C programming technique: taking code from one function and 
using it to create a new function. This example took the following 
line of code and used it to create a new function called SayHello():

printf( “Hello, world!\n” );

This function is now available for use by the rest of the program. 
Every time we call the function SayHello(), it’s as if we executed 
the following line of code:

printf( “Hello, world!\n” );

SayHello() may be a simple function, but it demonstrates an im-
portant concept. Wrapping a chunk of code in a single function is a 
powerful technique. Suppose that you create an extremely complex 
function, say, 100 lines of code in length. Now suppose that you call 
this function in five different places in your program. With 100 lines 
of code, plus the five function calls, you are essentially achieving 
500 lines of functionality. That’s a pretty good return on your invest-
ment!

Let’s watch hello2 in action.

Running hello2.cwp
Select Run from the Project menu. You’ll see a window similar to the 
one shown in Figure 4.5. Gee, this looks just like the output from the 
hello program. Of course, that was the point! Even though we em-
bedded our printf() inside the function SayHello(), hello2 
ran the same as hello.



C Basics: Functions
Same Program, Two Functions

Learn C under Windows 95/NT 41

Figure 4.5 The output from hello2.

Before we move on to our next program, let’s get a little terminology 
out of the way. The window that appeared when you ran hello and 
hello2 is known as a console window. The console window ap-
pears whenever you call a function like printf(), that is, a routine 
that tries to display some text. The console window is one of the 
benefits you get by using the Standard Library. All the programs in 
this book take advantage of the console window.

The text that appears in the console window is known as output. 
After you run a program, you’re likely to check out the output that 
appears in the console to make sure that your program ran correctly.

Another Example
Imagine what would happen if you changed main() in hello2 to 
read:

int main( void )
{
SayHello();
SayHello();



C Basics: Functions
Same Program, Two Functions

42   Learn C under Windows 95/NT

SayHello();

return 0;
}

What’s different? In this version, we’ve added two more calls to 
SayHello(). Can you picture what the console will look like after 
we run this new version?

To find out, close the hello2.cwp project window and then select 
Open from CodeWarrior’s File menu. When the window shown in 
Figure 4.6 appears, navigate into the subdirectory named 04.02 - 
hello3 and open the project named hello3.cwp.

Figure 4.6 This window appears when you select Open from 
CodeWarrior’s File menu.

When you run hello3, the console window shown in Figure 4.7 
will appear. Take a look at the output. Does it make sense to you? 
Each call to SayHello() generates the text string “Hello, 
world!” followed by a carriage return.



C Basics: Functions
Generating Some Errors

Learn C under Windows 95/NT 43

Figure 4.7 The output from hello3.

Generating Some Errors
Before we move on to the next chapter, let’s see how the compiler re-
sponds to errors in our source code. Back in CodeWarrior, double-
click on the name hello3.c in the hello3.cwp project window 
(Figure 4.8). The source code window containing the hello3.c 
source code will appear.

In the source code window, find the line of source code containing 
the function specifier for main(). The line should read:

int main( void )

Click at the end of the line, so the blinking cursor appears at the 
very end of the line. Now type a semicolon, so that the line reads:

int main( void );



C Basics: Functions
Generating Some Errors

44   Learn C under Windows 95/NT

Figure 4.8 The hello3.cwp project window, with the source code file 
hello3.c highlighted.

Here’s the entire file, showing the tiny change you just made:

#include <stdio.h>

void SayHello( void );

int main( void );
{
SayHello();
SayHello();
SayHello();

return 0;
}

void SayHello( void )
{



C Basics: Functions
Generating Some Errors

Learn C under Windows 95/NT 45

printf( “Hello, world!\n” );
}

Keep in mind that you added only a single semicolon to the source 
code; select Run from the Project menu. CodeWarrior knows that 
you changed your source code since the last time it was compiled 
and will try to recompile hello3.c. Figure 4.9 shows the error win-
dow that appears, telling you that you’ve got a problem with your 
source code. Yikes! All that, just because you added a measly semi-
colon! Sometimes, the compiler will give you a perfectly precise 
message that exactly describes the error it encountered. In this case, 
however, the compiler got so confused by the extra semicolon that it 
reported six errors instead of just one. Notice, however, that the 
very first error message gives you a pretty good idea of what is 
going on. It complains about a syntax error on line 8 and then dis-
plays a left-curly brace ({). If you click on the line you just modified, 
then look at the bottom of the source code window, you’ll see that 
the line you added the semicolon to is line 7 and that the very next 
line (line 8) contains the left-curly brace in question.

Figure 4.9 Yikes! All this just because you added a single semicolon!

Use the mouse and the delete key to delete the offending semicolon 
at the end of the first line of code. Select Run from the Project menu 



C Basics: Functions
What’s Next?

46   Learn C under Windows 95/NT

again. This time, the code should compile without a hitch. Once the 
code is compiled, CodeWarrior will run it, proving that your source 
code is now fixed.

The Importance of Case in C 
Many types of errors are possible in C programming. One of the 
most common results from the fact that C is a case-sensitive lan-
guage. In a case-sensitive language, there is a big difference be-
tween lower- and uppercase letters. This means that you can’t refer 
to printf() as Printf() or even PRINTF(). Figure 4.10 shows the 
error message you’ll get if you change your printf() call to 
PRINTF(). This message is telling you that CodeWarrior couldn’t 
find a function named PRINTF(). To fix this problem, just change 
PRINTF() to printf() and recompile.

Figure 4.10 The error reported by CodeWarrior for use of incorrect case in 
call to printf().

What’s Next?
Congratulations! You’ve made it through basic training. You know 
how to open a project, how to compile your code, and even how to 
create an error message or two. You’ve learned about the most im-
portant function: main(). You’ve also learned about printf() and 
the Standard Library.



C Basics: Functions
Exercises

Learn C under Windows 95/NT 47

Now you’re ready to dig into the stuff that gives a C program life: 
variables and operators.

Exercises
Open the project hello2.cwp, edit hello2.c as described in each 
exercise, and describe the error that results:

1. Change the line:

SayHello()

to say:

SayHello(

2. Change things back. Now change the line:

main()

to say:

Main()

3. Change things back. Now delete the { after the line:

main()

4. Change things back. Now delete the semicolon at the end of 
this line:

printf(“Hello, world!\n”);

so it reads:

printf(“Hello, world!\n”)



C Basics: Functions
Exercises

48   Learn C under Windows 95/NT



Learn C under Windows 95/NT  49

5
C Basics:  Variables 
and Operators
At this point, you should feel pretty comfortable with the CodeWar-
rior environment. You should know how to open a project and how 
to edit a project’s source code. You should also feel comfortable run-
ning a project and (heaven forbid) fixing any syntax errors that may 
have occurred along the way.

On the programming side, you should recognize a function when 
you see one. When you think of a function, you should first think of 
main(), the most important function. You should remember that 
functions are made up of statements, each of which is followed by a 
semicolon.

With these things in mind, we’re ready to explore the foundation of 
C programming: variables and operators. Variables and operators 
are the building blocks you’ll use to construct your program’s state-
ments.

An Introduction to Variables
A large part of the programming process involves working with 
data. You might need to add a column of numbers or sort a list of 
names alphabetically. The tricky part of this process is representing 
your data in a program. This is where variables come in.

Variables can be thought of as containers for your program’s data. 
Imagine three containers on a table. Each container has a label: 
cup1, cup2, and cup3. Now imagine that you have three pieces of 
paper. Write a number on each piece of paper and place one piece 
inside each of the three containers. Figure 5.1 shows what this might 
look like.



C Basics: Variables and Operators
An Introduction to Variables

50   Learn C under Windows 95/NT

Figure 5.1 Three containers, each with its own value.

Now imagine asking a friend to reach into the three cups, pull out 
the number in each one, and add the three values. You can ask your 
friend to place the sum of the three values in a fourth container cre-
ated just for this purpose. The fourth container is labeled sum and is 
shown in Figure 5.2.

Figure 5.2 A fourth container, containing the sum of the other three 
containers.

This is exactly how variables work. Variables are containers for your 
program’s data. You create a variable and place a value in it. You 
then ask the computer to do something with the value in your vari-
able. You can ask the computer to add three variables and place the 
result in a fourth variable. You can even ask the computer to take the 
value in a variable, multiply it by 2, and place the result back into 
the original variable.

Getting back to our example, now imagine that you changed the 
values in cup1, cup2, and cup3. Once again, you could call on your 

2
cup1

3
cup2

6
cup3

11
sum



C Basics: Variables and Operators
An Introduction to Variables

Learn C under Windows 95/NT  51

friend to add the three values, updating the value in the container 
sum. You’ve reused the same variables, using the same formula, to 
achieve a different result. Here’s the C version of this formula:

sum = cup1 + cup2 + cup3;

Every time you execute this line of source code, you place the sum 
of the variables cup1, cup2, and cup3 into the variable named sum. 
At this point, it’s not important to understand exactly how this line 
of C source code works. What is important is to understand the 
basic idea behind variables. Each variable in your program is like a 
container with a value in it. This chapter will teach you how to cre-
ate variables and how to place a value in a variable.

Working with Variables
Variables come in a variety types. A variable’s type determines the 
kind of data that can be stored in that variable. You determine a 
variable’s type when you create the variable. (We’ll discuss creating 
variables in just a second.) Some variable types are useful for work-
ing with numbers. Other variable types are designed to work with 
text. In this chapter, we’ll work only with variables of one type: a 
numerical type called int. (In Chapter 8, we’ll get into other vari-
able types.) A variable of type int can hold a numerical value, such 
as 27 or –589.

Working with variables is a two-stage process. First, you create a 
variable; then you use the variable. In C, you create a variable by de-
claring it. Declaring a variable tells the compiler, “Create a variable 
for me. I need a container to place a piece of data in.” When you de-
clare a variable, you have to specify both the variable’s type and its 
name. In our earlier example, we created four containers, each hav-
ing a label. In the C world, this would be the same as creating four 
variables with the names cup1, cup2, cup3, and sum. In C, if we 
want to use the value stored in a variable, we use the variable’s 
name. We’ll show you how to do this later in the chapter.

Here’s an example of a variable declaration:

int myVariable;



C Basics: Variables and Operators
An Introduction to Variables

52   Learn C under Windows 95/NT

This declaration tells the compiler to create a variable of type int 
(remember, an int is useful for working with numbers) with the 
name myVariable. The type of the variable (in this case, int) is ex-
tremely important. As you’ll see, a variable type determines the 
kind and range of values a variable can be assigned.

Variable Names
Here are two rules to follow when you create your own variable 
names:

• Variable names must always start with an upper- or lower-
case letter (A, B, . . . , Z or a, b, . . . , z) or with an underscore (_).

• The remainder of the variable name must be made up of up-
per- or lowercase letters, numbers (0, 1, . . . , 9), or the underscore.

These two rules yield such variable names as myVariable, 
THIS_NUMBER, VaRiAbLe_1, and A1234_4321. Note that a C 
variable may never include a space or a character such as & or *. 
These two rules must be followed.

On the other hand, these rules do leave a fair amount of room for in-
ventiveness. Over the years, different groups of programmers came 
up with additional guidelines (also known as conventions) that 
made variable names more consistent and a bit easier to read.

As an example of this, UNIX programmers tended to use all lower-
case letters in their variable names. When a variable name consisted 
of more than one word, the words were separated by an underscore. 
This yielded variable names like my_variable  or 
number_of_puppies.

Macintosh programmers tend to follow a naming convention estab-
lished by their SmallTalk cousins.  Variable names are formed from 
lowercase letters and numbers, always starting with a lowercase let-
ter. This yields variable names like number or digit33.  A variable 
with more than one word is started with a lowercase letter, and each 
successive word in the variable name is started with an uppercase 
letter. This yields variable names like myVariable  or howMany.

Many Windows programmers use a variable naming convention 
known as Hungarian notation.  In Hungarian notation, the variable 
name begins with a lowercase letter that denotes the type of the 



C Basics: Variables and Operators
An Introduction to Variables

Learn C under Windows 95/NT  53

variable.  For a char, the variable name would start with c, as in 
cMyVariable.  For an int, the variable name would start with i, as 
in iMyInt.

As mentioned in Chapter 4, C is a case-sensitive language. The com-
piler will cough out an error if you sometimes refer to myVariable 
and other times refer to myvariable. Adopt a naming convention 
and stick with it: Be consistent!

The Size of a Type
When you declare a variable, the compiler reserves a section of 
memory for the exclusive use of that variable. When you assign a 
value to a variable, you are modifying the variable’s dedicated 
memory to reflect that value. The number of bytes assigned to a 
variable is determined by the variable’s type. You should check 
your compiler’s documentation to see how many bytes go along 
with each of the standard C types.

Some compilers assign 4 bytes to each int. Others assign 2 bytes to 
each int. By default, CodeWarrior uses 4-byte ints. 

Warning It’s important to understand that the size of a type can change, de-
pending on such factors as your computer’s processor type and 
operating system (Windows versus MacintoshOS, for example) 
and your development environment. Remember, read the manual 
that comes with your compiler.

Let’s continue with the assumption that CodeWarrior is using 4-
byte ints. The following variable declaration reserves memory (in 
our case, 4 bytes) for the exclusive use of the variable myInt: 

int myInt;

If you later assign a value to myInt, that value is stored in the 4 
bytes allocated for myInt. If you ever refer to the value of myInt, 
you’ll be referring to the value stored in myInt’s 4 bytes. 



C Basics: Variables and Operators
An Introduction to Variables

54   Learn C under Windows 95/NT

If your compiler used 2-byte ints, the preceding declaration would 
allocate 2 bytes of memory for the exclusive use of myInt. As you’ll 
see, it is important to know the size of the each type you are dealing 
with.

Why is the size of a type important? The size of a type determines 
the range of values that the type can handle. As you might expect, a 
type that’s 4 bytes in size can hold a wider range of values than a 
type that’s only 1 byte in size. 

Bytes and Bits
Each byte of computer memory is made up of 8 bits. Each bit has a 
value of either 1 or 0. Figure 5.3 shows a byte holding the value 
00101011. The value 00101011 is said to be the binary representa-
tion of the value of the byte. Look more  closely at Figure 5.3. Each 
bit is numbered (above each bit in the figure), with bit 0 on the ex-
treme right side and bit 7 on the extreme left.  Most computers use 
this standard bit-numbering scheme.

Notice also the labels (“Add 1,” “Add 2,” and so on) that appear be-
neath each bit in the figure. These labels are the key to binary num-
bers. Memorize them. (It’s easy—each bit is worth twice the value of 
its neighbor to the right.) These labels are used to calculate the value 
of the entire byte. Here’s how it works:

• Start with a value of 0.

• For each bit with a value of 1, add the label value below the 
bit.

Figure 5.3 A byte holding the binary value 00101011.

That’s all there is to it! In the byte pictured in Figure 5.3, you’d cal-
culate the byte’s value by adding 1 + 2 + 8 + 32 = 43. Where did we 
get the 1, 2, 8, and 32? They’re the bottom labels of the only bits with 

0
Bit 7

Add 128

0
Bit 6

Add 64

1
Bit 5

Add 32

0
Bit 4

Add 16

1
Bit 3

Add 8

0
Bit 2

Add 4

1
Bit 1

Add 2

1
Bit 0

Add 1



C Basics: Variables and Operators
An Introduction to Variables

Learn C under Windows 95/NT  55

a value of 1. Try another one. What’s the value of the byte pictured 
in Figure 5.4? 

Figure 5.4 What’s the value of this byte?

Easy, right? Just 2 + 8 + 16 + 64 = 90. Right! How about the byte in 
Figure 5.5?

Figure 5.5 Last one: What’s the value of this byte?

This is an interesting one: 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255. 
This example demonstrates the largest value that can fit in a single 
byte. Why? Because every bit is turned on. We’ve added everything 
we can add to the value of the byte.

The smallest value a byte can have is 0 (00000000). Since a byte can 
range in value from 0 to 255, a byte can have 256 possible values.

Important This is just one of several ways to represent a number using bi-
nary. This approach is fine if you want to represent integers that 
are always greater than or equal to 0 (known as unsigned inte-
gers). Computers use a different technique, known as two’s com-
plement notation, to represent integers that might be either 
negative or positive.

To represent a negative number using two’s complement notation:

0
Bit 7

Add 128

1
Bit 6

Add 64

0
Bit 5

Add 32

1
Bit 4

Add 16

1
Bit 3

Add 8

0
Bit 2

Add 4

1
Bit 1

Add 2

0
Bit 0

Add 1

1
Bit 7

Add 128

1
Bit 6

Add 64

1
Bit 5

Add 32

1
Bit 4

Add 16

1
Bit 3

Add 8

1
Bit 2

Add 4

1
Bit 1

Add 2

1
Bit 0

Add 1



C Basics: Variables and Operators
An Introduction to Variables

56   Learn C under Windows 95/NT

•Start with the binary representation of the positive 
version of the number.
•Complement all the bits (turn the 1s into 0s and the 0s
into 1s).
•Add 1 to the result.

For example, the binary notation for the number 9 is 00001001. To 
represent –9 in two’s complement notation, flip the bits 
(11110110) and then add 1. The two’s complement for –9 is 
11110110 + 1 = 11110111.

The binary notation for the number 2 is 00000010. The two’s com-
plement for –2 would be 11111101 + 1 = 11111110. Notice that 
in binary addition, when you add 01 + 01, you get 10. Just as in 
regular addition, you carry the 1 to the next column.

Don’t worry about the details of binary representation and arith-
metic. What’s important to remember is that the computer uses one 
notation for positive-only numbers and a different notation for 
numbers that can be positive or negative. Both notations allow a 
byte to take on one of 256 different values. The positives-only 
scheme allows values ranging from 0 to 255. The two’s complement 
scheme allows values ranging from –128 to 127. Note that both of 
these ranges contain exactly 256 values.

Going from 1 to 2 Bytes
So far, we’ve discovered that 1 byte (8 bits) of memory can hold one 
of 28 = 256 possible values. By extension, 2 bytes (16 bits) of memory 
can hold one of 216 = 65,536 possible values. If the 2 bytes are un-
signed (never allowed to hold a negative value), they can hold val-
ues ranging from 0 to 65,535. If the 2 bytes are signed (allowed to 
hold both positive and negative values), they can hold values rang-
ing from –32,768 to 32,767.

By default, most C data types are signed (allowed to hold both posi-
tive and negative values). This means that a variable declared as fol-
lows is signed and, assuming a 4-byte int, can hold values ranging 
from –2,147,483,648 to 2,147,483,647:



C Basics: Variables and Operators
Operators

Learn C under Windows 95/NT  57

int myInt;

Important To declare a variable as unsigned, precede its declaration with 
the unsigned qualifier. Here’s an example:

unsigned int myInt;

This version of myInt (again, assuming 4-byte ints) can hold val-
ues ranging from 0 to 4,294,967,295. 

Now that you’ve defined the type of variable your program will use 
(in this case, int), you can assign a value to your variable.

Operators
One way to assign a value to a variable is with the = operator, also 
known as the assignment operator. An operator is a special charac-
ter (or set of characters) representing a specific computer operation. 
The assignment operator tells the computer to compute the value to 
the right of the = and to assign that value to the left of the =. Take a 
look at this line of source code:

myInt = 237;

This statement causes the value 237 to be placed in the memory allo-
cated for myInt. In this line of code, myInt is known as an l-value 
(for left-value) because it appears on the left side of the = operator. A 
variable makes a fine l-value. A number (like 237) makes a terrible l-
value. Why? Because values are copied from the right side to the left 
side of the = operator. For example, the following line of code asks 
the compiler to copy the value in myInt to the number 237: 

237 = myInt;



C Basics: Variables and Operators
Operators

58   Learn C under Windows 95/NT

Since you can’t change the value of a number, the compiler will re-
port an error when it encounters this line of code (most likely, the 
error message will say something like “l-value expected”). 

By the Way As we just illustrated, you can use numerical constants (such as 
237) directly in your code. In the programming world, these con-
stants are called literals. Just as there are different types of vari-
ables, there are also different types of literals. You’ll see more on 
this topic later in the book.

Look at this example:

int main( void )
{
int myInt, anotherInt;

myInt = 503;
anotherInt = myInt;

return 0;
}

Notice we’ve declared two variables in this program. One way to 
declare multiple variables is the way we did here, separating the 
variables by a comma (,). There’s no limit to the number of variables 
you can declare using this method.

We could have declared these variables by using two separate decla-
ration lines:

int myInt;
int anotherInt;

Either way is fine. As you’ll see, C is an extremely flexible language. 
However, there is one rule of thumb you should keep in mind. Al-
though there are exceptions, you’ll generally declare all your vari-



C Basics: Variables and Operators
Operators

Learn C under Windows 95/NT  59

ables before any other type of statement occurs. Consider this 
example:

int main( void )
{
int myInt;

myInt = 503;

int anotherInt;

anotherInt = myInt;

return 0;
}

This program will not compile (see the errors in Figure 5.6). Why? A 
variable (anotherInt) was declared after a nondeclaration state-
ment (myInt = 503). 

Figure 5.6 These errors occurred because anotherInt was declared 
after an assignment statement.



C Basics: Variables and Operators
Operators

60   Learn C under Windows 95/NT

Here’s the corrected version:

int main( void )
{
int myInt;
int anotherInt;

myInt = 503;
anotherInt = myInt;

return 0;
}

This program starts by declaring two ints:

int myInt;
int anotherInt;

Next, the program assigns the value 503 to myInt:

myInt = 503;

Finally, the value in myInt is copied into anotherInt:

anotherInt = myInt;

After this last statement, the variable anotherInt also contains the 
value 503.

By the Way Here’s another version of our program that also compiles: 

int main( void )
{

int myInt;



C Basics: Variables and Operators
Operators

Learn C under Windows 95/NT  61

myInt = 503;
{

int anotherInt;

anotherInt = myInt;
}
return 0;

}

Wait a sec. This version declares a variable (anotherInt) after a 
nondeclaration statement. So how come it compiles? The left-curly 
({) after the assignment statement starts a new block of code, 
which gives you another opportunity to declare more variables. 
The right-curly (}) ends the block.

Although this may be interesting, it doesn’t come up that often. 
Your best bet is to stick to the strategy of declaring a function’s 
variables at the beginning of the function.

Why go to all this effort just to assign a value to a variable? Think of 
it as learning to crawl before you can walk. As we cover more and 
more of the C language, you’ll start to see some of the fantastic 
things you can accomplish. At the beginning of this chapter, we 
looked at an example that took the values from three containers, 
added them, and placed the result in a fourth container. That’s what 
this is all about. C variables and operators allow you to manipulate 
and manage data inside a program. The data might represent your 
baseball card collection or the flight path of the Mars lander. Vari-
ables and operators allow you to massage the data to get the results 
you want. Have patience and keep reading.

Let’s look at some other operators.



C Basics: Variables and Operators
Operators

62   Learn C under Windows 95/NT

The +, -, ++, and -- Operators
The + and - operators each take two values and reduce them to a 
single value. For example, the following statement will first resolve 
the right side of the = by adding the numbers 5 and 3.

myInt = 5 + 3;

 Once that’s done, the resulting value (8) is assigned to the variable 
on the left side of the =. This statement assigns the value 8 to the 
variable myInt. Assigning a value to a variable means copying the 
value into the memory allocated to that variable.

Here’s another example:

myInt = 10;
anotherInt = 12 - myInt;

The first statement assigns the value 10 to myInt. The second state-
ment subtracts 10 from 12 to get 2, then assigns the value 2 to 
anotherInt.

The ++ and -- operators operate on a single value only. The ++ oper-
ator increments (raises) the value by 1, and -- decrements (lowers) 
the value by 1. Take a look:

myInt = 10;
myInt++;

The first statement assigns myInt a value of 10. The second state-
ment changes the value of myInt from 10 to 11. Here’s an  example 
with --:

myInt = 10;
-- myInt;

This time, the second line of code left myInt with a value of 9. You 
may have noticed that the first example showed the ++ following 



C Basics: Variables and Operators
Operators

Learn C under Windows 95/NT  63

myInt, whereas the second example showed the -- preceding my-
Int.

The position of the ++ and -- operators determines when their oper-
ation is performed in relation to the rest of the statement. Placing the 
operator to the right of a variable or an expression (postfix notation) 
tells the compiler to resolve all values before performing the incre-
ment (or decrement) operation. Placing the operator to the left of the 
variable (prefix notation) tells the compiler to increment (or decre-
ment) first, then continue evaluation. Confused? The following ex-
amples should make this point clear:

myInt = 10;
anotherInt = myInt--;

The first statement assigns myInt a value of 10. In the second state-
ment, the -- operator is to the right of myInt. This use of postfix no-
tation tells the compiler to assign myInt’s value to anotherInt 
before decrementing myInt. This example leaves myInt with a 
value of 9 and anotherInt with a value of 10.

Here’s the same example, written using prefix notation:

myInt = 10;
anotherInt = -- myInt;

This time, the -- is to the left of myInt. In this case, the value of 
myInt is decremented before being assigned to anotherInt. The 
result? Both myInt and anotherInt are left with a value of 9.

By the Way This use of prefix and postfix notation shows both a strength and a 
weakness of the C language. The strength is that C allows you to 
accomplish a lot in a small amount of code. In the previous exam-
ples, we changed the value of two different variables in a single 
statement. C is powerful.

The weakness is that C code written in this fashion can be ex-
tremely cryptic, difficult to read for even the most seasoned C pro-



C Basics: Variables and Operators
Operators

64   Learn C under Windows 95/NT

grammer.

Write your code carefully.

The += and –= Operators
In C, you can place the same variable on both the left and right sides 
of an assignment statement. For example, the following statement 
increases the value of myInt by 10:

myInt = myInt + 10;

The same results can be achieved using the += operator:

myInt += 10;

In other words, the preceding statement is the same as:

myInt = myInt + 10;

In the same way, the -= operator can be used to decrement the value 
of a variable. The following statement decrements the value of 
myInt by 10:

myInt -= 10;

The *, /, *=, and /= Operators
The * and / operators each take two values and reduce them to a 
single value, much the same as the + and - operators do. The follow-
ing statement multiplies 3 and 5, leaving myInt with a value of 15:

myInt = 3 * 5;



C Basics: Variables and Operators
Operators

Learn C under Windows 95/NT  65

 The following statement divides 5 by 2 and, if myInt is declared as 
an int (or any other type designed to hold whole numbers), assigns 
the integral (truncated) result to myInt:

myInt = 5 / 2;

The number 5 divided by 2 is 2.5. Since myInt can hold only whole 
numbers, the value 2.5 is truncated, and the value 2 is assigned to 
myInt.

Important Math alert! Numbers like –37, 0, and 22, are known as whole 
numbers, or integers. Numbers like 3.14159, 2.5, and .0001 are 
known as fractional, or floating-point, numbers.

The *= and /= operators work much the same as their += and -= 
counterparts. The following two statements are identical:

myInt *= 10;
myInt = myInt * 10;

The following two statements are also identical:

myInt /= 10;
myInt = myInt / 10;

By the Way The / operator doesn’t perform its truncation automatically. The ac-
curacy of the result is limited by the data type of the operands. As 
an example, if the division is performed using ints, the result will 
be an int and is truncated to an integer value.

Several data types (such as float, introduced in Chapter 8) sup-
port floating-point division, using the / operator.



C Basics: Variables and Operators
Operator Order

66   Learn C under Windows 95/NT

Operator Order

Using Parentheses ( )
Sometimes, the expressions you create can be evaluated in many 
ways. For example:

myInt = 5 + 3 * 2;

You can add 5 + 3, then multiply the result by 2 (giving you 16). Al-
ternatively, you can multiply 3 * 2 and add 5 to the result (giving 
you 11). Which is correct?

C has a set of built-in rules for resolving the order of operators. As it 
turns out, the * operator has a higher precedence than the + opera-
tor, so the multiplication will be performed first, yielding a result of 
11.

Although it helps to understand the relative precedence of the C op-
erators, it is difficult to keep track of them all. That’s why the C gods 
gave us parentheses! Use parentheses in pairs to define the order in 
which you want your operators performed. The following state-
ment will leave myInt with a value of 16:

myInt = ( 5 + 3 ) * 2;

The following statement will leave myInt with a value of 11:

myInt = 5 + ( 3 * 2 );

You can use more than one set of parentheses in a statement, as long 
as they occur in pairs—one left parenthesis associated with each 
right parenthesis. The following statement will leave myInt with a 
value of 16:

myInt = ( ( 5 + 3 ) * 2 );

Resolving Operator Precedence
As mentioned previously,  C has built-in rules for resolving operator 
precedence. If you have a question about which operator has a 
higher precedence, refer to the chart in Figure 5.7. Here’s how the 
chart works.



C Basics: Variables and Operators
Operator Order

Learn C under Windows 95/NT  67

Figure 5.7 The relative precedence of C’s built-in operators. The higher 
its position in the chart, the higher the operator’s precedence.

The higher an operator is in the chart, the higher its precedence. For 
example, suppose that you are trying to predict the result of this line 
of code:

myInt = 5 * 3 + 7;

First, look up the operator * in the chart. Hmmm . . . * seems to be in 
the chart twice: once with label pointer and once with the label 
multiply. You can tell just by looking at this line of code that we 
want the multiply version. The compiler is pretty smart. Just like 
you, it can tell that this is the multiply version of *.

OK, now look up +. Yup, it’s in there twice also: once as unary and 
once as binary. A unary + or - is the sign that appears before a 

Operators by Precedence Order

->, ., ++postfix, --postfix

*pointer, &address of, +unary, -unary, !, ~, ++prefix, --prefix, sizeof
Typecast
*multiply, /, %
+binary, -binary

<<left-shift, >>right-shift

>, >=, <, <=,
==, !=
&bitwise-and

^
|
&&
||
?:
=, +=, -=, *=, /=, %=, >>=, <<=, &=, |=, ^=
,

Left to Right
Right to Left
Right to Left
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Left to Right
Right to Left
Right to Left
Left to Right



C Basics: Variables and Operators
Operator Order

68   Learn C under Windows 95/NT

number, as in +147 or –32768. In our line of code, the + operator has 
two operands, so clearly binary + is the one we want.

Now that you’ve figured out which operator is which, you can see 
that the multiply * is higher up on the chart than the binary + 
and thus has a higher precedence. This means that the * will get 
evaluated before the +, as if the expression were written as:

myInt = (5 * 3) + 7;

So far, so good. Now consider this line of code:

myInt = 27 * 6 % 5;

Both of these operators are on the fourth line in the chart. Which one 
gets evaluated first? If both operators under consideration are on 
the same line in the chart, the order of evaluation is determined by 
the entry in the chart’s rightmost column. In this case, the operators 
are evaluated from left to right. In the current example, * will get 
evaluated before %, as if the line of code were written:

myInt = (27 * 6) % 5;

Now look at this line of code:

myInt = 27 % 6 * 5;

In this case, the % will get evaluated before the *, as if the line of 
code were written:

myInt = (27 % 6) * 5;

Of course, you can avoid this exercise altogether with a judicious 
sprinkling of parentheses. As you look through the chart, you’ll def-
initely notice some operators that you haven’t learned about yet. As 



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  69

you read through the book and encounter new operators, check 
back on the chart to see where it fits in. In fact, go ahead and dogear 
the page (pay for the book first, though!) so you can find the chart 
again later.

Sample Programs
So far in this chapter, we’ve discussed variables (mostly of type int) 
and operators (mostly mathematical). The program examples on the 
following pages combine variables and operators into useful C 
statements. We’ll also learn about a powerful part of the Standard 
Library, the printf() function.

Opening operator.cwp
Our next program, operator.cwp, provides a testing ground for 
some of the operators covered in the previous sections. 
operator.c declares a variable (myInt) and uses a series of state-
ments to change the value of the variable. By including a printf() 
after each of these statements, operator.c makes it easy to follow 
the variable, step by step, as its value changes.

Start up CodeWarrior by double-clicking on the project file 
operator.cwp inside the Learn C Projects directory, in the 
subdirectory named 05.01 - operator. The project window for 
operator.cwp should appear (Figure 5.8).

Run operator.cwp  by selecting Run from the Project menu. 
CodeWarrior will first attempt to compile operator.c, turning it 
into an application named operator. If you haven’t mucked 
around with the source code, things should proceed smoothly, re-
sulting in a clean compile. Once the code compiles, CodeWarrior 
will run operator, displaying information in the console window. 
The information displayed by your program is also known as your 
program’s output. Compare your output to that shown in Figure 
5.9. They should be the same.



C Basics: Variables and Operators
Sample Programs

70   Learn C under Windows 95/NT

Figure 5.8 The operator.cwp project window.

Figure 5.9 The output generated by operator.



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  71

By the Way In ancient times, programmers used character-based displays to 
communicate with their computers. These displays were called 
consoles. A typical console screen supported 24 rows of text, each 
up to 80 columns wide. When the computer wanted to communi-
cate with you, it displayed some characters on your console. To re-
spond to the computer, you’d type at your keyboard. The 
characters you typed would also appear on your console.

Programmers love character-based displays because they’re sim-
ple. To display text on a window-based system (like Windows or 
the Macintosh), you have to worry about things like text font, size, 
and style. You have to worry about lining all your text up just right.

With a character-based display, you didn’t worry about things like 
that. Typically, you just sent the text out to the display, one line at a 
time. When you reached the bottom of the screen, the console 
would scroll the text automatically. So easy!

Modern programming environments, such as CodeWarrior, offer 
you the best of both worlds. For example, CodeWarrior supports 
all the elements specific to Windows, such as pull-down menus, 
scroll bars, windows, and icons. 

CodeWarrior also features a standard, scrolling console window. 
The console window is essentially a 24-line, 80-column display 
console embedded in a Windows window. Since many of the Stan-
dard Library routines, such as printf(), were designed with this 
simpler, character-based display in mind, we’ll make extensive use 
of the console window as we learn C.

Stepping Through the Source Code

Before we step through the source code in operator.c, you might 
want to bring the source code up on your screen (double-click on 
the name operator.c in the project window, or select Open from 
the File menu). A new window will appear, listing the source code 
in the file operator.c.



C Basics: Variables and Operators
Sample Programs

72   Learn C under Windows 95/NT

The file operator.c  starts off with a #include statement that 
gives us access to a bunch of Standard Library functions, including 
printf():

#include <stdio.h>

Then, main() starts out by defining an int named myInt.

int main( void )
{
int myInt;

By the Way Note that earlier the term “declaring a variable” was used; now the 
term “defining” is being used. What’s the difference? A variable 
declaration is any statement that specifies a variable’s name and 
type—for example:

int myInt;

A variable definition is a declaration that causes memory to be al-
located for the variable. Since the previous statement does cause 
memory to be allocated for myInt, it does qualify as a definition. 
Later in the book, you’ll see some declarations that don’t qualify as 
definitions. For now, just remember that a definition causes mem-
ory to be allocated.

At this point in the program (after myInt has been declared but be-
fore any value has been assigned to it), myInt is said to be uninitial-
ized. In computerese, the term initialization refers to the process of 
establishing a variable’s value for the first time. A variable that has 
been declared but that has not had a value assigned to it is said to be 
uninitialized. You initialize a variable the first time you give it a 
value.

Since myInt was declared to be of type int and since CodeWarrior 
is currently set to use 4-byte ints, 4 bytes of memory were reserved 
for myInt. Since we haven’t placed a value in those 4 bytes yet, they 



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  73

could contain any value at all. Some compilers place a value of 0 in a 
newly allocated variable; some do not. The key is, don’t depend on 
a variable being preset to a specific value. If you want a variable to 
contain a specific value, assign the value to the variable yourself!

Important Later in the book, you’ll learn about global variables. Global vari-
ables are always given an initial value by the compiler. All the vari-
ables used in this chapter are local variables, not global variables. 
Local variables are not guaranteed to be initialized by the compiler.

The next line of code uses the * operator to assign a value of 6 to my-
Int. Following that, we use printf() to display the value of 
myInt in the console window:

myInt = 3 * 2;
printf( “myInt ---> %d\n”, myInt );

The code between printf()’s left and right parentheses is known 
as a parameter list. The parameters, or arguments, in a parameter 
list are automatically provided to the function you are calling (in 
this case, printf()). The receiving function can use the parameters 
passed to it to determine its next course of action. We’ll get into the 
specifics of parameter passing in Chapter 7. For the moment, let’s 
talk about printf() and the parameters used by this Standard Li-
brary function.

The first parameter passed to printf() defines what will be drawn 
in the console window. The simplest call to printf() uses a quoted 
text string as its only parameter. A quoted text string consists of a 
pair of double-quote characters (“) with zero or more characters be-
tween them. For example, this call of printf() will draw the char-
acters Hello! in the console window:

printf( “Hello!” );

Notice that the double-quote characters are not part of the text 
string.



C Basics: Variables and Operators
Sample Programs

74   Learn C under Windows 95/NT

You can request that printf() draw a variable’s value in the midst 
of the quoted string. In the case of an int, do this by embedding the 
two characters %d within the first parameter and by passing the int 
as a second parameter. Then,  printf() will replace the %d with the 
value of the int.

In these two lines of code, we first set myInt to 6 and use printf() 
to print the value of myInt in the console window:

myInt = 3 * 2;
printf( “myInt ---> %d\n”, myInt );

This code produces the following line of output in the console win-
dow:

myInt ---> 6

The two characters “\n” in the first parameter represent a carriage 
return and tell printf() to move the cursor to the beginning of the 
next line before it prints any more characters.

By the Way The %d is known as a format specifier. The d in the format speci-
fier tells printf() that you are printing an integer variable, such 
as an int. We’ll cover format specifiers in detail in Chapter 8.

You can place any number of % specifications in the first parameter, 
as long as you follow the first parameter by the appropriate number 
of variables. Here’s another example:

int var1, var2;

var1 = 5;
var2 = 10;
printf( “var1 = %d\n\nvar2 = %d\n”, var1, var2 );



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  75

The preceding code will draw the following text in the console win-
dow: 

var1 = 5

var2 = 10

Notice the blank line between the two lines of output. It was caused 
by the “\n\n” in the first printf() parameter. The first carriage re-
turn placed the cursor at the beginning of the next console line (di-
rectly under the v in var1). The second carriage return moved the 
cursor down one more line, leaving a blank line in its path.

Let’s get back to our source code. The next line of operator.c in-
crements myInt from 6 to 7 and prints the new value in the console 
window:

myInt += 1;
printf( “myInt ---> %d\n”, myInt );

The next line decrements myInt by 5 and prints its new value, 2, in 
the console window:

myInt -= 5;
printf( “myInt ---> %d\n”, myInt );

Next, myInt is multiplied by 10, and its new value, 20, is printed in 
the console window:

myInt *= 10;
printf( “myInt ---> %d\n”, myInt );

Next, myInt is divided by 4, resulting in a new value, 5.

myInt /= 4;
printf( “myInt ---> %d\n”, myInt );



C Basics: Variables and Operators
Sample Programs

76   Learn C under Windows 95/NT

Finally, myInt is divided by 2. Since 5 divided by 2 is 2.5 (not a 
whole number), a truncation is performed, and myInt is left with a 
value of 2: 

myInt /= 2;
printf( “myInt ---> %d”, myInt );

return 0;
}

Opening postfix.cwp
Our next program demonstrates the difference between postfix and 
prefix notation (the ++ and -- operators defined earlier in the chap-
ter). Using the Windows Explorer or My Computer, go into the 
Learn C Projects  directory, then into the 05.02 - postfix 
subdirectory, and double-click on the project file postfix.cwp. 
CodeWarrior will close the project file operator.cwp  and open 
postfix.cwp.

Take a look at the source code in the file postfix.c and try to pre-
dict the result of the two printf() calls before you run the pro-
gram. Remember, you can open a source code listing for postfix.c 
by double-clicking on the name postfix.c in the project window. 
Careful, this one’s tricky.

Once your guesses are locked in, select Run from the Project menu. 
How’d you do? Compare your two guesses with the output in Fig-
ure 5.10. Let’s look at the source code.



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  77

Figure 5.10 The output generated by the program postfix.

Stepping Through the Source Code

The first half of postfix.c is pretty straightforward. The variable 
myInt is defined to be of type int. Then, myInt is assigned a value 
of 5. The tricky part comes next:

#include <stdio.h>

int main( void )
{

int myInt;

myInt = 5;

The first call to printf() has a statement embedded in it. This is 
another great feature of the C language. Where there’s room for a 
variable, there’s room for an entire statement. Sometimes, it’s conve-
nient to perform two actions within the same line of code. For exam-
ple:



C Basics: Variables and Operators
Sample Programs

78   Learn C under Windows 95/NT

printf( “myInt ---> %d\n”, myInt = myInt * 3 );

This line of code first triples the value of myInt, then passes the re-
sult (the tripled value of myInt) on to printf(). The same could 
have been accomplished using two lines of code:

myInt = myInt * 3;
printf( “myInt ---> %d\n”, myInt );

In general, when the compiler encounters an assignment statement 
where it expects a variable, it first completes the assignment, then 
passes on the result of the assignment as if it were a variable. Let’s 
see this technique in action.

In postfix.c, our friend the postfix operator emerges again. Just 
prior to the two calls of printf(), myInt has a value of 5. The first 
printf() increments the value of myInt using postfix notation:

printf( “myInt ---> %d\n”, myInt++ );

The use of postfix notation means that the value of myInt will be 
passed on to printf() before myInt is incremented. This means 
that the first printf() will accord myInt a value of 5. However, 
when the statement is finished, myInt will have a value of 6.

The second printf() acts in a more rational (and preferable) man-
ner. The prefix notation guarantees that myInt will be incremented 
(from 6 to 7) before its value is passed on to printf():

printf( “myInt ---> %d”, ++myInt );

return 0;
}

By the Way Can you break each of these printf() statements into two sepa-
rate ones? Give it a try, then read on . . .

The first printf() looks like this:



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  79

printf( “myInt ---> %d\n”, myInt++ );

Here’s the two-statement version:

printf( “myInt ---> %d\n”, myInt );
myInt++;

Notice that the statement incrementing myInt was placed after 
the printf(). Do you see why? The postfix notation makes this 
necessary. Run through both versions and verify this for yourself.

The second printf() looks like this:

printf( “myInt ---> %d”, ++myInt );

Here’s the two-statement version:

++myInt;

printf( “myInt ---> %d\n”, myInt );

This time, the statement incrementing myInt came before the 
printf(). This time, it’s the prefix notation that makes this neces-
sary. Again, go through both versions and verify this for yourself.

The purpose of demonstrating the complexity of the postfix and 
prefix operators is twofold. On one hand, it’s extremely important 
that you understand exactly how these operators work from all an-
gles. This will allow you to write code that works and will aid you 
in making sense of other programmers’ code. On the other hand, 
embedding prefix and postfix operators within function parameters 
may save you lines of code but, as you can see, may prove a bit con-
fusing.



C Basics: Variables and Operators
Sample Programs

80   Learn C under Windows 95/NT

Opening slasher.cwp
The last program in Chapter 5, slasher.cwp, demonstrates sev-
eral backslash combinations. Using the Windows Explorer or My 
Computer, open the Learn C Projects  directory; then open the 
05.03 - slasher subdirectory and double-click on the project file 
slasher.cwp. When CodeWarrior opens the slasher.cwp  
project window, run slasher.cwp  by selecting Run from the 
Project menu. You should see something like the console window 
shown in Figure 5.11. 

Figure 5.11 The output from slasher.cwp.

Stepping Through the Source Code

slasher.c consists of a series of printf() calls, each of which 
demonstrates a different backslash combination. The first printf() 
prints a series of 10 zeros, followed by the characters \r (also 
known as the backslash combination \r): 

#include <stdio.h>



C Basics: Variables and Operators
Sample Programs

Learn C under Windows 95/NT  81

int main( void )
{
printf( “0000000000\r” );

The \r backslash combination generates a carriage return without a 
line feed, leaving the cursor at the beginning of the current line (un-
like \n, which leaves the cursor at the beginning of the next line 
down).

The next printf() prints five 1s over the first five 0s, as if someone 
had printed the text string “1111100000”. The \n at the end of this 
printf() moves the cursor to the beginning of the next line in the 
console window:

printf( “11111\n” );

The next printf() demonstrates \b, the backspace backslash com-
bination, which tells printf() to back up one character so that the 
next character printed replaces the last character printed. This 
printf() sends out four 0s, backspaces over the last two, then 
prints two 1s. The result is as if you had printed the string “0011”:

printf( “0000\b\b11\n” );

The \ can also be used to cancel a character’s special meaning 
within a quoted string. For example, the backslash combination \\ 
generates a single \ character. The difference is, this \ loses its spe-
cial backslash powers. It doesn’t affect the character immediately 
following it.

The backslash combination \” generates a “ character, taking away 
the special meaning of the “. Without the \ before it, the “ character 
would mark the end of the quoted string. The \ allows you to in-
clude a “ inside a quoted string.

The backslash combinations \\ and \” are demonstrated in the next 
two printf() calls:

printf( “Here’s a backslash...\\...for you.\n” );



C Basics: Variables and Operators
Sprucing Up Your Code

82   Learn C under Windows 95/NT

printf( “Here’s a double quote...\”...for
 you.\n” );

The \t combination generates a single tab character. The console 
window has a tab stop every eight spaces. Here’s a printf() ex-
ample:
printf( “Here are a few tabs...\t\t\t\t...for
 you.\n” );

The \a backslash combination provides a simple way to make your 
PC beep.

printf( “Here are a few beeps...\a\a\a\a...for 
you.” );

return 0;
}

Those are all the sample programs for this chapter. Before we move 
on, however, I’d like to talk to you about something personal. It’s 
about your coding habits.

Sprucing Up Your Code
You are now in the middle of your C learning curve. You’ve learned 
about variables, types, functions, and bytes. You’ve learned about 
an important part of the Standard Library, the function printf(). 
It’s at this point in the learning process that programmers start de-
veloping their coding habits.

Coding habits are the little things programmers do that make their 
code a little bit different (and hopefully better!) than anyone else’s. 
Before you get too set in your ways, here are a few coding habits 
you can, and should, add to your arsenal.



C Basics: Variables and Operators
Sprucing Up Your Code

Learn C under Windows 95/NT  83

Source Code Spacing
You may have noticed the tabs, spaces, and blank lines scattered 
throughout the sample programs. These are known in C as white 
space. With a few exceptions, white space is ignored by C compilers. 
Believe it or not, as far as the C compiler goes, the following two 
programs are equivalent:

main()
{
int myInt;myInt

=
5
;
printf(“myInt=”,myInt);}

main()
{
int myInt;

myInt = 5;
printf( “myInt =”, myInt );

}

The C compiler doesn’t care whether you put 5 statements per line 
or whether you put 20 carriage returns between your statements 
and your semicolons. One thing the compiler won’t let you do is 
place white space in the middle of a word, such as a variable or a 
function name. For example, the following line of code won’t com-
pile:

my  Int = 5;



C Basics: Variables and Operators
Sprucing Up Your Code

84   Learn C under Windows 95/NT

Instead of a single variable named myInt, the compiler sees two 
items: one named my and the other named Int. White space can 
confuse the compiler.

Too little white space can also confuse the compiler. For example, 
this line of code won’t compile:

intmyInt;

The compiler needs at least one piece of white space to tell where 
the type ends and where the variable begins. On the other hand, as 
you’ve already seen, this line compiles just fine:

myInt=5;

Since a variable name can’t contain the character =, the compiler has 
no problem telling where the variable ends and where the operator 
begins.

As long as your code compiles properly, you’re free to develop your 
own style for using white space. Here are a few hints:

• Place a blank line between your variable declarations and the
rest of your function’s code. Also, use blank lines to group 
related lines of code.

• Sprinkle single spaces throughout a statement. Here is a line
without spaces:

printf(“myInt=”,myInt);

Compare that line with this line:

printf( “myInt =”, myInt );

The spaces make the second line easier to read.

• When in doubt, use parentheses. Compare these two lines:



C Basics: Variables and Operators
Sprucing Up Your Code

Learn C under Windows 95/NT  85

myInt=var1+2*var2+4;
myInt = var1 + (2 * var2) + 4;

What a difference parentheses and spaces make!

• Always start variable names with a lowercase letter, using an
uppercase letter at the start of each subsequent word in the 
name. This yields variable names such as myVar, 
areWeDone, and employeeName.

• Always start function names with an uppercase letter, using 
an uppercase letter at the start of each subsequent word in 
the name. This yields function names such as 
DoSomeWork(), HoldThese(), and DealTheCards().

These hints are merely suggestions. Use standards that make sense 
for you and the people with whom you work. The object here is to 
make your code as readable as possible.

Comment Your Code
One of the most critical elements in the creation of a computer pro-
gram is clear and comprehensive documentation. When you deliver 
your award-winning graphics package to your customers, you’ll 
want to have two sets of documentation. One set is for your custom-
ers, who’ll need a clear set of instructions to guide them through 
your wonderful new creation.

The other set of documentation consists of the comments you’ll 
weave throughout your code. Comments in source code act as a sort 
of narrative, guiding a reader through your source code. You’ll in-
clude comments that describe how your code works, what makes it 
special, and what to look out for when changing it. Well-commented 
code includes a comment at the beginning of each function to de-
scribe the function, the function parameters, and the function’s vari-
ables. It’s also a good idea to sprinkle individual comments among 
your source code statements, explaining the role each line plays in 
your program’s algorithm. How do you add a comment to your 
source code? Take a look . . .



C Basics: Variables and Operators
Sprucing Up Your Code

86   Learn C under Windows 95/NT

All C compilers recognize the sequence /* as the start of a com-
ment and will ignore all characters until they reach the sequence */ 
(the end of comment characters). Here’s some commented code:

int main( void )
{
int numPieces;/* Number of pieces of pie left */

numPieces = 8;/*  We started with 8 pieces  */

numPieces--;/*  Marge had a piece  */
numPieces--;/*  Lisa had a piece  */
numPieces -= 2;/*  Bart had two pieces!!  */
numPieces -= 4;/*  Homer had the rest!!!  */

printf( “Slices left = %d”, numPieces );  
/*  How about some     */
/* cake instead?    */

return 0;
}

Notice that although most of the comments fit on the same line, the 
last comment was split among two lines. The preceding code will 
compile just fine.

Important Most modern C compilers will also accept the C++ commenting 
convention. C++ ignores the remainder of a line of code, once it 
encounters the characters //. For example, this line of code com-
bines both comment styles:

printf( “Comments” /* C comment */ );
// C++ comment!!!

Use the C++ comment mechanism only if you are sure you won’t 



C Basics: Variables and Operators
What’s Next?

Learn C under Windows 95/NT  87

be porting your code to a C compiler that doesn’t understand the 
C++ mechanism. 

Since all the programs in this book are examined in detail, line by 
line, the comments were left out. This was done to make the exam-
ples as simple as possible. In this instance, do as we say, not as we 
do. Comment your code. No excuses!

What’s Next?
This chapter introduced the concepts of variables and operators, 
tied together in C statements, separated by semicolons. We looked 
at several examples, each of which made heavy use of the Standard 
Library function printf(). We learned about the console window, 
quoted strings, and backslash combinations.

Chapter 6 will increase our programming options significantly, in-
troducing C control structures, such as the for loop and the if ... 
then ... else  statement. Get ready to expand your C program-
ming horizons. See you in Chapter 6.

Exercises
1. Find the error in each of the following code fragments:

a. printf( Hello, world );

b. int myInt  myOtherInt;

c. myInt =+ 3;

d. printf( “myInt = %d” );

e. printf( “myInt = “, myInt );

f. printf( “myInt = %d\”, myInt );

g. myInt + 3 = myInt;

h. int main( void )

{

int   myInt;



C Basics: Variables and Operators
Exercises

88   Learn C under Windows 95/NT

myInt = 3;

int   anotherInt;

anotherInt = myInt;

return 0;

}

2. Compute the value of myInt after each code fragment is 
executed:

a. myInt = 5;

myInt *= (3+4) * 2;

b. myInt = 2;

myInt *= ( (3*4) / 2 ) - 9;

c. myInt = 2;

myInt /= 5;

myInt--;

d. myInt = 25;

myInt /= 3 * 2;

e. myInt = (3*4*5) / 9;

myInt -= (3+4) * 2;

f. myInt = 5;

printf( “myInt = %d”, myInt = 2 );

g. myInt = 5;

myInt = (3+4) * 2;

h. myInt = 1;

myInt /= (3+4) / 6;

 



Learn C under Windows 95/NT  89

6
Controlling Your 
Program’s Flow
So far, you’ve learned quite a bit about the C language. You know 
about functions (especially one named main()). You know that 
functions are made up of statements, each of which is terminated by 
a semicolon. You know about variables, which have a name and a 
type. Up to this point, you’ve dealt with variables of type int.

You also know about operators, such as =, +, and +=. You’ve learned 
about postfix and prefix notation and the importance of writing 
clear, easy-to-understand code. You’ve learned about an important 
programming tool, the console window. You’ve learned about the 
Standard Library, a set of functions supplied as standard equipment 
with every C programming environment. You’ve also learned about 
printf(), an invaluable component of the Standard Library.

Finally, you’ve learned a few housekeeping techniques to keep your 
code fresh, sparkling, and readable. Comment your code, because 
your memory isn’t perfect, and insert some white space to keep 
your code from getting too cramped.

Flow Control
One thing you haven’t learned about the C language is flow control. 
The programs we’ve written so far have all consisted of a straight-
forward series of statements, one right after the other. Every state-
ment is executed in the order it occurred.

Flow control is the ability to define the order in which your pro-
gram’s statements are executed. The C language provides several 
keywords you can use in your program to control your program’s 
flow. One of these is the keyword if.



Controll ing Your Program’s Flow
Flow Control

90   Learn C under Windows 95/NT

The if Statement
The keyword if allows you to choose among several options in 
your program. In English, you might say something like this:

If it’s raining outside I’ll bring my umbrella; oth-
erwise I won’t.

In the previous sentence, you’re using “if” to choose between two 
options. Depending on the weather, you’ll do one of two things. 
You’ll bring your umbrella or you won’t bring your umbrella. C’s if 
statement gives you this same flexibility. Here’s an example:

int main( void )
{
int myInt;

myInt = 5;

if ( myInt == 0 )
printf( “myInt is equal to zero.” );

else
printf( “myInt is not equal to zero.” );

return 0;
}

This program declares myInt to be of type int and sets the value of 
myInt to 5. Next, we use the if statement to test whether myInt is 
equal to 0. If myInt is equal to 0 (which we know is not true), we’ll 
print one string. Otherwise, we’ll print a different string. As ex-
pected, this program prints the string “myInt is not equal to 
zero”.

An if statement can come in two ways. The first, known as plain 
old if, fits this pattern:

if ( expression )
statement



Controll ing Your Program’s Flow
Flow Control

Learn C under Windows 95/NT  91

An if statement will always consist of the word if, a left parenthe-
sis, an expression, a right parenthesis, and a statement. (We’ll define 
both “expression” and “statement” in a minute.) This first form of 
if executes the statement if the expression in parentheses is true. 
An English example of the plain if might be:

If it’s raining outside, I’ll bring my umbrella.

Notice that this statement tells us what will happen only if it’s rain-
ing outside. No particular action will be taken if it is not raining. 

The second form of if, known as if-else, fits this pattern:

if ( expression )
statement

else
statement

An if-else statement will always consist of the word if, a left pa-
renthesis, an expression, a right parenthesis, a statement, the word 
else, and a second statement. This form of if executes the first 
statement if the expression is true and executes the second state-
ment if the expression is false. An English example of an if-else 
statement might be:

If it’s raining outside, I’ll bring my umbrella, 
otherwise I won’t.

Notice that this example tells us what will happen if it is raining 
outside (I’ll bring my umbrella) and if it isn’t raining outside (I 
won’t bring my umbrella). The example programs presented later in 
the chapter demonstrate the proper use of both if and if-else.

Our next step is to define our terms.



Controll ing Your Program’s Flow
Expressions

92   Learn C under Windows 95/NT

Expressions
In C, an expression is anything that has a value. For example, a vari-
able is a type of expression, since a variable always has a value. 
(Even an uninitialized variable has a value—we just don’t know 
what the value is!) The following are all examples of expressions:

• myInt + 3

• ( myInt + anotherInt ) * 4

• myInt++

An assignment statement is also an expression. Can you guess the 
value of an assignment statement? Think back to Chapter 5. Re-
member when we included an assignment statement as a parameter 
to printf()? The value of an assignment statement is the value of 
its left side. Check out the following code fragment:

myInt = 5;
myInt += 3;

Both of these statements qualify as expressions. The value of the 
first expression is 5. The value of the second expression is 8 (because 
we added 3 to myInt’s previous value).

Literals can also be used as expressions. The number 8 has a value. 
Guess what? Its value is 8. All expressions, no matter what their 
type, have a numerical value.

By the Way Technically, there is an exception to this rule. The expression 
(void)0 has no value. In fact, any value or variable cast to type 
void has no value. Ummm, but, Dave, what’s a cast? What is type 
void? We’ll get to both of these topics later in the book. For the 
moment, when you see void, think “no value.”

True Expressions
Earlier, we defined the if statement as follows:



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  93

if ( expression )
statement

We then said that the statement gets executed if the expression is 
true. Let’s look at C’s concept of truth.

Everyone has an intuitive understanding of the difference between 
true and false. I think we’d all agree that the statement is false:

5 equals 3

 We’d also agree that the following statement is true:

5 and 3 are both greater than 0

This intuitive grasp of true and false carries over into the C lan-
guage. In the case of C, however, both true and false have numerical 
values. Here’s how it works.

In C, any expression that has a value of 0 is said to be false. Any ex-
pression with a value other than 0 is said to be true. As stated earlier, 
an if statement’s statement gets executed if its expression is true. To 
put this more accurately:

An if statement’s statement gets executed if (and only if) its expres-
sion has a value other than 0.

Here’s an example:

myInt = 27;

if ( myInt )
printf( “myInt is not equal to 0” );

The if statement in this piece of code first tests the value of myInt. 
Since myInt is not equal to 0, the printf() gets executed.



Controll ing Your Program’s Flow
Expressions

94   Learn C under Windows 95/NT

Comparative Operators
C expressions have a special set of operators, called comparative 
operators. Comparative operators compare their left sides with their 
right sides and produce a value of either 1 or 0, depending on the 
relationship of the two sides.

For example, the operator == determines whether the expression on 
the left is equal in value to the expression on the right. In the follow-
ing expression, myInt evaluates to 1 if myInt is equal to 5 and to 0 if 
myInt is not equal to 5:

myInt == 5

Here’s an example of the == operator at work:

if ( myInt == 5 )
printf( “myInt is equal to 5” );

If myInt is equal to 5, the expression myInt == 5 evaluates to 1 
and printf() gets called. If myInt isn’t equal to 5, the expression 
evaluates to 0 and the printf() is skipped. Just remember, the key 
to triggering an if statement is an expression that resolves to a 
value other than 0.

Figure 6.1 shows some of the other comparative operators. You’ll 
see some of these operators in the example programs later in the 
chapter.

Figure 6.1 Some comparative operators.

Operator Resolves to 1 if...
==
<=
>=
<
>
!=

left side is equal to right
left side is less than or equal to right

left side is greater than or equal to right
left side is less than right

left side is greater than right
left side is not equal to right



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  95

Logical Operators
Our next set of operators, collectively known as logical operators, 
are modeled on the mathematical concept of truth tables, and make 
use of true and false. If you don’t know much about truth tables 
(or are just frightened by mathematics in general), don’t panic. Ev-
erything you need to know is outlined in the next few paragraphs.

By the Way To make  your programs a little easier to read, you can define the 
constants true and false.   The constant true has a value of 1, 
and the constant false has a value of 0.  You define true and 
false like this:

#define true 1
#define false 0

The first of the set of logical operators is the ! operator. The ! oper-
ator turns true into false and false into true. Figure 6.2 shows 
the truth table for the ! operator. In this table, T stands for true and 
F stands for false. The letter A in the table represents an expres-
sion. If the expression A is true, applying the ! operator to A yields 
the value false. If the expression A is false, applying the ! opera-
tor to A yields the value true. The ! operator is commonly referred 
to as the NOT operator; !A is pronounced Not A.

Figure 6.2 The truth table for the ! operator.

Here’s a piece of code that demonstrates the ! operator:

int myFirstInt, mySecondInt;

A !A
T
F

F
T



Controll ing Your Program’s Flow
Expressions

96   Learn C under Windows 95/NT

myFirstInt = false;
mySecondInt = ! myFirstInt;

First, we declare two ints. We assign the value false to the first 
int, then use the ! operator to turn the false into a true and as-
sign it to the second int. This is really important. Take another look 
at Figure 6.2. The ! operator converts true into false and false 
into true. What this really means is that ! converts 1 to 0 and 0 to 1. 
This really comes in handy when you are working with an if state-
ment’s expression, like this one:

if ( mySecondInt )
printf( “mySecondInt must be true” );

The previous chunk of code translated mySecondInt from false 
to true, which is the same thing as saying that mySecondInt has a 
value of 1. Either way, mySecondInt will cause the if to fire, and 
the printf() will get executed.

Take a look at this piece of code:

if ( ! mySecondInt )
printf( “mySecondInt must be false” );

This printf() will get executed if mySecondInt is false. Do you 
see why? If mySecondInt is false, then ! mySecondInt  must 
be true.

The ! operator is a unary operator. Unary operators operate on a 
single expression (the expression to the right of the operator). The 
other two logical operators, && and ||, are binary operators. Binary 
operators, such as the == operator presented earlier, operate on two 
expressions, one on the left side and one on the right side of the op-
erator.

The && operator is commonly referred to as the and operator. The 
result of an && operation is true if, and only if, both the left side 
and the right side are true. Here’s an example:



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  97

int hasCar, hasTimeToGiveRide;

hasCar = true;
hasTimeToGiveRide = true;

if ( hasCar && hasTimeToGiveRide )
printf( “Hop in - I’ll give you a ride!\n” );

else
printf( “I’ve either got no car, no time, or 

neither!\n” );

This example uses two variables. One indicates whether the pro-
gram has a car, the other whether the program has time to give us a 
ride to the mall. All philosophical issues aside (Can a program have 
a car?), the question of the moment is, Which printf() will fire? 
Since both sides of the && were set to true, the first printf() will 
be called. If either one (or both) of the variables were set to false, 
the second printf() would be called. Another way to think of this 
is that we’ll get a ride to the mall only if our friendly program has a 
car and has time to give us a ride. If either of these is not true, we’re 
not getting a ride. By the way, notice the use here of the second form 
of if: the if-else statement.

The || operator is commonly referred to as the or operator. The re-
sult of a || operation is true if either the left side or the right side, 
or both sides, of the || are true. Put another way, the result of a || 
is false if, and only if, both the left side and the right side of the || 
are false. Here’s an example:

int nothingElseOn, newEpisode;

nothingElseOn = true;
newEpisode = true;

if ( newEpisode || nothingElseOn )
printf( “Let’s watch Star Trek!\n” );

else



Controll ing Your Program’s Flow
Expressions

98   Learn C under Windows 95/NT

printf( “Something else is on or I’ve seen this 
one.\n” );

This example uses two variables to decide whether we should 
watch “Star Trek” (your choice: TOS, TNG, DS9, or VOY). One vari-
able indicates whether anything else is on right now, and the other 
tells you whether this episode is a rerun. If this is a brand new epi-
sode or if nothing else is on, we’ll watch “Star Trek.”

Here’s a slight twist on the previous example:

int nothingElseOn, itsARerun;

nothingElseOn = true;
itsARerun = false;

if ( (! itsARerun) || nothingElseOn )
printf( “Let’s watch Star Trek!\n” );

else
printf( “Something else is on or I’ve seen this 

one.\n” );

This time, we’ve replaced the variable newEpisode with its exact 
opposite, itsARerun. Look at the logic that drives the if state-
ment. We’re combining itsARerun with the ! operator. Before, we 
cared whether the episode was a newEpisode. This time, we are 
concerned that the episode is not a rerun. See the difference?

Both the && and the || operators are summarized in the table in Fig-
ure 6.3. If you look in the directory Learn C Projects, you’ll find 
a subdirectory named 06.01 - truthTester. The file 
truthTester.c contains the three examples we just went through. 
Take some time to play with the code. Take turns changing the vari-
ables from true to false and back again. Use this code to get a 
good feel for the !, &&, and || operators.



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  99

Figure 6.3 Truth table for the && and || operators.

By the Way On most keyboards, you type the character & by holding down the 
shift key and typing a 7. You type the character | by holding down 
the shift key and typing a \ (backslash). Don’t confuse the | with 
the letters l or i or with the ! character.

Compound Expressions
All of the examples presented so far have consisted of relatively 
simple expressions. Here’s an example that combines several opera-
tors:

int myInt;

myInt = 7;

if ( (myInt >= 1) && (myInt <= 10) )
printf( “myInt is between 1 and 10” );

else
printf( “myInt is not between 1 and 10” );

This example tests whether a variable is in the range between 1 and 
10. The key here is the expression:

(myInt >= 1) && (myInt <= 10)

A B
T
T
F
F

T
F
T
F

A && B A || B
T
F
F
F

T
T
T
F



Controll ing Your Program’s Flow
Expressions

100   Learn C under Windows 95/NT

This expression lies between the if statement’s parentheses and 
uses the && operator to combine two smaller expressions. Notice 
that the two smaller expressions are each surrounded by parenthe-
ses to avoid any ambiguity. If we left out the parentheses, the ex-
pression might not be interpreted as we intended:

myInt >= 1 && myInt <= 10

Once again, use parentheses for safe computing.

Statements
At the beginning of the chapter, we defined the if statement as:

if ( expression )
statement

We’ve covered expressions pretty thoroughly. Now, we’ll turn our 
attention to the statement.

At this point in the book, you probably have a pretty good intuitive 
model of the statement. You’d probably agree that this is a state-
ment:

myInt = 7;

But is this one statement or two?

if ( isCold )
printf( “Put on your sweater!” );

The previous code fragment is a statement within another state-
ment. The printf() resides within a larger statement, the if state-
ment.



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  101

The ability to break your code out into individual statements is not a 
critical skill. Getting your code to compile, however, is critical. As 
we introduce new types of statements, pay attention to the state-
ment syntax. And pay special attention to the examples. Where do 
the semicolons go? What distinguishes this type of statement from 
all other types?

As you build up your repertoire of statement types, you’ll find 
yourself using one type of statement within another. That’s perfectly 
acceptable in C. In fact, every time you create an if statement, 
you’ll use at least two statements, one within the other. Take a look 
at this example:

if ( myVar >= 1 )
if ( myVar <= 10 )
printf( “myVar is between 1 and 10” );

This example uses an if statement as the statement for another if 
statement. This example calls the printf() if both if expressions 
are true, that is, if myVar is greater than or equal to 1 and less than 
or equal to 10. You could have accomplished the same result with 
this piece of code:

if ( ( myVar >= 1 ) && ( myVar <= 10 ) )
printf( “myVar is between 1 and 10” );

The second piece of code is a little easier to read. There are times, 
however, when the method demonstrated in the first piece of code is 
preferred. Take a look at this example:

if ( myVar != 0 )
if ( ( 1 / myVar ) < 1 )
printf( “myVar is in range” );

One thing you don’t want to do in C is divide a number by 0. Any 
number divided by 0 is infinity, and infinity is a foreign concept to 
the C language. If your program ever tries to divide a number by 0, 



Controll ing Your Program’s Flow
Expressions

102   Learn C under Windows 95/NT

your program is likely to crash. The first expression in this example 
tests to make sure that myVar is not equal to 0. If myVar is equal to 0, 
the second expression won’t even be evaluated! The sole purpose of 
the first if is to make sure that the second if never tries to divide 
by 0. Make sure that you understand this point. Imagine what 
would happen if we wrote the code this way:

if ( (myVar != 0) && ((1 / myVar) < 1) )
printf( “myVar is in range” );

As it turns out, if the left half of the && operator evaluates to false, 
the right half of the expression will never be evaluated, and the en-
tire expression will evaluate to false. Why? Because if the left op-
erand is false, it doesn’t matter what the right operand is; true or 
false, the expression will evaluate to false. Be aware of this as 
you construct your expressions.

The Curly Braces 
Earlier in the book, you learned about the curly braces ({ }) that 
surround the body of every function. These braces also play an im-
portant role in statement construction. Just as parentheses can be 
used to group terms of an expression together, curly braces can be 
used to group multiple statements together. Here’s an example:

onYourBack = TRUE;

if ( onYourBack )
{
printf( “Flipping over” );
onYourBack = FALSE;

}

In the example, if onYourBack is true, both of the statements in  
curly braces will be executed. A pair of curly braces can be used to 
combine any number of statements into a single superstatement, 
also known as a block. You can use this technique anywhere a state-
ment is called for.



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  103

Curly braces can be used to organize your code, much as you’d use 
parentheses to ensure that an expression is evaluated properly. This 
concept is especially appropriate when dealing with nested state-
ments. Consider this code, for example:

if ( myInt >= 0 )
if ( myInt <= 10 )
printf( “myInt is between 0 and 10.\n” );

else
printf( “myInt is negative.\n” ); /* <---

Error!!! */

Do you see the problem with this code? Which if does the else be-
long to? As written (and as formatted), the else looks as though it 
belongs to the first if. That is, if myInt is greater than or equal to 0, 
the second if is executed; otherwise, the second printf() is exe-
cuted. Is this right?

Nope. As it turns out, an else belongs to the if closest to it (the 
second if, in this case). Here’s a slight rewrite:

if ( myInt >= 0 )
if ( myInt <= 10 )
printf( “myInt is between 0 and 10.\n” );

else
printf( “myInt is not between 0 and 10.\n” );

One point here is that formatting is nice, but it won’t fool the com-
piler. More important, this example shows how easy it is to make a 
mistake. Check out this version of the code:

if ( myInt >= 0 )
{
if ( myInt <= 10 )
printf( “myInt is between 0 and 10.\n” );

}
else



Controll ing Your Program’s Flow
Expressions

104   Learn C under Windows 95/NT

printf( “myInt is negative.\n” );

Do you see how the curly braces help? In a sense, they act to hide 
the second if inside the first if statement. There is no chance for 
the else to connect to the hidden if.

No one I know ever got fired for using too many parentheses or too 
many curly braces.

Where to Place the Semicolon
So far, the statements we’ve seen fall into two categories. Function 
calls, such as calls to printf(), and assignment statements are 
called simple statements. Always place a semicolon at the end of a 
simple statement, even if it is broken over several lines, like this:

printf( “%d%d%d%d”, var1,
var2,
var3,
var4 );

Statements made up of several parts—including, possibly, other 
statements—are called compound statements. Compound state-
ments obey some pretty strict rules of syntax. The if statement, for 
example, always looks like this:

if ( expression )
statement

Notice there are no semicolons in this definition. The statement part 
of the if can be a simple statement or a compound statement. If the 
statement is simple, follow the semicolon rules for simple state-
ments by placing a semicolon at the end of the statement. If the 
statement is compound, follow the semicolon rules for that particu-
lar type of statement.

Notice that using “curlies” to build a superstatement, or block, out 
of smaller statements does not require the addition of a semicolon.



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  105

The Loneliest Statement
Guess what? A single semicolon qualifies as a statement, albeit a 
somewhat lonely one. For example: 

if ( bored )
;

This code fragment is a legitimate (and thoroughly useless) if state-
ment. If bored is true, the semicolon statement gets executed. The 
semicolon by itself doesn’t do anything but fill the bill where a state-
ment was needed. There are times where the semicolon by itself is 
exactly what you need.

The while Statement
The if statement uses the value of an expression to decide whether 
to execute or to skip over a statement. If the statement is executed, it 
is executed just once. Another type of statement, the while state-
ment, repeatedly executes a statement as long as a specified expres-
sion is true. The while statement follows this pattern:

while ( expression )
statement

The while statement is also known as the while loop, because 
once the statement is executed, the while loops back to reevaluate 
the expression. Here’s an example of the while loop in action:

int i;

i=0;

while ( ++i < 3 )
printf( “Looping: %d\n”, i );

printf( “We are past the while loop.” );



Controll ing Your Program’s Flow
Expressions

106   Learn C under Windows 95/NT

This example starts by declaring a variable, i, to be of type int; i is 
then initialized to 0. Next comes the while loop. The first thing the 
while loop does is evaluate its expression. The while loop’s ex-
pression is:

++i < 3

Before this expression is evaluated, i has a value of 0. The prefix no-
tation used in the expression (++i) increments the value of i to 1 be-
fore the remainder of the expression is evaluated. The evaluation of 
the expression results in true, since 1 is less than 3. Since the ex-
pression is true, the while loop’s statement, a single printf(), is 
executed. Here’s the output after the first pass through the loop:

Looping: 1

Next, the while loops back and reevaluates its expression. Once 
again, the prefix notation increments i, this time to a value of 2. 
Since 2 is less than 3, the expression evaluates to true, and the 
printf() is executed again. Here’s the output after the second pass 
through the loop:

Looping: 1
Looping: 2

Once the second printf() completes, it’s back to the top of the 
loop to reevaluate the expression. Will this never end? Once again, i 
is incremented, this time to a value of 3. Aha! This time, the expres-
sion evaluates to false, since 3 is not less than 3. Once the expres-
sion evaluates to false, the while loop ends. Control passes to the 
next statement, the second printf() in our example:

printf( “We are past the while loop.” );

The while loop was driven by three factors: initialization, modifica-
tion, and termination. Initialization is any code that affects the loop 



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  107

but occurs before the loop is entered. In our example, the critical ini-
tialization occurred when the variable i was set to 0.

By the Way In a loop, you’ll frequently use a variable that changes value each 
time through the loop. In our example, the variable i was incre-
mented by 1 each time through the loop. The first time through the 
loop, i had a value of 1. The second time, i had a value of 2. Vari-
ables that maintain a value based on the number of times through 
a loop are known as counters.

Traditionally, programmers have given counter variables simple 
names, such as i, j, or k (it’s an old FORTRAN convention). In 
the interest of clarity, some programmers use such names as 
counter or loopCounter. The nice thing about names like i, j, 
and k is that they don’t get in the way; they don’t take up a lot of 
space on the line. On the other hand, your goal should be to make 
your code as readable as possible, so it would seem that a name 
like counter would be better than the uninformative i, j, or k.

Once again, pick a style you are comfortable with and stick with it!

Within the loop, modification is any code that changes the value of 
the loop’s expression. In our example, the modification occurred 
within the expression itself when the counter, i, was incremented.

Termination is any condition that causes the loop to end. In our ex-
ample, termination occurs when the expression has a value of 
false. This occurs when the counter, i, has a value that is not less 
than 3. Take a look at this example:

int i;

i=1;

while ( i < 3 )
{
printf( “Looping: %d\n”, i );



Controll ing Your Program’s Flow
Expressions

108   Learn C under Windows 95/NT

i++;
}

printf( “We are past the while loop.” );

This example produces the same results as the previous example. 
This time, however, the initialization and modification conditions 
have changed slightly. In this example, i starts with a value of 1 in-
stead of 0. In the previous example, the ++ operator was used to in-
crement i at the very top of the loop. This example modifies i at the 
bottom of the loop.

Both of these examples show different ways to accomplish the same 
end. The phrase “There’s more than one way to eat an Oreo” sums 
up the situation perfectly. There will always be more than one solu-
tion to any programming problem. Don’t be afraid to do things your 
own way. Just make sure that your code works properly and is easy 
to read.

The for Statement
Nestled inside the C toolbox, right next to the while statement, is 
the for statement. The for statement is similar to the while state-
ment, following the basic model of initialization, modification, and 
termination. Here’s the pattern for a for statement:

for ( expression1 ; expression2 ; expression3 )
statement

The first expression represents the for statement’s initialization. 
Typically, this expression consists of an assignment statement, set-
ting the initial value of a counter variable. This first expression is 
evaluated once, at the beginning of the loop.

The second expression is identical in function to the expression in a 
while statement, providing the termination condition for the loop. 
This expression is evaluated each time through the loop, before the 
statement is executed.



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  109

Finally, the third expression provides the modification portion of the 
for statement. This expression is evaluated at the bottom of the 
loop, immediately following execution of the statement.

Important All three of these expressions are optional and may be left out en-
tirely. For example, here’s a for loop that leaves out all three ex-
pressions:

for ( ; ; )
      DoSomethingForever();

Since this loop has no terminating expression, it is known as an in-
finite loop. Infinite loops are generally considered bad form and 
should be avoided like the plague!

The for loop can also be described in terms of a while loop:

expression1;
while ( expression2 )
{
statement
expression3;

}

By the Way Since you can always rewrite a for loop as a while loop, why in-
troduce the for loop at all? Sometimes, a programming idea fits 
more naturally into the pattern of a for statement. If the for loop 
makes the code more readable, why not use it? As you write more 
and more code, you’ll develop a sense for when to use the while 
and when to use the for.

Here’s an example of a for loop:

int i;



Controll ing Your Program’s Flow
Expressions

110   Learn C under Windows 95/NT

for ( i = 1; i < 3; i++ )
printf( “Looping: %d\n”, i );

printf( “We are past the for loop.” );

This example is identical in functionality to the while loops pre-
sented earlier. Note the three expressions on the first line of the for 
loop. Before the loop is entered, the first expression is evaluated (re-
member, assignment statements make great expressions):

i = 1

Once the expression is evaluated, i has a value of 1. We are now 
ready to enter the loop. At the top of each pass through the loop, the 
second expression is evaluated:

i < 3

If the expression evaluates to true, the loop continues. Since i is 
less than 3, we can proceed. Next, the statement is executed:

printf( “Looping: %d\n”, i );

Here’s the first line of output:

Looping: 1

Having reached the bottom of the loop, the for evaluates its third 
expression:

i++

This changes the value of i to 2. Back to the top of the loop. Evaluate 
the termination expression:



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  111

i < 3

Since i is still less than 3, the loop continues. Once again, the 
printf() does its thing. The console window looks like this:

Looping: 1
Looping: 2

Next, the for evaluates expression3:

i++

The value of i is incremented to 3. Back to the top of the loop. Eval-
uate the termination expression:

i < 3

Lo and behold! Since i is no longer less than 3, the loop ends, and 
the second printf() in our example is executed:

printf( “We are past the for loop.” );

As was the case with while, for can take full advantage of a pair of 
curly braces:

for ( i = 0; i < 10; i++ )
{
DoThis();
DoThat();
DanceALittleJig();

}



Controll ing Your Program’s Flow
Expressions

112   Learn C under Windows 95/NT

In addition, both while and for can take advantage of the loneliest 
statement, the lone semicolon: 

for ( i = 0; i < 1000; i++ )
;

This example does nothing 1000 times. But the example does take 
some time to execute. The initialization expression is evaluated 
once, and the modification and termination expressions are each 
evaluated 1000 times. Here’s a while version of the loneliest loop:

i = 0;

while ( i++ < 1000 )
;

By the Way Some compilers will eliminate this loop and just set i to its termi-
nating value (the value it would have if the loop executed nor-
mally). This is known as code optimization. The nice thing about 
code optimization is that it can make your code run faster and 
more efficiently. However, an optimization pass on your code can 
sometimes have unwanted side effects, such as eliminating the 
while loop just discussed. It’s a good idea to get to know your 
compiler’s optimization capabilities and tendencies. Read your 
manual!

loopTester.cwp
Interestingly, there is an important difference between the for and 
while loops you just saw. Take a minute to look back and try to pre-
dict the value of i the first time through each loop and after each 
loop terminates. Were the results the same for the while and for 
loops? Hmmm. . . . You might want to take another look. Here’s a 
sample program that should clarify the difference between these 
two loops. Look in the directory Learn C Projects, inside the 
subdirectory named 06.02 - loopTester, and open the project 



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  113

loopTester.cwp. The file loopTester.c  implements a while 
loop and two slightly different for loops. Run the project. Your out-
put should look like that shown in Figure 6.4.

The loopTester program starts off with the standard #include. 
The main() function defines a counter variable, i; sets i to 0; and 
then enters a while loop:

while ( i++ < 4 )
printf( “while: i=%d\n”, i );

Figure 6.4 The output from loopTester.cwp, showing the output from 
three different loops.

The loop executes four times, resulting in this output:

while: i=1
while: i=2
while: i=3
while: i=4



Controll ing Your Program’s Flow
Expressions

114   Learn C under Windows 95/NT

Do you see why? If not, go through the loop yourself, calculating 
the value for i each time through the loop. Remember, since we are 
using postfix notation (i++), i gets incremented after the test is 
made to see whether it is less than 4. The test and the increment 
happen at the top of the loop, before the loop is entered.

Once the loop completes, we print the value of i again:

printf( “After while loop, i=%d.\n\n”, i );

Here’s the result:

After while loop, i=5.

Here’s how we got that value. The last time through the loop (with i 
equal to 4), we go back to the top of the while loop, test to see 
whether i is less than 4 (it no longer is), and then do the increment 
of i, bumping it from 4 to 5.

OK, one loop down, two to go. This next loop looks as if it should 
accomplish the same thing. The difference is, we don’t do the incre-
ment of i until the bottom of the loop, until we’ve been through the 
loop once already.

for ( i = 0; i < 4; i++ )
printf( “first for: i=%d\n”, i );

As you can see by the output, i ranges from 0 to 3 instead of from 1 
to 4.

first for: i=0
first for: i=1
first for: i=2
first for: i=3

After we drop out of the for loop, we once again print the value of 
i:



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  115

printf( “After first for loop, i=%d.\n\n”, i );

Here’s the result:

After first for loop, i=4.

As you can see, the while loop ranged i from 1 to 4, leaving i with 
a value of 5 at the end of the loop. The for loop ranged i from 0 to 
3, leaving i with a value of 4 at the end of the loop. So how do we fix 
the for loop so that it works the same way as the while loop? Take 
a look:

for ( i = 1; i <= 4; i++ )
printf( “second for: i=%d\n”, i );

This for loop started i at 1 instead of 0 and it tests to see whether i 
is less than or equal to 4 instead of just less than 4. We could also have 
used the terminating expression i < 5 instead. Either one will 
work. As proof, here’s the output from this loop:

second for: i=1
second for: i=2
second for: i=3
second for: i=4

Once again, we print the value of i at the end of the loop:

printf( “After second for loop, i=%d.\n”, i );

return 0;
}

Here’s the last piece of output:



Controll ing Your Program’s Flow
Expressions

116   Learn C under Windows 95/NT

After second for loop, i=5.

This second for loop is the functional equivalent of the while loop. 
Take some time to play with this code. You might try to modify the 
while loop to match the first for loop.

The while and for statements are by far the most common types of 
C loops. For completeness, however, we’ll cover the remaining loop, 
a little-used gem called the do statement.

The do Statement
The do statement is a while statement that evaluates its expression 
at the bottom of its loop instead of at the top. Here’s the pattern a do 
statement must match:

do
statement

while ( expression ) ;

Here’s a sample:

i = 1;

do
{
printf( “%d\n”, i );
i++;

}
while ( i < 3 );

printf( “We are past the do loop.” );

The first time through the loop, i has a value of 1. The printf() 
prints a 1 in the console window, then the value of i is bumped to 2. 
It’s not until this point that the expression ( i < 3 ) is evaluated. 
Since 2 is less than 3, a second pass through the loop occurs.



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  117

During this second pass, the printf() prints a 2 in the console 
window; then the value of i is bumped to 3. Once again, the expres-
sion ( i < 3 ) is evaluated. Since 3 is not less than 3, we drop out 
of the loop to the second printf().

The important thing to remember about do loops is this: Since the 
expression is not evaluated until the bottom of the loop, the body of 
the loop (the statement) is always executed at least once. Since for 
and while loops both check their expressions at the top of the loop, 
it’s possible for either to drop out of the loop before the body of the 
loop is executed.

Let’s move on to a completely different type of statement, known as 
the switch.

The switch Statement
The switch statement uses the value of an expression to determine 
which of a series of statements to execute. Here’s an example that 
should make this concept a little clearer:

switch ( theYear )
{
case 1066:
printf( “Battle of Hastings” );
break;

case 1492:
printf( “Columbus sailed the ocean blue” );
break;

case 1776:
printf( “Declaration of Independence\n” );
printf( “A very important document!!!” );
break;

default:
printf( “Don’t know what happened during this 

year” );
}



Controll ing Your Program’s Flow
Expressions

118   Learn C under Windows 95/NT

The switch is constructed of a series of cases, each based on a spe-
cific value of theYear. If theYear has a value of 1066, execution 
continues with the statement following that case’s colon, in this 
case, the line:

printf( “Battle of Hastings” );

Execution continues, line after line, until either the bottom of the 
switch (the right-curly brace) or a break statement is reached. In 
this case, the next line is a break statement.

The break statement comes in handy when you are working with 
switch statements and loops. The break tells the computer to 
jump immediately to the next statement after the end of the loop or 
switch. 

Continuing with the example, if theYear has a value of 1492, the 
switch jumps to the lines:

printf( “Columbus sailed the ocean blue” );
break;

A value of 1776 jumps to the lines:

printf( “Declaration of Independence\n” );
printf( “A very important document!!!” );
break;

Notice that this case has two statements before the break. There is 
no limit to the number of statements a case can have: One is OK; 
653 is OK. You can even have a case with no statements at all.

The original example also contains a default case.  If the switch 
can’t find a case that matches the value of its expression, the 
switch looks for a case labeled default. If the default is 
present, its statements are executed. If no default is present, the 
switch completes without executing any of its statements.

Here’s the pattern the switch tries to match:



Controll ing Your Program’s Flow
Expressions

Learn C under Windows 95/NT  119

switch ( expression )
{
case constant:
statements

case constant:
statements

default:
statements

}

Important Why would you want a case with no statements? Here’s an exam-
ple:

switch ( myVar )
{

case 1:
case 2:

DoSomething();
break;

case 3:
DoSomethingElse();

}

In this example, if myVar has a value of 1 or 2, the function 
DoSomething() is called. If myVar has a value of 3, the function 
DoSomethingElse() is called. If myVar has any other value, 
nothing happens. Use a case with no statements when you want 
two different cases to execute the same statements.

Think about what happens with this example:

switch ( myVar )
{

case 1:
DoSometimes();

case 2:



Controll ing Your Program’s Flow
Expressions

120   Learn C under Windows 95/NT

DoFrequently();
default:

DoAlways();
}

If myVar is 1, all three functions will get called. If myVar is 2, 
DoFrequently() and DoAlways() will get called. If myVar has 
any other value, DoAlways() gets called by itself. This is a good 
example of a switch without breaks.

At the heart of each switch is its expression. Most switches are 
based on single variables, but, as we mentioned earlier, assignment 
statements make perfectly acceptable expressions.

Each case is based on a constant. Numbers (such as 47 or –12,932) 
are valid constants. Variables, such as myVar, are not. As you’ll see 
later, single-byte characters (such as ‘a’ or ‘\n’) are also valid con-
stants. Multiple-byte character strings (like “Gummy-bear”) are not.

If your switch uses a default case, make sure that you use it as 
shown in the pattern described. Don’t include the word case before 
the word default.

break Statements in Other Loops
The break statement has other uses besides the switch statement. 
Here’s an example of a break used in a while loop:

i=1;

while ( i <= 9 )
{
PlayAnInning( i );
if ( ItIsRaining() )
break;

i++;
}



Controll ing Your Program’s Flow
Sample Programs

Learn C under Windows 95/NT  121

This sample tries to play nine innings of baseball. As long as the 
function ItIsRaining() returns with a value of false, the game 
continues uninterrupted. If ItIsRaining() returns a value of 
true, the break statement is executed, and the program drops out 
of the loop, interrupting the game.

The break statement allows you to construct loops that depend on 
multiple factors. The termination of the loop depends on the value 
of the expression found at the top of the loop, as well as on any out-
side factors that might trigger an unexpected break.

Sample Programs

isOdd.c
This program combines for and if statements to tell you whether 
the numbers 1 through 20 are odd or even and whether they are an 
even multiple of 3. The program also introduces a brand new opera-
tor: the % operator. Go into the Learn C Projects  directory, then 
into the 06.03 - isOdd  subdirectory, and open the project 
isOdd.cwp.

Run isOdd.cwp  by selecting Run from the Project menu. You 
should see something like the console window shown in Figure 6.5. 
You should see a line for each number from 1 through 20. Each of 
the numbers will be described as either odd or even. Each of the 
multiples of 3 will have additional text describing them as such. 
Here’s how the program works.

Stepping Through the Source Code

This program starts off with the usual #include  and the beginning 
of main(), which begins by declaring a counter variable named i.

int main( void )
{
int i;



Controll ing Your Program’s Flow
Sample Programs

122   Learn C under Windows 95/NT

Figure 6.5 Running isOdd.cwp

Our goal here is to step through each of the numbers from 1 to 20. 
For each number, we want to check to see whether the number is 
odd or even. We also want to check whether the number is evenly 
divisible by 3. Once we’ve analyzed a number, we’ll use printf() 
to print a description of the number in the console window.

By the Way The scheme that defines the way a program works is called the 
program’s algorithm. It’s a good idea to try to work out the details 
of your program’s algorithm before writing even one line of source 
code.

As you might expect, the next step is to set up a for loop, using i as 
a counter initialized to 1. The loop will keep running as long as the 
value of i is less than or equal to 20. This is the same as saying that 
the loop will exit as soon as the value of i is found to be greater than 
20. Every time the loop reaches the bottom, the third expression, 
i++, will be evaluated, incrementing the value of i by 1. This is a 
classic for loop.



Controll ing Your Program’s Flow
Sample Programs

Learn C under Windows 95/NT  123

for ( i = 1; i <= 20; i++ )
{

Now we’re inside the for loop. Our goal is to print a single line for 
each number, that is, one line each time through the for loop. If you 
check back to Figure 6.5, you’ll notice that each line starts with the 
phrase:

The number x is

In that phrase, x is the number being described. That’s the purpose 
of this first printf():

printf( “The number %d is “, i );

Notice that this printf() wasn’t part of an if statement. We want 
this printf() to print its message every time through the loop. The 
next sequence of printf() statements are a different story alto-
gether.

The next chunk of code determines whether i is even or odd, then 
uses printf() to print the appropriate word in the console win-
dow. Because the last printf() didn’t end with a newline charac-
ter (‘\n’), the word “even” or “odd” will appear in the console 
window on the same line as, and immediately following:

The number x is

This next chunk of code introduces a brand new operator—%—a bi-
nary operator that returns the remainder when the left operand is 
divided by the right operand. For example, i % 2 divides 2 into i 
and returns the remainder. If i is even, this remainder will be 0. If i 
is odd, this remainder will be 1.

if ( (i % 2) == 0 )
printf( “even” );

else



Controll ing Your Program’s Flow
Sample Programs

124   Learn C under Windows 95/NT

printf( “odd” );

In the expression i % 3, the remainder will be 0 if i is evenly divis-
ible by 3 and either 1 or 2 otherwise.

if ( (i % 3) == 0 )
printf( “ and is a multiple of 3” );

If i is evenly divisible by 3, we’ll add the following phrase to the 
end of the current line:

“ and is a multiple of 3”

Finally, we add a period “.” and a newline “\n” to the end of the 
current line, placing us at the beginning of the next line of the con-
sole window:

printf( “.\n” );

The loop ends with a curly brace, and main() ends with our normal 
return and a right-curly brace.

}

return 0;
}

nextPrime.cwp
Our next program focuses on the mathematical concept of prime 
numbers. A prime number is any number whose only factors are 1 
and itself. For example, 6 is not a prime number, because its factors 
are 1, 2, 3, and 6. The number 5 is prime because its factors are lim-



Controll ing Your Program’s Flow
Sample Programs

Learn C under Windows 95/NT  125

ited to 1 and 5. The number 12 isn’t prime, because its factors are 1, 
2, 3, 4, 6, and 12.

Our next program will find the next prime number greater than a 
specified number. For example, if we set our starting point to 14, the 
program would find the next prime, 17. We have the program set up 
to check for the next prime after 19. Know what that is?

Go into the directory Learn C Projects, into the subdirectory 
06.04 - nextPrime, and open the project nextPrime.cwp. 
Run nextPrime.cwp  by selecting Run from the Project menu. You 
should see something like the console window shown in Figure 6.6. 
As you can see, the next prime number after 19 is (drum roll, please 
. . .) 23. Here’s how the program works.

Stepping Through the Source Code
This program starts off with two #includes instead of the usual 
one. The new #include, <math.h>, gives us access to a series of 
math functions, most notably the function sqrt(). This function 
takes a single parameter and returns the square root of that parame-
ter. You’ll see how this works in a minute.

Figure 6.6 Running nextPrime.cwp.



Controll ing Your Program’s Flow
Sample Programs

126   Learn C under Windows 95/NT

#include <stdio.h>
#include <math.h>

Next, we define the constants true and false.  (We’ll cover 
#define later.) 

 
#define true 1
#define false 0

int main( void )
{

We’re going to need a boatload of variables. They’re all defined as 
ints:

int startingPoint, candidate, last, i;
int isPrime;

The first variable, startingPoint, is the number we want to start 
off with. We’ll find the next prime after startingPoint; 
candidate is the current candidate we are considering. Is 
candidate the lowest prime number greater than 
startingPoint? By the time we are done, it will be!

    startingPoint = 19;

Since 2 is the lowest prime number, if startingPoint is less than 
2, we know that the next prime is 2. By setting candidate to 2, our 
work is done:

    if ( startingPoint < 2 )
    {
        candidate = 2;
    }



Controll ing Your Program’s Flow
Sample Programs

Learn C under Windows 95/NT  127

If startingPoint  is 2, the next prime is 3, and we’ll set 
candidate accordingly:

    else if ( startingPoint == 2 )
    {
        candidate = 3;
    }

If we got this far, we know that startingPoint  is greater than 2. 
Since 2 is the only even prime number and since we’ve already 
checked for startingPoint  being equal to 2, we can now limit 
our search to odd numbers only. We’ll start candidate  at 
startingPoint, then make sure that candidate  is odd. If it 
isn’t, we’ll decrement candidate. Why decrement instead of in-
crement? If you peek ahead a few lines, you’ll see that we’re about 
to enter a do loop and that we bump candidate  to the next odd 
number at the top of the loop. By decrementing candidate  now, 
we’re preparing for the bump at the top of the loop, which will take 
candidate to the next odd number greater than startingPoint. 

    else
    {
        candidate = startingPoint;

        if (candidate % 2 == 0)
            candidate--;

This loop will continue stepping through consecutive odd numbers 
until we find a prime number. We’ll start isPrime off as true, then 
check the current candidate to see whether we can find a factor. If 
we do find a factor, we’ll set isPrime to false, forcing us to repeat 
the loop.

        do
        {
            isPrime = true;



Controll ing Your Program’s Flow
Sample Programs

128   Learn C under Windows 95/NT

            candidate += 2;

Now we’ll check to see whether candidate  is prime. This means 
verifying that candidate has no factors other than 1 and candi-
date. To do this, we’ll check the numbers from 3 to the square root 
of candidate to see whether any of them divides evenly into can-
didate. If not, we know we’ve got ourselves a prime!

            last = sqrt( candidate );

By the Way So why don’t we check from 2 up to candidate –1? Why start 
with 3? Since candidate will never be even, we know that 2 will 
never be a factor. For the same reason, we know that no even 
number will ever be a factor.

Why stop at the square root of candidate? Good question! To 
help understand this approach, consider the factors of 12, other 
than 1 and 12. They are 2, 3, 4, and 6. The square root of 12 is ap-
proximately 3.46. Notice how this fits nicely in the middle of the list 
of factors. Each of the factors less than the square root will have a 
matching factor greater than the square root. In this case, 2 
matches with 6 (2*6=12) and 3 matches with 4 (3*4=12). This will 
always be true. If we don’t find a factor by the time we hit the 
square root, there won’t be a factor, and the candidate is prime.

Take a look at the top of the for loop. We start i at 3. Each time we 
hit the top of the loop (including the first time through the loop), 
we’ll check to make sure that we haven’t passed the square root of 
candidate and that isPrime is still true. If isPrime is false, 
we can stop searching for a factor, since we’ve just found one! Fi-
nally, each time we complete the loop, we bump i to the next odd 
number.

            for ( i = 3; (i <= last) && isPrime; i 
+= 2 )

            {



Controll ing Your Program’s Flow
What’s Next?

Learn C under Windows 95/NT  129

Each time through the loop, we’ll check to see whether i divides 
evenly into candidate. If so, we know that it is a factor, and we can 
set isPrime to false:

                if ( (candidate % i) == 0 )
                    isPrime = false;
            }
        } while ( ! isPrime );
    }

Once we drop out of the do loop, we use printf() to print both the 
starting point and the first prime number greater than the starting 
point:

    printf( “The next prime after %d is %d.  
Happy?\n”,startingPoint, candidate );

    return 0;
}

If you are interested in prime numbers, play around with this pro-
gram. See if you can modify the code to print all the prime numbers 
from 1 to 100. How about the first 100 prime numbers? 

What’s Next?
Congratulations! You’ve made it through some tough concepts. 
You’ve learned about the C statements that allow you to control 
your program’s flow. You’ve learned about C expressions and the 
concept of true and false. You’ve also learned about the logical 
operators based on the values true and false. You’ve learned 
about the if, if-else, for, while, do, switch, and break state-
ments. In short, you’ve learned a lot!

Our next chapter introduces the concept of pointers, also known as 
variable addresses. From now on, you’ll use pointers in almost 



Controll ing Your Program’s Flow
Exercises

130   Learn C under Windows 95/NT

every C program you write. Pointers allow you to implement com-
plex data structures, opening up a world of programming possibili-
ties. 

Chapter 7 also discusses function parameters in detail. As usual, 
plenty of code fragments and sample applications will be presented 
to keep you busy. See you there.

Exercises
1. What’s wrong with each of the following code fragments:

a. if i

i++;

b. for ( i=0; i<20; i++ )

i--;

c. while ( )

i++;

d. do ( i++ )

until ( i == 20 );

e. switch ( i )

{

case “hello”:

case “goodbye”:

printf( “Greetings.” );

break;

case default:

printf( “Boring.” );

}

f. if    ( i < 20 )

if  ( i == 20 )

printf( “Lonely...” );



Controll ing Your Program’s Flow
Exercises

Learn C under Windows 95/NT  131

g. while ( done = TRUE )

done = ! done;

h. for ( i=0; i<20; i*20 )

printf( “Modification...” );

2. Modify nextPrime.c  to compute the prime numbers from
 1 to 100.

3. Modify nextPrime.c  to compute the first 100 prime 
numbers.



Controll ing Your Program’s Flow
Exercises

132   Learn C under Windows 95/NT



Learn C under Windows 95/NT 133

7
Pointers and 
Parameters
You’ve come a long way. You’ve mastered variable basics, operators, 
and statements. You’re about to add some powerful, new concepts 
to your programming toolbox.

For starters, we’ll introduce the concept of pointers. In program-
ming, pointers are references to other things. When someone calls 
your name to get your attention, they’re using your name as a 
pointer. Your name is one way people refer to you.

What Is a Pointer?
Your name and address can combine to serve as a pointer, telling the 
mail carrier where to deliver the new Sears catalog. Your address 
distinguishes your house from all the other houses in your neigh-
borhood, and your name distinguishes you from the rest of the peo-
ple living in your house. 

A pointer to a variable is really the address of the variable in mem-
ory. If you pass the value of a variable to a function, the function can 
make use of the variable’s value but can’t change the variable’s 
value. If you pass the address of the variable to the function, the 
function can also change the value of the variable. 

When you declare a variable in C, memory is allocated to the vari-
able. This memory has an address. C pointers are special variables, 
specifically designed to hold one of these addresses. Later in the 
chapter, you’ll learn how to create a pointer, how to make it point to 
a specific variable, and how to use the pointer to change the vari-
able’s value.



Pointers and Parameters
What Is a Pointer?

134   Learn C under Windows 95/NT

Why Use Pointers?
Pointers can be extremely useful, allowing you to access your data 
in ways that ordinary variables just don’t allow. Here’s a real-world 
example of “pointer flexibility.”

When you go to the library in search of a specific title, you probably 
start your search in a card catalog. Card catalogs contain thousands 
of index cards, one for every book in the library. Each index card 
contains information about a specific book: the author’s name, the 
book’s title, and the copyright date, for example.

Most libraries have three card catalogs. Each lists all the books, 
sorted alphabetically by subject, by author, or by title. In the subject 
card catalog, a book can be listed more than once. For example, a 
book about Thomas Jefferson might be listed under “Presidents, 
U.S.,” “Architects,” or even under “Inventors” (Jefferson was quite 
an inventor).

Figure 7.1 shows a catalog card for Albert Einstein’s famous book on 
relativity, called The Meaning of Relativity. The card was listed in the 
subject catalog under the subject “RELATIVITY (PHYSICS).” Take a 
minute to look the card over. Pay special attention to the catalog in-
formation located on the left side of the card. The catalog number 
for this book is 530.1. This number tells you exactly where to find 
the book among all the other books on the shelves. The books are or-
dered numerically, so you’ll find this book , between 530 and 531 on 
the shelves.

Important In this example, the library bookshelves are like your computer’s 
memory, with the books acting as data. The catalog number is the 
address of your data (a book) in memory (on the shelf).

As you might have guessed, the catalog number acts as a pointer. 
The card catalogs use these pointers to rearrange all the books in the 
library, without moving a single book. Think about it. In the subject 
card catalog, all the books are arranged by subject. Physically, the 
book arrangements have nothing to do with subject. Physically, the 
books are arranged numerically, by catalog number. By adding a  



Pointers and Parameters
What Is a Pointer?

Learn C under Windows 95/NT  135

Figure 7.1 Catalog card for a rather famous book. Note the catalog 
information on the left side of the card.

layer of pointers between you and the books, the librarians achieve 
an extra layer of flexibility.

In the same way, the author and title card catalogs use a layer of 
pointers to arrange all the books by author and by title. With these 
pointers, all the books in the library can be arranged in four differ-
ent ways without ever leaving the shelves. The books are arranged 
physically (sorted by catalog number) and logically (sorted in one 
catalog by author, in another by subject, and in another by title). 
Without the support of a layer of pointers, these logical book ar-
rangements would be impossible.

By the Way Adding a layer of pointers is also known as “adding a level of indi-
rection.” The number of levels of indirection is the number of point-
ers you have to use to get to your library book (or to your data).

Catalog
Information

530.1
E35mg
1950

RELATIVITY (PHYSICS)

Einstein, Albert, 1879-1955
    The Meaning of Relativity;  3rd ed.
rev. including the generalized theory
of gravitation. Princeton Univ. Press,
c1950.

162p.

I. Relativity (Physics)  I. Title



Pointers and Parameters
Pointer Basics

136   Learn C under Windows 95/NT

Checking Out of the Library
So far, we’ve talked about pointers in terms of library catalog num-
bers. The use of pointers in your C programs is not much different 
from this model. Each card catalog number points out the location 
of a book on the library shelf. In the same way, each pointer in your 
program will point out the location of a piece of data in computer 
memory.

If you wrote a program to keep track of your compact disc collec-
tion, you might maintain a list of pointers, each one of which might 
point to a block of data describing a single CD. Each block of data 
might contain such information as the name of the artist, the name 
of the album, the year of release, and a category (jazz, rock, blues). If 
you got more ambitious, you could create several pointer lists. One 
list might sort your CDs alphabetically by artist name. Another 
might sort them chronologically by year of release. Yet another list 
might sort your CDs by musical category. You get the picture.

There’s a lot you can do with pointers. By mastering the techniques 
presented in these next few chapters, you’ll be able to create pro-
grams that take full advantage of pointers.

Our goal for this chapter is to master pointer basics. We’ll talk about 
C pointers and C pointer operations. You’ll learn how to create a 
pointer and how to make the pointer point to a variable. You’ll also 
learn how to use a pointer to change the value of the variable the 
pointer points to.

Pointer Basics
Pointers are variable addresses. Instead of an address such as:

1313 Mockingbird Lane
Raven Heights, California  90263

a variable’s address refers to a memory location within your com-
puter. As we discussed in Chapter 3, your computer’s memory con-
sists of a sequence of bytes. A 1-megabyte computer has exactly 220 
(or 1,048,576) bytes of memory, also known as random-access mem-
ory, or RAM. An 8-megabyte computer has exactly 8 x 220 = 223 = 



Pointers and Parameters
Pointer Basics

Learn C under Windows 95/NT  137

8,388,608 bytes of RAM. Every one of those bytes has its own unique 
address. The first byte has an address of 0. The next byte has an ad-
dress of 1. Computer addresses always start with 0 and continue up, 
one at a time, until they reach the highest address. Figure 7.2 shows 
the addressing scheme for an 8-megabyte computer.  Notice that the 
addresses run from 0 (the lowest address) all the way up to 
8,388,607 (the highest address).

Figure 7.2  Addressing scheme for 8 megabytes of bytes.

Variable Addresses
When you run a program, one of the first things the computer does 
is allocate memory for your program’s variables. For example, sup-
pose that you declare an int in your code, like this:

int myVar;

The compiler reserves memory for the exclusive use of myVar.

Important The amount of memory allocated for an int depends on your de-
velopment environment.  Since all of the projects in this book were 
built using 4-byte ints, the figures showing int memory alloca-
tion also show 4-byte ints. Don’t be fooled! If your development 

•
•
•

0

1

2

8,388,606

8,388,607



Pointers and Parameters
Pointer Basics

138   Learn C under Windows 95/NT

environment is set to use 2-byte ints, 2 bytes will be allocated for 
each int.

Each of myVar’s bytes has a specific address. Figure 7.3 shows an 8-
megabyte computer with 4 bytes allocated to the variable myVar. In 
this picture, the 4 bytes allocated to myVar have the addresses 508,  
509, 510, and 511. 

Figure 7.3 The 4 bytes allocated for the int named myVar.

By convention, a variable’s address is said to be the address of its 
first byte (the first byte is the one with the lowest-numbered ad-
dress). If a variable uses memory locations 508 through 511 (as 
myVar does), its address is 508 and its length is 4 bytes. 

Important When more than 1 byte is allocated to a variable, the bytes will al-
ways be consecutive (next to each other in memory). The 4 bytes 
allocated to an int might have such addresses as 508, 509, 510, 
and 511 or 64,000, 64,001, 64002, and 64003. You will never see 



Pointers and Parameters
Pointer Basics

Learn C under Windows 95/NT  139

an int whose byte addresses are 508, 509, 510, and 695. A vari-
able’s bytes are like family—they stick together!

As we showed earlier, a variable’s address is a lot like the catalog 
number on a library catalog card. Both act as pointers: one to a book 
on the library shelf and the other to a variable. From now on, when 
we use the term pointer with respect to a variable, we are referring 
to the variable’s address.

Now that you understand what a pointer is, your next goal is to 
learn how to use pointers in your programs. The next few sections 
will teach you some valuable pointer-programming skills. You’ll 
learn how to create a pointer to a variable. You’ll also learn how to 
use that pointer to access the variable it points to.

The C language provides you with a few key tools to help you. 
These tools come in the form of two special operators: & and *.

The & Operator
The & operator (also called the “address of” operator) pairs with a 
variable name to produce the variable’s address. For example, the 
following expression refers to myVar’s address in memory:

&myVar

If myVar owned memory locations 508 through 511 (as in Figure 
7.3), the expression would have a value of 508:

&myVar

The expression &myVar is a pointer to the variable myVar.

As you start programming with pointers, you’ll find yourself using 
the & operator frequently. An expression like &myVar is a common 
way to represent a pointer. Another way to represent a pointer is 
with a pointer variable, a variable specifically designed to hold the 
address of another variable.



Pointers and Parameters
Pointer Basics

140   Learn C under Windows 95/NT

Declaring a Pointer Variable
C supports a special notation for declaring pointer variables. The 
following line declares a variable called myPointer:

int *myPointer;

Notice that the * is not part of the variable’s name. Instead, it tells 
the compiler that the associated variable is a pointer, specifically de-
signed to hold the address of an int. If there were a data type called 
bluto, you could declare a variable designed to point to a bluto 
like this:

bluto *blutoPointer;

For now, we’ll limit ourselves to pointers that point to ints. Look at 
this code:

int *myPointer, myVar;
myPointer = &myVar;

The assignment statement puts myVar’s address in the variable my-
Pointer. If myVar’s address is 508, this code will leave myPointer 
with a value of 508. Note that this code has absolutely no effect on 
the value of myVar.

There will be times in your coding when you have a pointer to a 
variable but not the variable itself. This happens a lot. You can use 
the pointer to manipulate the value of the variable it points to. Ob-
serve:

int *myPointer, myVar;

myPointer = &myVar;
*myPointer = 27;



Pointers and Parameters
Pointer Basics

Learn C under Windows 95/NT  141

As before, the first assignment statement places myVar’s address in 
the variable myPointer. The second assignment introduces the * 
operator. The * operator (called the star operator) converts a pointer 
variable to the item the pointer points to.

By the Way The * that appears in the declaration statement isn’t really an op-
erator. It’s there only to designate the variable myPointer as a 
pointer.

If myPointer points to myVar, as is the case in our example, 
*myPointer refers to the variable myVar. In this case, the next two 
lines say the same thing:

*myPointer = 27;

myVar = 27;

Confused? These memory pictures should help. Figure 7.4 joins our 
program in progress, just after the variables myVar and myPointer 
were declared:

int *myPointer, myVar;



Pointers and Parameters
Pointer Basics

142   Learn C under Windows 95/NT

Figure 7.4 Memory allocated for myVar and myPointer.

Notice that 4 bytes were allocated for the variable myVar and that 4 
bytes were allocated for myPointer. Why? Because myVar is an 
int and myPointer is a pointer, designed to hold a 4-byte address; 
4 bytes equal 32 bits. Since memory addresses start at 0 and can 
never be negative, 4-byte memory addresses range from 0 up to 232 
– 1 = 4,294,967,295. That means that a 32-bit computer can address a 
maximum of 4 gigabytes (4096 megabytes) of memory. That’s a lot 
of RAM!

Important Early versions of Windows were 16 bit systems.  20  bit physical 
addresses were formed from two 16 bit values, a segment and an 



Pointers and Parameters
Pointer Basics

Learn C under Windows 95/NT  143

offset.  This allowed for the addressing of 1 megabyte of memory.

Windows 95 uses full 32 bit memory addressing.  This allows for 
the direct addressing of 4 gigabytes of physical memory.

Once memory is allocated for myVar and myPointer, we move on 
to the statement:

myPointer = &myVar;

The 4-byte address of the variable myVar is written to the 4 bytes al-
located to myPointer. In our example, myVar’s address is 508. Fig-
ure 7.5 shows the value 508 stored in myPointer’s 4 bytes. Now 
myPointer is said to “point to” myVar.

OK, we’re almost there. The next line of our example writes the 
value 27 to the location pointed to by myPointer:

*myPointer = 27;

Without the * operator, the computer would place the value 27 in 
the memory allocated to myPointer. The * operator dereferences 
myPointer. Dereferencing a pointer turns the pointer into the vari-
able it points to. Figure 7.6 shows the end results.

If the concept of pointers seems alien to you, don’t worry. You are 
not alone. Programming with pointers is one of the most difficult 
topics you’ll ever take on. Just keep reading, and follow each of the 
examples line by line. By the end of the chapter, you’ll be a pointer 
expert!



Pointers and Parameters
Pointer Basics

144   Learn C under Windows 95/NT

Figure 7.5 The address of myVar is assigned to myPointer.



Pointers and Parameters
Function Parameters

Learn C under Windows 95/NT  145

Figure 7.6 Finally, the value 27 is assigned to *myPointer.

Function Parameters
One of the most important uses of pointers (and perhaps the easiest 
to understand) lies in the implementation of function parameters. 
In this section, we’ll focus on parameters and, at the same time, 
have a chance to see pointers in action.



Pointers and Parameters
Function Parameters

146   Learn C under Windows 95/NT

What Are Function Parameters?
A function parameter is your chance to share a variable between a 
calling function and the called function.

Suppose that you wanted to write a function called AddTwo() that 
took two numbers, added them, and returned their sum. How 
would you get the two original numbers into AddTwo()? How 
would you get the sum of the two numbers back to the function that 
called AddTwo()?

As you might have guessed, the answer to both questions lies in the 
use of parameters. Before you can learn how to use parameters, 
however, you’ll have to first understand the concept of variable 
scope.

Variable Scope
In C, every variable is said to have a scope, or range. A variable’s 
scope defines where in the program you have access to a variable. In 
other words, if a variable is declared inside one function, can an-
other function refer to that same variable?

C defines variable scope as follows:

• A variable declared inside a function is local to that function
and may be referenced only inside that function.

This statement is important. It means that you can’t declare a vari-
able inside one function, then refer to that same value inside another 
function. Here’s an example that will never compile:

int main( void )
{
int numDots;

numDots = 500;

DrawDots();

return 0;
}



Pointers and Parameters
Function Parameters

Learn C under Windows 95/NT  147

void DrawDots( void )
{
int i;

for ( i = 1; i <= numDots; i++ )
printf( “.” );

}

The error in this code occurs when the function DrawDots() tries to 
reference the variable numDots. According to the rules of scope, 
DrawDots() doesn’t even know about the variable numDots. If you 
tried to compile this program, the compiler would complain that 
DrawDots() tried to use the variable numDots without declaring it.

The problem you are faced with is getting the value of numDots to 
the function DrawDots() so DrawDots() knows how many “dots” 
to draw. The answer to this problem is function parameters.

By the Way DrawDots() is another example of the value of writing functions. 
We’ve taken the code needed to perform a specific function (in this 
case, draw some dots) and embedded it in a function. Now, in-
stead of having to duplicate the code inside DrawDots() every 
time we want to draw some dots in our program, all we’d need is a 
single line of code: a call to the function DrawDots().

How Function Parameters Work
Function parameters are just like variables. Instead of being de-
clared at the beginning of a function, function parameters are de-
clared between the parentheses on the function’s title line, like this:

void DrawDots( int numDots )
{
/* function’s body goes here */

}



Pointers and Parameters
Function Parameters

148   Learn C under Windows 95/NT

When you call a function, you just match up the parameters, mak-
ing sure that you pass the function what it expects. To call the ver-
sion of DrawDots() we just defined, make sure that you place an 
int between the parentheses. The call to DrawDots() inside 
main() passes the value 30 into the function DrawDots():

int main( void )
{
DrawDots( 30 );

return 0;
 }

When DrawDots() starts executing, it sets its parameter to the 
passed-in value. In this case, DrawDots() has one parameter, an 
int named numDots. When the call executes, the function Draw-
Dots() sets its parameter, numDots, to a value of 30:

DrawDots( 30 );

To make things a little clearer, here’s a revised version of our exam-
ple:

int main( void )
{
DrawDots( 30 );

return 0;
}

void DrawDots( int numDots )
{
int i;

for ( i = 1; i <= numDots; i++ )



Pointers and Parameters
Function Parameters

Learn C under Windows 95/NT  149

printf( “.” );
}

This version of main() calls DrawDots(), passing as a parameter 
the constant 30. DrawDots() receives the value 30 in its int param-
eter, numDots. This means that the function DrawDots() starts exe-
cution with a variable named numDots having a value of 30.

Inside DrawDots(), the for loop behaves as you might expect, 
drawing 30 periods in the console window. Figure 7.7 shows this 
program in action. You can run this example yourself. The project 
file, drawDots.cwp, is located in the Learn C Projects  direc-
tory in a subdirectory named 07.01 - drawDots.

Figure 7.7 The program drawDots in action.

Parameters Are Temporary
When you pass a value from a calling function to a called function, 
you are creating a temporary variable inside the called function. 
Once the called function exits (returns to the calling function), that 
variable ceases to exist.



Pointers and Parameters
Function Parameters

150   Learn C under Windows 95/NT

In our example, we passed a value of 30 into DrawDots() as a pa-
rameter. The value came to rest in the parameter variable named 
numDots. Once DrawDots() exited, numDots ceased to exist.

• Remember, a variable declared inside a function can be 
referenced only by that function.

It is perfectly acceptable for two functions to use the same variable 
names for completely different purposes. It’s fairly standard, for ex-
ample, to use a variable name like i as a counter in a for loop. 
What happens when, in the middle of just such a for loop, you call 
a function that also uses a variable named i? Here’s an example:

int main( void )
{
int i;

for ( i=1; i<=10; i++ )
{
DrawDots( 30 );
printf( “\n” );

}

return 0;
}

void DrawDots( int numDots )
{
int i;

for ( i = 1; i <= numDots; i++ )
printf( “.” );

}

This code prints a series of 10 rows of dots, with 30 dots in each row. 
After each call to DrawDots(), a carriage return (“\n”) is printed, 
moving the cursor in position to begin the next row of dots.

Notice that both main() and DrawDots() feature a variable named 
i. In main(), the variable i is used as a counter, tracking the num-



Pointers and Parameters
What Do Parameters Have to Do with Pointers?

Learn C under Windows 95/NT  151

ber of rows of dots printed. DrawDots() also uses i as a counter, 
tracking the number of dots in the row it is printing. Won’t the copy 
of i in DrawDots() mess up the copy of i in main()? No!

When main() starts executing, memory gets allocated for its copy 
of i. When main() calls DrawDots(), additional memory gets allo-
cated for the copy of i in DrawDots(). When DrawDots() exits, 
the memory for its copy of i is deallocated, freed up so it can be 
used again for some other variable. A variable declared within a 
specific function is known as a local variable. DrawDots() has a 
single local variable, the variable i. 

What Do Parameters Have to Do with Pointers?
OK. Now we’re getting to the crux of the whole matter. What does 
all this have to do with pointers? To answer this question, you have 
to understand the two different methods of parameter passing.

Parameters are passed from function to function either by value or 
by address. Passing a parameter by value passes only the value of a 
variable or a literal on to the called function. Take a look at this code:

int main( void )
{
int numDots;

numDots = 30;

DrawDots( numDots );

return 0;
}

void DrawDots( int numDots )
{
int i;



Pointers and Parameters
What Do Parameters Have to Do with Pointers?

152   Learn C under Windows 95/NT

for ( i = 1; i <= numDots; i++ )
printf( “.” );

}

Here’s what happens when main() calls DrawDots(). On the call-
ing side, the expression passed as a parameter to DrawDots() is re-
solved to a single value. In this case, the expression is simply the 
variable numDots. The value of the expression is the value of 
numDots, which is 30.

On the receiving side, when DrawDots() gets called, memory is al-
located for its parameters, as well as for its local variables. This 
means that memory is allocated for its copy of numDots, as well as 
for its copy of i. The value that DrawDots() receives from main() 
(in this case, 30) is copied into the memory allocated to its copy of 
numDots.

It is important to understand that whatever main() passes as a pa-
rameter to DrawDots() is copied into its local copy of the parameter. 
Think of this copy of numDots as just another local variable that will 
disappear when DrawDots() exits. DrawDots() can do whatever 
it likes to its copy of the parameter. Since it is just a local copy, any 
changes will have absolutely no effect on the copy of the parameter 
in main().

Since passing parameters by value is a one-way operation, there’s 
no way to get data back from the called function. Why would you 
ever want to? Several reasons. You might write a function that takes 
an employee number as a parameter. You might want that function 
to return the employee’s salary in another parameter. How about a 
function that turns yards into meters? You could pass the number of 
yards as a value parameter, but how would you get back the num-
ber of meters?

Passing a parameter by address (instead of by value) solves this 
problem. If you pass the address of a variable, the receiving function 
can use the * operator to change the value of the original variable. 
Here’s an example:

int main( void )
{
int square;



Pointers and Parameters
What Do Parameters Have to Do with Pointers?

Learn C under Windows 95/NT  153

SquareIt( 5, &square );

printf( “5 squared is %d.\n”, square );

return 0;
}

void SquareIt( int  number, int *squarePtr )
{
*squarePtr = number * number;

}

In this example, main() calls the function SquareIt(), which 
takes two parameters. As in the previous example, both parameters 
are declared between the parentheses on the function’s title line. No-
tice that a comma separates the parameter declarations.

The first of the two SquareIt() parameters is an int. The second 
parameter is a pointer to an int. SquareIt() squares the value 
passed in the first parameter, using the pointer in the second param-
eter to return the squared value.

By the Way If it’s been 10 or more years since your last math class, squaring a 
number is the same as multiplying the number by itself. The 
square of 4 is 16, and the square of 5 is 25.

Here’s how main() calls SquareIt():

SquareIt( 5, &square );

Here’s the function prototype of SquareIt():

void SquareIt( int  number, int *squarePtr );



Pointers and Parameters
What Do Parameters Have to Do with Pointers?

154   Learn C under Windows 95/NT

When SquareIt() gets called, memory is allocated for an int 
(number) and for a pointer to an int (squarePtr).

Once the local memory is allocated, the value 5 is copied into the 
local parameter number, and the address of square is copied into 
squarePtr. (Remember, the & operator produces the address of a 
variable.)

Inside the function SquareIt(), any reference to *squarePtr is 
just like a reference to square. The following assignment statement 
assigns the value 25 (since number has a value of 5) to the variable 
pointed to by squarePtr:

*squarePtr = number * number;

This has the effect of assigning the value 25 to square. When 
SquareIt() returns control to main(), the value of square has 
been changed, as evidenced by the screen shot in Figure 7.8. If 
you’d like to give this code a try, you’ll find it in the Learn C 
Projects directory, inside the 07.02 - squareIt subdirectory.  
We’ll see lots more pointer-wielding examples throughout the rest 
of the book.

Figure 7.8 squareIt in action.



Pointers and Parameters
Global Variables and Function Returns

Learn C under Windows 95/NT  155

Global Variables and Function Returns
The combination of pointers and parameters gives us one way to 
share variables between different functions. This section demon-
strates two more techniques for doing the same.

Global variables are variables that are accessible from inside every 
function in your program. By declaring a global variable, two sepa-
rate functions can access the same variable without passing parame-
ters. We’ll show you how to declare a global variable, then talk 
about when and when not to use global variables in your programs.

Another topic we’ll discuss later in the chapter is a property com-
mon to all functions. All functions written in C have the ability to re-
turn a value to the function that calls them. You set this return value 
inside the function. You can use a function’s return value in place of 
a parameter, use it to pass “additional information” to the calling 
function, or not use it at all. We’ll show you how to add a return 
value to your functions.

Global Variables
Earlier in the chapter, you learned how to use parameters to share 
variables between two functions. Passing parameters between func-
tions is great. You can call a function and pass it some data to work 
on; when the function’s done, it can pass you back the results.

Global variables provide an alternative to parameters. Global vari-
ables are just like regular variables, with one exception. Global vari-
ables are immune to C’s scope rules. They can be referenced inside 
each of your program’s functions. One function might initialize the 
global variable, another might change its value, and another func-
tion might print the value of the global variable in the console win-
dow.

As you design your programs, you’ll have to make some basic deci-
sions about data sharing between functions. If you’ll be sharing a 
variable among a number of functions, you might want to consider 
making the variable a global. Globals are especially useful when 
you want to share a variable between two functions that are several 
calls apart.



Pointers and Parameters
Global Variables and Function Returns

156   Learn C under Windows 95/NT

Several calls apart? At times, you’ll find yourself passing a parame-
ter to a function not because that function needs the parameter but 
because the function calls another function that needs the parame-
ter. Look at this code:

#include <stdio.h>

void PassAlong( int myVar );
void PrintMyVar( int myVar );

int main( void )
{
int myVar;

myVar = 10;

PassAlong( myVar );

return 0;
}

void PassAlong( int myVar )
{
PrintMyVar( myVar );

}

void PrintMyVar( int myVar )
{
printf( “myVar = %d”, myVar );

}

Notice that main() passes myVar to the function PassAlong(). 
PassAlong() doesn’t make use of myVar but instead just passes 
myVar along to the function PrintMyVar(). PrintMyVar() prints 
myVar, then returns.

If myVar were a global, you could have avoided some parameter 
passing. In that case, main() and PrintMyVar() could have 



Pointers and Parameters
Global Variables and Function Returns

Learn C under Windows 95/NT  157

shared myVar without the use of parameters. When should you use 
parameters? When should you use globals? There’s no easy answer. 
As you write more code, you’ll develop your own coding style and, 
with it, your own sense of when to use globals versus parameters. 
For the moment, let’s take a look at the proper way to add globals to 
your programs.

Adding Globals to Your Programs

Adding globals to your programs is easy. Just declare a variable at 
the beginning of your source code, before the start of any of your 
functions. Here’s the example we showed you earlier, using globals 
in place of parameters:

#include <stdio.h>

void PassAlong( void );
void PrintMyVar( void );

int gMyVar;

int main( void )
{
gMyVar = 10;

PassAlong();

return 0;
}

void PassAlong( void )
{
PrintMyVar();

}

void PrintMyVar( void )
{
printf( “gMyVar = %d”, gMyVar );

}



Pointers and Parameters
Global Variables and Function Returns

158   Learn C under Windows 95/NT

This example starts with a variable declaration, right at the top of 
the program. Because gMyVar was declared at the top of the pro-
gram, gMyVar becomes a global variable, accessible to each of the 
program’s functions. Notice that none of the functions in this ver-
sion use parameters. As a reminder, when a function is declared 
without parameters, use the keyword void in place of a parameter 
list.

When to Use Globals

In general, you should try to minimize your use of globals. On the 
one hand, global variables make programming easier, because you 
can access a global anywhere. With parameters, you have to pass the 
parameter from function to function, until it gets to where it will be 
used.

On the other hand, globals are expensive, memorywise. Since the 
memory available to your program is finite, you should try to be 
memory conscious whenever possible. What makes global variables 
expensive where memory is concerned? Whenever a function is 
called, memory for the function’s variables is allocated on a tempo-
rary basis. When the function exits, the memory allocated to the 
function is freed up (put back into the pool of available memory). 
Global variables, on the other hand, are around for the life of your 
program. Memory for each global is allocated when the program 
first starts running and isn’t freed up until the program exits.

Try to minimize your use of globals, but don’t be a miser. If using a 
global will make your life easier, go ahead and use it.

Function Returns
Before we get to our source code examples, there’s one more subject 
to cover. In addition to passing a parameter and using a global vari-
able, there’s one more way to share data between two functions. 
Every function returns a value to the function that called it. You can 
use this return value to pass data back from a called function.

So far, all of our examples have ignored function return values. The 
return value comes into play only when you call a function in an ex-
pression, like this:



Pointers and Parameters
Global Variables and Function Returns

Learn C under Windows 95/NT  159

int main( void )
{
int sum;

sum = AddTheseNumbers( 5, 6 );

printf( “The sum is %d.”, sum );

return 0;
}

int AddTheseNumbers( int num1, int num2 )
{
return( num1 + num2 );

}

There are a few things worth noting in this example. First, take a 
look at the function specifier for AddTheseNumbers(). So far in 
this book, every single function other than main() has been de-
clared by using the keyword void. AddTheseNumbers(), like 
main(), starts with the keyword int. This keyword tells you the 
type returned by this function. A function declared with the void 
keyword doesn’t return a value. A function declared with the int 
keyword returns a value of type int.

A function returns a value by using the return keyword, followed 
by an expression that represents the value you want returned. For 
example, take a look at this line of code from AddTheseNumbers():

return( num1 + num2 );

This line of code adds the two variables num1 and num2, then re-
turns the sum. To understand what that means, take a look at this 
line of code, which calls AddTheseNumbers() from main():

sum = AddTheseNumbers( 5, 6 );



Pointers and Parameters
Global Variables and Function Returns

160   Learn C under Windows 95/NT

This line of code first calls AddTheseNumbers(), passing in values 
of 5 and 6 as parameters. AddTheseNumbers() adds these num-
bers and returns the value 11, which is then assigned to the variable 
sum.

When you use a function inside an expression, the computer makes 
the function call, then substitutes the function’s return value for the 
function when it evaluates the rest of the expression. 

There are several ways to use return. To exit a function immedi-
ately, without establishing a return value, you could use this state-
ment:

return;

You could also use this statement:

return();

The parentheses in a return statement are optional. You’d use the 
plain return, without an expression, to return from a function of 
type void. You might use this immediate return in case of an er-
ror, like this:

if ( OutOfMemory() )
return;

What you’ll want to remember about this form of return is that it 
does not establish the return value of the function. This works fine if 
your function is declared void:

void MyVoidFunction( int myParam );

But it won’t cut it if your function is declared to return a value:

int AddTheseNumbers( int num1, int num2 )



Pointers and Parameters
Global Variables and Function Returns

Learn C under Windows 95/NT  161

By the Way If you forget to specify a return value, some compilers will say 
nothing, some will print warnings, and others will report errors.

AddTheseNumbers() is declared to return a value of type int. 
Here are two versions of the AddTheseNumbers() return  state-
ment:

return( num1 + num2 );

return num1 + num2;

Notice that the second version did not include any parentheses. 
Since return is a keyword and not a function call, either of these 
forms is fine.

You can find a version of this program on your hard drive. Look in 
the directory Learn C Projects, in the subdirectory 07.03 - 
addThese. Figure 7.9 shows the output of this program.

Figure 7.9 addThese in action.



Pointers and Parameters
Global Variables and Function Returns

162   Learn C under Windows 95/NT

Danger! Avoid Uninitialized Return Values!

Before we leave the topic of function return values, there’s one pit-
fall worth mentioning. If you’re going to use a function in an expres-
sion, make sure that the function provides a return value. For 
example, this code will produce unpredictable results:

int main( void )
{
int sum;

sum = AddTheseNumbers( 5, 6 );

printf( “The sum is %d.”, sum );

return 0;
}

int AddTheseNumbers( int num1, int num2 )
{
return;/* Yikes! We forgot to

set the return value */
}

When AddTheseNumbers() returns, what will its value be? No one 
knows! Figure 7.10 shows one possibility. As you can see, the com-
puter used 0 as the return value for AddTheseNumbers(). Don’t 
forget to set a return value if you intend to use a function in an ex-
pression.



Pointers and Parameters
Global Variables and Function Returns

Learn C under Windows 95/NT  163

Figure 7.10 Yikes! The sum of 5 + 6 is not equal to 0. Someone forgot to 
set the return value.

To Return or Not to Return

Should you use a return value or a passed-by-address parameter? 
Which is correct? This is basically a question of style. Either solution 
will get the job done, so feel free to use whichever works best for 
you. Just remember that a function can have only one return value 
but an unlimited number of parameters. If you need to get more 
than one piece of data back to the calling function, your best bet is to 
use parameters.

The function AddTheseNumbers() was a natural fit for the return 
statement. It took in a pair of numbers (the input parameters) and 
needed to return the sum of those numbers. Since it needed to re-
turn only a single value, the return statement worked perfectly.

Another nice thing about using the return statement is that it fre-
quently allows us to avoid declaring an extra variable. In 
addThese, we declared sum to receive the value returned by 
AddTheseNumbers(). Since all we did with sum was print its 



Pointers and Parameters
More Sample Programs

164   Learn C under Windows 95/NT

value, we could have accomplished the same thing with this version 
of main():

int main( void )
{
printf( “The sum is %d.”, 

AddTheseNumbers( 5, 6 ) );

return 0;
}

See the difference? We included the call to AddTheseNumbers() in 
the printf(), bypassing sum entirely. When AddTheseNumbers() 
returns its int, that value is passed on to printf().

More Sample Programs
Are you ready for some more code? The next few sample programs 
use pointers, function parameters, global variables, and function re-
turns. Crank up the stereo, break out the pizza, and fire up your PC. 
Let’s code!

listPrimes.cwp
Our next sample program is an updated version of nextPrime, the 
Chapter 6 program that found the next prime number following a 
specified number. The example we presented reported that the next 
prime number after 19 was 23.

This version of the program, called listPrimes.cwp, uses a func-
tion named IsItPrime() and lists all the prime numbers between 
1 and 50. Open up the project listPrimes.cwp. You’ll find the 
program in the Learn C Projects  directory, inside the subdirec-
tory named 07.04 - listPrimes.  Run listPrimes and then 
compare your results with the console window shown in Figure 
7.11.



Pointers and Parameters
More Sample Programs

Learn C under Windows 95/NT  165

Stepping Through the Source Code

The listPrimes.c  source code consists of two functions: main() 
and IsItPrime(). IsItPrime() takes a single parameter, an int 
named candidate, which is passed by value. IsItPrime() re-
turns a value of true if candidate is a prime number and a value 
of false otherwise.

The program starts off with two #includes: stdio.h  gives us 
access to the function prototype of printf(), and math.h gives us 
access to the function prototype for sqrt():

#include <stdio.h>
#include <math.h>

Then we define the constants true and false.  (Remember, we’ll 
discuss #define later.) 

#define true 1
#define false 0

Next comes the function prototype for IsItPrime(). The compiler 
will use this function prototype to make sure that all calls to 
IsItPrime() pass the right number of parameters (in this case, 1) 
and that the parameters are of the correct type (in this case, a single 
int).

/***********************/
/* Function Prototypes */
/***********************/
int IsItPrime( int candidate );



Pointers and Parameters
More Sample Programs

166   Learn C under Windows 95/NT

Figure 7.11 listPrimes in action.

The main() function defines a single variable, an int named i. 
We’ll use i as a counter to step through the integers from 1 to 50. 
We’ll pass each number to IsItPrime(). If the result is true, we’ll 
report the number as prime:

int main( void )
{
int i;

for ( i = 1; i <= 50; i++ )
{
if ( IsItPrime( i ) )
printf( “%d is a prime number.\n”, i );

}

return 0;
}



Pointers and Parameters
More Sample Programs

Learn C under Windows 95/NT  167

By the Way As usual, main() ends with a return statement. By convention, 
returning a value of 0 tells the outside world that everything ran 
just hunky-dory. If something goes wrong (if we ran out of memory, 
perhaps), the same convention calls for us to return a negative 
number from main(). Some operating systems will make use of 
this return value, and others won’t. It doesn’t cost you anything to 
follow the convention, so go ahead and follow it.

IsItPrime() first checks to see whether the number passed in is 
less than 2. If it is, IsItPrime() returns false, since 2 is the first 
prime number:

int IsItPrime( int candidate )
{
int i, last;

if ( candidate < 2 )
return false;

If candidate has a value of 2 or greater, we’ll step through all the 
numbers between 2 and the square root of candidate, looking for 
a factor. If this algorithm is new to you, go back to the previous 
chapter and check out the program nextPrime. If we find a factor, 
we know that the number isn’t prime, and we’ll return false:

else
{
last = sqrt( candidate );

for ( i = 2; i <= last; i++ )
{
if ( (candidate % i) == 0 )
return false;

}
}



Pointers and Parameters
More Sample Programs

168   Learn C under Windows 95/NT

If we get through the loop without finding a factor, we know that 
candidate  is prime, and we return true:

return true;
}

By the Way If candidate is equal to 2, last will be equal to 1.414, which will 
get truncated to 1, since last is an int. If last is 1, the for loop 
won’t even get through one iteration and will fall through to the 
statement:

return true;

The same thing happens if candidate is 3. Since 2 and 3 are 
both prime, this works just fine. On the other hand, this little exam-
ple shows you how careful you have to be to check your code, to 
make sure it works in all cases.

Consider the function name IsItPrime(). In C, when you name a 
function in the form of a true or false question, it is good form to 
return a value of true or false. The question this function answers 
is, Is the candidate prime? It is critical that IsItPrime() return 
true if the candidate was prime and false otherwise. When 
main() calls IsItPrime(), main() is asking the question, Is the 
candidate prime? In the case of the if statement, main() is saying, 
If i is prime, do the printf(): 

if ( IsItPrime( i ) )
printf( ... );

Make sure that your function return values make sense!



Pointers and Parameters
More Sample Programs

Learn C under Windows 95/NT  169

power.cwp
Our next program combines a global variable, a pointer parameter, 
and some value parameters. At the heart of the program is a func-
tion, called DoPower(), that takes three parameters. DoPower() 
takes a base and an exponent, raises the base to the exponent power, 
and returns the result in a parameter. Raising a base to an exponent 
power is the same as multiplying the base by itself, an exponent 
number of times.

For example, raising 2 to the fifth power (written as 25) is the same 
as saying 2*2*2*2*2, which is equal to 32. In the expression 25, 2 is 
the base and 5 is the exponent. The function DoPower() takes a 
base and an exponent as parameters and raises the base to the expo-
nent power. DoPower() uses a third parameter to return the result 
to the calling function.

The program also uses a global variable, an int named 
gPrintTraceInfo, which demonstrates one of the most impor-
tant uses of a global variable. Every function in the program checks 
the value of the global gPrintTraceInfo. If gPrintTraceInfo  
is true, each function prints a message when the function is entered 
and another message when the function exits. In this way, you can 
trace the execution of the program. By reading each printf(), you 
can see when a function is entered and when it leaves.

If gPrintTraceInfo  is set to true, the extra function-tracing in-
formation will be printed in the console window. If 
gPrintTraceInfo is set to false, the extra information will not 
be printed. As you’ll see in a moment, by simply changing the value 
of a global, you can dramatically change the way your program 
runs.

Running power.cwp

You’ll find power.cwp  in the Learn C Projects  directory, in 
the 07.05 - power  subdirectory. Run power.cwp  and compare 
your results with the console window shown in Figure 7.12. This 
output was produced by three consecutive calls to the function 
DoPower(). The three calls calculated the result of the expressions 
25, 34, and 53. Here’s how the program works.



Pointers and Parameters
More Sample Programs

170   Learn C under Windows 95/NT

Figure 7.12 power output, with gPrintTraceInfo set to false.

Stepping Through the Source Code

The program starts with a standard #include, the definition of the 
contstants true and false, and the function prototype for 
DoPower(). Notice that DoPower() is declared to be of type void, 
telling you that DoPower() doesn’t return a value. As you read 
through the code, think about how you might rewrite DoPower() 
to return its result by using the return statement instead of in a pa-
rameter.

#include <stdio.h>

#define true 1
#define false 0

/***********************/
/* Function Prototypes */
/***********************/



Pointers and Parameters
More Sample Programs

Learn C under Windows 95/NT  171

void DoPower( int *resultPtr, int base, int 
exponent );

Next comes the declaration of our global, gPrintTraceInfo. 
Once again, notice that the global starts with a g:

/***********/
/* Globals */
/***********/
int      gPrintTraceInfo;

Next, main() starts off by setting gPrintTraceInfo  to false. 
We then check to see whether tracing is turned on. If so, we’ll print a 
message telling us we’ve entered main():

int main( void )
{
int power;

gPrintTraceInfo = false;

if ( gPrintTraceInfo )
printf( “---> Starting main()...\n” );

By the Way C guarantees that it will initialize all global variables to zero. Since 
false is equivalent to zero, we could have avoided setting 
gPrintTraceInfo  to false, but it does make the code a little 
clearer.

Here are our three calls to DoPower(), each of which is followed by 
a printf() reporting our results. If DoPower() returned its results 
in a return statement, we could have eliminated the variable 
power and embedded the call to DoPower() inside the printf() 
in place of power.



Pointers and Parameters
More Sample Programs

172   Learn C under Windows 95/NT

DoPower( &power, 2, 5 );
printf( “2 to the 5th = %d.\n”, power );

DoPower( &power, 3, 4 );
printf( “3 to the 4th = %d.\n”, power );

DoPower( &power, 5, 3 );
printf( “5 to the 3rd = %d.\n”, power );

If tracing is turned on, we’ll print a message saying that we are leav-
ing main():

if ( gPrintTraceInfo )
      printf( “---> Leaving main()...\n” );

return 0;
}

The function DoPower() takes three parameters. We’ll use 
resultPtr, a pointer to an int, to pass back the function results. 
The value parameters base and exponent represent the—guess 
what?—base and exponent.

void DoPower( int *resultPtr, int base, int 
exponent )

{
int i;

Once again, check the value of gPrintTraceInfo. If it’s true, 
print a message telling us that we’re at the beginning of DoPower(). 
Notice the tab character (represented by the characters \t) at the be-
ginning of the printf() quoted string. You’ll see what this was for 
when we set gPrintTraceInfo  to true.

if ( gPrintTraceInfo )



Pointers and Parameters
More Sample Programs

Learn C under Windows 95/NT  173

printf( “\t---> Starting DoPower()...\n” );

The following three lines calculate base raised to the exponent 
power, accumulating the results in the memory pointed to by 
resultPtr. When main() called DoPower(), it passed &power 
as its first parameter. This means that resultPtr contains the ad-
dress of (points to) the variable power. Changing *resultPtr  is 
exactly the same as changing power. When DoPower() returns to 
main(), the value of power will have been changed; power was 
passed by address (also called by reference) instead of by value.

*resultPtr = 1;
for ( i = 1; i <= exponent; i++ )
*resultPtr *= base;

Finally, if gPrintTraceInfo  is true, print a message telling us 
that we’re leaving DoPower():

if ( gPrintTraceInfo )
printf( “\t---> Leaving DoPower()...\n” );

}

Figure 7.13 shows the console window when power is run with 
gPrintTraceInfo  set to true. See the trace information? Find 
the lines printed when you enter and exit DoPower(). The leading 
tab characters help distinguish these lines.

This tracing information was turned on and off by a single global 
variable. As you start writing your own programs, you’ll want to 
develop your own set of tricks for global variables. For example, 
programmers who write programs that can run in color or black and 
white usually create a global called something like gIsColor. They 
set gIsColor to true or false, once they establish whether they 
are running in a color or a black-and-white environment. In this 
way, a function buried deep inside the program doesn’t have to fig-
ure out whether it’s running in color or in black and white. All it has 
to do is check the value of gIsColor.



Pointers and Parameters
What’s Next?

174   Learn C under Windows 95/NT

Figure 7.13 power output, with gPrintTraceInfo set to true.

What’s Next?
Wow! You really are becoming a C programmer. In this chapter 
alone, you covered pointers, function parameters (both by value 
and by address), global variables, and function return values.

You’re starting to develop a sense of just how powerful and sophis-
ticated the C language really is. You’ve built an excellent founda-
tion. Now you’re ready to take off.

Chapter 8 introduces the concept of data types. Throughout the 
book, you’ve been working with a single data type, the int. Chap-
ter 8 introduces the concepts of arrays, strings, pointer arithmetic, 
and typed function return values. Let’s go.

Exercises
1. Predict the result of each of the following code fragments:



Pointers and Parameters
Exercises

Learn C under Windows 95/NT  175

a. int main( void )
{
int num, i;

num = 5;

for ( i = 0; i < 20; i++ )
AddOne( &num );

printf( “Final value is %d.”, num );

return 0;
}

voidAddOne( int *myVar )
{
(*myVar) ++;

}

b. int gNumber;

int main( void )
{
int i;
gNumber = 2;

for ( i = 1; i <= 2; i++ )
gNumber *= MultiplyIt( gNumber );

printf( “Final value is %d.”, gNumber );
}

int MultiplyIt( int myVar )
{
return( myVar * gNumber );

}



Pointers and Parameters
Exercises

176   Learn C under Windows 95/NT

c. int gNumber;

int main( void )
{
int i;
gNumber = 1;

for ( i = 1; i <= 10; i++ )
gNumber = DoubleIt( gNumber );

printf( “Final value is %d.”, gNumber );
}

int DoubleIt( intmyVar )
{
return 2 * myVar;

}

2. Modify power.c. Delete the first parameter of the function 
DoPower(), modifying the routine to return its result as a 
function return value instead.

3. Modify listPrimes.c. Instead of printing prime numbers, 
print only nonprime numbers. In addition, print one message 
for nonprimes that are multiples of 3 and a different message 
for nonprimes that are not multiples of 3.



Learn C under Windows 95/NT  177

8
Variable Data Types
OK, now we’re cooking! You may now consider yourself a C Pro-
grammer, First Class. At this point, you’ve mastered all the basic el-
ements of C programming. You know that C programs are made up 
of functions, one—and only one!—of which is named main(). Each 
of these functions uses keywords (such as if, for, and while), op-
erators (such as =, ++, and *=), and variables to manipulate the pro-
gram’s data.

Sometimes, you’ll use a global variable to share data between func-
tions. At other times, you’ll use a parameter to share a variable be-
tween a calling and a called function. Sometimes, these parameters 
are passed by value; sometimes, pointers are used to pass a parame-
ter by address. Some functions return values. Others, declared with 
the void keyword, don’t return a value.

In this chapter, we’ll focus on variable types. Each of the variables 
in the previous example programs has been declared as an int. As 
you’ll soon see, there are many other data types out there.

Other Data Types
So far, the focus has been on ints, which are extremely useful when 
it comes to working with numbers. You can add two ints. You can 
check whether an int is even, odd, or prime. You can do a lot with 
ints, as long as you limit yourself to whole numbers. 

By the Way Just as a reminder, 527, 33, and –2 are all whole numbers, 
whereas 35.7, 92.1, and –1.2345 are not whole numbers.

What do you do if you want to work with nonwhole numbers, such 
as 3.14159 and –98.6? Check out this slice of code:



Variable Data Types
Other Data Types

178   Learn C under Windows 95/NT

int myNum;

myNum = 3.5;
printf( “myNum = %d”, myNum );

Since myNum is an int, the number 3.5 will be truncated before it is 
assigned to myNum. When this code ends, myNum will be left with a 
value of 3 and not 3.5 as intended. Do not despair. There are several 
special C data types created especially for working with nonwhole, 
or floating-point numbers.

By the Way The term floating point refers to the decimal point found in all float-
ing-point numbers.

Floating-Point Data Types
The three floating-point data types are float, double, and long 
double. These types differ in the number of bytes allocated to each 
and, therefore, the range of values each can hold. The relative sizes 
of these three types are completely implementation dependent. 
Here’s a program you can run to tell you the size of these three 
types in your development environment and to show you various 
ways to use printf() to print floating-point numbers.

floatSizer

Look inside the Learn C Projects  directory, inside the subdirec-
tory named 08.01 - floatSizer, and open the project named 
floatSizer.cwp. Figure 8.1 shows the results when I ran float-
Sizer on Windows using CodeWarrior. The first three lines of out-
put tell you the size, in bytes, of the types float, double, and long 
double, respectively. If you run the same program using Microsoft 
Visual C++ Compiler, you’ll find that a float is still 4 bytes long 
and that a double and a long double are still 8 bytes each. How-
ever, never assume that you know the size of a type. As you’ll see 
when we go through the source code, C gives you everything you 
need to check the size of a specific type in your development



Variable Data Types
Other Data Types

Learn C under Windows 95/NT  179

Figure 8.1 The output from floatSizer.

environment. If you need to be sure of a type’s size, write a program 
and check the size for yourself.

Stepping Through the Source Code

The code starts with the standard #include:

#include <stdio.h>

Then main() defines three variables: a float, a double, and a 
long double:

int main( void )
{
float myFloat;
double myDouble;
long double myLongDouble;



Variable Data Types
Other Data Types

180   Learn C under Windows 95/NT

Next, we’ll assign a value to each of the three variables. Notice that 
we’ve assigned the same number to each:

myFloat = 12345.67890123456789;
myDouble = 12345.67890123456789;
myLongDouble = 12345.67890123456789;

Now comes the fun part. We’ll start by using C’s sizeof operator 
to print the size of each of the three floating-point types. Even 
though sizeof doesn’t look like the other operators we’ve seen (+, 
*, <<, and so on), it is indeed an operator. Stranger yet, sizeof re-
quires a pair of parentheses surrounding a single parameter, much 
like a function. The parameter is either a type or a variable; 
sizeof() returns the size, in bytes, of its parameter.

By the Way Like return, sizeof doesn’t always require a pair of parenthe-
ses. If the sizeof operand is a type, the parentheses are re-
quired. If the sizeof operand is a variable, the parentheses are 
optional. Rather than trying to remember this rule, avoid confusion 
and always use parentheses with sizeof.

Did you notice the (int) to the left of each sizeof? This is known 
as a typecast. A typecast tells the compiler to convert a value of one 
type to a specified type. In this case, we are taking the type returned 
by sizeof and converting it to an int. Why do this? The reason is 
that sizeof returns a value of type size_t (weird type name, eh?), 
and printf() doesn’t have a format specifier that corresponds to a 
size_t. By converting the size_t to an int, we can use the format 
specifier %d to print the value returned by sizeof. Notice the extra 
\n at the end of the third printf(), which gives us a blank line be-
tween the first three lines of output and the next line of output:

printf( “sizeof( float ) = %d\n”, (int)sizeof
( float ) );

printf( “sizeof( double ) = %d\n”, (int)sizeof
( double ) );



Variable Data Types
Other Data Types

Learn C under Windows 95/NT  181

printf( “sizeof( long double ) = %d\n\n”,
(int)sizeof( long double ) );

Important If the concept of typecasting is confusing to you, have no fear. 
We’ll get into typecasting in Chapter 11. Until then, you can use 
this method whenever you want to print the value returned by 
sizeof. Alternatively, you might declare a variable of type int, 
assign the value returned by sizeof to the int, and then print the 
int:

int myInt;

myInt = sizeof( float );
printf( “sizeof( float ) = %d\n”, myInt );

Use whichever method works for you.

The rest of this program is dedicated to various and sundry ways 
you can print your floating-point numbers. So far, all of our pro-
grams have printed ints using the format specifier %d. The Stan-
dard Library has a set of format specifiers for all of C’s built-in data 
types, including several for printing floating-point numbers.

First, we’ll use the format specifer %f to print our three floating-
point numbers in their natural, decimal format:

printf( “myFloat = %f\n”, myFloat );
printf( “myDouble = %f\n”, myDouble );
printf( “myLongDouble = %f\n\n”, myLongDouble );

Here’s the result:

myFloat = 12345.678711
myDouble = 12345.678901
myLongDouble = 12345.678901



Variable Data Types
Other Data Types

182   Learn C under Windows 95/NT

As a reminder, all three of these numbers were assigned the value:

12345.67890123456789

Hmmm . . . none of the numbers we printed matches this number. 
And the first number we printed is different from the second and 
third numbers. What gives? There are several problems here. As 
we’ve already seen, this development environment uses 4 bytes for 
a float and 8 bytes each for a double and a long double. This 
means that the number:

12345.67890123456789

can be represented more accurately using a double or a long dou-
ble than it can be using a float. In addition, we are printing using 
the default precision of the %f format specifier. In this case, we are 
printing only six places past the decimal point. Although this might 
be plenty of precision for most applications, we’d like to see how ac-
curate we can get.

We then use format specifier modifiers to more closely specify the 
output produced by each printf(). By using %25.16f instead of 
%f, we tell printf() to print the floating-point number with an ac-
curacy of 16 places past the decimal and to add spaces if necessary 
so the number takes up at least 25 character positions:

printf( “myFloat = %25.16f\n”, myFloat );
printf( “myDouble = %25.16f\n”, myDouble );
printf( “myLongDouble = %25.16f\n\n”,
 myLongDouble );

Here’s the result:

myFloat =    12345.6787109375000000
myDouble =    12345.6789012345678900
myLongDouble =    12345.6789012345678900



Variable Data Types
Other Data Types

Learn C under Windows 95/NT  183

As requested, printf() printed each of these numbers to 16 places 
past the decimal place (count the digits yourself), padding each re-
sult with zeros as needed. Since adding the 16 digits to the right of 
the decimal, plus 1 space for the decimal, plus 5 for the 5 digits to 
the left of the decimal equals 22 (16+1+5=22) and we asked 
printf() to use 25 character positions, printf() added 3 spaces 
to the left of the number.

By the Way We originally asked printf() to print a float with a value of:

12345.67890123456789

The best approximation of this number we were able to represent 
by a float is:

12345.6787109375000000

Where did this approximation come from? The answer has to do 
with the way your computer stores floating-point numbers.

The fractional part of a number (the number to the right of the dec-
imal) is represented in binary just like an integer. Instead of the 
sum of powers of 2, the fractional part is represented as the sum 
of powers of 1/2. For example, the number 0.75 is equal to 1/2 + 
1/4. In binary, that’s 11.

The problem with this representation is that it’s impossible to rep-
resent some numbers with complete accuracy. If you need a 
higher degree of accuracy, use double or a long double in-
stead of float. Unless you cannot afford the extra memory that 
the larger data types require, you are probably better off using a 
double or a long double in your programs instead of a float 
for all your floating-point calculations.

The next portion of code shows you the result of using different 
modifer values to print the same float:



Variable Data Types
Other Data Types

184   Learn C under Windows 95/NT

printf( “myFloat = %10.1f\n”, myFloat );
printf( “myFloat = %.2f\n”, myFloat );
printf( “myFloat = %.12f\n”, myFloat );
printf( “myFloat = %.9f\n\n”, myFloat );

Here’s the output produced by each printf():

myFloat =    12345.7
myFloat = 12345.68
myFloat = 12345.678710937500
myFloat = 12345.678710938

The specifier %10.1f told printf() to print 1 digit past the deci-
mal and to use 10 character positions for the entire number. The 
specifier %.2f told printf() to print 2 digits past the decimal and 
to use as many character positions as necessary to print the entire 
number. Notice that printf() rounds off the result for you and 
doesn’t simply cut off the number after the specified number of 
places.

The specifier %.12f told printf() to print 12 digits past the deci-
mal, and the specifier %.9f told printf() to print 9 digits past the 
decimal. Again, notice the rounding that takes place.

By the Way Unless you need to exactly control the total number of characters 
used to print a number, you’ll probably leave off the first modifier 
and just specify the number of digits past the decimal you want 
printed, using specifiers such as %.2f and %.9f.

If you do use a two-part modifier, such as %3.2f, printf() will 
never cut off numbers to the left of the decimal. For example, the 
output myFloat = 255.54 will be produced by the following 
code:

myFloat = 255.543;
printf( “myFloat = %3.2f”, myFloat );



Variable Data Types
Other Data Types

Learn C under Windows 95/NT  185

Even though you told printf() to use three character positions 
to print the number, printf() was smart enough to not lose the 
numbers to the left of the decimal.

The next printf() uses the specifier %e, asking printf() to print 
the float using scientific, or exponential, notation:

printf( “myFloat = %e\n\n”, myFloat );

Here’s the corresponding output:

myFloat = 1.234568e+04

The result, 1.234568e+04 is equal to 1.234568 times 10 to the 
fourth power, or 1.234568*104, or 1.234568 * 10000 == 12,345.68. 

The next two printf() calls use the specifier %g, letting printf() 
decide whether decimal or scientific notation will be the most effi-
cient way to represent this number. The first %g deals with a 
myFloat value of 100,000:

myFloat = 100000;
printf( “myFloat = %g\n”, myFloat );

Here’s the output:

myFloat = 100000

Next, the value of myFloat is changed to 1,000,000, and %g is used 
once again:

myFloat = 1000000;
printf( “myFloat = %g\n”, myFloat );



Variable Data Types
Other Data Types

186   Learn C under Windows 95/NT

return 0;
}

Here’s the result of this last printf(). As you can see, this time 
printf() decided to represent the number using exponential nota-
tion:

myFloat = 1e+06

The lesson here is: Use float if you want to work with floating-
point numbers. Use double or long double  for extra accuracy, 
but beware the extra cost in memory usage. Use int for maximum 
speed, if you want to work exclusively with whole numbers, or if 
you want to truncate a result. 

The Integer Types
So far, you’ve learned about four types: three floating-point types 
(float, double, and long double) and one integer type (int). In 
this section, we’ll introduce the remaining integer types: char, 
short, and long. As was the case with the three floating-point 
types, the size of each of the four  integer types is implementation 
dependent. Our next program, intSizer proves that point. You’ll 
find intSizer, in the Learn C Projects  directory, in the 
08.02 - intSizer subdirectory.

Important Although these forms are rarely used, a short is also known as a 
short int, and a long is also known as a long int. As an ex-
ample, these declarations are perfectly legal:

short int myShort;
long int myLong;

Although the preceding declarations are just fine, you are more 
likely to encounter declarations like these:

short myShort;



Variable Data Types
Other Data Types

Learn C under Windows 95/NT  187

long myLong;

As always, choose your favorite style and be consistent.

The intSizer program contains one printf() for each integer 
type:

printf( “sizeof( char ) = %d\n”, (int)sizeof
( char ) );

printf( “sizeof( short ) = %d\n”, (int)sizeof
( short ) );

printf( “sizeof( int ) = %d\n”, (int)sizeof
( int ) );

printf( “sizeof( long ) = %d\n”, (int)sizeof
( long ) );

Like their floatSizer counterparts, these printf() calls use 
sizeof to determine the size of a char, a short, an int, and a 
long. When intSizer was compiled using CodeWarrior, here’s 
what came back:

sizeof( char ) = 1
sizeof( short ) = 2
sizeof( int ) = 4
sizeof( long ) = 4

Again, the point to remember is: There are no guarantees. Don’t as-
sume that you know the size of a type. Write a program and check 
for yourself.

Type Value Ranges 

All the integer types can be either signed or unsigned. This obvi-
ously affects the range of values handled by that type. For example, 
a signed 1-byte char can store a value from –128 to 127, and an 
unsigned 1-byte char can store a value from 0 to 255. If this clouds 
your mind with pain, now might be a good time to go back and re-
view Chapter 5.



Variable Data Types
Other Data Types

188   Learn C under Windows 95/NT

A signed 2-byte short or int can store values ranging from 
–32768 to 32767. An unsigned 2-byte short or int can store values 
ranging from 0 to 65535.

A signed 4-byte long or int can store values ranging from 
–2,147,483,648 to 2,147,483,647. An unsigned 4-byte long or int 
can store values ranging from 0 to 4,294,967,295.

A 4-byte float can range in value from –3.4e+38 to 3.4e+38. An 8-
byte double or long double  can range in value from –1.7e+308 
to 1.7e+308.

Memory Efficiency Versus Safety

Each time you declare one of your program’s variables, you’ll have 
a decision to make. What’s the best type for this variable? In gen-
eral, it’s a good policy not to waste memory. Why use a long when 
a short will do just fine? Why use a double when a float will do 
the trick?

There is a danger in being too concerned with memory efficiency, 
however. For example, suppose that a customer asked you to write 
a program designed to print the numbers 1 through 100, one num-
ber per line. Sounds pretty straightforward. Just create a for loop 
and embed a printf() in the loop. In the interests of memory effi-
ciency, you might use a char to act as the loop’s counter. After all, if 
you declare your counter as an unsigned char, it can hold values 
ranging from 0 to 255. That should be plenty, right?

unsigned char counter;

for ( counter=1; counter<=100; counter++ )
printf( “%d\n”, counter );

This program works just fine. But suppose that your customer then 
asks you to extend the program to count from 1 to 1000 instead of 
just to 100. You happily change the 100 to 1000 like so:

unsigned char counter;

for ( counter=1; counter<=1000; counter++ )



Variable Data Types
Working with Characters

Learn C under Windows 95/NT  189

printf( “%d\n”, counter );

What do you think will happen when you run the program? To find 
out, open the Learn C Projects  directory, open the 08.03 - 
typeOverflow  subdirectory, and open and run the project 
typeOverflow.cwp.

Keep an eye on the numbers as they scroll by on the screen. When 
the number 255 appears, a funny thing happens. The next number 
will be 0, then 1, 2, and so on. If you leave the program running for a 
while, it will climb back up to 255, then jump to 0 and climb back up 
again. This will continue forever. Type Control C to quit the pro-
gram. 

The problem with this program occurs when the for loop incre-
ments counter when it has a value of 255. Since an unsigned 
char can hold a maximum value of 255, incrementing it gives it a 
value of 0 again. Since counter can never get higher than 255, the 
for loop never exits.

Just for kicks, edit the code and change the unsigned char  to a 
signed char. What do you think will happen? Try it!

The real solution here is to use a short, int, or long instead of a 
char. Don’t be stingy. Unless there is a real reason to worry about 
memory usage, err on the side of extravagence. Err on the side of 
safety!

Working with Characters
With its minimal range, you might think that a char isn’t good for 
much. Actually, the C deities created the char for a good reason. It 
is the perfect size to hold a single alphabetic character. In C, an al-
phabetic character is a single character placed between a pair of sin-
gle quotes (‘). Here’s a test to see whether a char variable contains 
the letter ‘a’:

char c;

c = ‘a’;



Variable Data Types
Working with Characters

190   Learn C under Windows 95/NT

if ( c == ‘a’ )
printf( “The variable c holds the character
‘a’.” );

As you can see, the character ‘a’ is used in both an assignment 
statement and an if statement, just as if it were a number or a vari-
able. 

The ASCII Character Set
In C, a signed char takes up a single byte and can hold a value 
from -128 to 127. How can a char hold a numerical value, as well as 
a character value, such as ‘a’ or ‘+’? The answer lies with the 
ASCII character set. The ASCII (American Standard Code for Infor-
mation Interchange) character set of 128 standard characters fea-
tures the 26 lowercase letters, the 26 uppercase letters, the 10 
numerical digits, and an assortment of other exciting characters, 
such as } and =. Each of these characters corresponds exactly to a 
value between 0 and 127. The ASCII character set ignores the values 
between –128 and –1.

For example, the character ‘a’ has an ASCII value of 97. When a C 
compiler sees the character ‘a’ in a piece of source code, it substi-
tutes the value 97. Each of the values from 0 to 127 is interchange-
able with a character from the ASCII character set.

Warning Although we use the ASCII character set throughout this book, you 
should know that there are other character sets out there. Another 
commonly used character set is the EBCDIC character set. Each 
EBCDIC character, like an ASCII character, has a value between 0 
and 127 and, therefore, fits nicely inside a char.

Some foreign alphabets have more characters than can be repre-
sented by a single byte. To accommodate these multibyte charac-
ters, ISO C features wide-character and wide-string data types.

Although we won’t get into EBCDIC and multibyte character sets in 



Variable Data Types
Working with Characters

Learn C under Windows 95/NT  191

this book, you should keep these things in mind as you write your 
own code. Read up on the multibyte extensions introduced as part 
of the ISO C standard. There’s an excellent writeup in Harbison 
and Steele’s C:  A Reference Manual (see the bibliography at the 
back of this book).

ascii.cwp

Here’s a program that will make the ASCII character set easier to 
understand. Go into the Learn C Projects  directory, then into 
the 08.04 - ascii  subdirectory, and open the project 
ascii.cwp.

Before we step through the project source code, let’s take it for a 
spin. Select Run from the Project menu. A console window similar 
to the one in Figure 8.2 should appear. The first line of output shows 
the characters corresponding to the ASCII values from 32 to 47. Why 
start with 32? As it turns out, the ASCII characters between 0 and 31 
are nonprintable characters, such as the backspace (ASCII 8) or the 
carriage return (ASCII 13). A table of the nonprintable ASCII charac-
ters is presented later on.

Notice that ASCII character 32 is a space, or ‘ ‘. ASCII character 33 
is ‘!’. ASCII character 47 is ‘/’. This presents some interesting 
coding possibilities. For example, this code is perfectly legitimate:

int sumOfChars;

sumOfChars = ‘!’ + ‘/’;

What a strange piece of code! Although you will probably never do 
anything like this, try to predict the value of the variable 
sumOfChars  after the assignment statement. And the answer is . . .

The character ‘!’ has a value of 33, and the character ‘/’ has a 
value of 47. Therefore, sumOfChars will be left with a value of 80 
following the assignment statement. C allows you to represent any 
number between 0 and 127 in two different ways: as an ASCII char-
acter or as a number. Let’s get back to the console window in Figure 
8.2.



Variable Data Types
Working with Characters

192   Learn C under Windows 95/NT

Figure 8.2 The printable ASCII characters.

The second line of output shows the ASCII characters from 48 
through 57. As you can see, these 10 characters represent the digits 0 
through 9. Here’s a little piece of code that converts an ASCII digit 
to its numerical counterpart:

char digit;
int convertedDigit;

digit = ‘3’;

convertedDigit = digit - ‘0’;

This code starts with a char named digit, initialized to hold the 
ASCII character ‘3’, which has a numerical value of 51. The next line 
of code subtracts the ASCII character ‘0’ from digit. Since the char-
acter ‘0’ has a numerical value of 48, and digit started with a nu-
merical value of 51, convertedDigit  ends up with a value of 51 – 
48, or 3. Isn’t that interesting?



Variable Data Types
Working with Characters

Learn C under Windows 95/NT  193

Warning Subtracting ‘0’ from any ASCII digit yields that digit’s numerical 
counterpart. Although this is a great trick if you know you’re work-
ing with ASCII, your code will fail if the digits of the current charac-
ter set are not represented in the same way as they are in ASCII. 
For example, if you were on a machine that used a character set in 
which the digits were sequenced from 1 to 9, followed by 0, this 
trick wouldn’t work.

The next line of the console window shown in Figure 8.2 shows the 
ASCII characters with values ranging from 58 to 64. The following 
line is pretty interesting. It shows the range of ASCII characters from 
65 to 90. Notice anything familiar about these characters? They rep-
resent the complete uppercase alphabet.

The next line in Figure 8.2 lists ASCII characters with values from 91 
through 96. The next line lists the ASCII characters with values 
ranging from 97 through 122. These 26 characters represent the com-
plete lowercase alphabet.

Warning Adding 32 to an uppercase ASCII character yields its lowercase 
equivalent. Likewise, subtracting 32 from a lowercase ASCII char-
acter yields its uppercase equivalent.

Guess what? You never want to take advantage of this information! 
Instead, use the Standard Library routines tolower() and 
toupper() to do the conversions for you.

As a general rule, try not to make assumptions about the order of 
characters in the current character set. Use Standard Library func-
tions rather than working directly with character values. Although it 
is tempting to do these kinds of conversions yourself, by going 
through the Standard Library, you know that your program will 
work across single-byte character sets.

The final line in Figure 8.2 lists the ASCII characters from 123 to 126. 
As it turns out, the ASCII character with a value of 127 is another 
nonprintable character. Figure 8.3 lists these “unprintables.” The 



Variable Data Types
Working with Characters

194   Learn C under Windows 95/NT

left-hand column shows the ASCII code; the right-hand column 
shows the keyboard equivalent for that code, along with any appro-
priate comments. The characters with comments by them are proba-
bly the only unprintables you’ll ever use.

Figure 8.3 The ASCII unprintables.

Stepping Through the Source Code

Before we move on to our next topic, let’s take a look at the 
ascii.c source code that generated the ASCII character listing in 

ASCII Unprintables
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
127

Used to terminate text strings (Explained later in chapter)
Control-A
Control-B
Control-C
Control-D (End of file mark, see Chapter 10)
Control-E
Control-F
Control-G (Beep character - Try it!)
Control-H (Backspace)
Control-I (Tab)
Control-J (Line feed)
Control-K (Vertical feed)
Control-L (Form feed)
Control-M (Carriage return, no line feed)
Control-N
Control-O
Control-P
Control-Q
Control-R
Control-S
Control-T
Control-U
Control-V
Control-W
Control-X
Control-Y
Control-Z
Control-[ (Escape character)
Control-|
Control-]
Control-^
Control-_
del



Variable Data Types
Working with Characters

Learn C under Windows 95/NT  195

Figure 8.2. This code begins with the usual #include, followed by 
a function prototype of the function PrintChars(). 
PrintChars() takes two parameters, which define a range of 
chars to print.

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void PrintChars( char low, char high );

The main() function calls PrintChars() seven times in an at-
tempt to functionally organize the ASCII characters:

int main( void )
{
PrintChars( 32, 47 );
PrintChars( 48, 57 );
PrintChars( 58, 64 );
PrintChars( 65, 90 );
PrintChars( 91, 96 );
PrintChars( 97, 122 );
PrintChars( 123, 126 );

return 0;
}

PrintChars() declares a local variable, c, to act as a counter as we 
step through a range of chars:

void PrintChars( char low, char high )
{
char c;



Variable Data Types
Arrays

196   Learn C under Windows 95/NT

We’ll use low and high to print a label for the current line, showing 
the range of ASCII characters to follow. Notice that we use %d to 
print the integer version of these chars; %d can handle any integer 
types no bigger than an int:

printf( “%d to %d ---> “, low, high );

Next, a for loop is used to step through each of the ASCII charac-
ters, from low to high, using printf() to print each of the charac-
ters consecutively on the same line. The printf() bears closer 
inspection. Notice the use of %c (instead of our usual %d) to tell 
printf() to print a single ASCII character:

for ( c = low; c <= high; c++ )
printf( “%c”, c );

Once the line is printed, a single new line is printed, moving the cur-
sor to the beginning of the next line in the console window. Thus 
ends PrintChars():

printf( “\n” );
}

The char data type is extremely useful to C programmers. The next 
two topics—arrays and text strings—will show you why. As you 
read through these two topics, keep the concept of ASCII characters 
in the back of your mind. As you reach the end of the section on text 
strings, you’ll see an important relationship develop among the 
three topics.

Arrays
An array turns a single variable into a list of variables; for example:

int myNumber [ 3 ];



Variable Data Types
Arrays

Learn C under Windows 95/NT  197

This declaration creates three separate int variables, referred to in 
your program as myNumber[ 0 ], myNumber[ 1 ], and 
myNumber[ 2 ]. Each of these variables is known as an array ele-
ment. The number enclosed in brackets ([ ]) is called an index. 

char myChar[ 20 ];

In this declaration, the name of the array is myChar. This declaration 
will create an array of type char with a dimension of 20. The di-
mension of an array is the array’s number of elements. The array el-
ements will have indices that run from 0 to 19. 

Important In C, array indices always run from 0 to one less than the array’s 
dimension.

This slice of code first declares an array of 100 ints, then assigns 
each int a value of 0:

int myNumber[ 100 ], i;

for ( i=0; i<100; i++ )
myNumber[ i ] = 0;

You could have accomplished the same thing by declaring 100 indi-
vidual ints, then initializing each individual int. Here’s what that 
code might look like:

int myNumber0, myNumber1, ......., myNumber99;

myNumber0 = 0;
myNumber1 = 0;
      .
      .
      .



Variable Data Types
Arrays

198   Learn C under Windows 95/NT

myNumber99 = 0;

It would take 100 lines of code just to initialize these variables! By 
using an array, we’ve accomplished the same thing in just a few 
lines of code. Look at this code fragment:

sum = 0;
for ( i=0; i<100; i++ )
sum += myNumber[ i ];

printf( “The sum of the 100 numbers is %d.”, sum );

This code adds the value of all 100 elements of the array myNumber.

Important In this example, the for loop is used to step through an array, 
performing some operation on each of the array’s elements. You’ll 
use this technique frequently in your own C programs.

Why Use Arrays?
Programmers would be lost without arrays. Arrays allow you to 
keep lists of things. For example, if you need to maintain a list of 50 
employee numbers, declare an array of 50 ints. You can declare an 
array using any C type. For example, the following code declares an 
array of 50 floating-point numbers: 

float salaries[ 50 ];

This might be useful for maintaining a list of employee salaries.

Use an array when you want to maintain a list of related data. 
Here’s an example.



Variable Data Types
Arrays

Learn C under Windows 95/NT  199

dice.cwp

Look in the Learn C Projects  directory, inside the 08.05 - 
dice subdirectory, and open the project dice.cwp. This program 
simulates the rolling of a pair of dice. After each roll, the program 
adds the two dice, keeping track of the total. It rolls the dice 1000 
times, then reports on the results. Give it a try!

Run dice by selecting Run from the Project menu. A console win-
dow should appear, similar to the one in Figure 8.4. Take a look at 
the output—it’s pretty interesting. The first column lists all the pos-
sible totals of two dice. Since the lowest-possible roll of a pair of six-
sided dice is 1 and 1, the first entry in the column is 2. The column 
counts all the way up to 12, the highest-possible roll (achieved by a 
roll of 6 and 6).

Figure 8.4 dice in action. Your mileage may vary!

The number in parentheses is the total number of rolls (out of 1000 
rolls) that matched that row’s number. For example, the first row de-
scribes the dice rolls that total 2. In this run, the total is 28. Finally, 
the program prints an x for every 10 of these rolls. For the total 28, 
for example, the program prints two x’s at the end of the 2s row. 
Since 160 7s were rolled, 16 x’s were printed at the end of the 7s row.



Variable Data Types
Arrays

200   Learn C under Windows 95/NT

By the Way Recognize the curve depicted by the x’s in Figure 8.4? The curve 
represents a “normal” probability distribution, also known as a bell 
curve. According to the curve, you are about six times more likely 
to roll a 7 as you are to roll a 12. Want to know why? Check out a 
book on probability and statistics.

Let’s take a look at the source code that makes this possible.

Stepping Through the Source Code

The source code starts off with three #includes: <stdlib.h> 
gives us access to the routines rand() and srand(), <time.h> 
gives us access to clock(), and <stdio.h> gives us access to 
printf().

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

Following are the function prototypes for RollOne(), 
PrintRolls(), and PrintX(). You’ll see how these routines work 
as we step through the code.

/***********************/
/* Function Prototypes */
/***********************/
int RollOne( void );
void PrintRolls( introlls[] );
void PrintX( inthowMany );

main() declares an array of 13 ints named rolls, which will keep 
track of the 11 possible types of dice rolls. For example, rolls[2] 
will keep track of the total number of 2s, rolls[3] will keep track 
of the total number of 3s, and so on, up until rolls[12], which will 
keep track of the total number of 12s rolled. Since there is no way to 



Variable Data Types
Arrays

Learn C under Windows 95/NT  201

roll a 0 or a 1 with a pair of dice, rolls[0] and rolls[1] will go 
unused. 

int main( void )
{
int rolls[ 13 ], twoDice, i;

By the Way We could have rewritten the program using an array of 11 ints, 
thereby saving 2 ints worth of memory. If we did that, rolls[0] 
would track the number of 2s rolled, rolls[1] would track the 
number of 3s rolled, and so on. This would have made the pro-
gram a little more difficult to read, since rolls[i] would be refer-
ring to the number of (i+2)’s rolled.

In general, it is OK to sacrifice memory to make your program eas-
ier to read, as long as program performance isn’t compromised.

The function srand(), part of the Standard Library, initializes a 
random-number generator, using a seed provided by another Stan-
dard Library function, clock(). Once the random-number genera-
tor is initialized, another function, rand(), will return an int with 
a random value.

srand( clock() );

Why random numbers? Sometimes, you want to add an element of 
unpredictability to your program. For example, in our program, we 
want to roll a pair of dice again and again. The program would be 
pretty boring if it rolled the same numbers over and over. By using a 
random-number generator, we can generate a random number be-
tween 1 and 6, thus simulating the roll of a single die!

The next step is for main() to initialize each of the elements of the 
array rolls to 0: 

for ( i=0; i<=12; i++ )
rolls[ i ] = 0;



Variable Data Types
Arrays

202   Learn C under Windows 95/NT

This is appropriate, since no rolls of any kind have taken place yet. 

The next for loop rolls the dice 1000 times. As you’ll see, the func-
tion RollOne() returns a random number between 1 and 6, simu-
lating the roll of a single die. By calling it twice and storing the sum 
of the two rolls in the variable twoDice, we’ve simulated the roll of 
two dice:

for ( i=1; i <= 1000; i++ )
{
twoDice = RollOne() + RollOne();

The next line is pretty tricky, so hang on. At this point, the variable 
twoDice holds a value between 2 and 12, the total of two individual 
dice rolls. We’ll use that value to specify which int to increment. If 
twoDice is 12 (if we rolled a pair of 6s), we’ll increment 
rolls[12]. Get it? If not, go back and read through this again. If 
you still feel stymied (and it’s OK if you do), find a C buddy to help 
you through this. It is important that you get this concept. Be pa-
tient.

++ rolls[ twoDice ];
}

Once we’re finished with our 1000 rolls, we’ll pass rolls as a pa-
rameter to PrintRolls():

PrintRolls( rolls );

return 0;
}

Notice that we used the array name without the brackets (rolls in-
stead of rolls[]). The name of an array is a pointer to the first ele-
ment of the array. If you have access to this pointer, you have access 



Variable Data Types
Arrays

Learn C under Windows 95/NT  203

to the entire array. You’ll see how this works when we look at 
PrintRolls().

Important Just remember that passing the name of an array as a parameter 
is exactly the same as passing a pointer to the first element of the 
array. To prove this, edit dice.c and change 
PrintRolls( rolls );  to:

PrintRolls( &( rolls[0] ) );

The two lines of code are equivalent! The second form passes the 
address of the first array element. If you think back to Chapter 7, 
we used the & operator to pass a parameter by reference instead 
of by value. By passing the address of the first array element, you 
give PrintRolls() the ability to both access and modify all of the 
array elements. This is an important concept!

RollOne() first calls rand() to generate a random number rang-
ing from 0 to 32,767 (in fact, the upper bound is defined by the con-
stant RAND_MAX, which is guaranteed to be at least 32,767). Next, the 
% operator is used to return the remainder when the random num-
ber is divided by 6. This yields a random number ranging from 0 to 
5. Finally, 1 is added to this number, converting it to a number be-
tween 1 and 6, and that number is returned:

int RollOne( void )
{
return (rand() % 6) + 1;

}

PrintRolls() starts off by declaring a single parameter, an array 
pointer named rolls. Notice that rolls was declared using square 
brackets, telling the compiler that rolls is a pointer to the first ele-
ment of an array (in this case, to an array of ints).

void PrintRolls( int rolls[] )



Variable Data Types
Arrays

204   Learn C under Windows 95/NT

{
int i;

By the Way PrintRolls() could also have declared its parameter using this 
notation:

void PrintRolls( int *rolls )

Instead, it used this notation:

void PrintRolls( int rolls[] )

Both of these notations describe a pointer to an int, and both can 
be used to access the elements of an array. You’ll learn more 
about the close relationship between pointers and arrays as you 
make your way through the rest of the book.

For now, remember this convention. If you are declaring a parame-
ter that will point to an array, use the square-bracket form. Other-
wise, use the normal pointer form.

Let’s get back to our program. We had just started looking at 
PrintRolls(). The for loop steps through the rolls array, one 
int at a time, starting with rolls[2] and making its way to 
rolls[12]. For each element, PrintRolls() first prints the roll 
number and then, in parentheses, the number of times (out of 1000) 
that roll occurred. Next, PrintX() is called to print a single x for 
every 10 rolls that occurred. Finally, a carriage return is printed, pre-
paring the console window for the next roll.

for ( i=2; i<=12; i++ )
{
printf( “%2d (%3d):  “, i, rolls[ i ] );
PrintX( rolls[ i ] / 10 );
printf( “\n” );

}
}



Variable Data Types
Arrays

Learn C under Windows 95/NT  205

PrintX is pretty straightforward. It uses a for loop to print the 
number of x’s specified by the parameter howMany:

void PrintX( int howMany )
{
int i;

for ( i=1; i<=howMany; i++ )
printf( “x” );

}

Danger, Will Robinson!!!
Before we move on, there is one danger worth discussing at this 
point. See if you can spot the potential hazard in this piece of code:

int myInts[ 3 ];

for ( i=0; i<20; i++ )
myInts[ i ] = 0;

Yikes! The array myInts consists of exactly three array elements, yet 
the for loop tries to initialize 20 elements. This is called exceeding 
the bounds of your array. Because C is such an informal language, it 
will let you “get away” with this kind of source code. In other 
words, CodeWarrior will compile this code without complaint. Your 
problems will start as soon as the program tries to initialize the 
fourth array element, which was never allocated.

What will happen? The safest thing to say is that the results will be 
unpredictable. The problem is, the program is trying to assign a 
value of 0 to a block of memory that it doesn’t necessarily own. 
Anything could happen. The program would most likely crash, 
which means that it stops behaving in a rational manner. I’ve seen 
some cases where the computer actually leaps off the desk, hops 
across the floor, and jumps face first into the trash can.



Variable Data Types
Text Strings

206   Learn C under Windows 95/NT

Well, OK, not really. But odd things will happen if you don’t keep 
your array references in bounds.

Warning As you code, be aware of the limitations of your variables. For ex-
ample, a char is limited to values from –128 to 127. Don’t try to 
assign a value such as 536 to a char. Don’t reference 
myArray[27] if you declared myArray with only 10 elements. Be 
careful!

Text Strings
The first C program in this book made use of a text string:

printf( “Hello, world!” );

This section will teach you how to use such text strings in your own 
programs. It will teach you how these strings are stored in memory 
and how to create your own strings from scratch.

A Text String in Memory
The text string “Hello, world!” exists in memory as a sequence 
of 14 bytes (Figure 8.5). The first 13 bytes consist of the 13 ASCII 
characters in the text string. Note that the seventh byte contains a 
space (on an ASCII-centric computer, that translates to a value of 
32).

The final byte (byte 14) has a value of 0, not to be confused with the 
ASCII character ‘0’. The 0 is what makes this string a C string. 
Every C string ends with a byte having a value of 0. The 0 identifies 
the end of the string.

Figure 8.5 The “Hello, World!" text string.

H
1

e
2

l
3

l
4

o
5

,
6 7

w
8

o
9

r
10

l
11

d
12

!
13

0
14

s      p   a   c      e



Variable Data Types
Text Strings

Learn C under Windows 95/NT  207

When you use a quoted string like “Hello, world!” in your code, 
the compiler creates the string for you. This type of string is called a 
string constant. When you use a string constant in your code, the 
detail work is done for you automatically. In the following example, 
the 14 bytes needed to represent the string in memory are allocated 
automatically:

printf( “Hello, world!” );

The 0 is placed in the fourteenth byte, automatically. You don’t have 
to worry about these details when you use a string constant.

String constants are great, but they are not always appropriate. For 
example, suppose that you want to read in somebody’s name, then 
pass the name on to printf() to display in the console window. 
Since you won’t be able to predict the name that will be typed in, 
you can’t predefine the name as a string constant. Here’s an exam-
ple.

name.cwp

Look in the Learn C Projects  directory, inside the 08.06 - 
name subdirectory, and open the project name.cwp. The program 
will ask you to type your first name on the keyboard. Once you’ve 
typed your first name, the program will use your name to create a 
custom welcome message. Then, name will tell you how many char-
acters long your name is. How useful!

To run name, select Run from the Project menu. A console window 
will appear, prompting you for your first name, like this:

Type your first name, please:

Type your first name, then enter a carriage return. When I did, I saw 
the output shown in Figure 8.6. Let’s take a look at the source code 
that generated this output.



Variable Data Types
Text Strings

208   Learn C under Windows 95/NT

Figure 8.6 name prompts you to type in your name, then tells you how 
long your name is.

Stepping Through the Source Code

At the heart of name.c is a new Standard Library function called 
scanf(). This function uses the same format specifiers as 
printf() to read text in from the keyboard. This code will read in 
an int:

int myInt;

scanf( “%d”, &myInt );

The %d tells scanf() to read in an int. Notice the use of the & be-
fore the variable myInt. This passes the address of myInt to 
scanf(), allowing scanf() to change the value of myInt. To read 
in a float, use code like:

float myFloat;



Variable Data Types
Text Strings

Learn C under Windows 95/NT  209

scanf( “%f”, &myFloat );

The program name.c starts off with a pair of #includes: 
<string.h> gives us access to the Standard Library function 
strlen(), and <stdio.h>, well, you know what we get from 
<stdio.h>—printf(), right? Right.

#include <string.h>
#include <stdio.h>

To read in a text string, you have to first declare a variable to place 
the text characters in. The program uses an array of characters for 
this purpose:

int main( void )
{
char name[ 50 ];

The array name is big enough to hold a 49-byte text string. When 
you allocate space for a text string, remember to save 1 byte for the 0 
that terminates the string.

The program starts by printing a prompt. A prompt is a text string 
that lets the user know that the program is waiting for input, as in 
the following:

printf( “Type your first name, please: “ );

Before we get to the scanf() call, it helps to understand how the 
computer handles input from the keyboard. When the computer 
starts running your program, it automatically creates a big array of 
chars for the sole purpose of storing keyboard input to your pro-
gram. This array is known as your program’s input buffer. Every 
time you enter a carriage return, all the characters typed since the 
previous carriage return are appended to the current input buffer.

When your program starts, the input buffer is empty. If you type 
123 abcd  from your keyboard, followed by a carriage return, the



Variable Data Types
Text Strings

210   Learn C under Windows 95/NT

Figure 8.7 A snapshot of the input buffer.

input buffer will look like Figure 8.7. The computer keeps track of 
the current end of the input buffer. The space character between the 
‘123’ and the ‘abcd’ has an ASCII value of 32. Notice that the car-
riage return was placed in the input buffer.

Given the input buffer shown in Figure 8.7, suppose that your pro-
gram called scanf(), like this:

scanf( “%d”, &myInt );

Starting at the beginning of the input buffer, scanf() reads a 
character at a time until it reaches one of the nonprintables, such as 
a carriage return, tab, space, or 0, until it reaches the end of the 
buffer or a character that conflicts with the format specifier (if %d 
was used and the letter ‘a’ was encountered, for example).

After the scanf(), the input buffer looks like Figure 8.8. Notice that 
the characters passed on to scanf() were removed from the input 
buffer and that the rest of the characters slid over to the beginning of 
the buffer. In fact, scanf() took the characters ‘1’, ‘2’, and ‘3’ 
and converted them to the integer 123, placing 123 in the variable 
myInt.
 

1 2 3 a b d
s      p   a   c      e

c
r         e       t     u     r        n

End of
Input Buffer



Variable Data Types
Text Strings

Learn C under Windows 95/NT  211

 

Figure 8.8 A second snapshot of the input buffer.

If you then typed the line:

3.5 Dave

followed by a carriage return, the input buffer would look like Fig-
ure 8.9. At this point, the input buffer contains two carriage returns. 
To the input buffer, a carriage return is just like any other character. 
To a function like scanf(), the carriage return is white space.

By the Way If you forgot what white space is, now would be a good time to turn 
back to Chapter 5, where white space was first described.

Figure 8.9 A third snapshot of the input buffer.

a b dc
r         e       t     u     r        n

End of
Input Buffer

a b dc
r         e       t     u     r        n

End of
Input Buffer

3 . 5 D a
r         e       t     u     r        nv e

s      p   a   c      e



Variable Data Types
Text Strings

212   Learn C under Windows 95/NT

Before we started our discussion on the input buffer, main() had 
just called printf() to prompt for the user’s first name:

printf( “Type your first name, please: “ );

Next, we called scanf() to read the first name from the input 
buffer:

scanf( “%s”, name );

Since the program just started, the input buffer is empty; scanf() 
will wait until characters appear in the input buffer, which will hap-
pen as soon as you type some characters and enter a carriage return. 
Type your first name and enter a carriage return.

By the Way Note that scanf() will ignore white-space characters in the input 
buffer. For example, if you type a few spaces and tabs and then 
enter a carriage return, scanf() will still sit there, waiting for 
some real input. Try it!

Once you type in your name, scanf() will copy the characters, a 
byte at a time, into the array of chars pointed to by name. Remem-
ber, because name was declared as an array, name points to the first 
of the 50 bytes allocated for the array.

If you type in the name Dave, scanf() will place the four charac-
ters ‘D’, ‘a’, ‘v’, and ‘e’ into the first four of the 50 bytes allo-
cated for the array. Next, scanf() will set the fifth byte to a value of 
0 to terminate the string properly (Figure 8.10). Since the string is 
properly terminated by the 0 in name[4], we don’t really care about 
the value of the bytes name[5] through name[49].

Next, we pass name on to printf(), asking it to print the name as part 
of a welcoming message. The %s tells printf() that name points to 
the first byte of a zero-terminated string. Stepping through memory, 
one byte at a time, printf() starts with the byte that name points to 
and prints each byte in turn until it reaches a byte with a value of 0, 
marking the end of the string.



Variable Data Types
Text Strings

Learn C under Windows 95/NT  213

Figure 8.10 The array name after the string “Dave" is copied to it. Notice 
that name[4] has a value of 0.

printf( “Welcome, %s.\n”, name );

Warning If name[4] didn’t contain a 0, the string wouldn’t be properly termi-
nated. Passing a nonterminated string to printf() is a sure way 
to confuse printf(), which will step through memory one byte at 
a time, printing a byte and looking for a 0. It will keep printing bytes 
until it happens to encounter a byte set to 0. Remember, C strings 
must be terminated!

The next line of the program calls another Standard Library func-
tion, called strlen(), which takes a pointer as a parameter and re-
turns the length, in bytes, of the string pointed to by the parameter. 
This function depends on the string being terminated with a 0. Just 
like sizeof(), strlen() returns a value of type size_t. We’ll use 
a typecast to convert the value to an int, then print it using %d. 
Again, we’ll cover typecasting later in the book.

printf( “Your name is %d characters long.”, 
(int)strlen( name ) );

return 0;
}

D a ev

name
points here

0
10 2 3 4 5 48 49



Variable Data Types
#define

214   Learn C under Windows 95/NT

Our last program for this chapter demonstrates a few more charac-
ter-handling techniques, a new Standard Library function, and an 
invaluable programmer’s tool, the #define.

#define
The #define (pronounced pound-define) tells the compiler to sub-
stitute one piece of text for another throughout your source code. 
The following  statement, for example, tells the compiler to substi-
tute 6 every time it finds the text kMaxPlayers in the source code. 

#define kMaxPlayers 6

The text kMaxPlayers is known as a macro.  As the C compiler 
goes through your code, it enters each #define into a list, known as 
a dictionary, performing all the #define substitutions as it goes.

Important It’s important to note that the compiler never modifies your source 
code. The dictionary it creates as it goes through your code is sep-
arate from your source code, and the substitutions it performs are 
made as the source code is translated into machine code.

Here’s an example of a #define in action:

#define kMaxArraySize 100

int main( void )
{
char myArray[ kMaxArraySize ];
int i;

for ( i=0; i<kMaxArraySize; i++ )
myArray[ i ] = 0;

return 0;



Variable Data Types
#define

Learn C under Windows 95/NT  215

}

The #define at the beginning of this example substitutes 100 for 
kMaxArraySize  everywhere it finds it in the source code file. In 
this example, the substitution will be done twice. Although your 
source code is not modified, here’s the effect of this #define:

int main( void )
{
char myArray[ 100 ];
int i;

for ( i=0; i<100; i++ )
myArray[ i ] = 0;

return 0;
}

Warning Note that a #define must appear in the source code file before it 
is used. In other words, this code won’t compile:

int main( void )
{

char myArray[ kMaxArraySize ];
int i;

#define kMaxArraySize 100

for ( i=0; i<kMaxArraySize; i++ )
myArray[ i ] = 0;

return 0;
}

Having a #define in the middle of your code is just fine. The prob-



Variable Data Types
#define

216   Learn C under Windows 95/NT

lem here is that the declaration of myArray uses a #define that 
hasn’t occurred yet!

If you use #defines effectively, you’ll build more flexible code. In 
the previous example, you can change the size of the array by modi-
fying a single line of code, the #define. If your program is de-
signed correctly, you should be able to change the line to:

#define kMaxArraySize 200

You can then recompile your code, and your program should still 
work properly. A good sign that you are using #defines properly 
is an absence of constants in your code. In the example, the constant 
100 was replaced by kMaxArraySize. You can also use the Pre-
process command from the Project menu to get a preview of the re-
sult of all your #define substitutions.

By the Way Windows programmers, like Unix programmers, tend to name their 
#define constants using all uppercase letters, sprinkled with un-
derscores (_) to act as word dividers (as in MAX_ARRAY_SIZE).

As you’ll see in our next program, you can put practically anything, 
even source code, into a #define. Take a look:

#define kPrintReturn printf( “\n” );

Although not particularly recommended, this #define will work 
just fine:

printf( “\n” );

It will substitute that statement for every occurrence of the text 
kPrintReturn  in your source code. You can also base one 
#define on a previous #define:



Variable Data Types
#define

Learn C under Windows 95/NT  217

#define kSideLength 5
#define kArea kSideLength * kSideLength

By the Way Interestingly, you could have reversed the order of these two 
#defines, and your code would still have compiled. As long as 
both entries are in the dictionary, their order of occurrence in the 
dictionary is not important.

What is important is that #define appear in the source code be-
fore any source code that refers to it. If this seems confusing, don’t 
sweat it. It won’t be on the test.

FunctionLike #define Macros
You can create a #define macro that takes one or more arguments. 
Here’s an example:

#define kSquare( a )((a) * (a))

This macro takes a single argument. The argument can be any C ex-
pression; for example: 

myInt = kSquare( myInt + 1 );

If you called the macro like that, the compiler would use its first 
pass to turn the line into this:

myInt = (( myInt + 1 ) * ( myInt + 1 ));

Notice the usefulness of the parentheses in the macro. Suppose, 
however, the macro were defined like this:

#define kSquare( a )a * a



Variable Data Types
#define

218   Learn C under Windows 95/NT

The compiler would have produced:

myInt = myInt + 1 * myInt + 1;

But that is not what we wanted. The only multiplication that gets 
performed by this statement is 1 * myInt, because the * operator 
has a higher precedence than the + operator.

Be sure that you pay strict attention to your use of white space in 
your #define macros. For example, there’s a world of difference 
between these two macros:

#define kSquare( a )((a) * (a))
#define kSquare ( a )((a) * (a))

(Note the space between kSquare and ( a ).) The second form of 
the macro creates a #define constant named kSquare, which is de-
fined as:

( a )((a) * (a)) 

This won’t even compile (see the error message in Figure 8.11), be-
cause the compiler doesn’t know what a is.

Here’s another interesting macro side effect. Suppose that you 
wanted to call this macro:

#define kSquare( a )((a) * (a))

But instead, you called it like this:

mySquare = kSquare( myInt++ );



Variable Data Types
A Sample Program: wordCount

Learn C under Windows 95/NT  219

Figure 8.11 An error generated by adding one space to a macro.

The preprocessor pass expands this macro call to:

mySquare = ((myInt++) * (myInt++));

Do you see the problems here? First, myInt will get incremented 
twice by this macro call (probably not what was intended). Second, 
the first myInt++ will get executed before the multiply happens, 
yielding a final result of myInt*(myInt+1), definitely not what 
you wanted! The point here: Be careful when you pass an expres-
sion as a parameter to a macro.

A Sample Program: wordCount
Look in the Learn C Projects  directory, inside the 08.07 - 
wordCount subdirectory, and open the project wordCount.cwp. 
This program will ask you to type in a line of text and will count the 
number of words in the text you type.

To run wordCount, select Run from the Project menu. The program 
will then prompt you to type in a line of text:

Type a line of text, please:



Variable Data Types
A Sample Program: wordCount

220   Learn C under Windows 95/NT

Type in a line of text, at least a few words long. End your line by en-
tering a carriage return. When you do, wordCount will report its re-
sults. The program will ignore any white space, so feel free to 
sprinkle your input with tabs, spaces, and the like. My output is 
shown in Figure 8.12. Let’s take a look at the source code that gener-
ated this output.

Figure 8.12 wordCount, doing its job.

Stepping Through the Source Code
The program begins with the usual #include and then adds a new 
one—<ctype.h>—which includes the prototype of the function 
isspace(). This function takes a char as input and returns true if 
the char is a tab (‘\t’), hard carriage return (a return without a 
line feed: ‘\r’), newline (a return with a line feed: ‘\n’), vertical 
tab (‘\v’), form feed (‘\f’), or space (‘ ‘). Otherwise, it returns 
false.

#include <stdio.h>



Variable Data Types
A Sample Program: wordCount

Learn C under Windows 95/NT  221

#include <ctype.h>

By the Way Older C environments may include a variant of isspace() called 
iswhite().

Next, we define some constants: true, false, 
kMaxLineLength, kZeroByte.  kMaxLineLength  specifies the 
largest line this program can handle (200 bytes should be plenty).   
kZeroByte has a value of 0 and is used to mark the end of the line 
of input. More of this in a bit.

#define true 1
#define false 0
#define kMaxLineLength 200
#define kZeroByte 0

Here are the function prototypes for the two functions ReadLine() 
and CountWords(). ReadLine() reads in a line of text, and 
CountWords() takes a line of text and returns the number of words 
in the line:

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine( char *line );
int CountWords( char *line );

The main() function starts by defining an array of chars that will 
hold the line of input we type and an int that will hold the result of 
our call to CountWords():

/****************************************> main <*/
int main( void )
{
char line[ kMaxLineLength ];
int numWords;



Variable Data Types
A Sample Program: wordCount

222   Learn C under Windows 95/NT

By the Way Notice that we’ve added a comment line that appears immediately 
before each of the wordCount functions. As your programs get 
larger and larger, a comment like this makes it easier to spot the 
beginning of a function and makes your code a little easier to read.

Once we type the prompt, we’ll pass line to ReadLine(). Remem-
ber that line is a pointer to the first byte of the array of chars. 
When ReadLine() returns, line contains a line of text, terminated 
by a zero byte, making line a legitimate, 0-terminated C string. 
We’ll pass that string on to CountWords():

printf( “Type a line of text, please:\n” );

ReadLine( line );
numWords = CountWords( line );

We then print a message telling us how many words we just 
counted:

printf( “\n---- This line has %d word”, 
numWords );

if ( numWords != 1 )
printf( “s” );

printf( “ ----\n%s\n”, line );

return 0;
}

This last bit of code shows attention to detail, something very im-
portant in a good program. Notice that the first printf() ended 
with the characters “word”. If the program found either no words 
or more than one word, we want to say either of the following:



Variable Data Types
A Sample Program: wordCount

Learn C under Windows 95/NT  223

This line has 0 words.
This line has 2 words.

If the program found exactly one word, the sentence should read:

This line has 1 word.

The last if statement makes sure that the “s” gets added if needed.

In main(), we defined an array of chars to hold the line of charac-
ters we type in. When main() called ReadLine(), it passed the 
name of the array as a parameter to ReadLine():

char line[ kMaxLineLength ];
ReadLine( line );

As we said earlier, the name of an array also acts as a pointer to the 
first element of the array. In this case, line is equivalent to 
&(line[0]). ReadLine() now has a pointer to the first byte of the 
line array in main().

/************************************> ReadLine <*/
void ReadLine( char *line )
{

This while loop calls getchar() to read one character at a time 
from the input buffer; getchar() returns the next character in the 
input buffer. Or, if there’s an error, it returns the constant EOF. You’ll 
learn more about EOF in Chapter 10.

By the Way As was the case with scanf(), when a character is read from the 
input buffer, the character is removed, and the rest of the charac-



Variable Data Types
A Sample Program: wordCount

224   Learn C under Windows 95/NT

ters in the buffer move over to take the place of the removed char-
acter.

The first time through the loop, line points to the first byte of the 
line array in main(). At this point, the expression *line is equiv-
alent to the expression line[0]. The first time through the loop, 
we’re getting the first character from the input buffer and copying it 
into line[0].

The while loop continues as long as the character we just read in is 
not ‘\n’ (as long as we have not yet retrieved the return character 
from the input buffer):

while ( (*line = getchar()) != ‘\n’ )
line++;

Each time through the loop, we’ll increment the local copy of the 
pointer line in ReadLine() to point to the next byte in the line 
array of main(). The next time through the loop, we’ll read a char-
acter into the second byte of the array, then the third byte, and so on, 
until read in a ‘\n’ and drop out of the loop.

Important This technique is known as pointer arithmetic. When you incre-
ment a pointer that points into an array, the value of the pointer is 
incremented just enough to point to the next element of the array. 
For example, if line were an array of 4-byte floats instead of 
chars, the following line of code would increment line by 4 in-
stead of by 1:

line++;

In both cases, line would start off pointing to line[0]; then, 
after the statement line++, line would point to line[1].

Take a look at this code:

char charPtr;



Variable Data Types
A Sample Program: wordCount

Learn C under Windows 95/NT  225

float floatPtr;
double doublePtr;

charPtr++;
floatPtr++;
doublePtr++;

In the last three statements, charPtr gets incremented by 1 byte, 
floatPtr gets incremented by 4 bytes, and doublePtr gets in-
cremented by 8 bytes (assuming 1-byte chars, 4-byte floats, 
and 8-byte doubles).

This is an extremely important concept to understand. If this 
seems fuzzy to you, go back and reread this section, then write 
some code to make sure that you truly understand how pointers 
work, especially as they relate to arrays.

Once we drop out of the loop, we’ll place a 0 in the next position of 
the array. This turns the line into a 0-terminated string we can print 
using printf():

*line = kZeroByte;
}

CountWords() also takes a pointer to the first byte of the 
main()function’s line array as a parameter. CountWords() will 
step through the array, looking for nonwhite space characters. When 
one is encountered, CountWords() sets inWord to true and incre-
ments numWords, then keeps stepping through the array looking for 
a white-space character, which marks the end of the current word. 
Once the white space is found, inWord is set to false:

/**********************************> CountWords <*/
int CountWords( char *line )
{
int numWords, inWord;



Variable Data Types
What’s Next?

226   Learn C under Windows 95/NT

numWords = 0;
inWord = false;

This process continues until the zero byte marking the end of the 
line is encountered:

while ( *line != kZeroByte )
{
if ( ! isspace( *line ) )
{
if ( ! inWord )
{
numWords++;
inWord = true;

}
}
else
inWord = false;

line++;
}

Once we drop out of the loop, we’ll return the number of words in 
the line:

return numWords;
}

What’s Next?
Congratulations! You’ve made it through one of the longest chapters 
in the book. You’ve mastered several new data types, including 
floats and chars. You’ve learned how to use arrays, especially in 
conjunction with chars. You’ve also learned about C’s text-substitu-
tion mechanism, the #define.



Variable Data Types
Exercises

Learn C under Windows 95/NT  227

Chapter 9 will teach you how to combine C’s data types to create 
your own customized data types, called structs. So go grab some 
lunch, lean back, prop up your legs, and turn the page.

Exercises
1. What’s wrong with each of the following code fragments:

a. char c;

int i;

i=0;

for ( c=0; c<=255; c++ )

i += c;

b. float myFloat;

myFloat = 5.125;

printf( “The value of myFloat is %d.\n”, f );

c. char c;

c = “a”;

printf( “c holds the character %c.”, c );

d. char c[ 5 ];

c = “Hello, world!”;

e. char c[ kMaxArraySize ]

#define kMaxArraySize 20

int i;



Variable Data Types
Exercises

228   Learn C under Windows 95/NT

for ( i=0; i<kMaxArraySize; i++ )

c[ i ] = 0;

f. #define kMaxArraySize 200

char c[ kMaxArraySize ];

c[ kMaxArraySize ] = 0;

g. #define kMaxArraySize 200

char c[ kMaxArraySize ], *cPtr;

int i;

cPtr = c;

for ( i=0; i<kMaxArraySize; i++ )

cPtr++ = 0;

h. #define kMaxArraySize 200

char c[ kMaxArraySize ];

int i;

for ( i=0; i<kMaxArraySize; i++ )

{

*c = 0;

c++;

}

i. #define kMaxArraySize 200;

2. Rewrite dice.c, showing the possible rolls using three dice 
instead of two.



Variable Data Types
Exercises

Learn C under Windows 95/NT  229

3. Rewrite wordCount.cwp, printing each of the words, one 
per line.



Variable Data Types
Exercises

230   Learn C under Windows 95/NT



Learn C under Windows 95/NT  231

9
Designing Your Own 
Data Structures
In Chapter 8, we introduced several new data types, such as float, 
char, and short. We discussed the range of each type and intro-
duced the format specification characters necessary to print each 
type using printf(). Next, we introduced the concept of arrays, 
focusing on the relationship between char arrays and text strings. 
Along the way, we discovered the #define, C’s mechanism for text 
substitution.

This chapter will show you how to use existing C types as building 
blocks to design your own customized data structures. Sometimes, 
your programs will want to bundle certain data together. For exam-
ple, suppose that you were writing a program to organize your 
compact disc collection. Imagine the type of information you’d like 
to access for each CD. At the least, you’d want to keep track of the 
artist’s name and the name of the CD. You might also want to rate 
each CD’s listenability on a scale of 1 to 10. 

In the next few sections, we’ll look at two approaches to a basic CD 
tracking program. Each approach will center on a different set of 
data structures. One approach (Model A) will use arrays, and the 
other (Model B) will use a set of custom-designed data structures.

Using Arrays (Model A)
One way to model your CD collection is to use a separate array for 
each CD’s attributes:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50



Designing Your Own Data Structures
Using Arrays (Model A)

232   Learn C under Windows 95/NT

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];
char title[ kMaxCDs ][ kMaxTitleLength + 1 ];

This code fragment uses three #defines: kMaxCDs defines the 
maximum number of CDs this program will track, 
kMaxArtistLength  defines the maximum length of a CD artist’s 
name, and kMaxTitleLength  defines the maximum length of a 
CD’s title.

The array rating consists of 300 chars, one char for each CD. 
Each char in this array will hold a number from 1 to 10, the rating 
we’ve assigned to a particular CD. For example, this line of code as-
signs a value of 8 to CD 37:

rating[ 37 ] = 8; /* A pretty good CD */

The arrays artist and title are known as multidimensional ar-
rays. A normal array, such as rating, is declared using a single di-
mension: 

float myArray[ 5 ];

This statement declares a normal, or one-dimensional, array con-
taining five floats:

myArray[ 0 ]
myArray[ 1 ]
myArray[ 2 ]
myArray[ 3 ]
myArray[ 4 ]

The following statement, however, differs from a normal array:

float myArray[ 3 ][ 5 ];



Designing Your Own Data Structures
Using Arrays (Model A)

Learn C under Windows 95/NT  233

This statement declares a two-dimensional array, containing 3*5 = 
15 floats:

myArray[0][0]
myArray[0][1]
myArray[0][2]
myArray[0][3]
myArray[0][4]
myArray[1][0]
myArray[1][1]
myArray[1][2]
myArray[1][3]
myArray[1][4]
myArray[2][0]
myArray[2][1]
myArray[2][2]
myArray[2][3]
myArray[2][4]

Think of a two-dimensional array as an array of arrays. Thus, 
myArray[0] is an array of five floats, as are myArray[1] and 
myArray[2]. 

Here’s a three-dimensional array:

float myArray[ 3 ][ 5 ][ 10 ];

How many floats does this array contain? Tick, tick, tick. . . . Got 
it? The answer: 3*5*10 = 150. This version of myArray contains 150 
floats.

By the Way C allows you to create arrays of any dimension, although you’ll 
rarely have a need for more than a single dimension.



Designing Your Own Data Structures
Using Arrays (Model A)

234   Learn C under Windows 95/NT

So why would you ever want a multidimensional array? If you 
haven’t already guessed, the answer to this question is going to lead 
us back to our CD tracking example.

Here are the declarations for our three CD tracking arrays:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];
char title[ kMaxCDs ][ kMaxTitleLength + 1 ];

Once again, rating contains one char for each CD; artist, on the 
other hand, contains an array of chars for each CD. Each CD gets 
an array of chars whose length is kMaxArtistLength + 1. Each 
array is large enough to hold an artist’s name up to 50 bytes long, 
with one byte left over to hold the terminating zero byte. To restate 
this, the two-dimensional array artist is large enough to hold up 
to 300 artist names, each of which can be up to 50 characters long, 
not including the terminating byte.

A Sample Program: multiArray.cwp
The sample program multiArray brings this concept to life. The 
program defines the two-dimensional array artist (as described 
earlier), prompts you to type in a series of artists, stores their names 
in the two-dimensional artist array, then prints out the contents 
of artist.

Open the Learn C Projects  directory, go inside the subdirectory 
09.01 - multiArray, and open the project multiArray.cwp. 
Run multiArray by selecting Run from the Project menu. The pro-
gram will first tell you how many bytes of memory are allocated for 
the entire artist array:

The artist array takes up 15300 bytes of memory.



Designing Your Own Data Structures
Using Arrays (Model A)

Learn C under Windows 95/NT  235

As a reminder, here’s the declaration of artist:

#define kMaxCDs 300
#define kMaxArtistLength 50

char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];

By performing the #define substitution yourself, you can see that 
artist is defined as a 300-by-51 array; 300 times 51 is 15,300, 
matching the result reported by multiArray.

After multiArray reports the artist array size, it enters a loop, 
prompting you for your list of favorite musical artists:

Artist #1 (return to exit):

Enter an artist name, then enter a return. You’ll be prompted for a 
second artist name. Type in a few more names, then enter an extra 
return. The extra return tells multiArray that you are done enter-
ing names.

The program will step through the array, using printf() to list the 
artists you’ve entered. In case your entire music collection consists 
of a slightly warped vinyl copy of Leonard Nimoy singing some old 
Dylan classics, feel free to use my list, shown in Figure 9.1.

Let’s take a look at the source code.

Stepping Through the Source Code

The program starts off with a standard #include; <stdio.h> 
gives us access to both printf() and gets(). After reading a line 
of text from the input buffer, gets() converts it into a zero-termi-
nated string.

#include <stdio.h>



Designing Your Own Data Structures
Using Arrays (Model A)

236   Learn C under Windows 95/NT

Figure 9.1 multiArray in action.

You’ve seen these four #defines before:

#define true 1
#define false 0

#define kMaxCDs 300
#define kMaxArtistLength 50

Here’s the function prototype for PrintArtists(), the function 
we’ll use to print out the artist array. Notice anything unusual 
about the declaration of artist? More on that in a bit.

/***********************/
/* Function Prototypes */
/***********************/
void PrintArtists( short numArtists, 

char artist[][ kMaxArtistLength + 1 ] );



Designing Your Own Data Structures
Using Arrays (Model A)

Learn C under Windows 95/NT  237

First, main() defines artist, our two-dimensional array, which is 
large enough to hold 300 artists. The name of each artist can be up to 
50 bytes long, plus the zero terminating byte.

/****************************************> main <*/
int main( void )
{
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];

The number of artist names you’ve typed in is contained in 
numArtists. Notice that numArtists is a short. Since kMaxCDs 
is 300, even an unsigned char would not be large enough for 
numArtists. Since the maximum value of a signed short is 
32767 (an implementation-dependent value), a short will be plenty 
big enough.

short numArtists;

Beginning as false, doneReading will get set to true once we are 
ready to drop out of our artist-reading loop; result will hold the 
result returned by gets():

char doneReading, *result;

This printf() prints out the size of the artist array. Notice that 
we’ve used the %ld format specifier to print the result returned by 
sizeof; %ld indicates that the type you are printing is the size of a 
long, which is true for size_t, the type returned by sizeof. If you 
use %ld, you won’t need the (int) typecast we used in earlier pro-
grams.

printf( “The artist array takes up %ld bytes of 
memory.\n\n”, sizeof( artist ) );

doneReading = false;
numArtists = 0;



Designing Your Own Data Structures
Using Arrays (Model A)

238   Learn C under Windows 95/NT

Warning Note that size_t is not guaranteed to be an unsigned long, al-
though it usually is. The only guarantee is that size_t is the 
same size as that returned by the sizeof operator. In our case, 
size_t is defined as an unsigned long, so the %ld format 
specifier will work just fine.

Here’s the loop that reads in the artist names. We’ll drop out of the 
loop once doneReading  is set to true.

while ( ! doneReading )
{

Inside the loop, we’ll start off by printing a prompt that includes the 
artist number. We want the artist number to start at 1, but we don’t 
want to increment numArtists until we are sure that the user has 
entered an artist number, so we’ll just use numArtists+1 in this 
printf().

printf( “Artist #%d (return to exit): “, 
numArtists+1 );

Next, we’ll call gets(); gets() is pretty much the same as the 
ReadLine() function from the wordCount program in Chapter 8. 
This gets() reads characters from the input buffer until it encoun-
ters a ‘\n’, then converts the read characters into a zero-terminated 
string. gets() takes a single parameter, a char pointer that points 
to the first byte of the memory where the finished string will be 
written:

result = gets( artist[ numArtists ] );

Once it is done, gets() returns a pointer to the beginning of the 
string (essentially the same pointer you passed in as a parameter), 
allowing you to use the result of gets() as a parameter to another 
function, such as printf().



Designing Your Own Data Structures
Using Arrays (Model A)

Learn C under Windows 95/NT  239

Warning If an error occurs while reading from the input buffer, gets() re-
turns the constant NULL, C’s symbol for an invalid pointer. In all the 
time I’ve been writing C code, I’ve never seen this happen, but you 
never know.

Take a look at the parameter we passed to gets():

artist[ numArtists ]

What type is this parameter? Remember, artist is a two-dimen-
sional array, and a two-dimensional array is an array of arrays. 
Thus, artist is an array of an array of chars; artist[numAr-
tists] is an array of chars, and so is exactly suited as a parameter 
to gets().

Imagine an array of chars named blap:

char blap[ 100 ];

You’d have no problem passing blap as a parameter to gets(), 
right? In that case, gets() would read the characters from the input 
buffer and place them in blap. Our artist[0] is just like blap. 
Both are pointers to an array of chars. blap[0] is the first char of 
the array blap; likewise, artist[0][0] is the first char of the 
array artist[0].

OK, back to the code. If gets() fails (which it won’t) or if the first 
byte of the string we just read in is the zero terminator (more on this 
in a sec), we’ll set doneReading  to true so we drop out of the 
loop. If the read was successful and we got a string bigger than 0 
bytes long, we’ll increment numArtists and go back to the top of 
the loop.

if ( (result == NULL) ||
(result[0] == ‘\0’) )
doneReading = true;



Designing Your Own Data Structures
Using Arrays (Model A)

240   Learn C under Windows 95/NT

else
numArtists++;

}

Important There are two important questions, both relating to this expres-
sion:

(result[0] == ‘\0’)

What is ‘\0’, and why are we comparing it against the first byte of 
the string stored in result? Just like ‘\n’, ‘\0’ is a character 
constant, a shorthand for a char with specific meaning. Here, 
‘\0’ is the zero terminator C places at the end of its strings. In 
earlier programs, when we wanted to add a zero terminator at the 
end of a string, we used the constant 0; ‘\0’ is a character that 
has a value of 0 and works just as well.

Using ‘\0’ makes it pretty clear that you are talking about the 
zero terminator instead of just an arbitrary numerical value. Once 
again, choose a style that makes sense to you and be consistent.

To answer the second question, we compare ‘\0’ with the first 
byte of the string returned by gets() to see whether the string 
contains more than zero characters. A string that starts with the 
terminator is said to be a zero-length string. That’s what gets() 
returns if the first character it encounters is a carriage return 
(‘\n’). 

By the way, a zero-length string is represented in C as two consec-
utive double-quotes: ““.

Once we drop out of the loop, we print a dividing line, then call 
PrintArtists() to print the contents of our array of artist names. 
The second parameter, artist, is a pointer to the first element of 
the artist array, that is, &(artist[0]).



Designing Your Own Data Structures
Using Arrays (Model A)

Learn C under Windows 95/NT  241

printf( “----\n” );

PrintArtists( numArtists, artist );

return 0;
}

Take a look at the definition of the second parameter of 
PrintArtists(). Notice that the first of the two dimensions is 
missing (the first pair of brackets is empty). Although we could 
have included the first dimension (kMaxCDs), the fact that we were 
able to leave it out makes a really interesting point. When memory 
is allocated for an array, it is allocated as one big block. To access a 
specific element of the array, the compiler uses the dimensions of 
the array, as well as the specific element requested, to calculate an 
offset into this block.

/********************************> PrintArtists <*/
voidPrintArtists( short numArtists,

char artist[][ kMaxArtistLength + 1 ] )
{

In the case of artist, the compiler allocated a block of memory 300 
* 51 = 15,300 bytes long. Think of this block as 300 char arrays, each 
of which is 51 bytes long. To get to the first byte of the first array, we 
just use the pointer that was passed in (artist points to the first 
byte of the first of the 300 arrays). To access the first byte of the sec-
ond array (in C notation, artist[1][0]), the compiler adds 51 to 
the pointer artist. In other words, the start of the second array is 51 
bytes farther in memory than the start of the first array. The start of 
the 10th array is 9*51 = 459 bytes farther in memory than the start of 
the first array.

Although it is nice to know how to compute array offsets in mem-
ory, the point is that the compiler calculates the artist array offsets 
using the second dimension and not the first dimension of artist 
(51 is used; 300 is not used).



Designing Your Own Data Structures
Using Arrays (Model A)

242   Learn C under Windows 95/NT

Important The compiler could use the first array bound (300) to verify that 
you don’t reference an array element that is out of bounds. For 
example, the compiler could complain if it sees this line of code:

artist[305][0] = ‘\0’;

The compiler would tell you that you are trying to reference a 
memory location outside the block of memory allocated for 
artist.

Guess what. C compilers don’t do bounds checking of any kind. If 
you want to access memory beyond the bounds of your array, no 
one will stop you. This is part of the “charm” of C. C gives you the 
freedom to write programs that crash in spectacular ways. Your job 
is to learn how to avoid such pitfalls.

OK, let’s finish up this code. PrintArtists() first checks to see 
whether numArtists is zero or less. If it is, an appropriate message 
is printed:

/********************************> PrintArtists <*/
void PrintArtists( short numArtists,

char artist[][ kMaxArtistLength + 1 ] )
{
short i;

if ( numArtists <= 0 )
printf( “No artists to report.\n” );

If we’ve got at least one artist to print, we’ll step through the array, 
printing the artist number followed by the zero-terminated artist 
string. Notice that we used %s to print each string; %s is designed to 
print a ‘\0’ terminated string:

else



Designing Your Own Data Structures
Using Arrays (Model A)

Learn C under Windows 95/NT  243

{
for ( i=0; i<numArtists; i++ )
printf( “Artist #%d: %s\n”,
i+1, artist[i] );

}
}

Although I tried to make this code reasonably safe, there is defi-
nitely a bug in this program. Take a look at the output shown in Fig-
ure 9.2. I ran multiArray and then typed the digits “1234567890” 
five times (for a total of 50 characters). I then typed “12” to put the 
grand total at 52 characters. When I entered a return, gets() read 
all 52 characters from the input buffer, copied them into the array 
artist[0], and then stuck a ‘\0’ at the end of the string. Do you 
see the problem here? Here’s a hint. Each artist subarray is ex-
actly 51 bytes long.

When gets() wrote the 53 bytes (52 bytes plus the ‘\0’) starting at 
artist[0][0], the first 51 bytes fit just fine. The extra 2 bytes (the 
character ‘2’ and the ‘\0’) were written to the next 2 bytes of 
memory, which happen to correspond to the memory locations 

Figure 9.2 This output results from a bug in the program. Look at the end 
of both lines labeled Artist #1.



Designing Your Own Data Structures
Using Arrays (Model A)

244   Learn C under Windows 95/NT

artist[1][0] and artist[1][1]. When gets() read the sec-
ond artist name, it copied the string “Jimi Hendrix” starting at 
artist[1][0]. Here’s where things start to get skoongy. The 
string “Jimi Hendrix” overwrites the last two bytes of the first 
string (the character ‘2’ and the ‘\0’). Horrors! We just overwrote 
the first string’s terminator.

When PrintArtists() prints the first string, it keeps printing 
until it comes to a terminating ‘\0’, which doesn’t happen until the 
end of “Jimi Hendrix”. This is a pretty subtle bug. One solution is 
to make the “width” of the array larger. Instead of 51 bytes for each 
artist, how about 100 bytes? Although this solution reduces the 
chances of an out-of-bounds error, it has the disadvantage of requir-
ing more memory and is still not perfect.

A better solution is to read each artist name from the input buffer 
one character at a time. If you get 50 bytes of data and still haven’t 
reached the end of a name, slap a ‘\0’ in the 51st byte and drop 
the rest of the name in the bit bucket (that is, ignore the rest of the 
name). Hmmm. . . . Something tells me that you’ll be implementing 
this solution as an exercise in the back of this chapter. Am I clairvoy-
ant? Could be.

Arrays and Memory
At the beginning of the chapter, we described a program that would 
track your CD collection. The goal was to look at two different ap-
proaches to solving the same problem. The first approach, Model A, 
uses three arrays to hold a rating, artist name, and title for each CD 
in the collection:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];
char title[ kMaxCDs ][ kMaxTitleLength + 1 ];



Designing Your Own Data Structures
Designing Data Structures (Model B)

Learn C under Windows 95/NT  245

Before we move on to Model B, let’s take a closer look at the mem-
ory used by the Model A arrays. 

• The array rating uses 1 byte for each CD (enough for a 1-
byte rating from 1 to 10).

• The array artist uses 51 bytes for each CD (enough for a
text string holding the artist’s name, up to 50 bytes in length,
plus the terminating byte).

• The array title also uses 51 bytes for each CD (enough for a
text string holding the CD’s title, up to 50 bytes in length,
plus the terminating byte).

Add those three, and you find that Model A allocates 103 bytes for 
each CD. Since Model A allocates space for 300 CDs when it declares 
its three key arrays, it uses 300 * 103 = 30,900 bytes.

Since the program really needs only 103 bytes for each CD, wouldn’t 
it be nice if you could allocate the memory for a CD when you need 
it? With this type of approach, if your collection consisted of only 50 
CDs, you’d have to use only 50 * 103 = 5150 bytes of memory in-
stead of 30,900.

As you’ll see by the end of the chapter, C provides a mechanism for 
allocating memory as you need it. Model B takes a first step toward 
memory efficiency by creating a single data structure that contains 
all the information relevant to a single CD. Later in the chapter, 
you’ll learn how to allocate just enough memory for a single struc-
ture.

Designing Data Structures (Model B)
As stated earlier, our CD program must keep track of a rating (from 
1 to 10), the CD artist’s name, and the CD’s title:

#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

char rating[ kMaxCDs ];
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];



Designing Your Own Data Structures
Designing Data Structures (Model B)

246   Learn C under Windows 95/NT

char title[ kMaxCDs ][ kMaxTitleLength + 1 ];

The struct Keyword
C provides the perfect mechanism for wrapping all three of these 
variables into one tidy bundle. A struct allows you to associate 
any number of variables together under a single name. Here’s an ex-
ample of a struct declaration:

#define kMaxArtistLength 50
#define kMaxTitleLength 50

struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];

}

This struct type declaration creates a new type, called CDInfo. 
Just as you’d use a type such as short or float to declare a vari-
able, you can use this new type to declare an individual struct. 
Here’s an example:

struct CDInfo myInfo;

This line of code uses the previous type declaration as a template to 
create an individual struct. The compiler uses the type declaration 
to tell it how much memory to allocate for the struct, then allo-
cates a block of memory large enough to hold all of the individual 
variables that make up the struct.

The variables that form the struct are known as fields. A struct 
of type CDInfo has three fields:  a char named rating, an array of 
chars named artist, and an array of chars named title. To ac-
cess the fields of a struct, use the . operator:



Designing Your Own Data Structures
Designing Data Structures (Model B)

Learn C under Windows 95/NT  247

struct CDInfo myInfo;

myInfo.rating = 7;

Notice the . between the struct name (myInfo) and the field 
name (rating). The . following a struct name tells the compiler 
that a field name is to follow.

A Sample Program: structSize.cwp
Here’s a program that demonstrates the declaration of a struct 
type, as well as the definition of an individual struct. Open the 
Learn C Projects  directory, go inside the subdirectory 09.02 
- structSize, and open the project structSize.cwp. Run 
structSize  by selecting Run from the Project menu.

Compare your output with the console window shown in Figure 
9.3. They should be the same. The first three lines of output show 
the rating, artist, and title fields. To the right of each field 
name, you’ll find printed the number of bytes of memory allocated 
to that field. The last line of output shows the memory allocated to 
the entire struct.

Figure 9.3 structSize shows the size of a CDInfo struct.



Designing Your Own Data Structures
Designing Data Structures (Model B)

248   Learn C under Windows 95/NT

Stepping Through the Source Code

If you haven’t done so already, quit structSize  and take a minute 
to look over the source code in structSize.c.  Once you feel 
comfortable with it, read on.

The program structSize.c starts off with our standard #in-
clude, along with a brand new one:

#include <stdio.h>

#include “structSize.h”

Notice the double quotes around “structSize.h”; they tell the 
compiler to look for this include file in the same directory as the 
source code file. The compiler compiles the source code it finds in 
“structSize.h” as if it were inside structSize.c.

In general, angle brackets (<>) are used for system include files 
(such as <stdio.h>). Double quotes (““) should be used for in-
clude files that belong to your application.

Important As you’ve already seen, C include files typically end in the two 
characters .h. Though you can give your include files any name 
you like, the .h convention is one you should definitely stick with. 
Include files are also known as header files, which is where the h 
comes from.

Let’s take a look at structSize.h. Select Open from the File 
menu, then select and open structSize.h.

Important Include files typically contain things like #defines, global vari-
ables, global declarations, and function prototypes. By embedding 
these things in an include file, you declutter your source code file 
and, more important, make this common source code available to 
other source code files through a single #include.

The structSize.h  header file starts off with two #defines 
you’ve seen before:



Designing Your Own Data Structures
Designing Data Structures (Model B)

Learn C under Windows 95/NT  249

#define kMaxArtistLength 50
#define kMaxTitleLength 50

Next comes the declaration of the struct type, CDInfo:

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];

};

By including the header file at the top of the file (where we might 
place our globals), we’ve made the CDInfo struct type available 
to all of the functions inside structSize.c. If we placed the 
CDInfo type declaration inside of main() instead, our program 
would still have worked (as long as we placed the type declaration 
before the definition of myInfo), but we would then not have access 
to the CDInfo type outside of main().

That’s all that was in the header file structSize.h. Back in 
structSize.c, main() starts by defining a CDInfo struct 
named myInfo, which has three fields: myInfo.rating, my-
Info.artist, and myInfo.title.

/****************************************> main <*/
int main( void )
{
struct CDInfo myInfo;

The next three statements print the size of the three myInfo fields. 
Notice that we are again using the %ld format specifier to print the 
value returned by sizeof:



Designing Your Own Data Structures
Designing Data Structures (Model B)

250   Learn C under Windows 95/NT

printf( “rating field:    %ld byte\n”,
sizeof( myInfo.rating ) );

printf( “artist field:   %ld bytes\n”,
sizeof( myInfo.artist ) );

printf( “title field:    %ld bytes\n”,
sizeof( myInfo.title ) );

This next printf() prints a separator line, purely for aesthetics. 
Notice the way everything lines up in Figure 9.3?

printf( “               ---------\n” );

The last printf prints the size in bytes of the entire struct.

printf( “myInfo struct: %ld bytes”,
sizeof( myInfo ) );

return 0;
}

Passing a struct as a Parameter
Think back to the CD tracking program we’ve been discussing 
throughout the chapter. We started off with three separate arrays, 
each of which tracked a separate element: the rating field, the CD 
artist, and the title of each CD.

We then introduced the concept of a structure that would group all 
the elements of one CD together, in a single struct. One advantage 
of a struct is that you can use a single pointer to pass all the infor-
mation about a CD. Imagine a routine called PrintCD(), designed 
to print the three elements that describe a single CD. Using the orig-
inal array-based model, we’d have to pass three parameters to 
PrintCD():



Designing Your Own Data Structures
Designing Data Structures (Model B)

Learn C under Windows 95/NT  251

void PrintCD( char rating, char *artist, char 
*title )

{
printf(“rating: %d\n”, rating );
printf(“artist: %s\n”, artist );
printf(“title: %s\n”, title );

}

Using the struct-based model, however, we could pass the info by 
using a single pointer. As a reminder, here’s the CDInfo struct 
declaration again:

#define kMaxArtistLength 50
#define kMaxTitleLength 50

struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];

};

This version of main() defines a CDInfo struct and passes its 
address to a new version of PrintCD() (we’ll get to it next).

int main( void )
{
struct CDInfo myInfo;

PrintCD( &myInfo );

return 0;
}

Just as has been the case in earlier programs, passing the address of 
a variable to a function gives that function the ability to modify the 



Designing Your Own Data Structures
Designing Data Structures (Model B)

252   Learn C under Windows 95/NT

original variable. Passing the address of myInfo to PrintCD() 
gives PrintCD() the ability to modify the three myInfo fields. Al-
though our new version of PrintCD() doesn’t modify myInfo, it’s 
important to know that that opportunity exists. Here’s the new, 
struct-based version of PrintCD():

void PrintCD( struct CDInfo *myCDPtr )
{
printf( “rating: %d\n”, (*myCDPtr).rating );
printf( “artist: %s\n”, myCDPtr->artist );
printf( “title: %s\n”, myCDPtr->title );

}

Notice that PrintCD() receives its parameter as a pointer to (ad-
dress of) a CDInfo struct. The first printf() uses the * operator 
to turn the struct pointer back to the struct it points to, then 
uses the . operator to access the rating field:

(*myCDPtr).rating

C features a special operator, ->, that lets you accomplish the same 
thing. The -> operator is binary, that is, it requires both a left and a 
right operand. The left operand is a pointer to a struct, and the 
right operand is the struct field. The notation myCDPtr->artist 
is exactly the same as (*myCDPtr).rating.

Use whichever form you prefer. In general, most C programmers 
use the -> operator to get from a struct’s pointer to one of the 
struct’s fields.

Passing a Copy of the struct
Here’s a version of main() that passes the struct itself, instead of 
its address:

int main( void )
{
struct CDInfo myInfo;



Designing Your Own Data Structures
Designing Data Structures (Model B)

Learn C under Windows 95/NT  253

PrintCD( myInfo );
}

Whenever the compiler encounters a function parameter, it passes a 
copy of the parameter to the receiving routine. The previous version 
of PrintCD() received a copy of the address of a CDInfo struct.

In this new version of PrintCD(), the compiler passes a copy of the 
entire CDInfo struct, not just a copy of its address. This copy of 
the CDInfo struct includes copies of the rating field and the 
artist and title arrays:

void PrintCD( struct CDInfo myCD )
{
printf( “rating: %d\n”, myCD.rating );
printf( “artist: %s\n”, myCD.artist );
printf( “title: %s\n”, myCD.title );

}

Important When a function exits, all of its local variables (except for static 
variables, which we’ll cover in Chapter 11) are no longer available. 
This means that any changes you make to a local parameter are 
lost when the function returns. If this version of PrintCD() made 
changes to its local copy of the CDInfo struct, those changes 
would be lost when PrintCD() returned.

Sometimes, you’ll want to pass a copy of a struct. One advantage 
this technique offers is that there’s no way that the receiving func-
tion can modify the original struct. Another advantage is that it 
offers a simple mechanism for making a copy of a struct. A disad-
vantage of this technique is that copying a struct takes time and 
uses memory. Time won’t usually be a problem, but memory usage 
might be, especially if your struct gets pretty large. Just be aware 
that whatever you pass as a parameter is going to get copied by the 
compiler.



Designing Your Own Data Structures
Designing Data Structures (Model B)

254   Learn C under Windows 95/NT

Important There’s a sample program in the Learn C Projects  directory, 
inside a subdirectory named 09.04 - paramAddress, that 
should help show the difference between passing the address of a 
struct and passing a copy of the struct. Basically, here’s how 
the program works.

First, main() defines a CDInfo struct named myCD, then prints 
the address of myCD’s rating field:

printf( “Address of myCD.rating in  main():  
%ld\n”,&(myCD.rating) );

Notice that we print an address using the %ld format specifier. Al-
though there are other ways to print a variable’s address, this 
works just fine for our purposes. Here’s the output of this 
printf():

Address of myCD.rating in main():  26352526

Next, main() passes the address of myCD and myCD as parame-
ters to a routine named PrintParamInfo():

PrintParamInfo( &myCD, myCD );

Here’s the prototype for PrintParamInfo():

void     PrintParamInfo( struct CDInfo *myCDPtr,
struct CDInfo myCDCopy );

The first parameter is a copy of the address of main()’s myCD 
struct. The second parameter is a copy of the same struct. 
PrintParamInfo() prints the address of the rating field of 
each version of myCD:

printf( “Address of myCDPtr->rating in 
PrintParamInfo(): %ld\n”,



Designing Your Own Data Structures
Designing Data Structures (Model B)

Learn C under Windows 95/NT  255

&(myCDPtr->rating) );
printf( “Address of myCDCopy.rating in 

PrintParamInfo(): %ld\n”,
&(myCDCopy.rating) );

Here are the results, including the line of output generated by 
main():

Address of myCD.rating in main():  26352526
Address of myCDPtr->rating in PrintParamInfo(): 

26352526
Address of myCDCopy.rating in PrintParamInfo(): 

26352414

Notice that the rating field accessed with a pointer has the same 
address as the original rating field in main()’s myCD struct. If 
PrintParamInfo() uses the first parameter to modify the 
rating field, it will, in effect, be changing main()’s rating field. 
If PrintParamInfo() uses the second parameter to modify the 
rating field, the rating field will remain untouched.

By the way, most programmers use hexadecimal (or hex) nota-
tion when they print addresses. Hex notation represents numbers 
as base 16 instead of the normal base 10 you are used to. Instead 
of the 10 digits 0 through 9, hex features the 16 digits 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, a, b, c, d, e, and f. Each digit of a number represents a 
successive power of 16 instead of successive powers of 10.

For example, the number 532 in base 10 is equal to 5*102 + 3*101 
+ 2*100 = 5*100+3*10+2*1. The number 532 in hex is equal to 
5*162 + 3*161 + 2*160 = 5*256+3*16+2*1 = 1330 in base 10. The 
number ff in hex is equal to 15*16 + 15*1 = 255 in base 10. Re-
member, the hex digit f has a decimal (base 10) value of 15.

To represent a hex constant in C, precede it by the characters 0x. 
The constant 0xff has a decimal value of 255. The constant 0xFF 
also has a decimal value of 255. C doesn’t distinguish between up-
per- and lowercase when representing hex digits.



Designing Your Own Data Structures
Designing Data Structures (Model B)

256   Learn C under Windows 95/NT

To print an address in hex, use the format specifier %p instead of 
%ld. Modify paramAddress by using %p, just to get a taste of hex.

struct Arrays
Just as you can declare an array of chars or ints, you can also de-
clare an array of structs:

#define kMaxCDs 300

struct CDInfo myCDs[ kMaxCDs ];

This declaration creates an array of 300 structs of type CDInfo. 
The array is named myCDs. Each of the 300 structs will have the 
three fields rating, artist, and title. You access the fields of the 
structs as you might expect. Here’s an example (note the use of 
the all-important . operator):

myCDs[ 10 ].rating = 9;

We now have an equivalent to our first CD-tracking data structure. 
Whereas Model A used three arrays, we now have a solution that 
uses a single array. As you’ll see when you start writing your own 
programs, packaging your data in a struct makes life a bit simpler. 
Instead of passing three parameters each time you need to pass a 
CD to a function, you can simply pass a struct.

From a memory standpoint, both CD tracking solutions cost about 
the same. With three separate arrays, the cost is:

              300 bytes /* rating array */
300 * 51 = 15,300 bytes /* artist array */
300 * 51 = 15,300 bytes /* artist array */
           ------------
Total      30,900 bytes



Designing Your Own Data Structures
Allocating Your Own Memory

Learn C under Windows 95/NT  257

With an array of structs, the cost is:

300 * 104 = 31,200 bytes /* Cost of array of 300
CDInfo structs */

Why does the array of structs take up 300 more bytes than the 
three separate arrays? Easy. Each struct contains a byte of pad-
ding to bring its size from an odd number (103) to an even number 
(104). Since the array contains 300 structs, we accumulate 300 
bytes of padding. Since 300 bytes is pretty negligible, these two 
methods are reasonably close in terms of memory cost.

So what can we do to cut this memory cost down? Thought you’d 
never ask!

Allocating Your Own Memory
One of the limitations of an array-based CD tracking model is that 
arrays are not resizable. When you define an array, you have to 
specify exactly how many elements make up your array. For exam-
ple, this code defines an array of 300 CDInfo structs:

#define kMaxCDs 300

struct CDInfo myCDs[ kMaxCDs ];

As we calculated earlier, this array will take up 31,200 bytes of mem-
ory, whether we use 1 array or 300 to track a CD. If you know in ad-
vance exactly how many elements your array requires, arrays are 
just fine. In the case of our CD tracking program, this just isn’t prac-
tical. For example, if my CD collection consists entirely of a test CD 
that came with my stereo and a rare soundtrack recording of Gilli-
gan’s Island outtakes, a 300-struct array is overkill. Even worse, 
what happens if I’ve got more than 300 CDs? No matter what num-
ber I pick for kMaxCDs, there’s always the chance that it won’t prove 
large enough.

The problem here is that arrays are just not flexible enough to do 
what we want. Instead of trying to predict the amount of memory 



Designing Your Own Data Structures
Allocating Your Own Memory

258   Learn C under Windows 95/NT

we’ll need in advance, what we need is a method that will allow us 
to get a chunk of memory the size of a CDInfo struct, as we need 
it. In more technical terms, we need to allocate and manage our own 
memory.

When your application starts, some memory is used to hold the ob-
ject code that makes up your application. Still more memory is used 
to hold such things as your application’s global variables. As your 
application runs, some memory will be allocated to main() local 
variables. When main() calls a function, memory is allocated for 
that function’s local variables. When that function returns, the mem-
ory allocated for its local variables is freed up, or made available to 
be allocated again.

In the next few sections, you’ll learn about some functions you can 
call to allocate a block of memory and to free the memory (to return 
it to the pool of available memory). Ultimately, we’ll combine these 
functions with a special data structure to provide a memory-effi-
cient, more flexible alternative to the array.

Using Standard Library Functions

malloc()

The Standard Library function malloc() allows you to to allocate a 
block of memory of a specified size. To access malloc(), you’ll 
need to include the file <stdlib.h>:

#include <stdlib.h>

The function malloc() takes a single parameter, the size of the re-
quested block, in bytes. malloc() returns a pointer to the newly al-
located block of memory. Here’s the function prototype:

void *malloc( size_t size );

By the Way Note that the parameter is declared to be of type size_t, the 
same type returned by sizeof. Think of size_t as equivalent to 
an unsigned long. Note also that malloc() returns the type 



Designing Your Own Data Structures
Allocating Your Own Memory

Learn C under Windows 95/NT  259

(void *), a pointer to a void. A void pointer is essentially a ge-
neric pointer. Since there’s no such thing as a variable of type 
void, the type (void *) is used to declare a pointer to a block of 
memory whose type has not been determined.

In general, you’ll convert the (void *) returned by malloc() to 
the pointer type you really want. Read on to see an example of 
this.

If malloc() can’t allocate a block of memory the size you re-
quested, it returns a pointer with the value NULL. NULL, a constant, 
is usually defined to have a value of 0 and is used to specify an in-
valid pointer. In other words, a pointer with a value of NULL does 
not point to a legal memory address. You’ll learn more about NULL 
and (void *) as we use them in our examples.

Here’s a code fragment that allocates a single CDInfo struct:

struct CDInfo *myCDPtr;

myCDPtr = malloc( sizeof( struct CDInfo ) );

The first line of code declares a new variable, myCDPtr, which is a 
pointer to a CDInfo struct. At this point, myCDPtr doesn’t point 
to a CDInfo struct. You’ve just told the compiler that myCDPtr is 
designed to point to a CDInfo struct.

The second line of code calls malloc() to create a block of memory 
the size of a CDInfo struct; sizeof returns its result as a 
size_t, the type we need to pass as a parameter to malloc(). 
How convenient!

By the Way On the right side of the = operator is a (void *) and on the left 
side a (struct CDInfo *). The compiler automatically resolves 
this type difference for us. We could have used a typecast here to 
make this more explicit:

myCDPtr = (struct CDInfo *)malloc(sizeof(struct 



Designing Your Own Data Structures
Allocating Your Own Memory

260   Learn C under Windows 95/NT

CDInfo ));

It really isn’t necessary, however, and besides, we won’t get into 
typecasting until Chapter 11!

If malloc() was able to allocate a block of memory the size of a 
CDInfo struct, myCDPtr contains the address of the first byte of 
this new block. If malloc() was unable to allocate our new block 
(perhaps there wasn’t enough unallocated memory left), myCDPtr 
will be set to NULL.

if ( myCDPtr == NULL )
printf( “Couldn’t allocate the new block!\n” );

else
printf( “Allocated the new block!\n” );

If malloc() succeeded, myCDPtr points to a struct of type 
CDInfo. For the duration of the program, we can use myCDPtr to 
access the fields of this newly allocated struct:

myCDPtr->rating = 7;

It is important to understand the difference between a block of 
memory allocated using malloc() and a block of memory that cor-
responds to a local variable. When a function declares a local vari-
able, the memory associated with that variable is temporary. As 
soon as the function exits, the block of memory associated with that 
memory is returned to the pool of available memory. A block of 
memory that you allocate using malloc(), by contrast, sticks 
around until you specifically return it to the pool of available mem-
ory.

free()

The Standard Library function free() returns a previously allo-
cated block of memory back to the pool of available memory. Here’s 
the function prototype:



Designing Your Own Data Structures
Allocating Your Own Memory

Learn C under Windows 95/NT  261

void free( void *ptr );

This function takes a single argument, a pointer to the first byte of a 
previously allocated block of memory, for example:

free( myCDPtr );

This line returns the block allocated earlier to the free-memory pool. 
Use malloc() to allocate a block of memory. Use free() to free up 
a block of memory allocated with malloc(). When a program exits, 
the operating system automatically frees up all allocated memory.

Warning Never pass an address to free() that didn’t come from 
malloc(). Never put a fork in an electrical outlet. Both will make 
you extremely unhappy!

Keep Track of That Address!
The address returned by malloc() is critical. If you lose it, you’ve 
lost access to the block of memory you just allocated. Even worse, 
you can never free up the block, and it will just sit there, wasting 
valuable memory, for the duration of your program.

By the Way One great way to lose a block’s address is to call malloc() inside 
a function, saving the address returned by malloc() in a local 
variable. When the function exits, your local variable goes away, 
taking the address of your new block with it!

One way to keep track of a newly allocated block of memory is to 
place the address in a global variable. Another way is to place the 
pointer inside a special data structure known as a linked list.



Designing Your Own Data Structures
Working with Linked Lists

262   Learn C under Windows 95/NT

Working with Linked Lists
The linked list is one of the most widely used data structures in C. A 
linked list is a series of structs, each of which contains, as a field, a 
pointer. Each struct in the series uses its pointer to point to the 
next struct in the series. Figure 9.4 shows a linked list containing 
three elements.

A linked list starts with a master pointer. The master pointer is a 
pointer variable, typically a global, that points to the first struct in 
the list. This first struct contains a field, also a pointer, that points 
to the second struct in the linked list. The second struct contains 
a pointer field that points to the third element. The linked list in Fig-
ure 9.4 ends with the third element. The pointer field in the last ele-
ment of a linked list is typically set to NULL.

By the Way The notation used at the end of the linked list in Figure 9.4 is bor-
rowed from our friends in electrical engineering. The funky three-
line symbol at the end of the last pointer represents a NULL 
pointer.

Figure 9.4 A linked list containing three elements.

Why Use Linked Lists?
Linked lists allow you to be extremely memory efficient. Using a 
linked list, you can implement our CD-tracking data structure, allo-
cating exactly the number of structs that you need. Each time a 
CD is added to your collection, you’ll allocate a new struct and 
add it to the linked list.

Global
Pointer



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  263

A linked list starts out as a single master pointer. When you want to 
add an element to the list, call malloc() to allocate a block of mem-
ory for the new element. Next, make the master pointer point to the 
new block. Finally, set the new block’s next element pointer to NULL.

Creating a Linked List
The first step in creating a linked list is to design the main link, the 
linked list struct. Here’s a sample:

#define kMaxArtistLength 50
#define kMaxTitleLength 50

struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo *next;

}

The change here is the addition of a fourth field, a pointer to a 
CDInfo struct. The next field is the key to connecting two 
CDInfo structs. If myFirstPtr  is a pointer to one CDInfo 
struct and mySecondPtr  is a pointer to a second struct, the 
following line connects the two structs:

myFirstPtr->next = mySecondPtr;

Once they are connected, you can use a pointer to the first struct 
to access the fields in the second struct!  For example:

myFirstPtr->next->rating = 7;

This line sets the rating field of the second struct to 7. Using the 
next field to get from one struct to the next is also known as tra-
versing a linked list.



Designing Your Own Data Structures
Working with Linked Lists

264   Learn C under Windows 95/NT

Our next (and final) program for this chapter will incorporate the 
new version of the CDInfo struct to demonstrate a more mem-
ory-efficient CD tracking program. This program is pretty long, so 
you may want to take a few moments to let the dog out and answer 
your mail.

By the Way There are many variants of the linked list. If you connect the last el-
ement of a linked list to the first element, you create a never-end-
ing, circular list. You can add a prev field to the struct and use it 
to point to the previous element in the list (as opposed to the next 
one). This technique allows you to traverse the linked list in two di-
rections and creates a doubly linked list. 

As you gain more programming experience, you’ll want to check 
out some books on data structures. Three books well worth explor-
ing are Algorithms in C by Robert Sedgewick, Data Structures and 
C Programs by Christopher J. Van Wyk, and Volume 1 (subtitled 
Fundamental Algorithms) of Donald Knuth’s Computer Science 
series. As always, these books are listed in the bibliography in Ap-
pendix F.

A Sample Program: cdTracker.cwp
This program implements Model B of our CD tracking system. The 
program uses a text-based menu, allowing you to quit, add a new 
CD to the collection, or list all of the currently tracked CDs.

Open the Learn C Projects  directory, go inside the subdirec-
tory 09.05 - cdTracker, and open the project cdTracker.cwp. 
Run cdTracker  by selecting Run from the Project menu. The con-
sole window will appear, showing the prompt:

Enter command (q=quit, n=new, l=list):

At this point, you have three choices. You can type a q, followed by 
a carriage return, to quit the program. You can type an n, followed 
by a carriage return, to add a new CD to your collection. Finally, you 



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  265

can type an l, followed by a carriage return, to list all the CDs in 
your collection.

Start by typing an l, followed by a carriage return. You should see 
the message:

No CDs have been entered yet...

Next, the original command prompt should reappear:

Enter command (q=quit, n=new, l=list):

This time, type an n, followed by a carriage return. You will be 
prompted for the artist’s name and the title of a CD you’d like 
added to your collection:

Enter Artist’s Name:  Frank Zappa
Enter CD Title:  Anyway the Wind Blows

Next, you’ll be prompted for a rating for the new CD. The program 
expects a number between 1 and 10. Try typing something unex-
pected, such as the letter x, followed by a carriage return:

Enter CD Rating (1-10):  x
Enter CD Rating (1-10):  10

The program checks your input, discovers it isn’t in the proper 
range, and repeats the prompt. This time, type a number between 1 
and 10, followed by a carriage return. The program returns you to 
the main command prompt:

Enter command (q=quit, n=new, l=list):

Type the letter l, followed by a carriage return. The single CD you 
just entered will be listed, and the command prompt will again be 
displayed:



Designing Your Own Data Structures
Working with Linked Lists

266   Learn C under Windows 95/NT

Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  10

----------
Enter command (q=quit, n=new, l=list):

Type an n, followed by a carriage return, and enter another CD. Re-
peat the process one more time, adding a third CD to the collection. 
Now enter the letter l, followed by a carriage return, to list all three 
CDs. Here’s my list:

Enter command (q=quit, n=new, l=list):  l

----------
Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  10

----------
Artist:  XTC
Title:   The Big Express
Rating:  8

----------
Artist:  Jane Siberry
Title:   Bound by the Beauty
Rating:  9

----------
Enter command (q=quit, n=new, l=list):

Finally, enter a q, followed by a carriage return, to quit the program. 
Let’s hit the source code.



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  267

Stepping Through the Source Code

The code for cdTracker.c starts by including three different files: 
<stdlib.h> gives us access to malloc() and free(); <stdio.h> 
gives us access to such routines as printf(), getchar(), and 
gets():

#include <stdlib.h>
#include <stdio.h>

The third include file is our own “cdTracker.h”, which starts off 
with three #defines that you should know pretty well by now:

/***********/
/* Defines */
/***********/
#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

Next comes the new and improved CDInfo struct  declaration:

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo *next;

} *gFirstPtr, *gLastPtr;

Notice the two variables hanging off the end of this struct declara-
tion. This is a shorthand declaration of two globals, each of which is 
a pointer to a CDInfo struct. We’ll use these two globals to keep 
track of our linked list.



Designing Your Own Data Structures
Working with Linked Lists

268   Learn C under Windows 95/NT

The global gFirstPtr will always point to the first struct in the 
linked list; the global gLastPtr will always point to the last 
struct in the linked list. We’ll use gFirstPtr when we want to 
step through the linked list, starting at the beginning. We’ll use 
gLastPtr when we want to add an element to the end of the list. As 
long as we keep these pointers around, we’ll have access to the 
linked list of memory blocks we’ll be allocating.

By the Way We could have split this declaration into two parts, like this:

struct CDInfo
{

char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo *next;

};

struct CDInfo *gFirstPtr, *gLastPtr;

Either form is fine, although the shorthand version in 
cdTracker.h does a better job of showing that gFirstPtr and 
gLastPtr belong with the CDInfo struct declaration.

The header file cdTracker.h  ends with a series of function proto-
types:

/***********************/
/* Function Prototypes */
/***********************/
char GetCommand( void );
struct CDInfo *ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void ListCDs( void );
void Flush( void );



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  269

Let’s get back to cdTracker.c; main() defines a char named 
command, which will be used to hold the single-letter command 
typed by the user:

/***************************************> main <*/
int main( void )
{
char command;

Next, the variables gFirstPtr and gLastPtr are set to a value of 
NULL. As defined earlier, NULL indicates that these pointers do not 
point to valid memory addresses. Once we add an item to the list, 
these pointers will no longer be NULL:

gFirstPtr = NULL;
gLastPtr = NULL;

Next, main() enters a while loop, calling the function 
GetCommand(). GetCommand() prompts you for a one-character 
command: a ‘q’, ‘n’, or ‘l’. Once GetCommand() returns a ‘q’, 
we drop out of the while loop and exit the program.

while ( (command = GetCommand() ) != ‘q’ )
{

If GetCommand() returns an ‘n’, the user wants to enter informa-
tion on a new CD. First, we call ReadStruct(), which allocates 
space for a CDInfo struct, then prompts the user for the informa-
tion to place in the fields of the new struct. Once the struct is 
filled out, ReadStruct() returns a pointer to the newly allocated 
struct.

The pointer returned by ReadStruct() is passed on to 
AddToList(), which adds the new struct to the linked list:

switch( command )
{



Designing Your Own Data Structures
Working with Linked Lists

270   Learn C under Windows 95/NT

case ‘n’:
AddToList( ReadStruct() );
break;

If GetCommand() returns an ‘l’, the user wants to list all the CDs 
in his or her collection. That’s what the function ListCDs() does:

case ‘l’:
ListCDs();
break;

}
}

Before the program exits, it says “Goodbye...”.

printf( “Goodbye...” );
}

Next up on the panel is GetCommand(). GetCommand() declares a 
char named command, used to hold the user’s command:

/********************************> GetCommand <*/
char GetCommand( void )
{
char command;

Because we want to execute the body of this next loop at least once, 
we used a do loop instead of a while loop. We’ll first prompt the 
user to enter a command, then use scanf() to read a character 
from the input buffer. The function Flush() will read characters, 
one at a time, from the input buffer until it reads in a carriage return. 
If we didn’t call Flush(), any extra characters we typed after the 
command (including the ‘\n’) would be picked up the next time 
through this loop, and extra prompt lines would appear, one for 
each extra character. To see this effect, comment out the call to 



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  271

Flush() and type more than one character when prompted for a 
command:

do 
{
printf( “Enter command (q=quit, n=new, 

l=list):  “ );
scanf( “%c”, &command );
Flush();

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) );

We’ll drop out of the loop once we get a ‘q’, an ‘n’, or an ‘l’. 

By the Way Here’s a cool trick Keith Rollin (C guru extraordinaire) showed me. 
Instead of ending the do loop with this statement:

while ( (command != ‘q’) && (command != ‘n’)
&& (command != ‘l’) );

try this code instead:

while ( ! strchr( “qnl”, command ) );

The two parameters of strchr() are: a zero-terminated string 
and an int containing a character. First, strchr() searches the 
string for the character and, if it was found, returns a pointer to the 
character inside the string. If the character wasn’t in the string, 
strchr() returns NULL. Pretty cool, eh?

Once we drop out of the loop, we’ll print a separator line and return 
the single-letter command:

printf( “\n----------\n” );



Designing Your Own Data Structures
Working with Linked Lists

272   Learn C under Windows 95/NT

return( command );
}

Next up is ReadStruct(). Notice the unusual declaration of the 
function name:

/**********************************> ReadStruct <*/
struct CDInfo *ReadStruct( void )
{

This line says that ReadStruct() returns a pointer to a CDInfo 
struct:

struct CDInfo *ReadStruct( void )

ReadStruct() uses malloc() to allocate a block of memory the 
size of a CDInfo struct. The variable infoPtr will act as a 
pointer to the new block. We’ll use the variable num to read in the 
rating, which we’ll eventually store in infoPtr->rating.

struct CDInfo *infoPtr;
int num;

ReadStruct() calls malloc() to allocate a CDInfo struct, as-
signing the address of the block returned to infoPtr:

infoPtr = malloc( sizeof( struct CDInfo ) );

If malloc() cannot allocate a block of the requested size, it will re-
turn a value of NULL. If this happens, we’ll print an appropriate 
message and call the Standard Library function exit(). As its 
name implies, exit() causes the program to immediately exit.

if ( infoPtr == NULL )
{



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  273

printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

By the Way The parameter you pass to exit() will be passed back to the op-
erating system (or to whatever program launched your program).

If we’re still here, malloc() must have succeeded. Next, we’ll print 
a prompt for the CD artist’s name, then call gets() to read a line 
from the input buffer and place that line in the artist field of the 
newly allocated struct.

We then repeat the process to prompt for and read in the CD title:

printf( “Enter Artist’s Name:  “ );
gets( infoPtr->artist );

printf( “Enter CD Title:  “ );
gets( infoPtr->title );

This loop prompts the user to enter a number between 1 and 10. We 
then use scanf() to read an int from the input buffer. Note that 
we used a temporary int to read in the number instead of reading it 
directly into infoPtr->rating. We did this because the %d for-
mat specifier expects an int, and rating  is declared as a char. 
Once we read the number, we call Flush() to get rid of any other 
characters (including the ‘\n’):

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );



Designing Your Own Data Structures
Working with Linked Lists

274   Learn C under Windows 95/NT

Warning This do loop is not as careful as it could be. If scanf() encoun-
ters an error of some kind, num will end up with an undefined 
value. If that undefined value happens to be between 1 and 10, the 
loop will exit, and an unwanted value will be entered in the rating 
field. Although that might not be such a big deal in our case, we 
probably would want to drop out of the loop or, at the very least, 
print some kind of error message if this happens.

Here’s another version of the same code:

do
{

printf( “Enter CD Rating (1-10):  “ );
if ( scanf( “%d”, &num ) != 1 )
{

printf( “Error returned by
scanf()!\n” );

exit( -1 );
};
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );

Now, scanf() returns the number of items it read. Since we’ve 
asked it to read a single int, this version prints an error message 
and exits if we don’t read exactly one item. This is a pretty simplis-
tic error strategy, but it does make a point. Pay attention to error 
conditions and to function return values.

Once a number between 1 and 10 is read in, it is assigned to the 
rating field of the newly allocated struct:

infoPtr->rating = num;



Designing Your Own Data Structures
Working with Linked Lists

Learn C under Windows 95/NT  275

Finally, a separating line is printed, and the pointer to the new 
struct is returned:

printf( “\n----------\n” );

return( infoPtr );
}

AddToList() takes a pointer to a CDInfo struct  as a parame-
ter. It uses the pointer to add the struct to the linked list:

/********************************> AddToList <*/
void AddToList( struct CDInfo *curPtr )
{

If gFirstPtr is NULL, the list must be empty. If it is, make 
gFirstPtr  point to the new struct:

if ( gFirstPtr == NULL )
gFirstPtr = curPtr;

If gFirstPtr is not NULL, there’s at least one element in the linked 
list. In that case, make the next field of the very last element on the 
list point to the new struct:

else
gLastPtr->next = curPtr;

In either case, set gLastPtr to point to the new “last element in the 
list.” Finally, make sure that the next field of the last element in the 
list is NULL. You’ll see why we did this in the next function, 
ListCDs().

gLastPtr = curPtr;
curPtr->next = NULL;



Designing Your Own Data Structures
Working with Linked Lists

276   Learn C under Windows 95/NT

}

ListCDs() lists all the CDs in the linked list. The variable curPtr 
is used to point to the link element currently being looked at:

/*********************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo *curPtr;

If no CDs have been entered yet, we’ll print an appropriate message:

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}

Otherwise, we’ll use a for loop to step through the linked list. The 
for loop starts by setting curPtr to point to the first element in the 
linked list and continues as long as curPtr is not NULL. Each time 
through the loop, curPtr is set to point to the next element in the 
list. Since we make sure that the last element’s next pointer is al-
ways set to NULL, we know that when curPtr is equal to NULL, we 
have been through every element in the list and that we are done:

else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; curPtr = 

curPtr->next )
{

Next, the first two printf() routines use the %s format specifier 
to print the strings in the fields artist and title:



Designing Your Own Data Structures
What’s Next?

Learn C under Windows 95/NT  277

printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );

Next, the rating field and a separating line are printed, and it’s 
back to the top of the loop:

printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );
}

}
}

Flush() uses getchar() to read characters from the input buffer 
until it reads in a carriage return. Flush() is a good utility routine 
to have around:

/***********************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

By the Way Flush() was based on the Standard Library function fflush(), 
which flushes the input buffer associated with a specific file. Since 
we haven’t gotten into files yet, we wrote our own version, but as 
you can see, it wasn’t that difficult.

What’s Next?
This chapter covered a wide range of topics, from #includes to 
linked lists. The intent of the chapter, however, was to attack a real-
world programming problem: in this case, a program to catalog 
CDs. The chapter showed several design approaches, discussing the 



Designing Your Own Data Structures
Exercises

278   Learn C under Windows 95/NT

pros and cons of each. Finally, the chapter presented a prototype for 
a CD tracking program. The program allows you to enter informa-
tion about a series of CDs and, on request, will present a list of all 
the CDs tracked.

One problem with this program, however, is that once you exit, you 
lose all of the data you entered. The next time you run the program, 
you have to start all over again.

Chapter 10 offers a solution to this problem. The chapter introduces 
the concept of files and file management, showing you how to save 
your data from memory out to your disk drive and how to read 
your data back in again. The chapter updates cdTracker, storing 
the CD information collected in a file on your disk drive.

Exercises
1. What’s wrong with each of the following code fragments:
a. struct Employee

{
char name[ 20 ];
int employeeNumber

};
b. while ( getchar() == ‘\n’ ) ;
c. #include “stdio.h”
d. struct Link

{
name[ 50 ];
Link*next;

};
e. struct Link

{
struct Linknext;
struct Link prev;

}
f. StepAndPrint( char *line )

{ 
while ( *line != 0 )
line++;



Designing Your Own Data Structures
Exercises

Learn C under Windows 95/NT  279

printf( “%s”, line );
}

2. Update multiArray so it gets its input one byte at a time. If 
more characters are entered than will fit in the struct, 
terminate the string with as many bytes as will fit, and ignore 
the rest.

3. Update cdTracker.c so it maintains its linked list in order 
from the lowest rating to the highest rating. If two CDs have 
the same rating, the order is unimportant.

4. Update cdTracker.c, adding a prev field to the CDInfo 
struct so it maintains a doubly linked list. As before, the 
next field will point to the next link in the list. Now, 
however, the prev field should point to the previous link in 
the list. Add to the menu an option that prints the list 
backward, from the last struct in the list to the first.



Designing Your Own Data Structures
Exercises

280   Learn C under Windows 95/NT



Learn C under Windows 95/NT  281

10
Working with Files
Chapter 9 introduced cdTracker, a program designed to keep 
track of your compact disc collection. The program cdTracker al-
lowed you to enter a new CD, as well as to list all existing CDs. 
However, cdTracker didn’t save the CD information when it ex-
ited. If you ran cdTracker, entered information on 10 CDs, and 
then quit, your information would be gone. The next time you ran 
cdTracker, you’d have to start from scratch.

The solution to this problem is somehow to save all of the CD infor-
mation before you quit the program. This chapter will show you 
how. Chapter 10 introduces the concept of files for the long-term 
storage of your program’s data.

What Is a File?
A file is a series of bytes residing in some storage media. Files can be 
stored on your hard drive, on a floppy disk, or even on a CD-ROM. 
The word processor you keep on your hard drive resides in a file. 
Each document you create with your word processor also resides in 
a file.

The CD that contains this book contains many different files. The 
CodeWarrior compiler lives in its own file. Each of the Learn C 
projects consists of at least two files: a project file and at least one 
source code file. When you compile and link a project, you produce 
a new kind of file, an executable file. All of these are examples of the 
same thing: a collection of bytes known as a file.

All of the files on your computer share a common set of traits. For 
example, each file has a size. The file autoexec.bat has a size of 
441 bytes. The file winmine.exe  has a size of 24,176 bytes. Each of 
these files resides on a hard disk drive attached to my computer.



Working with Files
Working with Files, Part One

282   Learn C under Windows 95/NT

Working with Files, Part One
In the C world, each file consists of a stream of consecutive bytes. 
When you want to access the data in a file, you first open the file 
using a Standard Library function named fopen(), pronounced 
eff-open. Once your file is open, you can read data from the file or 
write new data back into the file, using Standard Library functions, 
such as fscanf() and fprintf(). Once you are done working 
with your file, you’ll close it by using the Standard Library function 
fclose().

Opening and Closing a File
Here’s the function prototype for fopen(), found in the file 
<stdio.h>:

FILE *fopen( const char *name, const char *mode );

By the Way The const keyword marks a variable or a parameter as read-only. 
In other words, fopen() is not allowed to modify the array of char-
acters pointed at by name or mode. Here’s another example:

const int myInt = 27;

This declaration creates an int named myInt and assigns it a 
value of 27 (we’ll talk in Chapter 11 about definitions that also ini-
tialize). More important, the value of myInt is now permanently 
set, and myInt is now read-only. As long as myInt remains in 
scope, you can’t change its value.

The first parameter, name, tells fopen() which file you want to 
open. For example, the file name “My Data File” tells fopen() to 
look in the current directory (the directory containing the currently 
running application) for a file named My Data File.

Important The backslash character (\) has a special meaning in a Windows 
file. A single backslash refers to the current directory, and a pair of 



Working with Files
Working with Files, Part One

Learn C under Windows 95/NT  283

backslashes refers to a subdirectory’s parent directory. For exam-
ple, the file name \\My Data File  refers to a file named My 
Data File in the directory containing the current subdirectory. 
The file name \folder\file  refers to a file named file in a 
subdirectory named folder, which is in the current directory.

Be aware that different operating systems use different file-naming 
conventions. UNIX uses a / instead of a \ and // instead of \\. 
The Macintosh uses : and :: instead of \ and \\. Check with 
your operating system’s technical manuals and experiment for 
yourself!

The second parameter, mode, tells fopen() how you’ll be accessing 
the file. The three basic file modes are “r”, “w”, and “a”, for read, 
write, and append, respectively.

Using “r” tells fopen() that you want to read data from the file 
and that you won’t be writing to the file at all. The file must already 
exist in order to use this mode. In other words, you can’t use the 
mode “r” to create a file.

The mode “w” tells fopen() that you want to write to the specified 
file. If the file doesn’t exist yet, a new file with the specified name is 
created. If the file does exist, fopen() deletes it and creates a new 
empty file for you to write into.

Warning This last point bears repeating. Calling fopen() with a mode of 
“w” will delete the contents of an existing file, essentially starting 
you over from the beginning of the file. Be careful!

The mode “a”,  similar to “w”, tells fopen() that you want to write 
to the specified file and to create the file if it doesn’t exist. If the file 
does exist, however, the data you write to the file is appended to the 
end of the file.

If fopen() successfully opens the specified file, it allocates a 
struct of type FILE and returns a pointer to the FILE struct, 
which contains information about the open file, including the cur-
rent mode (“r”, “w”, “a”, or whatever), as well as the current file 



Working with Files
Working with Files, Part One

284   Learn C under Windows 95/NT

position. The file position, acting like a bookmark in a book, is a 
pointer into the file. When you open a file for reading, for example, 
the file position points to the first byte in the file. When you read the 
first byte, the file position moves to the next byte.

It’s not really important to know the details of the FILE struct. 
All you need to do is keep track of the FILE pointer returned by 
fopen(). By passing the pointer to a Standard Library function that 
reads or writes, you’ll be sure that the read or write takes place in 
the right file and at the right file position. You’ll see how all this 
works as we go through the chapter sample code.

Here’s a sample fopen() call:

FILE *fp;

if ( (fp = fopen( “My Data File”, “r”)) == NULL )
{
printf( “File doesn’t exist!!!\n” );
exit(1);

}

This code first calls fopen(), attempting to open the file named My 
Data File for reading. If fopen() cannot open the file for some 
reason (perhaps you’ve asked it to open a file that doesn’t exist or 
you’ve already opened the maximum number of files), it returns 
NULL. In that case, we’ll print an error message and exit.

By the Way There is a limit to the number of simultaneously open files. This 
limit is implemented as a constant, FOPEN_MAX, defined in the file 
<stdio.h>.

If fopen() does manage to open the file, it will allocate the memory 
for a FILE struct, and fp will point to that struct. We can then 
pass fp to routines that read from the file. Once we’re done with the 
file, we’ll pass fp to the function fclose():

int fclose( FILE *stream );



Working with Files
Working with Files, Part One

Learn C under Windows 95/NT  285

Next, fclose() takes a pointer to a FILE as a parameter and at-
tempts to close the specified file. If the file is closed successfully, 
fclose() frees up the memory allocated to the FILE struct and 
returns a value of 0. It is very important that you match every 
fopen() with a corresponding fclose(); otherwise, you’ll end up 
with unneeded FILE structs floating around in memory.

In addition, once you’ve passed a FILE pointer to fclose(), that 
FILE pointer no longer points to a FILE struct. If you want to ac-
cess the file again, you’ll have to make another fopen() call.

By the Way If fclose() fails, it returns a value of –1. Many programmers ig-
nore the value returned by fclose(), since there’s not a whole lot 
you can do about it. On the other hand, you can never have too 
much error checking in your code, so you might consider checking 
the value returned by fclose() and, at the very least, printing an 
appropriate error message if fclose() fails.

Reading a File
Once you open a file for reading, the next step is to read data from 
the file. There are several Standard Library functions to help you do 
just that. For starters, the function fgetc() reads a single character 
from a file’s input buffer. Here’s the function prototype:

int fgetc( FILE *fp );

The single parameter is the FILE pointer returned by fopen(). 
After reading a single character from the file, fgetc() advances the 
file position pointer. If the file position pointer is already at the end 
of the file, fgetc() returns the constant EOF.

By the Way Although fgetc() returns an int, the following also works just 
fine:

char c;



Working with Files
Working with Files, Part One

286   Learn C under Windows 95/NT

c = fgetc( fp );

When the C compiler encounters two different types on each side 
of an assignment operator, it does its best to convert the value on 
the right-hand side to the type of the left-hand side before doing 
the assignment. As long as the type of the right-hand side is no 
larger than the type of the left-hand side (as is the case here, as 
an int is at least as large as a char), this won’t be a problem.

We’ll get into the specifics of typecasting in Chapter 11.

The function fgets() reads a series of characters into an array of 
chars. Here’s the function prototype:

char *fgets( char *s, int n, FILE *fp );

The first parameter is a pointer to an array of chars that you’ve al-
ready allocated. Don’t just declare a (char *) and pass it in to 
fgets(). Instead, allocate an array of chars large enough to hold 
the largest block of chars you might end up reading in, then pass a 
pointer to that array as the first parameter (you’ll see an example in 
a second).

The second parameter is the maximum number of characters you’d 
like to read. The function fgets() stops reading once it reads in 
n-1 chars or if it encounters an end-of-file or a ‘\n’ before it reads 
n-1 chars. If fgets() successfully reads n-1 chars, it appends a 
0 terminator to the char array (that’s why the array has to be at 
least n chars in size). If fgets() encounters a ‘\n’ before it reads 
n-1 chars, it stops reading after the ‘\n’ is read, then adds the 0 
terminator to the array, right after the ‘\n’. If fgets() encounters 
an end-of-file before it reads n-1 chars, it adds the 0 terminator to 
the array, right after the last character read. If fgets() encounters 
an end-of-file before it reads in any chars, it returns NULL. Other-
wise, fgets() returns a pointer to the char array.

Finally, the third parameter is the FILE pointer returned by 
fopen(). Here’s an example:



Working with Files
Working with Files, Part One

Learn C under Windows 95/NT  287

#define kMaxBufferSize 200

FILE *fp;
char buffer[ kMaxBufferSize ];

if ( (fp = fopen( “My Data File”, “r”)) == NULL )
{
printf( “File doesn’t exist!!!\n” );
exit(1);

}

if ( fgets( buffer, kMaxBufferSize, fp ) == NULL )
{
if ( feof( fp ) )
printf( “End-of-file!!!\n” );

else
printf( “Unknown error!!!\n” );

}
else
printf( “File contents: %s\n”, buffer );

Notice that the example calls a function named feof() if fgets() 
returns NULL. NULL is returned no matter what error fgets() en-
counters. The function feof() returns true if the last read on the 
specified file resulted in an end-of-file and a false otherwise.

The function fscanf() is similar to scanf(), reading from a file 
instead of the keyboard. Here’s the prototype:

int fscanf( FILE *fp, const char* format, ... );

The first parameter is the FILE pointer returned by fopen(). The 
second parameter is a format specification embedded inside a char-
acter string. The format specification tells fscanf() what kind of 
data you want read from the file. The ... operator in a parameter 
list tells the compiler that zero or more parameters may follow the 
second parameter. Like scanf() and printf(), fscanf() uses 



Working with Files
Working with Files, Part One

288   Learn C under Windows 95/NT

the format specification to determine the number of parameters it 
expects to see. Be sure to pass the correct number of parameters; 
otherwise, your program will get confused.

These are a few of the file-access functions provided by the Standard 
Library. Check out the Standard Library function summaries found 
in Appendix D in this book and in electronic form on the book’s CD 
(search for the file name C Library Reference.) Even better, get 
yourself a copy of C:  A Reference Manual by Harbison and Steele and 
check out Chapter 15, “Input/Output Facilities.”

In the meantime, the next section provides an example that uses the 
functions fopen() and fgetc() to open a file and display its con-
tents.

printFile.cwp
This program opens a file named My Data File, reads in all the 
data from the file, one character at a time, and prints each character 
in the console window. Open the Learn C Projects  directory, 
go inside the subdirectory 10.01 - printFile, and open the 
project printFile.cwp. Run printFile  by selecting Run from 
the Project menu. Compare your output with the console window 
shown in Figure 10.1. They should be the same.

Quit the application and return to CodeWarrior. Let’s take a look at 
the data file read in by printFile. Select Open from the File 
menu. CodeWarrior will prompt you for a text file to open. Select 
the file named My Data File. A window will open, allowing you 
to edit the contents of the file named My Data File. Feel free to 
make some changes to the file and run the program again. Make 
sure not to change the name of the file, however.

Let’s take a look at the source code.

Stepping Through the Source Code

Open the source code file printFile.c  by double-clicking on its 
name in the project window. Take a minute to look over the source 
code. Once you feel comfortable with it, read on.



Working with Files
Working with Files, Part One

Learn C under Windows 95/NT  289

Figure 10.1 The printFile output, showing the contents of the file My 
Data File.

The source code starts off with the usual #include:

#include <stdio.h>

Then, main() defines two variables: fp is our FILE pointer, and c is 
an int that will hold the chars we read from the file:

int main( void )
{
FILE *fp;
int c;

This call of the function fopen() opens the file named My Data 
File for reading, returning the file pointer to the variable fp:

fp = fopen( “My Data File”, “r” );



Working with Files
Working with Files, Part One

290   Learn C under Windows 95/NT

If fp is not NULL, the file was opened successfully:

if ( fp != NULL )
{

The while loop continuously calls fgetc(), passing it the file 
pointer fp. Next, fgetc() returns the next character in fp’s input 
buffer. The returned character is assigned to c. If c is not equal to 
EOF, putchar() is called, taking c as a parameter:

while ( (c = fgetc( fp )) != EOF )
putchar( c );

Now, putchar() prints the specified character to the console win-
dow. We could have accomplished the same thing by using 
printf():

printf( “%c”, c );

By the Way As you program, you’ll often find two different solutions to the 
same problem. Should you use putchar() or printf()? If per-
formance is critical, pick the option that is more specific to your 
particular need. In this case, printf() is designed to handle 
many different data types, whereas putchar() is designed to 
handle one data type, an int. Chances are, the source code for 
putchar() is simpler and more efficient than the source code for 
printf() when it comes to printing an int. If performance is crit-
ical, you might want to use putchar() instead of printf(). If 
performance isn’t critical, go with your own preference.

Once we are done, we’ll close the file by calling fclose(). Remem-
ber to always balance each call of fopen() with a corresponding 
call to fclose().



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  291

fclose( fp );
}

return 0;
}

stdin, stdout, and stderr
C provides you with three FILE pointers that are always available 
and always open. stdin represents the keyboard, stdout repre-
sents the console window, and stderr represents the file where the 
user wants all error messages sent. These three pointers are nor-
mally associated with command line–oriented operating systems, 
such as UNIX and DOS, but it’s definitely worth knowing about 
them.

In printFile, we used the function fgetc() to read a character 
from a previously opened file. The following line will read the next 
character from the keyboard’s input buffer:

c = fgetc( stdin );

Thus, fgetc( stdin ) is equivalent to calling getchar().

As you’ll see in the next few sections, whenever C provides a mech-
anism for reading or writing to a file, C also provides a similar 
mechanism for reading from stdin or writing to stdout. You prob-
ably won’t use stdin and stdout in your code, but it’s good to 
know what they are and what they do.

Working with Files, Part Two
So far, you’ve learned how to open a file by using fopen() and how 
to read from a file by using fgetc(). You’ve seen, once again, that 
you can often use two different functions to solve the same problem. 
Now let’s look at some functions that allow you to write data out to 
a file.



Working with Files
Working with Files, Part Two

292   Learn C under Windows 95/NT

Writing to a File
The Standard Library offers several functions that write data out to 
a previously opened file. This section will introduce three of them: 
fputc(), fputs(), and fprintf().

The first, fputc(), takes an int holding a character value and 
writes the character out to the specified file. The function fputc() 
is declared as follows:

int fputc( int c, FILE *fp );

If fputc() successfully writes the character out to the file, it returns 
the value passed to it in the parameter c. If the write fails for some 
reason, fputc() returns the value EOF.

By the Way Note that:

fputc( c, stdout );

is the same as calling:

putchar( c );

The function fputs() is similar to fputc() but writes out a zero-
terminated string instead of a single character. This function is de-
clared as follows:

int fputs( const char *s, FILE *fp );

fputs() writes out all the characters in the string but does not 
write out the terminating 0. If the write succeeds, fputs() returns a 
0. If the write fails, fputs() returns EOF.

The third function, fprintf(), works just like printf(). Instead 
of sending its output to the console window, fprintf() writes its 
output to the specified file. It is declared as follows:



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  293

int fprintf( FILE *fp, const char *format, ... );

The first parameter specifies the file to be written to. The second is 
the format-specification text string. Any further parameters depend 
on the contents of that string. 

A Sample Program: cdFiler.cwp
In Chapter 9, we ran cdTracker, a program designed to help you 
track your compact disc collection. The big shortcoming of 
cdTracker is its inability to save your carefully entered CD data. 
As you quit the program, the CD information you entered gets dis-
carded, forcing you to start over the next time you run cdTracker.

Our next program, cdFiler, solves this problem by adding two 
special functions to cdTracker. ReadFile() opens a file named 
cdData, reads in the CD data in the file, and uses the data to build a 
linked list of cdInfo structs. WriteFile() writes the linked list 
back out to the file.

Open the Learn C Projects  directory, go inside the subdirec-
tory 10.02 - cdFiler, and open the project cdFiler.cwp. 
Check out the cdFiler.cwp project window shown in Figure 10.2. 
Notice that there are two separate source code files. Your project can 
contain as many source code files as you like. Just make sure that 
only one of the files has a function named main(), since that’s 
where your program will start.

The file main.c is almost identical to the file cdTracker.c from 
Chapter 9. The file files.c contains the functions that allow 
cdFiler to read and write the file cdData.



Working with Files
Working with Files, Part Two

294   Learn C under Windows 95/NT

Figure 10.2 The cdFiler.cwp project window.

Exploring cdData

Before you run the program, take a quick look at the file cdData. 
Select Open from the File menu. When prompted for a text file to 
open, select the file cdData. A text editing window for cdData will 
appear on the screen. At first glance, the contents of the file may not 
make much sense, but the text does follow a well-defined pattern:

Frank Zappa
Anyway the Wind Blows
8
Edith Piaf
The Voice of the Sparrow
10
Joni Mitchell
For the Roses
9

The file is organized in three-line clusters. Each cluster contains a 
one-line CD artist, a one-line CD title, and a one-line numerical CD 
rating.



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  295

Important The layout of your data files is as important a part of the software 
design process as the layout of your program’s functions. The file 
described here follows a well-defined pattern. As you lay out a file 
for your next program, think about the future. Can you live with 
one-line CD titles? Do you want the ability to add a new CD field, 
perhaps the date of the CD’s release?

The time to think about these types of questions is at the begin-
ning of your program’s life, during the design phase.

Running cdFiler

Before you run cdFiler, close the cdData text editing window.

Warning To create this window, CodeWarrior had to open the file cdData. If 
you don’t close the window before you run the program, the file will 
remain open. When you run cdFiler, it will also open the file. 
You’ll have the same file open in two places. That is not a good 
idea. Although CodeWarrior allows you to do this, your results can 
be somewhat unpredictable.

Once the window is closed, run cdFiler by selecting Run from the 
Project menu. The console window will appear, prompting you for a 
‘q’, ‘n’, or ‘l’:

Enter command (q=quit, n=new, l=list): l

Type l, followed by a carriage return. This will list the CDs cur-
rently in the program’s linked list. If you need a refresher on linked 
lists, now would be a perfect time to turn back to Chapter 9.

Enter command (q=quit, n=new, l=list):  l

----------



Working with Files
Working with Files, Part Two

296   Learn C under Windows 95/NT

Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  8

----------
Artist:  Edith Piaf
Title:   The Voice of the Sparrow
Rating:  10

----------
Artist:  Joni Mitchell
Title:   For the Roses
Rating:  9

----------
Enter command (q=quit, n=new, l=list):
  

Whereas Chapter 9’s cdTracker started with an empty linked list, 
cdFiler starts with a linked list built from the contents of the 
cdData file. The CDs you just listed should match the CDs you saw 
when you edited the cdData file.

Let’s add a fourth CD to the list. Type n, followed by a carriage re-
turn:

Enter command (q=quit, n=new, l=list): n

----------
Enter Artist’s Name: Adrian Belew
Enter CD Title: Mr. Music Head
Enter CD Rating (1-10): 8

----------
Enter command (q=quit, n=new, l=list):

Next, type l to make sure that your new CD made it into the list:



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  297

Enter command (q=quit, n=new, l=list): l

----------
Artist:  Frank Zappa
Title:   Anyway the Wind Blows
Rating:  8

----------
Artist:  Edith Piaf
Title:   The Voice of the Sparrow
Rating:  10

----------
Artist:  Joni Mitchell
Title:   For the Roses
Rating:  9

----------
Artist: Adrian Belew
Title:  Mr. Music Head
Rating: 8

----------
Enter command (q=quit, n=new, l=list): 

Finally, type q, followed by a carriage return. This causes the pro-
gram to write the current linked list back out to the file cdData. To 
prove that this worked, run cdFiler one more time. When 
prompted for a command, type l to list your current CDs. You 
should find your new CD nestled at the bottom of the list. Let’s see 
how this works.

Stepping Through the Source Code

The file cdFiler.h contains source code that will be included by 
both main.c and files.c. The first four #defines should be fa-
miliar to you. The fifth creates a constant containing the name of the 
file containing our CD data:



Working with Files
Working with Files, Part Two

298   Learn C under Windows 95/NT

/***********/
/* Defines */
/***********/
#define true 1
#define false 0

#define kMaxArtistLength 50
#define kMaxTitleLength 50

#define kCDFileName “cdData”

This CDInfo struct  is identical to the one found in cdTracker:

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo *next;

};

Just as we did in cdTracker, we’ve declared two globals to keep 
track of the beginning and end of our linked list. The extern key-
word at the beginning of the declaration tells the C compiler to link 
this declaration to the definition of these two globals, which can be 
found in main.c. If you removed the extern keyword from this 
line, the compiler would first compile files.c, defining space for 
both pointers. When the compiler went to compile main.c, it would 
complain that these globals were already declared.

The extern mechanism allows you to declare a global without allo-
cating memory for it. Since the extern declaration doesn’t allocate 
memory for your globals, you’ll need another declaration (usually 



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  299

found in the same file as main()) that does allocate memory for the 
globals. You’ll see that declaration in main.c:

/***********************/
/* Global Declarations */
/***********************/
 extern struct CDInfo *gFirstPtr, *gLastPtr;

Next comes the list of function prototypes. By listing all the func-
tions in this #include file, we make all functions available to be 
called from all other functions. As your programs get larger and 
more sophisticated, you might want to create a separate include file 
for each of your source code files. Some programmers create one in-
clude file for globals, another for defines, and another for function 
prototypes. 

/********************************/
/* Function Prototypes - main.c */
/********************************/
char GetCommand( void );
struct CDInfo *ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void ListCDs( void );
void ListCDsInReverse( void );
void Flush( void );

/*********************************/
/* Function Prototypes - files.c */
/*********************************/
void WriteFile( void );
void ReadFile( void );
char ReadStructFromFile( FILE *fp, struct CDInfo 

*infoPtr );



Working with Files
Working with Files, Part Two

300   Learn C under Windows 95/NT

The file main.c is almost exactly the same as the file cdTracker.c 
from Chapter 9. There are four differences, however. First, we in-
clude the file cdFiler.h instead of cdTracker.h:

#include <stdlib.h>
#include <stdio.h>
#include “cdFiler.h”

Next, we include the definitions of our two globals directly in this 
source code file, to go along with the extern declarations in 
cdFiler.h. This definition is where the memory gets allocated for 
these two global pointers:

/***********************/
/* Global Definitions */
/***********************/
struct CDInfo *gFirstPtr, *gLastPtr;

The last two differences are contained in main(). Before we enter 
the command-processing loop, we call ReadFile() to read in the 
cdData file and turn the contents into a linked list:

/****************************************> main <*/
int main( void )
{
char command;

gFirstPtr = NULL;
gLastPtr = NULL;

ReadFile();

while ( (command = GetCommand() ) != ‘q’ )
{
switch( command )
{



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  301

case ‘n’:
AddToList( ReadStruct() );
break;

case ‘l’:
ListCDs();
break;

}
}

Once we drop out of the loop, we call WriteFile() to write the 
linked list out to the file cdData:

WriteFile();

printf( “Goodbye...” );

return 0;
}

For completeness, here’s the remainder of cdMain.c. Each of these 
functions is identical to its cdTracker.c  counterpart:

/**********************************> GetCommand <*/
char GetCommand( void )
{
char command;

do 
{
printf( “Enter command (q=quit, n=new, 

l=list):  “ );
scanf( “%c”, &command );
Flush();

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) );



Working with Files
Working with Files, Part Two

302   Learn C under Windows 95/NT

printf( “\n----------\n” );
return( command );

}

/********************************> ReadStruct <*/
struct CDInfo *ReadStruct( void )
{
struct CDInfo *infoPtr;
int num;

infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

printf( “Enter Artist’s Name:  “ );
gets( infoPtr->artist );

printf( “Enter CD Title:  “ );
gets( infoPtr->title );

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );

infoPtr->rating = num;

printf( “\n----------\n” );



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  303

return( infoPtr );
}

/***********************************> AddToList <*/
void AddToList( struct CDInfo *curPtr )
{
if ( gFirstPtr == NULL )
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

}

/*************************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo *curPtr;

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}
else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; curPtr = 

curPtr->next )
{
printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );



Working with Files
Working with Files, Part Two

304   Learn C under Windows 95/NT

}
}

}

/***********************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

The file files.c starts out with the same #includes as main.c:

#include <stdlib.h>
#include <stdio.h>
#include “cdFiler.h”

WriteFile() first checks to see whether there are any CDs to write 
out. If gFirstPtr is NULL (the value it was set to in main()), no 
CDs have been entered yet, and we can just return:

/**********************************> WriteFile <*/
void WriteFile( void )
{
FILE *fp;
struct CDInfo *infoPtr;
int num;

if ( gFirstPtr == NULL )
return;

Next, we’ll open the file cdData for writing. If fopen() returns 
NULL, we know that it couldn’t open the file, and we’ll print out an 
error message and return:



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  305

if ( ( fp = fopen( kCDFileName, “w” ) ) == NULL )
{
printf( “***ERROR: Could not write CD file!” );
return;

}

This for loop steps through the linked list, setting infoPtr to 
point to the first struct in the list, then moving it to point to the 
next struct, and so on, until infoPtr is equal to NULL. Since the 
last struct in our list sets its next pointer to NULL, infoPtr will 
be equal to NULL when it points to the last struct in the list and the 
third for statement is executed:

for ( infoPtr=gFirstPtr; infoPtr!=NULL; 
infoPtr=infoPtr->next )

{

Each time through the list, we call fprintf() to print the artist 
string, followed by a carriage return, and then the title string, fol-
lowed by a carriage return. Remember, each of these strings was 
zero-terminated, a requirement if you plan on using the %s format 
specifier:

fprintf( fp, “%s\n”, infoPtr->artist );
fprintf( fp, “%s\n”, infoPtr->title );

Finally, we convert the rating field to an int by assigning it to the 
int num, then print it (as well as a following carriage return) to the 
file by using fprintf(). We converted the char to an int because 
the %d format specifier was designed to work with an int, not a 
char:

num = infoPtr->rating;
fprintf( fp, “%d\n”, num );

}



Working with Files
Working with Files, Part Two

306   Learn C under Windows 95/NT

Once we finish writing the linked list into the file, we’ll close the file 
by calling fclose():

fclose( fp );
}

ReadFile() starts by opening the file cdData for reading. If we 
can’t open the file, we’ll print an error message and return, leaving 
the list empty:

/************************************> ReadFile <*/
void ReadFile( void )
{
FILE *fp;
struct CDInfo *infoPtr;
int i;

if ( ( fp = fopen( kCDFileName, “r” ) ) == NULL )
{
printf( “***ERROR: Could not read CD file!” );
return;

}

With the file open, we’ll enter a loop that continues as long as 
ReadStructFromFile() returns true. By using the do-while 
loop, we’ll execute the body of the loop before we call 
ReadStructFromFile() for the first time. This is what we want. 
The body of the loop attempts to allocate a block of memory the size 
of a CDInfo struct. If the malloc() fails, we’ll bail out of the 
program:

do
{
infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )



Working with Files
Working with Files, Part Two

Learn C under Windows 95/NT  307

{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}
}
while ( ReadStructFromFile( fp, infoPtr ) );

ReadStructFromFile() will return false when it reaches the 
end of the file, when it can’t read another set of CDInfo fields. In 
that case, we’ll close the file and free up the last block we just allo-
cated, since we have nothing to store in it:

fclose( fp );
free( infoPtr );

}

ReadStructFromFile() uses a funky form of fscanf() to read 
in the first two CDInfo fields. Notice the use of the format descrip-
tor “%[^\n]\n”. This tells fscanf() to read characters from the 
specified file until it reaches an ‘\n’, then to read the ‘\n’ charac-
ter and stop. The characters [^\n] represent the set of all characters 
except ‘\n’. Note that the %[ format specifier places a zero-termi-
nating byte at the end of the characters it reads in:

/************************> ReadStructFromFile <*/
char ReadStructFromFile( FILE *fp, struct CDInfo 

*infoPtr )
{
int num;

if ( fscanf( fp, “%[^\n]\n”, infoPtr->artist ) 
!= EOF )

{



Working with Files
Working with Files, Part Two

308   Learn C under Windows 95/NT

By the Way The square brackets inside a format specifier give you much 
greater control over scanf(). For example, the format specifier 
“%[abcd]” would tell scanf() to keep reading as long as it was 
reading an ‘a’, a ‘b’, a ‘c’, or a ‘d’. The first non-[abcd] 
character would be left in the input buffer for the next part of the 
format specifier or for the next read operation to pick up.

If the first character in the set is the character ^, the set represents 
the characters that do not belong to the set. In other words, the for-
mat specifier “%[^abcd]” tells scanf() to continue reading as 
long as it doesn’t encounter any of the characters ‘a’, ‘b’, ‘c’, 
or ‘d’.

If fscanf() reaches the end of the file, we’ll return false, letting 
the calling function know that there are no more fields to read. If 
fscanf() succeeds, we’ll move on to the title field, using the 
same technique. If this second fscanf() fails, we’ve got a problem, 
since we read an artist but couldn’t read a title.

if ( fscanf( fp, “%[^\n]\n”, infoPtr->title ) 
== EOF )

{
printf( “Missing CD title!\n” );
return false;

}

If we got both the artist and title, we’ll use a more normal for-
mat specifier to pick up an int and the third carriage return: 

else if ( fscanf( fp, “%d\n”, &num ) == EOF )
{
printf( “Missing CD rating!\n” );
return false;

}



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  309

If we picked up the int, we’ll use the assignment operator to con-
vert the int to a char and add the now complete struct to the list 
by passing it to AddToList():

else
{
infoPtr->rating = num;
AddToList( infoPtr );
return true;

}
}
else
return false;

}

Working with Files, Part Three
Now that you’ve mastered the basics of file reading and writing, 
there are a few more topics worth exploring before we leave this 
chapter. We’ll start off with a look at some additional file-opening 
modes.

The “Update” Modes
So far, you’ve encountered the three basic file-opening modes: “r”, 
“w”, and “a”. Each of these modes has a corresponding update 
mode, specified by adding + to the mode. The three update 
modes—”r+”, “w+”, and “a+”—allow you to open a file for both 
reading and writing.

Important Alhough the three update modes do allow you to switch between 
read and write operations without reopening the file, you must first 
call fsetpos(), fseek(), rewind(), or fflush() before you 
make the switch. (See Appendix C or the C Library Reference on 
the CD.)



Working with Files
Working with Files, Part Three

310   Learn C under Windows 95/NT

In other words, if your file is opened using one of the update 
modes, you can’t call fscanf() and then call fprintf() (or call 
fprintf() followed by fscanf()) unless you call fsetpos(), 
fseek(), rewind(), or fflush() in between.

In Harbison and Steele’s C:  A Reference Manual, there’s a great chart 
that summarizes these modes quite nicely. My version of the chart is 
shown in Figure 10.3. Before you read on, take a minute to look the 
chart over to be sure you understand the different file modes.

By the Way C also allows a file mode to specify whether a file is limited to 
ASCII characters (text mode) or is allowed to hold any type of data 
at all (binary mode). To open a file in text mode, just append a t at 
the end of the mode string (as in “rt” or “w+t”). To open a file in 
binary mode, append a b at the end of the mode string (as in “rb” 
or “w+b”).

If you use a file mode that doesn’t include a t or a b, check your 
development environment manuals to find out which of the two 
types is the default.

Figure 10.3 My version of the Harbison and Steele file mode chart 
showing the rules associated with the six basic file-opening 
modes.

Mode Rules
Named file must already exist
Existing file's contents are lost
Read OK
Write OK
Write begins at end of file

yes
no
yes
no
no

"r" "w" "a" "r+" "w+" "a+"
no
yes
no
yes
no

no
no
no
yes
yes

yes
no
yes
yes
no

no
yes
yes
yes
no

no
no
yes
yes
yes



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  311

Random File Access
So far, each of the examples presented in this chapter has treated 
files as a sequential stream of bytes. When cdFiler read from a 
file, it started at the beginning of the file and read the contents, one 
byte at a time or in larger chunks, but from the beginning straight 
through until the end. This sequential approach works fine if you in-
tend to read or write the entire file all at once. As you might have 
guessed, there is another model.

Instead of starting at the beginning and streaming through a file, 
you can use a technique called random file access. The Standard Li-
brary provides a set of functions that let you reposition the file posi-
tion indicator to any location within the file, so that the next read or 
write you do occurs exactly where you want it to.

Imagine a file filled with 100 longs, each 4 bytes long. The file 
would be 400 bytes long. Now suppose that you wanted to retrieve 
the 10th long in the file. Using the sequential model, you would 
have to do 10 reads to get the 10th long into memory. Unless you 
read the entire file into memory, you’ll continually be reading a se-
ries of longs to get to the long you want.

Using the random-access model, you would first calculate where in 
the file the 10th long starts, jump to that position in the file, and 
then just read that long. To move the file position indicator just be-
fore the 10th long, you’d skip over the first nine longs (9*4 = 36 
bytes).

The fseek(), ftell(), and rewind() 
Functions
There are five functions that you’ll need to know about in order to 
randomly access your files. One of those functions, fseek(), moves 
the file position indicator to an offset you specify, relative to the be-
ginning of the file, the current file position, or the end of the file:

int fseek( FILE *fp, long offset, int wherefrom );

You’ll pass your FILE pointer as the first parameter, a long offset as 
the second parameter, and one of SEEK_SET, SEEK_CUR, or 



Working with Files
Working with Files, Part Three

312   Learn C under Windows 95/NT

SEEK_END as the third parameter. SEEK_SET represents the begin-
ning of the file, SEEK_CUR represents the current position, and 
SEEK_END represents the end of the file (in which case you’ll proba-
bly use a negative offset).

The function ftell() takes a FILE pointer as a parameter and re-
turns a long containing the value of the file position indicator:

long ftell( FILE *fp );

The function rewind() takes a FILE pointer as a parameter and re-
sets the file position indicator to the beginning of the file:

void rewind( FILE *fp );

By the Way The functions fsetpos() and fgetpos() were introduced as 
part of ISO C and allow you to work with file offsets that are larger 
than will fit in a long. You can look these two functions up in the 
usual places.

A Sample Program: dinoEdit.cwp
The last sample program in this chapter, dinoEdit is a simple ex-
ample of random file access. The program allows you to edit a series 
of dinosaur names stored in a file named My Dinos. Each dinosaur 
name in this file is 20 characters long. If the dinosaur name is shorter 
than 20 characters, the appropriate number of spaces is added to the 
name to bring the length up to 20. This is done to make the size of 
each item in the file a fixed length. You’ll see why this is important 
as we go through the source code. For now, let’s take dinoEdit for 
a spin.

Open the Learn C Projects  directory, go inside the subdirec-
tory 10.03 - dinoEdit, and open the project dinoEdit.cwp. 
Run dinoEdit by selecting Run from the Project menu. The pro-
gram will count the number of dinosaur names in the file My Dinos 
and will use that number to prompt you for a dinosaur number to 
edit:



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  313

Enter number from 1 to 5 (0 to exit): 

Since the file My Dinos on your CD has five dinosaur names, enter 
a number from 1 to 5:

Enter number from 1 to 5 (0 to exit): 3

If you enter the number 3, for example, dinoEdit will fetch the 
third dinosaur name from the file, then ask you to enter a new name 
for the third dinosaur. If you enter a return without typing a new 
name, the existing name will remain untouched. If you type a new 
name, dinoEdit will overwrite the existing name with the new 
name:

Dino #3: Galimimus           
Enter new name: Euoplocephalus

Either way, dinoEdit will prompt you to enter another dinosaur 
number. Reenter the same number, so you can verify that the change 
was made in the file:

Enter number from 1 to 5 (0 to exit): 3
Dino #3: Euoplocephalus      
Enter new name: 
Enter number from 1 to 5 (0 to exit): 0
Goodbye...

Let’s take a look at the source code.

Stepping Through the Source Code

The file dinoEdit.h  starts off with a few #defines:  true, 
false, kDinoRecordSize, kMaxLineLength, 
kDinoFileName.  kDinoRecordSize  defines the length of each 
dinosaur record.  kMaxLineLength  defines the length of an array 
of chars we’ll use to read in any new dinosaur names.  



Working with Files
Working with Files, Part Three

314   Learn C under Windows 95/NT

kDinoFileName  is the name of the dinosaur file. Note that the di-
nosaur file doesn’t contain any carriage returns, just 5 * 20 = 100 
bytes of pure dinosaur pleasure!

/***********/
/* Defines */
/***********/
#define true 1
#define false 0

#define kDinoRecordSize 20
#define kMaxLineLength 100
#define kDinoFileName “My Dinos”

Next come the function prototypes for the functions in main.c:

/********************************/
/* Function Prototypes - main.c */
/********************************/
int GetNumber( void );
int GetNumberOfDinos( void );
void ReadDinoName( int number, char *dinoName );
char GetNewDinoName( char *dinoName );
void WriteDinoName( int number, char *dinoName );
void Flush( void );
void DoError( char *message );

First, main.c starts with four #includes: <stdlib.h> gives us ac-
cess to the function exit(); <stdio.h> gives us access to a num-
ber of functions, including printf() and all the file-manipulation 
functions, types, and constants; and <string.h> gives us access to 
the function strlen(). You’ve already seen what “dinoEdit.h” 
brings to the table:

#include <stdlib.h>
#include <stdio.h>



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  315

#include <string.h>
#include “dinoEdit.h”

By the Way If you ever want to find out which of the functions you call are de-
pendent on which of your include files, just comment out the #in-
clude statement in question and recompile. The compiler will 
spew out an error message (or a whole bunch of messages) telling 
you it couldn’t find a prototype for a function you called.

main() basically consists of a loop that first prompts for a dinosaur 
number at the top of the loop, then processes the selection in the 
body of the loop:

/****************************************> main <*/
int main( void )
{
int number;
FILE *fp;
char dinoName[ kDinoRecordSize+1 ];

GetNumber() prompts for a dinosaur number between 0 and the 
number of dinosaur records in the file. If the user types 0, we’ll drop 
out of the loop and exit the program:

while ( (number = GetNumber() ) != 0 )
{

If we made it here, GetNumber() must have returned a legitimate 
record number. ReadDinoName() takes the dinosaur number and 
returns the corresponding dinosaur name from the file. The re-
turned dinosaur name is then printed:

ReadDinoName( number, dinoName );

printf( “Dino #%d: %s\n”, number, dinoName );



Working with Files
Working with Files, Part Three

316   Learn C under Windows 95/NT

GetNewDinoName() prompts the user for a new dinosaur name to 
replace the existing name. GetNewDinoName() returns true if a 
name is entered and false if the user just entered a return. If the 
user entered a name, we’ll pass it on to WriteDinoName(), which 
will write the name in the file, overwriting the old name:

if ( GetNewDinoName( dinoName ) )
WriteDinoName( number, dinoName );

}

printf( “Goodbye...” );

return 0;
}

GetNumber() starts off with a call to GetNumberOfDinos(). As its 
name implies, GetNumberOfDinos() goes into the dinosaur file 
and returns the number of records in the file:

/***********************************> GetNumber <*/
int GetNumber( void )
{
int number, numDinos;

numDinos = GetNumberOfDinos();

GetNumber() then continuously prompts for a dinosaur number 
until the user enters a number between 0 and numDinos:

do 
{
printf( “Enter number from 1 to %d (0 to 

exit): “,numDinos );
scanf( “%d”, &number );
Flush();



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  317

}
while ( (number < 0) || (number > numDinos) );

return( number );
}

GetNumberOfDinos() starts our file-management adventure. 
First, we’ll open My Dinos for reading only:

/*************************> GetNumberOfDinos <*/
int GetNumberOfDinos( void )
{
FILE *fp;
long fileLength;

if ( (fp = fopen( kDinoFileName, “r” )) == NULL )
DoError( “Couldn’t open file...Goodbye!” );

Important Notice that we’ve passed an error message to a function called 
DoError() instead of printing it with printf(). There are several 
reasons for doing this. First, since DoError() executes two lines 
of code (calls of printf() and exit()), each DoError() call 
saves a bit of code.

More important, this approach encapsulates all our error handling 
in a single function. If we want to send all error messages to a log 
file, all we have to do is edit DoError() instead of hunting down 
all the error messages and attaching a few extra lines of code.

Next, we’ll call fseek() to move the file position indicator to the 
end of the file. Can you see what’s coming?

if ( fseek( fp, 0L, SEEK_END ) != 0 )
DoError( “Couldn’t seek to end of

file...Goodbye!” );



Working with Files
Working with Files, Part Three

318   Learn C under Windows 95/NT

Now, we’ll call ftell() to retrieve the current file position indica-
tor, which also happens to be the file length! Cool!

if ( (fileLength = ftell( fp )) == -1L )
DoError( “ftell() failed...Goodbye!” );

Now that we have the file length, we can close the file:

fclose( fp );

Finally, we’ll calculate the number of dinosaur records by dividing 
the file length by the number of bytes in a single record. For simplic-
ity’s sake, we’ll convert the number of records to an int before we 
return it. That means that we can’t deal with a file that contains 
more than 32,767 dinosaur records. How many dinosaurs can you 
name?

return( (int)(fileLength / kDinoRecordSize) );
}

ReadDinoName() first opens the file for reading only.

/********************************> ReadDinoName <*/
void ReadDinoName( int number, char *dinoName )
{
FILE *fp;
long bytesToSkip;

if ( (fp = fopen( kDinoFileName, “r” )) == NULL )
DoError( “Couldn’t open file...Goodbye!” );

Since we’ll be reading the numberth dinosaur, we have to move the 
file position indicator to the end of the (number-1)th dinosaur. 
That means that we’ll need to skip over (number-1) dinosaur 
records:



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  319

bytesToSkip = (long)((number-1) * 
kDinoRecordSize);

We’ll use fseek() to skip that many bytes from the beginning of 
the file (that’s what the constant SEEK_SET is for):

if ( fseek( fp, bytesToSkip, SEEK_SET ) != 0 )
DoError( “Couldn’t seek in file...Goodbye!” );

Finally, we’ll call fread() to read the dinosaur record into the array 
of chars pointed to by dinoName. The first fread() parameter is 
the pointer to the block of memory where the data will be read. The 
second parameter is the number of bytes in a single record. Since 
fread() expects both the second and third parameters to be of type 
size_t, we’ll use a typecast to make the compiler happy. (Gee, by 
the time we talk about typecasting in Chapter 11, you’ll already be 
an expert!) The third parameter is the number of records to read in. 
We want to read in one record of kDinoRecordSize  bytes. The 
last parameter is the FILE pointer we got from fopen().

Because fread() returns the number of records read, we expect to 
return a value of 1, since we asked fread() to read one record. If 
that doesn’t happen, something is dreadfully wrong (perhaps the 
file got corrupted or that Pepsi you spilled in your hard drive is fi-
nally starting to take effect).

if ( fread( dinoName, (size_t)kDinoRecordSize,
(size_t)1, fp ) != 1 )
DoError( “Bad fread()...Goodbye!” );

Once again, we close the file when we’re done working with it.

fclose( fp );
}



Working with Files
Working with Files, Part Three

320   Learn C under Windows 95/NT

GetNewDinoName() starts by prompting for a new dinosaur name, 
then calling gets() to read in a line of text:

/******************************> GetNewDinoName <*/
char GetNewDinoName( char *dinoName )
{
char line[ kMaxLineLength ];
int i, nameLen;

printf( “Enter new name: “ );

gets( line );

If the line was empty (if the user just entered a carriage return), we’ll 
return false, letting the calling function know that the user has, in 
effect, decided not to replace the dinosaur name:

if ( line[0] == ‘\0’ )
return false;

Our next step is to fill the dinoName array with spaces. We’ll then 
call strlen() to find out how many characters the user typed in. 
We’ll copy those characters back into the dinoName array, leaving 
dinoName with a dinosaur name, followed by a bunch of spaces:

for ( i=0; i<kDinoRecordSize; i++ )
dinoName[i] = ‘ ‘;

strlen() takes a pointer to a zero-terminated string and returns 
the length of the string, not including the 0 terminator:

nameLen = strlen( line );

If the user typed a dinosaur name larger than 20 characters long, 
we’ll copy only the first 20 characters:



Working with Files
Working with Files, Part Three

Learn C under Windows 95/NT  321

if ( nameLen > kDinoRecordSize )
nameLen = kDinoRecordSize;

Here’s where we copy the characters from line into dinoName:

for ( i=0; i<nameLen; i++ )
dinoName[i] = line[i];

Finally, we’ll return true to let the calling function know that the 
name is ready:

return true;
}

WriteDinoName() opens the file for reading and writing. Since we 
used a mode of “r+” instead of “w+”, we won’t lose the contents of 
My Dinos (in other words, My Dinos won’t be deleted and recre-
ated):

/*******************************> WriteDinoName <*/
void WriteDinoName( int number, char *dinoName )
{
FILE *fp;
long bytesToSkip;

if ( (fp = fopen( kDinoFileName, “r+” )) == NULL)
DoError( “Couldn’t open file...Goodbye!” );

Next, we calculate the number of bytes we need to skip to place the 
file position indicator at the beginning of the record we want to 
overwrite, then call fseek() to move the file position indicator:

bytesToSkip = (long)((number-1) * 
kDinoRecordSize);



Working with Files
Working with Files, Part Three

322   Learn C under Windows 95/NT

if ( fseek( fp, bytesToSkip, SEEK_SET ) != 0 )
DoError( “Couldn’t seek in file...Goodbye!” );

We then call fwrite() to write the dinosaur record back out. Note 
that fwrite() works exactly the same way as fread(), including 
returning the number of records written:

if ( fwrite( dinoName, (size_t)kDinoRecordSize,
(size_t)1, fp ) != 1 )
DoError( “Bad fwrite()...Goodbye!” );

fclose( fp );
}

You’ve seen this function before:

/***************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

DoError() prints the error message, adding a carriage return, then 
exits:

/*************************************> DoError <*/
void DoError( char *message )
{
printf( “%s\n”, message );
exit( 0 );

}



Working with Files
What’s Next?

Learn C under Windows 95/NT  323

What’s Next?
Chapter 11 tackles a wide assortment of programming topics. We’ll 
look at typecasting, the technique used to translate from one type to 
another. We’ll cover recursion, the ability of a function to call itself. 
We’ll also examine function pointers, variables that can be used to 
pass a function as a parameter.

Exercises
1. What’s wrong with each of the following code fragments:

a. FILE *fp;

fp = fopen( “w”, “My Data File” );

if ( fp != NULL )

printf( “The file is open.” );

b. char myData = 7;

FILE *fp;

fp = fopen( “r”, “My Data File” );

fscanf( “Here’s a number: %d”, &myData );

c. FILE *fp;

char *line;

fp = fopen( “My Data File”, “r” );

fscanf( fp, “%s”, &line );

d. FILE *fp;

char line[100];

fp = fopen( “My Data File”, “w” );

fscanf( fp, “%s”, line );



Working with Files
Exercises

324   Learn C under Windows 95/NT

2. Write a program that reads in and prints a file with the 
following format:

• The first line in the file contains a single int. Call it x.

• All subsequent lines contain a list of x ints separated 
by tabs. 

If the first number in the file is 6, all subsequent lines will 
have six ints per line. There is no limit to the number of lines 
in the file. Keep reading and printing lines until you reach the 
end of the file.

You can print each int as you encounter it or, for extra credit, 
allocate an array of ints large enough to hold one line’s 
worth of ints, then pass that array to a function that prints 
an int array.

3. Modify cdFiler.cwp so that memory for the artist and 
title lines is allocated as the lines are read in. First, you’ll 
need to change the CDInfo struct declaration as follows:

struct CDInfo
{
char rating;
char *artist
char *title;
struct CDInfo *next;

};

In addition to calling malloc() to allocate a CDInfo 
struct, you’ll call malloc() to allocate space for the 
artist and title strings. Don’t forget to leave enough 
space for the terminating 0 at the end of each string.



Learn C under Windows 95/NT  325

11
Advanced Topics
Congratulations! By now, you’ve mastered most of the fundamental 
C programming concepts. This chapter will fill you in on some use-
ful C programming tips, tricks, and techniques that will enhance 
your programming skills. We’ll start with a look at typecasting, C’s 
mechanism for translating one data type to another.

What Is Typecasting?
There often will be times when you find yourself trying to convert a 
variable of one type to a variable of another type. For example, the 
following code fragment causes the line i is equal to 3 to ap-
pear in the console window:

float f;
int i;

f = 3.5;
i = f;

printf( “i is equal to %d”, i );

Notice that the original value assigned to f was truncated from 3.5 
to 3 when the value in f was assigned to i. This truncation was 
caused when the compiler saw an int on the left side and a float 
on the right side of this assignment statement:

i = f;

The compiler automatically translated the float to an int. In gen-
eral, the right-hand side of an assignment statement is always trans-



Advanced Topics
What Is Typecasting?

326   Learn C under Windows 95/NT

lated to the type on the left-hand side when the assignment occurs. 
In this case, the compiler handled the type conversion for you.

Typecasting is a mechanism you can use to translate the value of an 
expression from one type to another. A typecast, or just plain cast, 
always takes this form:

(type) expression

The type is any legal C type. Look at the following code fragment:

float f;

f = 1.5;

The variable f gets assigned a value of 1.5. Now look at this code 
fragment:

float f;

f = (int)1.5;

The value of 1.5 is cast as an int before being assigned to f. Just as 
you might imagine, casting a float as an int truncates the float, 
turning the value 1.5 into 1. In this example, two casts were per-
formed. First, the float value 1.5 was cast to the int value 1. When 
this int value was assigned to the float f, the value was cast to 
the float value 1.0.

Cast with Care
Use caution when you cast from one type to another. Problems can 
arise when casting between types of a different size. Consider this 
example:

int i;
char c;



Advanced Topics
What Is Typecasting?

Learn C under Windows 95/NT  327

i = 500;
c = i;

Here, the value 500 is assigned to the int i. So far, so good. Next, 
the value in i is cast to a char as it is assigned to the char c. See 
the problem? Since a char can hold values only between –128 and 
127, assigning a value of 500 to c doesn’t make sense.

By the Way So what happens to the extra byte or bytes when a larger type is 
cast to a smaller type? The matching bytes are typecast, and the 
value of any extra bytes is lost. 

For example, when a 2-byte int is cast to a 1-byte char, the left-
most byte of the int (the byte with the more significant bits, the 
bits valued 28 through 215) is dropped, and the rightmost byte (the 
bits valued 20 through 27) is copied into the char.

Look at this:

int i;
char c;

i = 500;
c = i;

The int i has a value of 0x01E4, which is hex for 500. After the 
second assignment, the char ends up with the value 0xE4, which 
has a value of 244 if the char was unsigned or –12 if the char is 
signed.

To learn more about type conversions, check out Section 6.2 of 
Harbison and Steele’s C: A Reference Manual.



Advanced Topics
What Is Typecasting?

328   Learn C under Windows 95/NT

Casting with Pointers
Typecasting can also be used when working with pointers. The no-
tation (int *) myPtr  casts the variable myPtr as a pointer to an 
int. Casting with pointers allows you to link structs of different 
types. For example, suppose that you declared two struct types, 
as follows:

struct Dog
{
struct Dog *next;

} ;

struct Cat
{
struct Cat *next;

} ;

By using typecasting, you could create a linked list that contains 
both Cats and Dogs. Figure 11.1 shows a Dog whose next field 
points to a Cat. Imagine the source code you’d need to implement 
such a linked list.

Consider this source code:

struct Dog myDog;
struct Cat myCat;

myDog.next = &myCat; /* <—Compiler complains */
myCat.next = NULL;

Figure 11.1 myDog.next points to myCat, and myCat.next points to NULL.



Advanced Topics
What Is Typecasting?

Learn C under Windows 95/NT  329

In the first assignment statement, a pointer of one type is assigned to 
a pointer of another type: &myCat is a pointer to a struct of type 
Cat; myDog.next is declared to be a pointer to a struct of type 
Dog. To make this code compile, we’ll need a typecast:

struct Dog myDog;
struct Cat myCat;

myDog.next = (struct Dog *)(&myCat);
myCat.next = NULL;

If both sides of an assignment operator are arithmetic types (such as 
float, int, and char), the compiler will automatically cast the 
right-hand side of the assignment to the type of the left-hand side. If 
both sides are pointers, you’ll have to perform the typecast yourself.

There are a few exceptions to this rule. If the pointers on both sides 
of the assignment are the same type, no typecast is necessary. If the 
pointer on the right-hand side is either NULL or of type (void *), 
no typecast is necessary. Finally, if the pointer on the left-hand side 
is of type (void *), no typecast is necessary.

The type (void *) is sort of a wild card for pointers. It matches up 
with any pointer type. For example, here’s a new version of the Dog 
and Cat code:

struct Dog
{
void *next;

} ;

struct Cat
{
void *next;

} ;

struct Dog myDog;
struct Cat myCat;



Advanced Topics
Unions

330   Learn C under Windows 95/NT

myDog.next = &myCat;
myCat.next = NULL;

This code lets Dog.next point to a Cat struct without a typecast. 
If you are not sure what type your pointers will be pointing to, de-
clare your pointers as (void *).

By the Way The rules for typecasting are fairly complex and beyond the scope 
of this book. To learn more about type conversions, check out Sec-
tions 6.2 through 6.4 in C:  A Reference Manual by Harbison and 
Steele. If you plan on moving on to C++ (and you should), check 
out the discussion of type conversions in Learn C++ under Win-
dows 95/NT  by yours truly.

Unions
C offers a special data type, known as a union, which allows a sin-
gle variable to disguise itself as several different data types. A 
union data type is declared just like a struct. Here’s an example:

union Number
{
int i;
float f;
char *s;

} myNumber;

This declaration creates a union type named Number, as well as an 
individual Number named myNumber. If this were a struct decla-
ration, you’d be able to store three different values in the three fields 
of the struct. A union, on the other hand, lets you store one and 
only one of the union’s fields in the union. Here’s how this works.

When a union is declared, the compiler allocates the space required 
by the largest of the union’s fields, sharing that space with all of the 
union’s fields. If an int requires 4 bytes, a float 4 bytes, and a 



Advanced Topics
Unions

Learn C under Windows 95/NT  331

pointer 4 bytes, myNumber is allocated exactly 4 bytes. You can store 
an int, a float, or a char pointer in myNumber. The compiler al-
lows you to treat myNumber as any of these types. To refer to my-
Number as an int, refer to:

myNumber.i

To refer to myNumber as a float, refer to:

myNumber.f

To refer to myNumber as a char pointer, refer to:

myNumber.s

You are responsible for remembering which form the union is cur-
rently occupying.

Warning If you store an int in myUnion by assigning a value to 
myUnion.i, you’d best remember that fact. If you proceed to store 
a float in myUnion.f, you’ve just trashed your int. Remember, 
there are only 4 bytes allocated to the entire union.

In addition, storing a value as one type and then reading it as an-
other can produce unpredictable results. For example, if you 
stored a float in myNumber.f, the field myNumber.i would not 
be the same as (int)(myNumber.f).

One way to keep track of the current state of the union is to declare 
an int to go along with the union, as well as a #define for each of 
the union’s fields:

#define kUnionContainsInt 1
#define kUnionContainsFloat 2



Advanced Topics
Unions

332   Learn C under Windows 95/NT

#define kUnionContainsPointer 3

union Number
{
int i;
float f;
char *s;

} myNumber;

int myUnionTag;

If you are currently using myUnion as a float, assign the value 
kUnionContainsFloat  to myUnionTag. Later in your code, you 
can use myUnionTag when deciding which form of the union you 
are dealing with:

if ( myUnionTag == kUnionContainsInt )
DoIntStuff( myUnion.i );

else if ( myUnionTag == kUnionContainsFloat )
DoFloatStuff( myUnion.f );

else
DoPointerStuff( myUnion.s );

Why Use Unions?
In general, a union is most useful when dealing with two data 
structures that share a set of common fields but differ in some small 
way. For example, consider these two struct declarations:

struct Pitcher
{
char name[ 40 ];
int team;
int strikeouts;
int runsAllowed;

} ;



Advanced Topics
Unions

Learn C under Windows 95/NT  333

struct Batter
{
char name[ 40 ];
int team;
int runsScored;
int homeRuns;

} ;

These structs might be useful if you were tracking the pitchers 
and batters on your favorite baseball team. Both structs share a set 
of common fields: the array of chars named name and the int 
named team. Both structs have their own unique fields as well. 
The Pitcher struct  contains a pair of fields appropriate for a 
pitcher: strikeouts and runsAllowed. The Batter struct 
contains a pair of fields appropriate for a batter: runsScored and 
homeRuns.

One solution to your program would be to maintain two types of 
structs: a Pitcher and a Batter. There is nothing wrong with 
this approach. There is an alternative, however. You can declare a 
single struct that contains the fields common to Pitcher and 
Batter, with a union for the unique fields:

#define kMets 1
#define kReds 2

#define kPitcher 1
#define kBatter 2

struct Pitcher
{
int strikeouts;
int runsAllowed;

} ;

struct Batter
{



Advanced Topics
Unions

334   Learn C under Windows 95/NT

int runsScored;
int homeRuns;

} ;

struct Player
{
int type;
char name[ 40 ];
int team;
union
{
struct Pitcher pStats;
struct Batter bStats;

} u;
};

Here’s an example of a Player declaration:

struct Player myPlayer;

Once you created the Player struct, you would initialize the 
type field with one of either kPitcher or kBatter:

myPlayer.type = kBatter;

You would access the name and team fields like this:

myPlayer.team = kMets;
printf( “Stepping up to the plate:  %s”, 
myPlayer.name );

Finally, you’d access the union fields like this:

if ( myPlayer.type == kPitcher )
myPlayer.u.pStats.strikeouts = 20;



Advanced Topics
Function Recursion

Learn C under Windows 95/NT  335

The u was the name given to the union in the declaration of the 
Player type. Every Player you declare will automatically have a 
union named u built into it. The union gives you access to either a 
Pitcher struct  named pStats or a Batter struct  named 
bStats. The preceding example references the strikeouts field of 
the pStats field.

unions provide an interesting alternative to maintaining multiple 
data structures. Try them. Write your next program using a union 
or two. If you don’t like them, you can return them for a full refund.

Function Recursion
Some programming problems are best solved by repeating a mathe-
matical process. For example, to learn whether a number is prime 
(see Chapter 6), you might step through each of the even integers 
between 2 and the number’s square root, one at a time, searching for 
a factor. If no factor is found, you have a prime. The process of step-
ping through the numbers between 2 and the number’s square root 
is called iteration.

In programming, iterative solutions are fairly common. Almost 
every time you use a for loop, you are applying an iterative ap-
proach to a problem. An alternative to the iterative approach is 
known as recursion. In a recursive approach, instead of repeating a 
process in a loop, you embed the process in a function and have the 
function call itself until the process is complete. The key to recursion 
is a function calling itself.

Suppose that you wanted to calculate 5 factorial (also known as 5!). 
The factorial of a number is the product of each integer from 1 up to 
the number. For example, 5 factorial is:

5! = 5 * 4 * 3 * 2 * 1 = 120

Using an iterative approach, you might write some code like this:

#include <stdio.h>



Advanced Topics
Function Recursion

336   Learn C under Windows 95/NT

int main( void )
{
int i, num;
long fac;

num = 5;
fac = 1;

for ( i=1; i<=num; i++ )
fac *= i;

printf( “%d factorial is %ld.”, num, fac );

return 0;
}

By the Way If you are interested in trying this code, it is provided on disk in the 
Learn C Projects directory, under the subdirectory named 
11.01 - iterate.

If you ran this program, you’d see this line printed in the console 
window:

5 factorial is 120.

As you can see from the source code, the algorithm steps through 
(iterates) the numbers 1 through 5, building the factorial with each 
successive multiplication.

A Recursive Approach
You can use a recursive approach to solve the same problem. For 
starters, you’ll need a function to act as a base for the recursion, a 
function that will call itself. There are two things you’ll need to 



Advanced Topics
Function Recursion

Learn C under Windows 95/NT  337

build into your recursive function. First, you’ll need a mechanism to 
keep track of the depth of the recursion. In other words, you’ll need 
a variable or a parameter that changes, depending on the number of 
times the recursive function calls itself.

Second, you’ll need a terminating condition, something that tells the 
recursive function when it’s gone deep enough. Here’s one version 
of a recursive function that calculates a factorial:

int factorial( int num )
{
if ( num > 1 )
num *= factorial( num - 1 );

return( num );
}

factorial() takes a single parameter, the number whose factorial 
you are trying to calculate. First, factorial() checks to see 
whether the number passed to it is greater than 1. If it is not, fac-
torial() calls itself, passing 1 less than the number passed into it. 
This strategy guarantees that, eventually, factorial() will get 
called with a value of 1.

Figure 11.2 shows this process in action. The process starts with a 
call to factorial():

result = factorial( 3 );

Take a look at the leftmost factorial() source code in Figure 11.2. 
factorial() is called with a parameter of 3. The if statement 
checks to see whether the parameter is greater than 1. Since 3 is 
greater than 1, the following statement is executed:

num *= factorial( num - 1 );



Advanced Topics
Function Recursion

338   Learn C under Windows 95/NT

This statement calls factorial() again, passing a value of n-1, or 
2, as the parameter. This second call of factorial() is pictured in 
the center of Figure 11.2.

Figure 11.2 The recursion process caused by the call factorial(3).

Important It’s important to understand that this second call to factorial() 
is treated just like any other function call that occurs in the middle 
of a function. The calling function’s variables are preserved while 
the called function runs. In this case, the called function is just an-
other copy of factorial().

This second call of factorial() takes a value of 2 as a parameter. 
The if statement compares this value to 1 and, since 2 is greater 
than 1, executes the statement:

num *= factorial( num - 1 );



Advanced Topics
Function Recursion

Learn C under Windows 95/NT  339

This statement calls factorial() yet again, passing num-1, or 1, 
as a parameter. The third call of factorial() is portrayed on the 
rightmost side of Figure 11.2.

The third call of factorial() starts with an if statement. Since 
the input parameter was 1, the if statement fails. Thus, the recur-
sion termination condition is reached. This third call of 
factorial() now returns a value of 1.

At this point, the second call of factorial() resumes, completing 
the statement:

num *= factorial( num - 1 );

Since the call of factorial() returned a value of 1, this statement 
is equivalent to:

num *= 1;

This leaves num with the same value it came in with, namely, 2. This 
second call of factorial() returns a value of 2.

At this point, the first call of factorial() resumes, completing the 
statement:

num *= factorial( num - 1 );

Since the second call of factorial() returned a value of 2, this 
statement is equivalent to:

num *= 2;

Since the first call of factorial() started with the parameter num 
taking a value of 3, this statement sets num to a value of 6. Finally, 
the original call of factorial() returns a value of 6. This is as it 
should be, since 3 factorial = 3 * 2 * 1 = 6.



Advanced Topics
Binary Trees

340   Learn C under Windows 95/NT

Important The recursive version of the factorial program is also provided on 
disk. You’ll find it in the Learn C Projects  directory, under the 
subdirectory named 11.02 - recurse. Open the project and 
follow the program through, line by line.

Binary Trees
As you learn more about data structures, you’ll discover new appli-
cations for recursion. For example, one of the most-used data struc-
tures in computer programming is the binary tree (Figure 11.3). As 
you’ll see later, binary trees were just made for recursion. The binary 
tree is similar to the linked list. Both consist of structs connected 
by pointers embedded in each struct.

Linked lists are linear. Each struct in the list is linked by pointers 
to the struct behind it and in front of it in the list. Binary trees al-
ways start with a single struct, known as the root struct, or root 
node. Where the linked-list structs we’ve been working with con-
tain a single pointer, named next, binary-tree structs each have 
two pointers, usually known as left and right.

Check out the binary tree in Figure 11.3. Notice that the root node 
has a left child and a right child. The left child has its own left child, 
but its right pointer is set to NULL. The left child’s left child has 
two NULL pointers. A node with two NULL pointers is known as a 
leaf node, or terminal node.

Binary trees are extremely useful. They work especially well when 
you are trying to sort data having a comparative relationship. This 
means that if you compare two pieces of data, you’ll be able to judge 
the first piece as greater than, equal to, or less than the second piece. 
For example, numbers are comparative. Words in a dictionary can 
be comparative, if you consider their alphabetical order. The word 
iguana is greater than aardvark but less than xenophobe.

Here’s how you might store a sequence of words, one at a time, in a 
binary tree. We’ll start with this list of words:



Advanced Topics
Binary Trees

Learn C under Windows 95/NT  341

opulent
entropy
salubrious
ratchet
coulomb
yokel
tortuous

Figure 11.3 A binary tree. Why binary? Each node in the tree contains two 
pointers.

Figure 11.4 shows the word opulent added to the root node of the 
binary tree. Since it is the only word in the tree so far, both the left 
and right pointers are set to NULL. 



Advanced Topics
Binary Trees

342   Learn C under Windows 95/NT

Figure 11.4 The word opulent is entered into the binary tree.

Figure 11.5 shows the word entropy added to the binary tree. Since 
entropy is less than opulent (that is, comes before it alphabeti-
cally), entropy is stored as opulent’s left child.

Figure 11.5 The word entropy is less than the word opulent and is added 
as its left child in the binary tree.

Next, Figure 11.6 shows the word salubrious added to the tree. 
Since salubrious is greater than opulent, it becomes opulent’s 
right child.

Figure 11.6 The word salubrious is greater than the word opulent and is 
added to its right in the tree.



Advanced Topics
Binary Trees

Learn C under Windows 95/NT  343

Figure 11.7 shows the word ratchet added to the tree. First, 
ratchet is compared to opulent. Since ratchet is greater than 
opulent, we follow the right pointer. Since there’s a word there al-
ready, we’ll have to compare ratchet to this word. Since ratchet 
is less than salubrious, we’ll store it as salubrious’s left child.

Figure 11.7 The word ratchet is greater than opulent but less than 
salubrious and is placed in the tree accordingly.

Figure 11.8 shows the binary tree after the remainder of the word list 
has been added. Do you understand how this scheme works? What 
would the binary tree look like if coulomb were the first word on 
the list? The tree would have no left children and would lean 
heavily to the right. What if yokel were the first word entered? As 
you can see, this particular use of binary trees depends on the order 
of the data. Randomized data starting with a value close to the aver-
age produces a balanced tree. If the words had been entered in al-
phabetical order, you would have ended up with a binary tree that 
looked like a linked list.

By the Way Data structure theory is one of my favorite topics in all of computer 
science. I’d like to rattle on and on about variant tree structures 
and binary tree balancing algorithms, but my editors would like me 
to get this book out sometime this year. This shouldn’t stop you, 
though. Go to your library and check out a book on data structures 
and another on sorting and searching algorithms (which we’ll get 



Advanced Topics
Binary Trees

344   Learn C under Windows 95/NT

to in a minute). My favorite books on these topics are listed in the 
bibliography in Appendix F.

Figure 11.8 The words coulomb, yokel, and tortuous are added to the 
tree.

Searching Binary Trees
Now that your word list is stored in the binary tree, the next step is 
to look up a word in the tree. This is known as searching the tree. 
Suppose you wanted to look up the word tortuous in your tree. 
You’d start with the root node, comparing tortuous with opu-
lent. Since tortuous is greater than opulent, you’d follow the 
right pointer to salubrious. You’d follow this algorithm down to 
yokel and finally tortuous.

By the Way Searching a binary tree is typically much faster than searching a 
linked list. In a linked list, you search through your list of nodes, 
one at a time, until you find the node you are looking for. On aver-
age, you’ll end up searching half of the list. In a list of 100 nodes, 
you’ll end up checking 50 nodes on average. In a list of 1000 



Advanced Topics
Binary Trees

Learn C under Windows 95/NT  345

nodes, you’ll end up checking 500 nodes on average.

In a balanced binary tree, you reduce the search space in half 
each time you check a node. Without getting into the mathematics 
(check Knuth’s The Art of Computer Programming, Volume 3, for 
more info), the maximum number of nodes searched is approxi-
mately log2n, where n is the number of nodes in the tree. On av-
erage, you’ll search log2n/2 nodes. In a list of 100 nodes, you’ll 
end up searching 3.32 nodes on average. In a list of 1000 nodes, 
you’ll end up checking about 5 nodes on average.

As you can see, a binary tree provides a significant performance 
advantage over a linked list.

A binary tree that contained just words may not be very interesting, 
but imagine that these words were names of great political leaders. 
Each struct might contain a leader’s name, biographical informa-
tion, and, perhaps, a pointer to another data structure containing 
great speeches. The value, name, or word that determines the order 
of the tree is said to be the key.

You don’t always search a tree based on the key. Sometimes, you’ll 
want to step through every node in the tree. For example, suppose 
that your tree contained the name and birth date of each of the pres-
idents of the United States. Suppose also that the tree was built 
using each president’s last name as a key. Now suppose that you 
wanted to compose a list of all presidents born in July. In this case, 
searching the tree alphabetically won’t do you any good. You’ll have 
to search every node in the tree. This is where recursion comes in.

Recursion and Binary Trees
Binary trees and recursion were made for each other. To search a 
tree recursively, the recursing function has to visit the current node, 
as well as call itself with each of its two child nodes. The child nodes 
will do the same thing with themselves and their child nodes. Each 
part of the recursion stops when a terminal node is encountered.

Check out this piece of code:



Advanced Topics
Binary Trees

346   Learn C under Windows 95/NT

struct Node
{
int value;
struct Node *left;
struct Node *right;

} myNode;

Searcher( struct Node *nodePtr )
{
if ( nodePtr != NULL )
{
VisitNode( nodePtr );
Searcher( nodePtr->left );
Searcher( nodePtr->right );

}
}

The function Searcher() takes a pointer to a tree node as its pa-
rameter. If the pointer is NULL, we must be at a terminal node, and 
there’s no need to recurse any deeper. If the pointer points to a 
Node, the function VisitNode() is called. VisitNode() performs 
whatever function you want performed for each node in the binary 
tree. In our current example, VisitNode() could check to see 
whether the president associated with this node was born in July. If 
so, VisitNode() might print the president’s name in the console 
window.

Once the node is visited, Searcher() calls itself twice, once pass-
ing a pointer to its left child and once passing a pointer to its right 
child. If this version of Searcher() were used to search the tree in 
Figure 11.8, the tree would be searched in the order described in Fig-
ure 11.9. This type of search is known as a preorder search, because 
the node is visited before the two recursive calls take place.



Advanced Topics
Binary Trees

Learn C under Windows 95/NT  347

Figure 11.9 A preorder search of a binary tree. This search was produced 
by the first version of Searcher().

Here’s a slightly revised version of Searcher(). Without looking at 
Figure 11.10, can you predict the order in which the tree will be 
searched? This version of Searcher() performs an inorder search 
of the tree:

Searcher( struct Node *nodePtr )
{
if ( nodePtr != NULL )
{
Searcher( nodePtr->left );
VisitNode( nodePtr );
Searcher( nodePtr->right );

}
}



Advanced Topics
Binary Trees

348   Learn C under Windows 95/NT

Figure 11.10 An inorder search of the same tree.

Here’s a final look at Searcher(). This version performs a 
postorder search of the tree (Figure 11.11):

Searcher( struct Node *nodePtr )
{
if ( nodePtr != NULL )
{
Searcher( nodePtr->left );
Searcher( nodePtr->right );
VisitNode( nodePtr );

}
}

Recursion and binary trees are two extremely powerful program-
ming tools. Learn how to use them—they’ll pay big dividends.



Advanced Topics
Function Pointers

Learn C under Windows 95/NT  349

Figure 11.11 A postorder search of the same tree.

Function Pointers
Next on the list is the subject of function pointers. Function pointers 
are exactly what they sound like: pointers that point to functions. 
Up to now, the only way to call a function was to place its name in 
the source code:

MyFunction();

Function pointers give you a new way to call a function. Function 
pointers allow you to say, “Execute the function pointed to by this 
variable.” Here’s an example:

int(*myFuncPtr)( float );

This line of code declares a function pointer named myFuncPtr, 
which is a pointer to a function that takes a single parameter, a 



Advanced Topics
Function Pointers

350   Learn C under Windows 95/NT

float, and that returns an int. The parentheses in the declaration 
are all necessary. The first pair tie the * to myFuncPtr, ensuring that 
myFuncPtr is declared as a pointer. The second pair surround the 
parameter list and distinguish myFuncPtr as a function pointer.

Suppose we had a function called DealTheCards() that took a 
float as a parameter and returned an int. This line of code assigns 
the address of DealTheCards() to the function pointer 
myFuncPtr:

myFuncPtr = DealTheCards;

Notice that the parentheses were left off the end of 
DealTheCards(). This is critical. If the parentheses were there, the 
code would have called DealTheCards(), returning a value to 
myFuncPtr. You may also have noticed that the & operator wasn’t 
used. When you refer to a function without using the parentheses at 
the end, the compiler knows that you are referring to the address of 
the function.

Now that you have the function’s address in the function pointer, 
there’s only one thing left to do—call the function. Here’s how it’s 
done:

int result;

result = (*myFuncPtr)( 3.5 );

This line calls the function DealTheCards(), passing it the param-
eter 3.5 and returning the function value to the int result. You 
could also have called the function this way:

int result;

result = myFuncPtr( 3.5 );

Some older (non-ANSI compliant) compilers can’t handle this form, 
but it is easier on the eye.



Advanced Topics
Initializers

Learn C under Windows 95/NT  351

By the Way There’s a lot you can do with function pointers. You can create an 
array of function pointers. How about a binary tree of function 
pointers? You can pass a function pointer as a parameter to an-
other function. Taking this one step further, you can create a func-
tion that does nothing but call other functions. Cool!

For your enjoyment, there’s a function-calling example on the 
source code disk. You’ll find the project in the Learn C Projects 
directory, inside the 11.03 - funcPtr  subdirectory. The pro-
gram is pretty simple, but it should serve as a useful reference when 
you start using function pointers in your own programs.

Initializers
When you declare a variable, you can also provide an initial value 
for the variable at the same time. The format for integer types, float-
ing-point types, and pointers is as follows:

type variable = initializer;

In this case, the initializer is just an expression. Here are a few exam-
ples:

float myFloat = 3.14159;
int myInt = 9 * 27;
int *intPtr = &myInt;

If you plan on initializing a more complex variable, such as an array, 
struct, or union, you’ll use a slightly different form of initializer, 
embedding the elements used to initialize the variable between 
pairs of curly braces. Consider these two array declarations:

int myInts[] = { 10, 20, 30, 40 };
float myFloats[ 5 ] = { 1.0, 2.0, 3.0 };



Advanced Topics
Initializers

352   Learn C under Windows 95/NT

The first line of code declares an array of four ints, setting 
myInts[0] to 10, myInts[1] to 20, myInts[2] to 30, and 
myInts[3] to 40. If you leave out the array dimension, the compiler 
makes it just large enough to contain the listed data.

The second line of code includes a dimension but not enough data 
to fill the array. The first three array elements are filled with the 
specified values, but myFloats[3] and myFloats[4] are initial-
ized to 0.0.

By the Way If you don’t provide enough values in your initializer list, the com-
piler initializes all the remaining elements to their default initial-
ization value. For integers, the default initialization value is 0; for 
floats, 0.0; and for pointers, NULL.

Here’s another example:

chars[ 20 ] = “Hello”;

What a convenient way to initialize an array of chars! Here’s an-
other way to accomplish the same thing:

chars[ 20 ] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ };

Once again, if you leave out the dimension, the compiler will allo-
cate just enough memory to hold your text string, including a byte 
to hold the 0 terminator. If you include the dimension, the compiler 
will allocate that many array elements, then fill the array with what-
ever data you provide. If you provide more data than will fit in the 
array, your code won’t compile.

Here’s a struct example:

struct Numbers
{



Advanced Topics
The Remaining Operators

Learn C under Windows 95/NT  353

int i, j;
float f;

}

struct Numbers myNums = { 1, 2, 3.01 };

As you can see, the three initializing values were wrapped in a pair 
of curly braces. This leaves myNums.i with a value of 1, myNums.j 
with a value of 2, and myNums.f with a value of 3.01. If you have a 
struct, union, or array embedded in your struct, you can nest a 
curly wrapped list of values inside another list. For example:

struct Numbers
{
int i, j;
float f[ 4 ];

}

struct Numbers myNums1 = { 1, 2, {3.01, 4.01, 
5.01, 6.01} };

The Remaining Operators
If you go back to Chapter 5 and review the list of operators shown 
in Figure 5.7, you’ll likely find a few operators you are not yet famil-
iar with. Most of the ones we’ve missed were designed specifically 
to set the individual bits within a byte. For example, the | operator 
(not to be confused with its comrade, the logical || operator) takes 
two values and “ORs” their bits together, resolving to a single value. 
This operator is frequently used to set a particular bit to 1.

Check out this code:

short myShort;

myShort = 0x0001 | myShort;



Advanced Topics
The Remaining Operators

354   Learn C under Windows 95/NT

This code sets the rightmost bit of myShort to 1, no matter what its 
current value is. This line of code, based on the |= operator, does the 
exact same thing:

myShort |= 0x0001;

The & operator takes two values and “ANDs” their bits together, re-
solving to a single value. This operator is frequently used to set a 
particular bit to 0 (more frequently referred to as clearing a bit).

Check out this code:

short myShort;

myShort = 0xFFFE & myShort;

This code sets the rightmost bit of myShort to 0, no matter what its 
current value is. It might help to think of 0xFFFE as 
1111111111111110 in binary. The next line of code, based on the &= op-
erator, does the exact same thing:

myShort &= 0xFFFE;

The ^ operator takes two values and “XORs” their values together. 
It goes along with the ^= operator. The ~ operator takes a single 
value and turns all the 1s into 0s and all the 0s into 1s. The &, |, ^, 
and ~ operators are summarized in Figure 11.12.

Figure 11.12 A summary of the &, |, ^, and ~ operators.

A B
1
0
1
0

A&B A | B
1
0
0
0

1
1
1
0

1
1
0
0

A^B
0
1
1
0

~A
0
0
1
1



Advanced Topics
The Remaining Operators

Learn C under Windows 95/NT  355

By the Way The previous examples assumed that a short is 2 bytes (16 bits) 
long. Of course, this makes for some implementation-dependent 
code. Here’s a more portable example.

short myShort;

myShort = (~1) & myShort;

This code sets the rightmost bit of myShort, no matter how many 
bytes are used to implement a short. You could also write this as:

myShort &= (~1);

The last of the binary operators, <<, >>, <<=, and >>=, are used to 
shift bits within a variable, either to the left or to the right. The left 
operand is usually an unsigned variable, and the right operand is a 
positive integer specifying how far to shift the variable’s bits.

For example, this code shifts the bits of myShort 2 bits to the right:

unsigned short myShort = 0x0100;

myShort = myShort >> 2; /* equal to myShort >>= 2;*/

Notice that myShort starts off with a value of 0000000100000000 
and ends up with a value of 0000000001000000 (in hex, that’s 
0x0040). Notice that zeros get shifted in to make up for the leftmost 
bits that are getting shifted over and that the rightmost bits are lost 
when they shift off the end.

Warning These operators were designed to work with unsigned values 
only.  Check with your compiler to see how it handles shifting of 
signed values.



Advanced Topics
The Remaining Operators

356   Learn C under Windows 95/NT

The last two operators we need to cover are the , and :? operators. 
The , operator gives you a way to combine two expressions into a 
single expression. The , operator is binary, and both operands are 
expressions. The left expression is evaluated first and the result dis-
carded. The right expression is then evaluated and its value re-
turned. Here’s an example:

for ( i=0, j=0; i<20 && j<40; i++,j+=2 )
DoSomething( i, j );

This for loop is based on two variables instead of one. Before the 
loop is entered, i and j are both set to 0. The loop continues as long 
as i is less than 20 and j is less than 40. Each time through the loop, 
i is incremented by 1, and j is incremented by 2.

The ? and : operators combine to create something called a condi-
tional expression. A conditional expression consists of a logical ex-
pression (an expression that evaluates to either true or false), 
followed by the ? operator, followed by a second expression, fol-
lowed by the : operator, followed by a third expression:

logical-expression ? expression2 : expression3

If the logical expression evaluates to true, expression2 gets eval-
uated, and the entire expression resolves to the value of 
expression2. If the logical expression evaluates to false, 
expression3  gets evaluated, and the entire expression resolves to 
the value of expression3. Here’s an example:

IsPrime( num ) ? DoPrimeStuff( num ) : 
DoNonPrimeStuff( num );

As you can see, a conditional expression is really a shorthand way 
of writing an if-else statement. Here’s the if-else version of 
the previous example:

if ( IsPrime( num ) )



Advanced Topics
Creating Your Own Types

Learn C under Windows 95/NT  357

DoPrimeStuff( num );
else
DoNonPrimeStuff( num );

Some people like the brevity of the ?: operator combination. Others 
find it difficult to read. As always, make your choice and stick with 
it.

Warning A word of advice: Don’t overuse the ?: operator. For example, 
suppose that you wanted to use ?: to generate a number’s abso-
lute value. You might write code like this:

int value;

value - (value<0) ? (-value) : (value);

Although this code works, take a look at this code translated into 
its if-else form:

int value;

if ( value<0 )
value = (-value);

else
value = (value);

As you can see, the ?: operator can lead you to write source code 
that you would otherwise consider pretty darn silly.

Creating Your Own Types
The typedef statement lets you use existing types to create brand 
new types you can then use in your declarations. You’ll declare this 
new type just as you would a variable, except that you’ll precede the 



Advanced Topics
Creating Your Own Types

358   Learn C under Windows 95/NT

declaration with the word typedef, and the name you declare will 
be the name of a new type. Here’s an example:

typedef int *IntPointer;

IntPointer myIntPointer;

The first line of code creates a new type named IntPointer. The 
second line declares a variable named myIntPointer, which is a 
pointer to an int.

Here’s another example:

typedef float (*FuncPtr)( int * );

FuncPtr myFuncPtr;

The first line of code declares a new type named FuncPtr. The sec-
ond line declares a variable named myFuncPtr, which is a pointer 
to a function that returns a float and that takes a single int as a 
parameter.

Enumerated Types
In a similar vein, the enum statement lets you declare a new type 
known as an enumerated type. An enumerated type is a set of 
named integer constants, collected under a single type name. A se-
ries of examples will make this clear.

enum Weekdays
{
Monday,
Tuesday,
Wednesday,
Thursday,
Friday

};



Advanced Topics
Creating Your Own Types

Learn C under Windows 95/NT  359

enum Weekdays whichDay;

whichDay = Thursday;

This code starts off with an enum declaration. The enum is given the 
name Weekdays and consists of the constants Monday, Tuesday, 
Wednesday, Thursday, and Friday. The second line of code uses 
this new enumerated type to declare a variable named whichDay, 
an integer variable that can take on any of the Weekdays constants, 
as evidenced by the last line of code, which assigns the constant 
Thursday to whichDay.

Here’s another example:

enum Colors
{
red,
green = 5,
blue,
magenta,
yellow = blue + 5

} myColor;

myColor = blue;

This code declares an enumerated type named Colors. Notice that 
some of the constants in the Colors list are accompanied by initial-
izers. When the compiler creates the enumeration constants, it num-
bers them sequentially, starting with 0. In the previous example, 
Monday has a value of 0, Tuesday has a value of 1, and so on, with 
Friday having a value of 4.

In this case, the constant red has a value of 0. But the constant 
green has a value of 5. Things move along from there, with blue 
and magenta having values of 6 and 7, respectively. Next, yellow 
has a value of blue+5, which is 11.

This code also declares an enumeration variable named myColor, 
which is then assigned a value of blue.



Advanced Topics
Static Variables

360   Learn C under Windows 95/NT

By the Way You can declare an enumerated type without the type name:

enum
{

chocolate,
strawberry,
vanilla

};

int iceCreamFlavor = vanilla;

This code declares a series of enumeration constants with values 
of 0, 1, and 2. We can assign the constants to an int, as we did 
with iceCreamFlavor. This comes in handy when you need a set 
of integer constants but have no need for a tag name.

Static Variables
Normally, when a function exits, the storage for its variables is freed 
up, and their values are no longer available. By declaring a local 
variable as static, the variable’s value is maintained across multi-
ple calls of the same function. Here’s an example:

int StaticFunc( void )
{
static int myStatic = 0;

return myStatic++;
}

This function declares an int named myStatic and initializes it to 
a value of 0. The function returns the value of myStatic and incre-
ments myStatic after the return value is determined. The first time 
this function is called, it returns 0, and myStatic is left with a value 



Advanced Topics
Static Variables

Learn C under Windows 95/NT  361

of 1. The second time StaticFunc() is called, it returns 1, and my-
Static is left with a value of 2.

By the Way Take a few minutes and try this code out for yourself. You’ll find it in 
the Learn C Projects  directory in the subdirectory 11.04 - 
static.

One of the keys to this function is the manner in which myStatic 
received its initial value. Imagine if the function looked like this:

int StaticFunc( void )
{
static int myStatic;

myStatic = 0; /* <— Bad idea.... */

return myStatic++;
}

Each time through the function, we’d be setting the value of 
myStatic back to 0. This function will always return a value of 0. 
Not what we want, eh?

The difference between the two functions? The first version sets the 
value of myStatic to 0 by initialization (the value is specified 
within the declaration). The second version sets the value of 
myStatic to 0 by assignment (the value is specified after the decla-
ration). If a variable is marked as static, any initialization is done 
once and once only. Be sure that you set the initial value of your 
static variable in the declaration and not in an assignment state-
ment.

By the Way One way to think of static variables is as global variables that 
are limited in scope to a single function.



Advanced Topics
More on Strings

362   Learn C under Windows 95/NT

More on Strings
The last topic we’ll tackle in this chapter is string manipulation. Al-
though we’ve done some work with strings in previous chapters, 
there are a number of Standard Library functions that haven’t been 
covered. Each of these functions requires that you include the file 
<string.h>. Here are a few examples.

strcpy()
The function strcpy() is declared as follows:

char *strcpy( char *dest, const char *source );

This function copies the string pointed to by source into the string 
pointed to by dest, copying each of the characters in source, in-
cluding the terminating 0 byte. That leaves dest as a properly ter-
minated string. The function returns the pointer dest.

An important thing to remember about strcpy() is that you are re-
sponsible for ensuring that source is properly terminated and that 
enough memory is allocated for the string returned in dest. Here’s 
an example of strcpy() in action:

char name[ 20 ];

strcpy( name, “Dave Mark” );

This example uses a string literal as the source string. The string is 
copied into the array name. The return value was ignored.

strcat()
The function strcat() is declared as follows:

char *strcat( char *dest, const char *source );



Advanced Topics
More on Strings

Learn C under Windows 95/NT  363

The function strcat() appends a copy of the string pointed to by 
source onto the end of the string pointed to by dest. As was the 
case with strcpy(), strcat() returns the pointer dest. Here’s an 
example of strcat() in action:

char name[ 20 ];

strcpy( name, “Dave “ );
strcat( name, “Mark” );

The call of strcpy() copies the string “Dave “ into the array 
name. The call of strcat() copies the string “Mark” onto the end 
of dest, leaving dest with the properly terminated string “Dave 
Mark”. Again, the return value was ignored.

strcmp()
The function strcmp() is declared as follows:

int strcmp( const char *s1, const char *s2 );

This function compares the strings s1 and s2 and returns 0 if the 
strings are identical, a positive number if s1 is greater than s2, and 
a negative number if s2 is greater than s1. The strings are compared 
one byte at a time. If the strings are not equal, the first byte that is 
not identical determines the return value. Here’s a sample:

if ( strcmp( “Hello”, “Goodbye” ) )
printf( “The strings are not equal!” );

Notice that the if succeeds when the strings are not equal.

strlen()
The function strlen() is declared as follows:

size_t strlen( const char *s );



Advanced Topics
What’s Next?

364   Learn C under Windows 95/NT

This function returns the length of the string pointed to by s. Look 
at this call, for example:

length = strlen( “Aardvark” );

The value returned is 8, the number of characters in the string, not 
counting the terminating zero.

More Standard Library
There is a lot more to the Standard Library than what we’ve covered 
in the book. Having made it this far, consider yourself an official C 
programmer. You now have a sworn duty to dig in to the C Library 
Reference that came on the CD. Start off with Chapter 15, which 
covers the functions declared in <string.h>. Find out what the 
difference is between strcmp() and strncmp(). Wander around. 
Get to know the Standard Library. You will be making extensive use 
of it.

If you haven’t done so already, go out and buy a copy of C:  A Refer-
ence Manual by Harbison and Steele. When it comes to a definitive 
answer to a C programming question, having Harbison and Steele 
by your side is the next best thing to having Keith Rollin’s home 
phone number.

What’s Next?
Chapter 12 answers the question, Where do you go from here? Do 
you want to learn to create programs with that special Windows 
look and feel? Would you like more information on data structures 
and C programming techniques? Chapter 12 offers some sugges-
tions to help you find your programming direction.

Exercises
1. What’s wrong with each of the following code fragments:

a. struct Dog



Advanced Topics
Exercises

Learn C under Windows 95/NT  365

{

struct Dog *next;

} ;

struct Cat

{

struct Cat *next;

} ;

struct Dog myDog;

struct Cat myCat;

myDog.next = (struct Dog)&myCat;

myCat.next = NULL;

b. int *MyFunc( void );

typedef int (*FuncPtr)();

FuncPtr myFuncPtr = MyFunc;

c. union Number

{

int i;

float f;

char *s;

} ;

Number myUnion;

myUnion.f = 3.5;



Advanced Topics
Exercises

366   Learn C under Windows 95/NT

d. struct Player

{

int type;

char name[ 40 ];

int team;

union

{

int myInt;

float myFloat;

} u;

} myPlayer;

myPlayer.team = 27;

myPlayer.myInt = -42;

myPlayer.myFloat = 5.7;

e. int *myFuncPtr( int );

myFuncPtr = main;

*myFuncPtr();

f. char s[ 20 ];

strcpy( s, “Hello “ );

if ( strcmp( s, “Hello” ) )

printf( “The strings are the same!” );

g. char *s;

s = malloc( 20 );



Advanced Topics
Exercises

Learn C under Windows 95/NT  367

strcpy( “Heeeers Johnny!”, s );

h. char *s;

strcpy( s, “Aardvark” );

i. void DoSomeStuff( void )

{

/* stuff done here */

}

int main( void )

{

int ii;

for ( ii = 0; ii < 10; ii++ )

DoSomeStuff;

return 0;

}

2. Write a program that reads in a series of integers from a file, 
storing the numbers in a binary tree in the same fashion as 
the words were stored earlier in the chapter. Store the first 
number as the root of the tree. Next, store the second number 
in the left branch if it is less than the first number or in the 
right branch if it is greater than or equal to the first number. 
Continue this process until all the numbers are stored in the 
tree.

Now write a series of functions that print the contents of the 
tree using preorder, inorder, and postorder recursive 
searches.

 



Advanced Topics
Exercises

368   Learn C under Windows 95/NT



Learn C under Windows 95/NT   369

12
Where Do You Go 
from Here?

Now that you’ve mastered the fundamentals of C, you’re ready to 
dig into the specifics of Windows programming. As you’ve run the 
example programs in the previous chapters, you’ve probably no-
ticed that none of the programs sport the look and feel that make a 
Windows program a Windows program.

For one thing, all of the interaction between you and your program 
focuses on the keyboard and the console window. None of the pro-
grams take advantage of the mouse. None offer color, pull-down 
menus, or a selection of different fonts. These are all part of the Win-
dows user interface.

The Windows Graphical User Interface
User interface is the part of your program that interacts with the 
user. So far, your user interface skills have focused on writing to and 
reading from the console window, using such functions as 
printf(), scanf(), and getchar(). The advantage of this 
type of user interface is that each of those functions is available on 
every machine that supports the C language. Programs written 
using the Standard C Library are extremely portable.

However, console-based user interfaces tend to be limited. With a 
console-based interface, you can’t use an elegant graphic to make a 
point. Text-based interfaces can’t provide animation or digital 
sound. In a nutshell, the console-based interface is simple and, at the 
same time, simple to program. Windows’ graphical user interface 
(GUI) offers an elegant, more sophisticated method of working with 
a computer.



Where Do You Go from Here?
The Windows API

370   Learn C under Windows 95/NT 

Since Windows was introduced, a PC just wouldn’t be the same 
without windows, pull-down and pop-up menus, icons, push but-
tons, and scroll bars. You can and should add these user interface el-
ements to your C programs. The difficult part is deciding which 
features to use and where to use them.

Once you’ve identified the pieces of the Windows interface you 
want in your program, you’re ready to take advantage of the func-
tions made available by the Windows application programming in-
terface (API).

The Windows API
The Windows API contains functions that create windows on the 
screen and others that draw text in these windows. There are func-
tions for drawing shapes, lines, and dots in color and in black and 
white. There’s a set of functions that allows you to implement your 
own pull-down menus. The Windows API is extremely robust and 
powerful.

The Windows API provides mechanisms to create, display and con-
trol the various components of a program’s user interface. That’s 
why Windows programs have such a consistent look and feel.  The 
CodeWarrior IDE that you have been using is an example of an ap-
plication created with the Windows API. Take a look at the IDE’s 
Open dialog in Figure 12.1.  Notice the close resemblance to other 
such dialogs from different applications.  Also available through the 
Windows API are routines to do message handling, text and graph-
ics drawing, and icon manipulation, as well as a long list of other ca-
pabilities.



Where Do You Go from Here?
The Windows API

Learn C under Windows 95/NT   371

Figure 12.1 The CodeWarrior IDE Open dialog.

HelloWorld.cwp
Our final project, a revamped version of our earlier hello world pro-
gram, presents a simple Windows application. Although Hel-
loWorld doesn’t do much, it does the display the basics involved in 
actually displaying and manipulating a Windows window.

Go into the  Learn C Projects  directory, then into the subdirec-
tory named 12.01 - HelloWorld, and open the project named 
HelloWorld.cwp.

Run the project by selecting Run from the Project menu. Once 
CodeWarrior compiles your source code, the window in Figure 12.2 
will appear at the top of your screen.  This particular program does 
not display any menus.  To exit the program, double click on the 
window’s close box in the upper right corner of the window.



Where Do You Go from Here?
Getting Started with Windows Programming

372   Learn C under Windows 95/NT 

Figure 12.2 Window displayed by the HelloWorld program.

Getting Started with Windows Programming
The next step in your programming education is to learn how to use 
the Windows API in your own programs. You’ve taken the first step 
by buying this Discover Programming CD.  Now, you’re ready to 
start using the Windows API. Fortunately, there’s a lot of literature 
available to help ease you through the Windows programming 
learning curve.

By the Way If you plan on moving to C++, check out the sequel to this book, 
called Learn C++ under Windows 95/NT. It assumes that you know 
C and gets you started with C++. 



Where Do You Go from Here?
Go Get ’Em

Learn C under Windows 95/NT   373

Go Get ’Em
Well, that’s about it. I hope you enjoyed reading this book as much 
as I enjoyed writing it. Above all, I hope you are excited about C. 
Now that you have C under your belt, go out there and write some 
source code.

Enjoy!

 

 



Where Do You Go from Here?
Go Get ’Em

374   Learn C under Windows 95/NT 



Learn C under Windows 95/NT  375

A
Glossary
algorithm:   The technical approach used to solve a problem.

ANSI C:   The standard version of the C programming language es-
tablished by the American National Standards Institute.

append:   A mode used when opening a file for writing. Append 
mode specifies that any data written to the file is written after any 
existing data.

argument:   Another word for parameter.

array:   A variable containing a sequence of data of a particular type. 
For example, you can declare an array of 50 ints.

array element:   The smallest addressable unit of an array. In an 
array of 50 ints, each int represents an element of the array.

ASCII character set:   A set of 128 standard characters defined by 
the American Standard Code for Information Interchange.

backslash combination or backslash sequence:   A single character 
represented by the combination of the backslash (\) and another 
character. For example, the sequence ‘\n’ represents a new line 
character.

backward compatibility:   A computer design that allows a newer 
generation of computers to run the previous generation of software. 

balanced tree:   A binary tree that maintains a uniform depth. The 
more unbalanced a tree becomes, the less efficient some tree-search-
ing algorithms become.

bell curve:   A bell-shaped statistical curve that represents a normal 
probability distribution. Plotting the possible rolls of a pair of six-
sided dice yields a bell curve.

binary:   A system of mathematics based on the two digits 0 and 1. 
Computers use binary to represent the value stored in memory.



Glossary

376   Learn C under Windows 95/NT

binary tree:   A data structure that consists of a series of nodes, each 
of which features a left and right pointer. These two pointers point 
to other nodes, linking the group of nodes into a tree-like structure.

bit:   The smallest unit of computer memory, a bit has a value of ei-
ther 0 or 1.

bit bucket:   A euphemism used to indicate a place where lost data 
goes. If your data went into the bit bucket, you’ll never see it 
again—it is irretrievably lost.

block:   A sequence of memory.

call:   Cause a function to be executed. When a function is called, its 
code gets executed and control is then returned to the calling func-
tion.

case-sensitive:   Sensitive to the difference between upper- and 
lower-case letters. C is a case-sensitive language and therefore dis-
tinguishes between names such as MyFunction() and 
MYFUNCTION().

cast:   See typecast.

Central Processing Unit (CPU):   The integrated circuit that controls 
the processing of a computer. The PC family of computers is driven 
by the Intel x86 series CPU.

child:   A node in a tree pointed to by another node. The node that 
points to a child node is known as the child’s parent.

clearing a bit:   Changing the value of a bit to 0.

code optimization:   A process used by a compiler to increase the ef-
ficiency of the object code it generates.

comparative operator:   An operator that compares its left side with 
its right side, producing a value of either TRUE or FALSE.

comparative relationship:   The relationship between the two sides 
of a comparative operator that determines whether the operator re-
turns a value of TRUE or FALSE.

compiler:   A program that translates source code into the machine 
code understood by a computer.

compound statements:   Statements made up of several parts, and 
possibly including other statements.



Glossary

Learn C under Windows 95/NT  377

conditional expression:   An expression built around the ? and : 
operators.

console:   A terminal or window that receives the output from Stan-
dard Library functions, such as printf() and echoes the input 
from the keyboard.

constant:   A program value that doesn’t change: 27, 1.1414, and 
‘\n’ are all examples of constants.

convention:   A standard agreed upon by a group of people. For ex-
ample, most Windows programmers follow the convention of using 
Hungarian notation to name their variables.

counter:   A variable whose sole purpose is to keep a running count 
of an event. The variable that changes each time through a for loop 
is a counter.

CPU:   See Central Processing Unit.

deallocate:   The opposite of allocate. Memory is typically allocated 
using malloc() and deallocated using free().

declaration:   A statement used to define a new variable, function, or 
type. A variable declaration establishes both the name and type of 
the variable.

decrement:   Decrease in value. Typically, decrementing a variable 
decreases its value by 1.

default initialization value:   The value used to initialize a global 
variable. The default initialization value for an int is 0 and for a 
pointer is NULL.

definition:   A declaration that causes memory to be allocated for 
the item being declared.

dereference:   Use a pointer to retrieve the contents of the memory 
location that the pointer points to.

dictionary:   The table used by the compiler to hold the list of 
#define substitutions contained in the source code being com-
piled.

dimension:   The number of array elements associated with an ar-
ray.



Glossary

378   Learn C under Windows 95/NT

doping:   The process of using a laser beam to create impurities in 
the silicon of an integrated circuit.

exceeding the bounds:   Exceeding the bounds of an array means 
trying to access an inappropriate element of the array, such as the 
51st int in an array of 50 ints.

expression:   A combination of variables and operators that resolves 
to a single value.

field:   An element of a struct. A field is normally accessed using 
either the . or -> operator.

file:   A series of bytes residing on some storage media. For example, 
a file might be stored on a floppy disk, a hard drive, or even a CD-
ROM.

file position:   The current location in a file, indicating the next byte 
that will be returned by a read operation or the location where a 
read operation will place its first byte.

floating-point numbers:   Numbers that contain a decimal point. 
For example, 3.5, -27.6874, and 3.14159 are all floating-point num-
bers.

flow control:   The ability to control the order in which your pro-
gram’s statements are executed.

format specifier: A sequence of bytes, starting with %, that deter-
mines the format of data being read or written. 

format specifier modifier:   A sequence of bytes that adds more de-
tail to a format specifier. For example, %6d is a format specifier and 
the 6 in %6d is the format specifier modifier.

fractional part:   The part of a floating point to the right of the deci-
mal point.

function:   A sequence of source code that accomplishes a specific 
task. C functions have a title and a body. The title contains the func-
tion’s name and parameters. The body contains the function’s code.

function declaration:   A line containing a function’s return value, 
name, and parameter list, followed by a semicolon. The function 
declaration is also known as a function prototype and is used by the 
compiler to perform type checking.



Glossary

Learn C under Windows 95/NT  379

function parameter:   A class of variable that allows data sharing be-
tween a calling function and a called function.

function pointer:   A variable containing a pointer to a function. 
Function pointers can be used to call the function they point to.

function prototype:   See function declaration.

function return value:   The value returned by a function. Functions 
of type void are the only types of functions that do not return a 
value.

function specifier:   The first line of a function, basically, a function 
declaration without the semicolon.

global variable:   A variable that is accessible from inside every 
function in your program.

graphical user interface (GUI):   A user interface that features 
graphical elements, such as pictures, icons, and windows. Windows 
is a great example of a graphical user interface.

header file:   A file that is included by another source code file using 
the #include mechanism. Header files typically end with .h.

hexadecimal notation or hex notation:   A notation that represents 
numbers in base 16 instead of the traditional base 10.

increment:   Increase in value. Typically, incrementing a variable in-
creases its value by 1.

index:   The number used to refer to an individual array element. An 
array index usually appears between the brackets following the 
array name.

indices:   The plural of index.

infinite loop:   A loop that repeats indefinitely. This is usually a bad 
thing.

initialization:   The process of assigning a value to a variable for the 
first time.

initialized:   Containing a known value.

inorder search:   A binary tree search that recursively searches a 
node’s left child, visits the node itself, then recursively searches the 
node’s right child.



Glossary

380   Learn C under Windows 95/NT

input buffer:   A block of memory designed to accumulate input 
from the keyboard for later retrieval by your program.

input device:   A device that allows a user to provide input to your 
program. The mouse and the keyboard are both input devices.

integer:   A whole number, such as 1, -26, or 3,876,560.

integer part:   The part of a floating-point number to the left of the 
decimal point.

ISO C:    The international standard for C established by the Interna-
tional Standards Organization. ISO C is based on ANSI C.

iteration:   The process of stepping through a list or array. In C, iter-
ation frequently starts at 0 and proceeds to some upper limit.

key:   The field in a tree struct that determines the search order of 
the tree.

keyboard accelerator:   A key combination used to perform a func-
tion, most often to duplicatea  common menu options.

l-value:   The left-hand side of an assignment statement.

leaf node:   A terminal node of a tree. In a binary tree, a leaf node 
has two NULL pointers.

library:   A file containing precompiled object code used as part of a 
project. The routines in the Standard Library are compiled into a se-
ries of libraries.

linked list:  A data structure consisting of two or more structs, 
linked together by pointers.

linking:   The process of joining the elements in a project into its ul-
timate form. For example, a series of compiled files might be linked 
into an application.

literal:   A constant of any type. The number 123 is an example of an 
int literal. “Hello” is an example of a literal text string.

loading:   The process of copying a library’s object code into the 
project file.

local variable:   A variable declared within a function (as opposed to 
a global variable).



Glossary

Learn C under Windows 95/NT  381

localize:  Customize your software so it is readable in a specific 
country, using a specific language. For example, you might localize 
your program for use in Japan by replacing the English, ASCII text 
by the multibyte character system used in Japan.

logical operator:  The set of operators that resolve to either true or 
false. !, &&, and || are examples of logical operators.

loop:   Any repeating source code sequence. do, while, and for are 
examples of C loop statements.

machine language:   A machine readable translation of your source 
code. Machine language is also known as object code.

macro:   A #define that takes a parameter.

master pointer:   The pointer to the first element in a linked list.

memory:   A portion of a computer, composed of specially designed 
integrated circuits, used for the temporary storage of programs and 
data.

modification:   The code within a loop that modifies the value of the 
loop’s expression. Without modification, the loop will never termi-
nate.

multi-dimensional array:   An array declared with more than one 
index.

My Computer:  A Windows utility that displays the components of 
your computer system in the form of folders and icons.

object code:   See machine language.

open a file:   Perform the necessary work prior to accessing a file’s 
data. Files can be opened using several different modes, among 
them read, write, and append.

operator:   A special character (or set of characters) that represents a 
specific computer operation. =, ++, and / are examples of operators.

out of bounds:   See exceeding the bounds.

output:   The result of your program. In this book, all the output ap-
peared in a console window.

pad byte or padding:   Characters appended to a block of memory 
used to bring the block up to a predetermined size. Space characters 



Glossary

382   Learn C under Windows 95/NT

are frequently used to pad a string to a fixed record size. Pad bytes 
are used to bring a struct up to a specific alignment in memory.

parameter:   See function parameter.

parameter list:   The list of parameters associated with a function. A 
function’s parameter list is found in the function specifier.

pointer:   A special variable, designed specifically to hold the ad-
dress of another variable.

pointer arithmetic:   The process of incrementing or decrementing a 
pointer to point to a new memory location.

pointer variable:   See pointer.

postfix notation:   The use of the ++ or -- operator following a vari-
able. In postfix notation, the value of the variable is returned before 
the variable is incremented or decremented.

postorder search:   A binary tree search that recursively searches a 
node’s left child, recursively searches the node’s right child, then 
visits the node itself.

prefix notation:   The use of the ++ or -- operator preceding a vari-
able. In prefix notation, the variable is incremented or decremented 
before the value of the variable is returned.

preorder search:   A binary tree search that visits a node, then recur-
sively searches the node’s left and right children.

prime number:   A number whose only factors are 1 and itself. 2, 3, 
5, and 7 are the only primes less than 10.

processor:   See Central Processing Unit.

project file:   A special file CodeWarrior uses to gather information 
about your project. The project object code is stored in the project 
file.

project window:   A window listing each of the source code files as-
sociated with the project. The project window also lists the current 
size of the object code associated with each source code file.

prompt:   A text string that tells the user what your program expects 
him or her to do. For example, a prompt might ask the user to type 
in a number between 1 and 10.

Random Access Memory (RAM):   See memory.



Glossary

Learn C under Windows 95/NT  383

random file access:   Accessing the data in a file by seeking to a spe-
cific location, as opposed to reading a byte at a time from the begin-
ning of the file.

read a file:   The process of transferring the data stored in a file into 
your program.

Read-Only Memory (ROM):   A memory chip that can be read but 
not written to.

recursion:   The process that occurs when a function calls itself. Re-
cursive functions normally feature a parameter that keeps track of 
the depth of the recursion (the number of times the function has 
called itself). The recursive function will stop calling itself once a 
terminating condition has been met.

return:   What a function does when it is ready to exit. When a func-
tion returns, its nonstatic local variables go out of scope (can no 
longer be accessed).

return type:   The data type returned by a function.

ROM:   See Read-Only Memory.

root node:   The first node in a tree. A root node has no parents.

scientific or exponential notation:   A notation for representing 
numbers as a floating point number times a power of 10. For exam-
ple, 2.5e3 is equal to 2.5 times 10 to the third power, which is equal 
to 2500.

searching:   The process of traversing a tree or list to look for a par-
ticular feature or value.

sequential stream of bytes:   A stream of bytes, one right after an-
other. Accessing a stream sequentially is the opposite of random file 
access.

shift bits:   Move the bits within a byte either to the left or to the 
right.

signed:   A variable capable of storing both positive and negative 
values.

simple statement:   An assignment statement or function call. Sim-
ple statements never have substatements.



Glossary

384   Learn C under Windows 95/NT

source code:   A sequence of statements that tells the computer what 
to do. Source code is written in a specific programming language, 
such as C or Pascal.

source code editor:   A program that allows you to review and mod-
ify your source code. CodeWarrior has a built-in source code editor.

Standard Library:   A set of built-in functions that comes with every 
ANSI standard compiler.

star operator:   Another name for the * operator (the pointer derefer-
encing operator).

statement:   A combination of function calls, operators, and vari-
ables that performs a set of computer operations. Statements are 
usually followed by a semicolon.

step through:   Usually associated with an array or a linked list. 
Stepping through an array or linked list means performing an oper-
ation on each element of the array or linked list.

stream:   A sequence of bytes, normally associated with a file.

string constant:   A string literal, such as “Hello”.

string manipulation:   The process of copying or altering a string 
variable. String manipulation is normally performed on a 0-termi-
nated string embedded in an array of chars.

syntax error:   An error in your source code that prevents the com-
piler from compiling your code. CodeWarrior reports syntax errors 
by printing an error message in a separate window.

terminal node:   Another name for a leaf node.

termination:   The condition within a loop that allows the loop to 
exit.

trace:   A process that allows you to map the flow of your program’s 
code. You can trace your program’s execution using the CodeWar-
rior debugger.

traversal:   The process of stepping through a linked list, binary tree, 
or similar data structure. Traversals usually follow a specific pat-
tern, such as preorder, inorder, or postorder.

two’s complement notation:   The notation used by a compiler to 
represent signed integers.



Glossary

Learn C under Windows 95/NT  385

type:   The class a variable belongs to. A variable’s type determines 
the type of data that can be stored in the variable. char, int, and 
float are examples of variable types.

typecast:   A C mechanism for converting a variable from one type 
to another.

typecasting:   The process of applying a typecast to a variable.

typo:   Slang for a typographical error.

unary:   Usually used with respect to an operator, this indicates that 
the operator has a single operand.

union:   A data structure that allows multiple fields but dedicates all 
its memory to one of the fields.

unsigned:   A variable capable of storing only values greater than or 
equal than zero.

update mode:   The file opening modes that allow you to switch be-
tween reading and writing without reopening the file. Update 
modes are specified by including a + in the mode specifier.

user interface:   The part of your program that interacts with the 
user.

variable:   A container for your program’s data. Variables have a 
name and a type.

variable scope:   Within a program, a variable’s scope determines 
where in the program the variable can be accessed. Local variables 
are only accessible within the function they are declared in. Global 
variables are accessible throughout the file they are declared in.

variable type:   See type.

white space:   An invisible character, such as a space, tab, or carriage 
return. White space is ignored by the compiler.

whole number:   An integer, as opposed to a floating point number. 
-256, 22, and 1,000,000 are all whole numbers, but 3.14159 is not a 
whole number.

wide character data types:   Data types designed to hold characters 
represented by more than one byte. ISO supports wide character 
types, ANSI does not.



Glossary

386   Learn C under Windows 95/NT

wide string data types:   String data types based on wide character 
data types. To learn more about these, see the writeup in Harbison 
and Steele’s C:  A Reference Manual.

Windows Application Programming Interface (API):  A set of func-
tions that allows you to access and incorporate the features of Win-
dows in your programs. 

Windows Explorer:  A Windows utility that displays the contents of 
the computer in a tree-view format.

write a file:   The process of transferring data stored in your pro-
gram’s variables out to a disk file.

 



Learn C under Windows 95/NT   387

B
Source Code 
Listings
02.01 - hello                                                                       hello.c

#include <stdio.h>

int main( void )
{

printf( “Hello, world!\n” );

return 0;
}

04.01 - hello2                                                                         hello2.c

#include <stdio.h>

void SayHello( void );

int main( void )
{
SayHello();

return 0;
}

void SayHello( void )
{



Source Code Listings

388   Learn C under Windows 95/NT 

printf( “Hello, world!\n” );
}

04.02 - hello3                                                                         hello3.c

#include <stdio.h>

void SayHello( void );

int main( void )
{
SayHello();
SayHello();
SayHello();

return 0;
}

void SayHello( void )
{
printf( “Hello, world!\n” );

}

05.01 - operator                                                                         operator.c

#include <stdio.h>

int main( void )
{
int myInt;

myInt = 3 * 2;



Source Code Listings

Learn C under Windows 95/NT   389

printf( “myInt ---> %d\n”, myInt );

myInt += 1;
printf( “myInt ---> %d\n”, myInt );

myInt -= 5;
printf( “myInt ---> %d\n”, myInt );

myInt *= 10;
printf( “myInt ---> %d\n”, myInt );

myInt /= 4;
printf( “myInt ---> %d\n”, myInt );

myInt /= 2;
printf( “myInt ---> %d”, myInt );

return 0;
}

05.02 - postfix                                                                         postfix.c

#include <stdio.h>

int main( void )
{
int       myInt;

myInt = 5;
printf( “myInt ---> %d\n”, myInt++ );
printf( “myInt ---> %d”, ++myInt );

return 0;
}



Source Code Listings

390   Learn C under Windows 95/NT 

05.03 - slasher                                                                         slasher.c

#include <stdio.h>

int main( void )
{
printf( “0000000000\r” );
printf( “11111\n” );

printf( “0000\b\b11\n” );

printf( “Here’s a backslash...\\...for you.\n” );
printf( “Here’s a double quote...\”...for 
you.\n” );

printf( “Here are a few tabs...\t\t\t\t...for 
you.\n” );

printf( “Here are a few beeps...\a\a\a\a...for 
you.” );

return 0;
}

06.01 - truthTester                                                                truthTester.c

#include <stdio.h>

#define true 1
#define false 0

int main( void )
{
int hasCar, hasTimeToGiveRide;
int nothingElseOn, newEpisode, itsARerun;



Source Code Listings

Learn C under Windows 95/NT   391

hasCar = true;
hasTimeToGiveRide = true;

if ( hasCar && hasTimeToGiveRide )
printf( “Hop in - I’ll give you a ride!\n” );

else
printf( “I’ve either got no car, no time, or 
both!\n” );

nothingElseOn = true;
newEpisode = true;

if ( newEpisode || nothingElseOn )
printf( “Let’s watch Star Trek!\n” );

else
printf( “Something else is on or I’ve seen 
this one.\n” );

nothingElseOn = true;
itsARerun = true;

if ( nothingElseOn || (! itsARerun) )
printf( “Let’s watch Star Trek!\n” );

else
printf( “Something else is on or I’ve seen 
this one.\n” );

return 0;
}

06.02 - loopTester                                                                  loopTester.c

#include <stdio.h>

int main( void )
{



Source Code Listings

392   Learn C under Windows 95/NT 

int i;

i = 0;
while ( i++ < 4 )
printf( “while: i=%d\n”, i );

printf( “After while loop, i=%d.\n\n”, i );

for ( i = 0; i < 4; i++ )
printf( “first for: i=%d\n”, i );

printf( “After first for loop, i=%d.\n\n”, i );

for ( i = 1; i <= 4; i++ )
printf( “second for: i=%d\n”, i );

printf( “After second for loop, i=%d.\n”, i );

return 0;
}

06.03 - isOdd                                                                         isOdd.c

#include <stdio.h>

int main( void )
{
int i;

for ( i = 1; i <= 20; i++ )
{
printf( “The number %d is “, i );

if ( (i % 2) == 0 )
printf( “even” );

else



Source Code Listings

Learn C under Windows 95/NT   393

printf( “odd” );

if ( (i % 3) == 0 )
printf( “ and is a multiple of 3” );

printf( “.\n” );
}

return 0;
}

06.04 - nextPrime                                                                  nextPrime.c

#include <stdio.h>
#include <math.h>

#define true 1
#define false 0

int main( void )
{
int startingPoint, candidate, last, i;
int isPrime;

startingPoint = 19;

if ( startingPoint < 2 )
{
candidate = 2;

}
else if ( startingPoint == 2 )
{
candidate = 3;

}
else
{
candidate = startingPoint;



Source Code Listings

394   Learn C under Windows 95/NT 

if (candidate % 2 == 0)/* Test only odd*/ 
/* numbers */

candidate--;
do
{
isPrime = true;/* Assume glorious success */
candidate += 2;/* Bump to the next number */ 

/* to test  */
last = sqrt( candidate );/* We’ll check to*/ 

/* see if candidate has  */
/* any factors, from 2 to*/ 
/* last Loop through odd */
/* numbers only */

for ( i = 3; (i <= last) && isPrime; i += 2 )
{
   if ( (candidate % i) == 0 )
  isPrime = false;

}
} while ( ! isPrime );

}

printf( “The next prime after %d is %d.  
Happy?\n”,
   startingPoint, candidate );

return 0;
}

06.05 - nextPrime2                                                              nextPrime2.c

#include <stdio.h>
#include <math.h>

#define true 1
#define false 0

int main( void )
{



Source Code Listings

Learn C under Windows 95/NT   395

int   candidate, isPrime, i, last;

printf( “Primes from 1 to 100: 2, “ );

for ( candidate=3; candidate<=100; candidate+=2 )
{
isPrime = true;
last = sqrt( candidate );

for ( i = 3; (i <= last) && isPrime; i += 2 )
{
if ( (candidate % i) == 0 )
   isPrime = false;

}

if ( isPrime )
printf( “%d, “, candidate );

}

return 0;
}

06.06 - nextPrime3                                                              nextPrime3.c

#include <stdio.h>
#include <math.h>

#define true 1
#define false 0

int main( void )
{
int primeIndex, candidate, isPrime, i, last;

printf( “Prime #1 is 2.\n” );

candidate = 3;



Source Code Listings

396   Learn C under Windows 95/NT 

primeIndex = 2;

while ( primeIndex <= 100 )
{
isPrime = true;
last = sqrt( candidate );

for ( i = 3; (i <= last) && isPrime; i += 2 )
{
if ( (candidate % i) == 0 )
   isPrime = false;

}

if ( isPrime )
{
printf( “Prime #%d is %d.\n”, primeIndex, 
candidate );

primeIndex++;
}

candidate+=2;
}

return 0;
}

07.01 - drawDots                                                                   drawDots.c

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void DrawDots( int numDots );

int main( void )



Source Code Listings

Learn C under Windows 95/NT   397

{
DrawDots( 30 );

return 0;
}

void DrawDots( int numDots )
{
int i;

for ( i = 1; i <= numDots; i++ )
printf( “.” );

}

07.02 - squareIt                                                                   squareIt.c

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void SquareIt( int  number, int*squarePtr );

int main( void )
{
int square;

SquareIt( 5, &square );

printf( “5 squared is %d.\n”, square );

return 0;
}



Source Code Listings

398   Learn C under Windows 95/NT 

void SquareIt( int  number, int*squarePtr )
{
*squarePtr = number * number;

}

07.03 - addThese                                                                   addThese.c

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
int AddTheseNumbers( int num1, int num2 );

int main( void )
{
int sum;

sum = AddTheseNumbers( 5, 6 );

printf( “The sum is %d.”, sum );

return 0;
}

int AddTheseNumbers( int num1, int num2 )
{
return( num1 + num2 );

}

07.04 - listPrimes                                                                   listPrimes.c

#include <stdio.h>



Source Code Listings

Learn C under Windows 95/NT   399

#include <math.h>

#define true 1
#define false 0

/***********************/
/* Function Prototypes */
/***********************/
int IsItPrime( int candidate );

int main( void )
{
int i;

for ( i = 1; i <= 50; i++ )
{
if ( IsItPrime( i ) )
printf( “%d is a prime number.\n”, i );

}

return 0;
}

int IsItPrime( int candidate )
{
int i, last;

if ( candidate < 2 )
return false;

else
{
last = sqrt( candidate );

for ( i = 2; i <= last; i++ )
{
if ( (candidate % i) == 0 )



Source Code Listings

400   Learn C under Windows 95/NT 

return false;
}

}

return true;
}

07.05 - power                                                                   power.c

#include <stdio.h>

#define true 1
#define false 0

/***********************/
/* Function Prototypes */
/***********************/
void DoPower( int *resultPtr, int base, int 

exponent );

/***********/
/* Globals */
/***********/
int gPrintTraceInfo;

int main( void )
{
int power;

gPrintTraceInfo = false;

if ( gPrintTraceInfo )
printf( “---> Starting main()...\n” );

DoPower( &power, 2, 5 );



Source Code Listings

Learn C under Windows 95/NT   401

printf( “2 to the 5th = %d.\n”, power );

DoPower( &power, 3, 4 );
printf( “3 to the 4th = %d.\n”, power );

DoPower( &power, 5, 3 );
printf( “5 to the 3rd = %d.\n”, power );

if ( gPrintTraceInfo )
printf( “---> Leaving main()...\n” );

return 0;
}

void DoPower( int *resultPtr, int base, int 
exponent )

{
int i;

if ( gPrintTraceInfo )
printf( “\t---> Starting DoPower()...\n” );

*resultPtr = 1;
for ( i = 1; i <= exponent; i++ )
*resultPtr *= base;

if ( gPrintTraceInfo )
printf( “\t---> Leaving DoPower()...\n” );

}

07.06 - power2                                                                   power2.c

#include <stdio.h>

#define true 1
#define false 0



Source Code Listings

402   Learn C under Windows 95/NT 

/***********************/
/* Function Prototypes */
/***********************/
int DoPower( int base, int exponent );

/***********/
/* Globals */
/***********/
int gPrintTraceInfo;

int main( void )
{
int power;

gPrintTraceInfo = false;

if ( gPrintTraceInfo )
printf( “---> Starting main()...\n” );

printf( “2 to the 5th = %d.\n”,DoPower( 2, 5 ) );
printf( “3 to the 4th = %d.\n”,DoPower( 3, 4 ) );
printf( “5 to the 3rd = %d.\n”,DoPower( 5, 3 ) );

if ( gPrintTraceInfo )
printf( “---> Leaving main()...\n” );

return 0;
}

int DoPower( int base, int exponent )
{
int i, result;



Source Code Listings

Learn C under Windows 95/NT   403

if ( gPrintTraceInfo )
printf( “\t---> Starting DoPower()...\n” );

result = 1;
for ( i = 1; i <= exponent; i++ )
result *= base;

if ( gPrintTraceInfo )
printf( “\t---> Leaving DoPower()...\n” );

return result;
}

07.07 - nonPrimes                                                                 nonPrimes.c

#include <stdio.h>
#include <math.h>

#define true 1
#define false 0

/***********************/
/* Function Prototypes */
/***********************/
int IsItPrime( int candidate );

int main( void )
{
int i;

for ( i = 1; i <= 50; i++ )
{
if ( ! IsItPrime( i ) )
{
if ( (i % 3) == 0 )



Source Code Listings

404   Learn C under Windows 95/NT 

printf( “%d is not a prime number and is a 
multiple of 3.\n”, i );

else
printf( “%d is not a prime number.\n”, i );

}
}

return 0;
}

int IsItPrime( int candidate )
{
int i, last;

if ( candidate < 2 )
return false;

else
{
last = sqrt( candidate );

for ( i = 2; i <= last; i++ )
{
if ( (candidate % i) == 0 )
return false;

}
}

return true;
}

08.01 - floatSizer                                                                   floatSizer.c

#include <stdio.h>

int main( void )



Source Code Listings

Learn C under Windows 95/NT   405

{
float myFloat;
double myDouble;
long doublemyLongDouble;

myFloat = 12345.67890123456789;
myDouble = 12345.67890123456789;
myLongDouble = 12345.67890123456789;

printf( “sizeof( float ) = %d\n”, (int)sizeof( 
float ) );

printf( “sizeof( double ) = %d\n”, (int)sizeof( 
double ) );

printf( “sizeof( long double ) = %d\n\n”, 
(int)sizeof( long double ) );

printf( “myFloat = %f\n”, myFloat );
printf( “myDouble = %f\n”, myDouble );
printf( “myLongDouble = %f\n\n”, myLongDouble );

printf( “myFloat = %25.16f\n”, myFloat );
printf( “myDouble = %25.16f\n”, myDouble );
printf( “myLongDouble = %25.16f\n\n”, 
myLongDouble );

printf( “myFloat = %10.1f\n”, myFloat );
printf( “myFloat = %.2f\n”, myFloat );
printf( “myFloat = %.12f\n”, myFloat );
printf( “myFloat = %.9f\n\n”, myFloat );

printf( “myFloat = %e\n\n”, myFloat );

myFloat = 100000;
printf( “myFloat = %g\n”, myFloat );

myFloat = 1000000;
printf( “myFloat = %g\n”, myFloat );



Source Code Listings

406   Learn C under Windows 95/NT 

return 0;
}

08.02 - intSizer                                                                   intSizer.c

#include <stdio.h>

int main( void )
{
printf( “sizeof( char ) = %d\n”, (int)sizeof( 
char ) );

printf( “sizeof( short ) = %d\n”, (int)sizeof( 
short ) );

printf( “sizeof( int ) = %d\n”, (int)sizeof( int 
) );

printf( “sizeof( long ) = %d\n”, (int)sizeof( 
long ) );

return 0;
}

08.03 - typeOverflow                                                      typeOverflow.c

#include <stdio.h>

int main( void )
{
unsigned charcounter;

for ( counter=1; counter<=1000; counter++ )
printf( “%d\n”, counter );

return 0;
}



Source Code Listings

Learn C under Windows 95/NT   407

08.04 - ascii                                                                   ascii.c

#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
void PrintChars( char low, char high );

int main( void )
{
PrintChars( 32, 47 );
PrintChars( 48, 57 );
PrintChars( 58, 64 );
PrintChars( 65, 90 );
PrintChars( 91, 96 );
PrintChars( 97, 122 );
PrintChars( 123, 126 );

return 0;
}

void PrintChars( char low, char high )
{
charc;

printf( “%d to %d ---> “, low, high );

for ( c = low; c <= high; c++ )
printf( “%c”, c );

printf( “\n” );
}



Source Code Listings

408   Learn C under Windows 95/NT 

08.05 - dice                                                                   dice.c

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

/***********************/
/* Function Prototypes */
/***********************/
int RollOne( void );
void PrintRolls( introlls[] );
void PrintX( inthowMany );

int main( void )
{
int rolls[ 13 ], twoDice, i;

srand( clock() );

for ( i=0; i<=12; i++ )
rolls[ i ] = 0;

for ( i=1; i <= 1000; i++ )
{
twoDice = RollOne() + RollOne();
++ rolls[ twoDice ];

}

PrintRolls( rolls );

return 0;
}



Source Code Listings

Learn C under Windows 95/NT   409

int RollOne( void )
{
return (rand() % 6) + 1;

}

void PrintRolls( introlls[] )
{
int i;

for ( i=2; i<=12; i++ )
{
printf( “%2d (%3d):  “, i, rolls[ i ] );
PrintX( rolls[ i ] / 10 );
printf( “\n” );

}
}

void PrintX( inthowMany )
{
int i;

for ( i=1; i<=howMany; i++ )
printf( “x” );

}

08.06 - name                                                                   name.c

#include <string.h>
#include <stdio.h>

int main( void )
{
char name[ 50 ];



Source Code Listings

410   Learn C under Windows 95/NT 

printf( “Type your first name, please: “ );

scanf( “%s”, name );

printf( “Welcome, %s.\n”, name );
printf( “Your name is %d characters long.”, 
(int)strlen( name ) );

return 0;
}

08.07 - wordCount                                                            wordCount.c

#include <stdio.h>
#include <ctype.h>

#define true 1
#define false 0
#define kMaxLineLength 200
#define kZeroByte 0

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine( char *line );
int CountWords( char *line );

/**************************************> main <*/
int main( void )
{
char line[ kMaxLineLength ];
int numWords;

printf( “Type a line of text, please:\n” );



Source Code Listings

Learn C under Windows 95/NT   411

ReadLine( line );
numWords = CountWords( line );

printf( “\n---- This line has %d word”,numWords);

if ( numWords != 1 )
printf( “s” );

printf( “ ----\n%s\n”, line );

return 0;
}

/************************************> ReadLine <*/
void ReadLine( char *line )
{
while ( (*line = getchar()) != ‘\n’ )
line++;

*line = kZeroByte;
}

/**********************************> CountWords <*/
int CountWords( char *line )
{
int numWords, inWord;

numWords = 0;
inWord = false;

while ( *line != kZeroByte )
{
if ( ! isspace( *line ) )
{
if ( ! inWord )
{
numWords++;



Source Code Listings

412   Learn C under Windows 95/NT 

inWord = true;
}

}
else
inWord = false;

line++;
}

return numWords;
}

08.08 - dice2                                                                   dice2.c

#include <stdlib.h>
#include <time.h>
#include <stdio.h>

#define kMaxRoll 18
#define kMinRoll 3

/***********************/
/* Function Prototypes */
/***********************/
int RollOne( void );
void PrintRolls( introlls[] );
void PrintX( inthowMany );

int main( void )
{
int rolls[ kMaxRoll + 1 ], threeDice, i;

srand( clock() );

for ( i=0; i<=kMaxRoll; i++ )



Source Code Listings

Learn C under Windows 95/NT   413

rolls[ i ] = 0;

for ( i=1; i <= 1000; i++ )
{
threeDice = RollOne() + RollOne() + RollOne();
++ rolls[ threeDice ];

}

PrintRolls( rolls );

return 0;
}

int RollOne( void )
{
return (rand() % 6) + 1;

}

void PrintRolls( introlls[] )
{
int i;

for ( i=kMinRoll; i<=kMaxRoll; i++ )
{
printf( “%2d (%3d):  “, i, rolls[ i ] );
PrintX( rolls[ i ] / 10 );
printf( “\n” );

}
}

void PrintX( inthowMany )
{
int i;

for ( i=1; i<=howMany; i++ )



Source Code Listings

414   Learn C under Windows 95/NT 

printf( “x” );
}

08.09 - wordCount2                                                        wordCount2.c

#include <stdio.h>
#include <ctype.h>

#define true 1
#define false 0
#define kMaxLineLength 200
#define kZeroByte 0

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine( char *line );
int CountWords( char *line );
void PrintWords( char *line );

/****************************************> main <*/
int main( void )
{
char line[ kMaxLineLength ];
int numWords;

printf( “Type a line of text, please:\n” );

ReadLine( line );
numWords = CountWords( line );

printf( “\n---- This line has %d word”,numWords);

if ( numWords != 1 )
printf( “s” );



Source Code Listings

Learn C under Windows 95/NT   415

printf( “ ----\n%s\n”, line );

printf( “\n---- Here are the words ----” );
PrintWords( line );

return 0;
}

/************************************> ReadLine <*/
void ReadLine( char *line )
{
while ( (*line = getchar()) != ‘\n’ )
line++;

*line = kZeroByte;
}

/**********************************> CountWords <*/
int CountWords( char *line )
{
int numWords, inWord;

numWords = 0;
inWord = false;

while ( *line != kZeroByte )
{
if ( ! isspace( *line ) )
{
if ( ! inWord )
{
numWords++;
inWord = true;

}
}



Source Code Listings

416   Learn C under Windows 95/NT 

else
inWord = false;

line++;
}

return numWords;
}

/**********************************> PrintWords <*/
void PrintWords( char *line )
{
int inWord;

inWord = false;

while ( *line != kZeroByte )
{
if ( ! isspace( *line ) )
{
if ( ! inWord )
{
putchar( ‘\n’ );
inWord = true;

}
putchar( *line );

}
else
inWord = false;

line++;
}

}

09.01 - multiArray                                                             multiArray.c



Source Code Listings

Learn C under Windows 95/NT   417

#include <stdio.h>

#define true 1
#define false 0
#define kMaxCDs 300
#define kMaxArtistLength50

/***********************/
/* Function Prototypes */
/***********************/
void PrintArtists( short numArtists, 

char artist[][ kMaxArtistLength + 1 ] );

/***************************************> main <*/
int main( void )
{
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];
short numArtists;
char doneReading, *result;

printf( “The artist array takes up %ld bytes of 
memory.\n\n”, sizeof( artist ) );

doneReading = false;
numArtists = 0;

while ( ! doneReading )
{
printf( “Artist #%d (return to exit): “, 
numArtists+1 );

result = gets( artist[ numArtists ] );

if ( (result == NULL) ||
(result[0] == ‘\0’) )
doneReading = true;

else



Source Code Listings

418   Learn C under Windows 95/NT 

numArtists++;
}

printf( “----\n” );

PrintArtists( numArtists, artist );

return 0;
}

/********************************> PrintArtists <*/
void PrintArtists( short numArtists,

char artist[][ kMaxArtistLength + 1 ] )
{
short i;

if ( numArtists <= 0 )
printf( “No artists to report.\n” );

else
{
for ( i=0; i<numArtists; i++ )
printf( “Artist #%d: %s\n”,
i+1, artist[i] );

}
}

09.02 - structSize                                                                   structSize.h

#define kMaxArtistLength 50
#define kMaxTitleLength 50

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo



Source Code Listings

Learn C under Windows 95/NT   419

{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];

};

09.02 - structSize                                                                   structSize.c

#include <stdio.h>
#include “structSize.h”

/***************************************> main <*/
int main( void )
{
struct CDInfomyInfo;

printf( “rating field:    %ld byte\n”,
sizeof( myInfo.rating ) );

printf( “artist field:   %ld bytes\n”,
sizeof( myInfo.artist ) );

printf( “title field:    %ld bytes\n”,
sizeof( myInfo.title ) );

printf( “               ---------\n” );

printf( “myInfo struct: %ld bytes”,
sizeof( myInfo ) );

return 0;
}

09.03 - structSize2                                                               structSize2.h

/***********************/



Source Code Listings

420   Learn C under Windows 95/NT 

/* Struct Declarations */
/***********************/

struct LongShortShort
{
long myLong;
short myShort1;
short myShort2;

};

struct ShortLongShort
{
short myShort1;
long myLong;
short myShort2;

};

struct DoubleChar
{
double myDouble;
char myChar;

};

struct CharDoubleChar
{
char myChar1;
double myDouble;
char myChar2;

};

struct DoubleCharChar
{
double myDouble;
char myChar1;
char myChar2;

};



Source Code Listings

Learn C under Windows 95/NT   421

09.03 - structSize2                                                              structSize2.c

#include <stdio.h>
#include “structSize2.h”

/****************************************> main <*/
int main( void )
{
printf( “char:   %ld byte\n”, sizeof( char ) );
printf( “short:  %ld bytes\n”, sizeof( short ) );
printf( “long:   %ld bytes\n”, sizeof( long ) );
printf( “double: %ld bytes\n\n”, 
sizeof( double ) );

printf( “LongShortShort: %ld bytes\n”,
sizeof( struct LongShortShort ) );

printf( “ShortLongShort: %ld bytes\n”,
sizeof( struct ShortLongShort ) );

printf( “DoubleChar:     %ld bytes\n”,
sizeof( struct DoubleChar ) );

printf( “CharDoubleChar: %ld bytes\n”,
sizeof( struct CharDoubleChar ) );

printf( “DoubleCharChar: %ld bytes\n”,
sizeof( struct DoubleCharChar ) );

return 0;
}

09.04 - paramAddress                                                 paramAddress.h

/***********/
/* Defines */



Source Code Listings

422   Learn C under Windows 95/NT 

/***********/
#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];

};

/***********************/
/* Function Prototypes */
/***********************/
void PrintParamInfo( struct CDInfo *myCDPtr,

struct CDInfo myCDCopy );

09.04 - paramAddress                                                 paramAddress.c

#include <stdio.h>
#include “paramAddress.h”

/****************************************> main <*/
int main( void )
{
struct CDInfomyCD;

printf( “Address of myCD.rating in 
main():               %ld\n”,
&(myCD.rating) );



Source Code Listings

Learn C under Windows 95/NT   423

PrintParamInfo( &myCD, myCD );

return 0;
}

/************************> PrintStructAddresses <*/
void PrintParamInfo( struct CDInfo *myCDPtr,

struct CDInfo myCDCopy )
{
printf( “Address of myCDPtr->rating in 
PrintParamInfo(): %ld\n”,
&(myCDPtr->rating) );

printf( “Address of myCDCopy.rating in 
PrintParamInfo(): %ld\n”,
&(myCDCopy.rating) );

}

09.05 - cdTracker                                                                cdTracker.h

/***********/
/* Defines */
/***********/
#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;



Source Code Listings

424   Learn C under Windows 95/NT 

char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo*next;

} *gFirstPtr, *gLastPtr;

/***********************/
/* Function Prototypes */
/***********************/
char GetCommand( void );
struct CDInfo*ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void ListCDs( void );
void Flush( void );

09.05 - cdTracker                                                                   cdTracker.c

#include <stdlib.h>
#include <stdio.h>
#include “cdTracker.h”

/****************************************> main <*/
int main( void )
{
char command;

gFirstPtr = NULL;
gLastPtr = NULL;

while ( (command = GetCommand() ) != ‘q’ )
{
switch( command )
{
case ‘n’:
AddToList( ReadStruct() );
break;



Source Code Listings

Learn C under Windows 95/NT   425

case ‘l’:
ListCDs();
break;

}
}

printf( “Goodbye...” );

return 0;
}

/**********************************> GetCommand <*/
char GetCommand( void )
{
char command;

do 
{
printf( “Enter command (q=quit, n=new, 
l=list):  “ );

scanf( “%c”, &command );
Flush();

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) );

printf( “\n----------\n” );
return( command );

}

/**********************************> ReadStruct <*/
struct CDInfo*ReadStruct( void )
{
struct CDInfo*infoPtr;
int num;



Source Code Listings

426   Learn C under Windows 95/NT 

infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

printf( “Enter Artist’s Name:  “ );
gets( infoPtr->artist );

printf( “Enter CD Title:  “ );
gets( infoPtr->title );

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );

infoPtr->rating = num;

printf( “\n----------\n” );

return( infoPtr );
}

/***********************************> AddToList <*/
void AddToList( struct CDInfo *curPtr )
{
if ( gFirstPtr == NULL )
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;



Source Code Listings

Learn C under Windows 95/NT   427

gLastPtr = curPtr;
curPtr->next = NULL;

}

/*************************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo*curPtr;

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}
else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; curPtr = 
curPtr->next )

{
printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );
}

}
}

/************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}



Source Code Listings

428   Learn C under Windows 95/NT 

09.06 - multiArray2                                                         multiArray2.c

#include <stdio.h>

#define true 1
#define false 0
#define kMaxCDs 300
#define kMaxArtistLength 50

/***********************/
/* Function Prototypes */
/***********************/
void ReadLine( char *line );
void Flush( void );
void PrintArtists( short numArtists, 

char artist[][ kMaxArtistLength + 1 ] );

/****************************************> main <*/
int main( void )
{
char artist[ kMaxCDs ][ kMaxArtistLength + 1 ];
short numArtists;
char doneReading;

printf( “The artist array takes up %ld bytes of 
memory.\n\n”, sizeof( artist ) );

doneReading = false;
numArtists = 0;

while ( ! doneReading )
{
printf( “Artist #%d (return to exit): “, 
numArtists+1 );

ReadLine( artist[ numArtists ] );



Source Code Listings

Learn C under Windows 95/NT   429

if ( artist[numArtists][0] == ‘\0’ )
doneReading = true;

else
numArtists++;

}

printf( “----\n” );

PrintArtists( numArtists, artist );

return 0;
}

/************************************> ReadLine <*/
void ReadLine( char *line )
{
char c;
short numCharsRead;

numCharsRead = 0;

while ( ((c = getchar()) != ‘\n’) &&
(++numCharsRead <= kMaxArtistLength))

{
*line = c;
line++;

}

*line = 0;

if ( numCharsRead > kMaxArtistLength )
Flush();

}

/***************************************> Flush <*/



Source Code Listings

430   Learn C under Windows 95/NT 

void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

/********************************> PrintArtists <*/
void PrintArtists( short numArtists,

char artist[][ kMaxArtistLength + 1 ] )
{
shorti;

if ( numArtists <= 0 )
{
printf( “No artists to report.\n” );
return;

}
else
{
for ( i=0; i<numArtists; i++ )
printf( “Artist #%d: %s\n”,
i+1, artist[i] );

}
}

09.07 - cdTracker2                                                              cdTracker2.h

/***********/
/* Defines */
/***********/
#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

/***********************/



Source Code Listings

Learn C under Windows 95/NT   431

/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo*next;

} *gFirstPtr, *gLastPtr;

/***********************/
/* Function Prototypes */
/***********************/
char GetCommand( void );
struct CDInfo*ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void InsertInList( struct CDInfo *afterMeCDPtr, 
struct CDInfo *newCDPtr );
void ListCDs( void );
void Flush( void );

09.07 - cdTracker2                                                                cdTracker2.c

#include <stdlib.h>
#include <stdio.h>
#include “cdTracker2.h”

/****************************************> main <*/
int main( void )
{
char command;

gFirstPtr = NULL;
gLastPtr = NULL;



Source Code Listings

432   Learn C under Windows 95/NT 

while ( (command = GetCommand() ) != ‘q’ )
{
switch( command )
{
case ‘n’:
AddToList( ReadStruct() );
break;

case ‘l’:
ListCDs();
break;

}
}

printf( “Goodbye...” );

return 0;
}

/**********************************> GetCommand <*/
char GetCommand( void )
{
char command;

do 
{
printf( “Enter command (q=quit, n=new, 
l=list):  “ );

scanf( “%c”, &command );
Flush();

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) );

printf( “\n----------\n” );
return( command );

}



Source Code Listings

Learn C under Windows 95/NT   433

/**********************************> ReadStruct <*/
struct CDInfo*ReadStruct( void )
{
struct CDInfo*infoPtr;
int num;

infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

printf( “Enter Artist’s Name:  “ );
gets( infoPtr->artist );

printf( “Enter CD Title:  “ );
gets( infoPtr->title );

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );

infoPtr->rating = num;

printf( “\n----------\n” );

return( infoPtr );
}

/***********************************> AddToList <*/



Source Code Listings

434   Learn C under Windows 95/NT 

void AddToList( struct CDInfo *curPtr )
{
struct CDInfo*beforePtr;

/*First check to see if the list is empty */
if ( gFirstPtr == NULL )
InsertInList( NULL, curPtr );

else if ( curPtr->rating <= gFirstPtr->rating )
/*Next check to see if curPtr should be the new */ 
/*first item */

InsertInList( NULL, curPtr );
else

/*Walk through the list till you find the first */ 
/*rating higher than us */
{
beforePtr = gFirstPtr;

while ( (beforePtr->next != NULL) &&
(beforePtr->next->rating < curPtr->rating) )

{
beforePtr = beforePtr->next;

}
InsertInList( beforePtr, curPtr );

}
}

/********************************> InsertInList <*/
void InsertInList( struct CDInfo *afterMeCDPtr, 

struct CDInfo *newCDPtr )
{
if ( afterMeCDPtr == NULL )

/* This means we want to insert the new one as */ 
/* the first in the list */
{
newCDPtr->next = gFirstPtr;
gFirstPtr = newCDPtr;
if ( gLastPtr == NULL )



Source Code Listings

Learn C under Windows 95/NT   435

gLastPtr = newCDPtr;
}
else if ( afterMeCDPtr == gLastPtr )

/* This means we want to insert the new one as */ 
/* the last in the list */
{
gLastPtr->next = newCDPtr;
newCDPtr->next = NULL;
gLastPtr = newCDPtr;

}
else
{
newCDPtr->next = afterMeCDPtr->next;
afterMeCDPtr->next = newCDPtr;

}

}

/**********************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo*curPtr;

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}
else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; curPtr = 
curPtr->next )

{
printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );



Source Code Listings

436   Learn C under Windows 95/NT 

printf( “\n----------\n” );
}

}
}

/*************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

09.08 - cdTracker3                                                                cdTracker3.h

/***********/
/* Defines */
/***********/
#define kMaxCDs 300
#define kMaxArtistLength 50
#define kMaxTitleLength 50

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo*next, *prev;

} *gFirstPtr, *gLastPtr;

/***********************/
/* Function Prototypes */



Source Code Listings

Learn C under Windows 95/NT   437

/***********************/
char GetCommand( void );
struct CDInfo*ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void ListCDs( void );
void ListCDsInReverse( void );
void Flush( void );

09.08 - cdTracker3                                                                cdTracker3.c

#include <stdlib.h>
#include <stdio.h>
#include “cdTracker3.h”

/****************************************> main <*/
int main( void )
{
char command;

gFirstPtr = NULL;
gLastPtr = NULL;

while ( (command = GetCommand() ) != ‘q’ )
{
switch( command )
{
case ‘n’:
AddToList( ReadStruct() );
break;

case ‘l’:
ListCDs();
break;

case ‘r’:
ListCDsInReverse();
break;

}



Source Code Listings

438   Learn C under Windows 95/NT 

}

printf( “Goodbye...” );

return 0;
}

/*********************************> GetCommand <*/
char GetCommand( void )
{
char command;

do 
{
printf( “Enter command (q=quit, n=new, l=list, 
r=list reverse):  “ );

scanf( “%c”, &command );
Flush();

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) && (command != ‘r’) );

printf( “\n----------\n” );
return( command );

}

/*********************************> ReadStruct <*/
struct CDInfo*ReadStruct( void )
{
struct CDInfo*infoPtr;
int num;

infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{



Source Code Listings

Learn C under Windows 95/NT   439

printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

printf( “Enter Artist’s Name:  “ );
gets( infoPtr->artist );

printf( “Enter CD Title:  “ );
gets( infoPtr->title );

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );

infoPtr->rating = num;

printf( “\n----------\n” );

return( infoPtr );
}

/***********************************> AddToList <*/
voidAddToList( struct CDInfo *curPtr )
{
if ( gFirstPtr == NULL )
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

curPtr->prev = gLastPtr;

gLastPtr = curPtr;
curPtr->next = NULL;



Source Code Listings

440   Learn C under Windows 95/NT 

}

/***********************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo*curPtr;

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}
else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; 
curPtr = curPtr->next )

{
printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );
}

}
}

/****************************> ListCDsInReverse <*/
void ListCDsInReverse( void )
{
struct CDInfo*curPtr;

if ( gLastPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}



Source Code Listings

Learn C under Windows 95/NT   441

else
{
for ( curPtr=gLastPtr; curPtr!=NULL; 
curPtr = curPtr->prev )

{
printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );
}

}
}

/*************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

10.01 - printFile                                                                printFile.c

#include <stdio.h>

int main( void )
{
FILE*fp;
int c;

fp = fopen( “My Data File”, “r” );

if ( fp != NULL )
{
while ( (c = fgetc( fp )) != EOF )



Source Code Listings

442   Learn C under Windows 95/NT 

putchar( c );

fclose( fp );
}

return 0;
}

10.02 - cdFiler                                                                cdFiler.h

/***********/
/* Defines */
/***********/
#define true 1
#define false 0

#define kMaxArtistLength 50
#define kMaxTitleLength 50

#define kCDFileName “cdData”

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char artist[ kMaxArtistLength + 1 ];
char title[ kMaxTitleLength + 1 ];
struct CDInfo*next;

};

/***********************/
/* Global Declarations */
/***********************/



Source Code Listings

Learn C under Windows 95/NT   443

 extern struct CDInfo*gFirstPtr, *gLastPtr;

/********************************/
/* Function Prototypes - main.c */
/********************************/
char GetCommand( void );
struct CDInfo*ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void ListCDs( void );
void ListCDsInReverse( void );
void Flush( void );

/*********************************/
/* Function Prototypes - files.c */
/*********************************/
void WriteFile( void );
void ReadFile( void );
char ReadStructFromFile( FILE *fp, struct CDInfo 

*infoPtr );

10.02 - cdFiler                                                                files.c

#include <stdlib.h>
#include <stdio.h>
#include “cdFiler.h”

/***********************************> WriteFile <*/
void WriteFile( void )
{
FILE *fp;
struct CDInfo*infoPtr;
int num;

if ( gFirstPtr == NULL )



Source Code Listings

444   Learn C under Windows 95/NT 

return;

if ( ( fp = fopen( kCDFileName, “w” ) ) == NULL )
{
printf( “***ERROR: Could not write CD file!” );
return;

}

for ( infoPtr=gFirstPtr; infoPtr!=NULL; 
infoPtr=infoPtr->next )

{
fprintf( fp, “%s\n”, infoPtr->artist );
fprintf( fp, “%s\n”, infoPtr->title );

num = infoPtr->rating;
fprintf( fp, “%d\n”, num );

}

fclose( fp );
}

/************************************> ReadFile <*/
void ReadFile( void )
{
FILE *fp;
struct CDInfo*infoPtr;
int i;

if ( ( fp = fopen( kCDFileName, “r” ) ) == NULL )
{
printf( “***ERROR: Could not read CD file!” );
return;

}

do
{
infoPtr = malloc( sizeof( struct CDInfo ) );



Source Code Listings

Learn C under Windows 95/NT   445

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}
}
while ( ReadStructFromFile( fp, infoPtr ) );

fclose( fp );
free( infoPtr );

}

/**************************> ReadStructFromFile <*/
char ReadStructFromFile( FILE *fp, struct CDInfo 

*infoPtr )
{
int num;

if ( fscanf( fp, “%[^\n]\n”, infoPtr->artist ) 
!= EOF )

{
if ( fscanf( fp, “%[^\n]\n”, infoPtr->title ) 
== EOF )

{
printf( “Missing CD title!\n” );
return false;

}
else if ( fscanf( fp, “%d\n”, &num ) == EOF )
{
printf( “Missing CD rating!\n” );
return false;

}
else
{
infoPtr->rating = num;
AddToList( infoPtr );



Source Code Listings

446   Learn C under Windows 95/NT 

return true;
}

}
else
return false;

}

10.02 - cdFiler                                                                main.c

#include <stdlib.h>
#include <stdio.h>
#include “cdFiler.h”

/***********************/
/* Global Definitions */
/***********************/
struct CDInfo*gFirstPtr, *gLastPtr;

/****************************************> main <*/
int main( void )
{
char command;

gFirstPtr = NULL;
gLastPtr = NULL;

ReadFile();

while ( (command = GetCommand() ) != ‘q’ )
{
switch( command )
{
case ‘n’:
AddToList( ReadStruct() );
break;



Source Code Listings

Learn C under Windows 95/NT   447

case ‘l’:
ListCDs();
break;

}
}

WriteFile();

printf( “Goodbye...” );

return 0;
}

/**********************************> GetCommand <*/
char GetCommand( void )
{
char command;

do 
{
printf( “Enter command (q=quit, n=new, 
l=list):  “ );

scanf( “%c”, &command );
Flush();

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) );

printf( “\n----------\n” );
return( command );

}

/********************************> ReadStruct <*/
struct CDInfo*ReadStruct( void )
{
struct CDInfo*infoPtr;



Source Code Listings

448   Learn C under Windows 95/NT 

int num;

infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

printf( “Enter Artist’s Name:  “ );
gets( infoPtr->artist );

printf( “Enter CD Title:  “ );
gets( infoPtr->title );

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}
while ( ( num < 1 ) || ( num > 10 ) );

infoPtr->rating = num;

printf( “\n----------\n” );

return( infoPtr );
}

/**********************************> AddToList <*/
void AddToList( struct CDInfo *curPtr )
{
if ( gFirstPtr == NULL )
gFirstPtr = curPtr;

else



Source Code Listings

Learn C under Windows 95/NT   449

gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

}

/********************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo*curPtr;

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}
else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; curPtr = 
curPtr->next )

{
printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );
}

}
}

/*************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}



Source Code Listings

450   Learn C under Windows 95/NT 

10.03 - dinoEdit                                                                dinoEdit.h

/***********/
/* Defines */
/***********/
#define true 1
#define false 0

#define kDinoRecordSize 20
#define kMaxLineLength 100
#define kDinoFileName “My Dinos”

/********************************/
/* Function Prototypes - main.c */
/********************************/
int GetNumber( void );
int GetNumberOfDinos( void );
void ReadDinoName( int number, char *dinoName );
char GetNewDinoName( char *dinoName );
void WriteDinoName( int number, char *dinoName );
void Flush( void );
void DoError( char *message );

10.03 - dinoEdit                                                                main.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include “dinoEdit.h”

/****************************************> main <*/
int main( void )
{



Source Code Listings

Learn C under Windows 95/NT   451

int number;
FILE*fp;
char dinoName[ kDinoRecordSize+1 ];

while ( (number = GetNumber() ) != 0 )
{
ReadDinoName( number, dinoName );

printf( “Dino #%d: %s\n”, number, dinoName );

if ( GetNewDinoName( dinoName ) )
WriteDinoName( number, dinoName );

}

printf( “Goodbye...” );

return 0;
}

/********************************> GetNumber <*/
int GetNumber( void )
{
int number, numDinos;

numDinos = GetNumberOfDinos();

do 
{
printf( “Enter number from 1 to %d (0 to 
exit): “, numDinos );

scanf( “%d”, &number );
Flush();

}
while ( (number < 0) || (number > numDinos) );

return( number );
}



Source Code Listings

452   Learn C under Windows 95/NT 

/****************************> GetNumberOfDinos <*/
int GetNumberOfDinos( void )
{
FILE*fp;
longfileLength;

if ( (fp = fopen( kDinoFileName, “r” )) == NULL )
DoError( “Couldn’t open file...Goodbye!” );

if ( fseek( fp, 0L, SEEK_END ) != 0 )
DoError( “Couldn’t seek to end of 

file...Goodbye!” );

if ( (fileLength = ftell( fp )) == -1L )
DoError( “ftell() failed...Goodbye!” );

fclose( fp );

return( (int)(fileLength / kDinoRecordSize) );
}

/********************************> ReadDinoName <*/
void ReadDinoName( int number, char *dinoName )
{
FILE*fp;
long bytesToSkip;

if ( (fp = fopen( kDinoFileName, “r” )) == NULL )
DoError( “Couldn’t open file...Goodbye!” );

bytesToSkip = (long)((number-1) * 
kDinoRecordSize);

if ( fseek( fp, bytesToSkip, SEEK_SET ) != 0 )
DoError( “Couldn’t seek in file...Goodbye!” );



Source Code Listings

Learn C under Windows 95/NT   453

if ( fread( dinoName, (size_t)kDinoRecordSize,
(size_t)1, fp ) != 1 )
DoError( “Bad fread()...Goodbye!” );

fclose( fp );
}

/******************************> GetNewDinoName <*/
char GetNewDinoName( char *dinoName )
{
char line[ kMaxLineLength ];
int i, nameLen;

printf( “Enter new name: “ );

gets( line );

if ( line[0] == ‘\0’ )
return false;

for ( i=0; i<kDinoRecordSize; i++ )
dinoName[i] = ‘ ‘;

nameLen = strlen( line );

if ( nameLen > kDinoRecordSize )
nameLen = kDinoRecordSize;

for ( i=0; i<nameLen; i++ )
dinoName[i] = line[i];

return true;
}

/*******************************> WriteDinoName <*/



Source Code Listings

454   Learn C under Windows 95/NT 

void WriteDinoName( int number, char *dinoName )
{
FILE*fp;
long bytesToSkip;

if ( (fp = fopen( kDinoFileName, “r+”)) == NULL )
DoError( “Couldn’t open file...Goodbye!” );

bytesToSkip = (long)((number-1) * 
kDinoRecordSize);

if ( fseek( fp, bytesToSkip, SEEK_SET ) != 0 )
DoError( “Couldn’t seek in file...Goodbye!” );

if ( fwrite( dinoName, (size_t)kDinoRecordSize,
(size_t)1, fp ) != 1 )
DoError( “Bad fwrite()...Goodbye!” );

fclose( fp );
}

/**************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

/*************************************> DoError <*/
void DoError( char *message )
{
printf( “%s\n”, message );
exit( 0 );

}



Source Code Listings

Learn C under Windows 95/NT   455

10.04 - fileReader                                                                fileReader.c

#include <stdio.h>
#include <stdlib.h>

#define true 1
#define false 0

/***********************/
/* Function Prototypes */
/***********************/
void DoError( char *message );
int ReadLineOfNums( FILE *fp, int numsPerLine, int 

*intArray );
void PrintLineOfNums( int numsPerLine, int 

*intArray );

/****************************************> main <*/
int main( void )
{
FILE *fp;
int *intArray, numsPerLine;
size_t arraySize;

fp = fopen( “My Data File”, “r” );

if ( fp == NULL )
DoError( “Couldn’t open file!” );

if ( fscanf( fp, “%d”, &numsPerLine ) != 1 )
DoError( “Bad fscanf() call!” );

if ( numsPerLine <= 0 )
DoError( “Too few items per line!” );

arraySize = numsPerLine * sizeof( int );



Source Code Listings

456   Learn C under Windows 95/NT 

if ( (intArray = malloc( arraySize )) == NULL )
DoError( “Couldn’t malloc() int array!” );

while ( ReadLineOfNums( fp, numsPerLine, 
intArray ) )
PrintLineOfNums( numsPerLine, intArray );

free( intArray );

return 0;
}

/****************************> ReadLineOfNums <*/
int ReadLineOfNums( FILE *fp, int numsPerLine, int 

*intArray )
{
int i;

for ( i=0; i<numsPerLine; i++ )
{
if ( fscanf( fp, “%d”, &(intArray[ i ]) ) != 1 

)
return false;

}

return true;
}

/*****************************> PrintLineOfNums <*/
void PrintLineOfNums( int numsPerLine, int 

*intArray )
{
int i;

for ( i=0; i<numsPerLine; i++ )



Source Code Listings

Learn C under Windows 95/NT   457

printf( “%d\t”, intArray[ i ] );

printf( “\n” );
}

/************************************> DoError <*/
void DoError( char *message )
{
printf( “%s\n”, message );
exit( 0 );

}

10.05 - cdFiler2                                                                cdFiler2.h

/***********/
/* Defines */
/***********/
#define true 1
#define false 0

#define kMaxLineLength 200
#define kCDFileName “cdData”

/***********************/
/* Struct Declarations */
/***********************/
struct CDInfo
{
char rating;
char *artist;
char *title;
struct CDInfo*next;

};



Source Code Listings

458   Learn C under Windows 95/NT 

/***********************/
/* Global Declarations */
/***********************/
 extern struct CDInfo*gFirstPtr, *gLastPtr;

/********************************/
/* Function Prototypes - main.c */
/********************************/
char GetCommand( void );
struct CDInfo*ReadStruct( void );
void AddToList( struct CDInfo *curPtr );
void ListCDs( void );
void ListCDsInReverse( void );
void Flush( void );
char *MallocAndCopy( char *line );
void ZeroLine( char *line );

/*********************************/
/* Function Prototypes - files.c */
/*********************************/
void WriteFile( void );
void ReadFile( void );
char ReadStructFromFile( FILE *fp, struct CDInfo 

*infoPtr );

10.05 - cdFiler2                                                                files.c

#include <stdlib.h>
#include <stdio.h>
#include “cdFiler2.h”

/***********************************> WriteFile <*/
void WriteFile( void )
{



Source Code Listings

Learn C under Windows 95/NT   459

FILE *fp;
struct CDInfo*infoPtr;
int num;

if ( gFirstPtr == NULL )
return;

if ( ( fp = fopen( kCDFileName, “w” ) ) == NULL )
{
printf( “***ERROR: Could not write CD file!” );
return;

}

for ( infoPtr=gFirstPtr; infoPtr!=NULL; 
infoPtr=infoPtr->next )

{
fprintf( fp, “%s\n”, infoPtr->artist );
fprintf( fp, “%s\n”, infoPtr->title );

num = infoPtr->rating;
fprintf( fp, “%d\n”, num );

}

fclose( fp );
}

/***********************************> ReadFile <*/
void ReadFile( void )
{
FILE *fp;
struct CDInfo*infoPtr;

if ( ( fp = fopen( kCDFileName, “r” ) ) == NULL )
{
printf( “***ERROR: Could not read CD file!” );
return;

}



Source Code Listings

460   Learn C under Windows 95/NT 

do
{
infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}
}
while ( ReadStructFromFile( fp, infoPtr ) );

fclose( fp );
free( infoPtr );

}

/**************************> ReadStructFromFile <*/
char ReadStructFromFile( FILE *fp, struct CDInfo 

*infoPtr )
{
int num;
char line[ kMaxLineLength ];

ZeroLine( line );
if ( fscanf( fp, “%[^\n]\n”, line ) != EOF )
{
infoPtr->artist = MallocAndCopy( line );
ZeroLine( line );

if ( fscanf( fp, “%[^\n]\n”, line ) == EOF )
{
printf( “Missing CD title!\n” );
return false;

}
else
{



Source Code Listings

Learn C under Windows 95/NT   461

infoPtr->title = MallocAndCopy( line );

if ( fscanf( fp, “%d\n”, &num ) == EOF )
{
printf( “Missing CD rating!\n” );
return false;

}
else
{
infoPtr->rating = num;
AddToList( infoPtr );
return true;

}
}

}
else
return false;

}

10.05 - cdFiler2                                                                main.c

#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include “cdFiler2.h”

/***********************/
/* Global Definitions */
/***********************/
struct CDInfo*gFirstPtr, *gLastPtr;

/****************************************> main <*/
int main( void )
{
char command;



Source Code Listings

462   Learn C under Windows 95/NT 

gFirstPtr = NULL;
gLastPtr = NULL;

ReadFile();

while ( (command = GetCommand() ) != ‘q’ )
{
switch( command )
{
case ‘n’:
AddToList( ReadStruct() );
break;

case ‘l’:
ListCDs();
break;

}
}

WriteFile();

printf( “Goodbye...” );

return 0;
}

/**********************************> GetCommand <*/
char GetCommand( void )
{
char command;

do 
{
printf( “Enter command (q=quit, n=new, 
l=list):  “ );

scanf( “%c”, &command );
Flush();



Source Code Listings

Learn C under Windows 95/NT   463

}
while ( (command != ‘q’) && (command != ‘n’)

&& (command != ‘l’) );

printf( “\n----------\n” );
return( command );

}

/**********************************> ReadStruct <*/
struct CDInfo*ReadStruct( void )
{
struct CDInfo*infoPtr;
int num;
char line[ kMaxLineLength ];

infoPtr = malloc( sizeof( struct CDInfo ) );

if ( infoPtr == NULL )
{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}

printf( “Enter Artist’s Name:  “ );
gets( line );
infoPtr->artist = MallocAndCopy( line );

printf( “Enter CD Title:  “ );
gets( line );
infoPtr->title = MallocAndCopy( line );

do
{
printf( “Enter CD Rating (1-10):  “ );
scanf( “%d”, &num );
Flush();

}



Source Code Listings

464   Learn C under Windows 95/NT 

while ( ( num < 1 ) || ( num > 10 ) );

infoPtr->rating = num;

printf( “\n----------\n” );

return( infoPtr );
}

/*********************************> AddToList <*/
void AddToList( struct CDInfo *curPtr )
{
if ( gFirstPtr == NULL )
gFirstPtr = curPtr;

else
gLastPtr->next = curPtr;

gLastPtr = curPtr;
curPtr->next = NULL;

}

/************************************> ListCDs <*/
void ListCDs( void )
{
struct CDInfo*curPtr;

if ( gFirstPtr == NULL )
{
printf( “No CDs have been entered yet...\n” );
printf( “\n----------\n” );

}
else
{
for ( curPtr=gFirstPtr; curPtr!=NULL; curPtr = 
curPtr->next )

{



Source Code Listings

Learn C under Windows 95/NT   465

printf( “Artist:  %s\n”, curPtr->artist );
printf( “Title:   %s\n”, curPtr->title );
printf( “Rating:  %d\n”, curPtr->rating );

printf( “\n----------\n” );
}

}
}

/*************************************> Flush <*/
void Flush( void )
{
while ( getchar() != ‘\n’ )
;

}

/*******************************> MallocAndCopy <*/
char *MallocAndCopy( char *line )
{
/*
This function takes a string as a parameter and 
malloc()s a new block of memory the size of the 
string, with an extra byte for the 0-terminator.

strcpy() is called to copy the string into the 
new block of memory and the pointer to the new 
block is returned...

*/
char *pointer;
if ( (pointer = malloc( strlen(line)+1 )) == 
NULL )

{
printf( “Out of memory!!!  Goodbye!\n” );
exit( 0 );

}
strcpy( pointer, line );



Source Code Listings

466   Learn C under Windows 95/NT 

return pointer;
}

/************************************> ZeroLine <*/
void ZeroLine( char *line )
{
int i;

for ( i=0; i<kMaxLineLength; i++ )
line[ i ] = 0;

}

11.01 - iterate                                                                iterate.c

#include <stdio.h>

int main( void )
{
int i, num;
long fac;

num = 5;
fac = 1;

for ( i=1; i<=num; i++ )
fac *= i;

printf( “%d factorial is %ld.”, num, fac );

return 0;
}



Source Code Listings

Learn C under Windows 95/NT   467

11.02 - recurse                                                                recurse.c

#include <stdio.h>

long factorial( long num );

int main( void )
{
long   num = 5L, fac;

printf( “%ld factorial is %ld.”, num,
factorial( num ) );

return 0;
}

long factorial( long num )
{
if ( num > 1 )
num *= factorial( num - 1 );

return( num );
}

11.03 - funcPtr                                                                funcPtr.c

#include <stdio.h>

int SquareIt( int num );

int main( void )
{
int (*myFuncPtr)( int );
int num = 5;

myFuncPtr = SquareIt;



Source Code Listings

468   Learn C under Windows 95/NT 

printf( “%d squared is %d.”, num,
(*myFuncPtr)( num ) );

return 0;
}

int SquareIt( int num )
{
return( num * num );

}

11.04 - static                                                                static.c

#include <stdio.h>

int StaticFunc( void );

int main( void )
{
int i;

for ( i=1; i<=5; i++ )
printf( “%d\n”, StaticFunc() );

return 0;
}

int StaticFunc( void )
{
static intmyStatic = 0;

return myStatic++;
}



Source Code Listings

Learn C under Windows 95/NT   469

11.05 - treePrinter                                                                treePrinter.h

/***********/
/* Defines */
/***********/
#define true 1
#define false 0

#define kNumbersFileName “treePrinter numbers”

/***********************/
/* Struct Declarations */
/***********************/
struct Node
{
int number;
struct Node*left, *right;

};

/***********************/
/* Global Declarations */
/***********************/
 extern struct Node*gRootNodePtr;

/********************************/
/* Function Prototypes - main.c */
/********************************/
void BuildTree( void );
int GetNumberFromFile( int *numPtr, FILE *fp );
void DoError( char *message );

/*********************************/



Source Code Listings

470   Learn C under Windows 95/NT 

/* Function Prototypes - tree.c */
/*********************************/
void AddNumberToTree( int num );
void AddNodeToTree( struct Node *newNodePtr, 

struct Node **curNodePtrPtr );
void DescendTreePreorder( struct Node *nodePtr );
void DescendTreeInorder( struct Node *nodePtr );
void DescendTreePostorder( struct Node *nodePtr );
void VisitNode( struct Node *nodePtr );

11.05 - treePrinter                                                                main.c

#include <stdlib.h>
#include <stdio.h>
#include “treePrinter.h”

/***********************/
/* Global Definitions */
/***********************/
struct Node*gRootNodePtr;

/****************************************> main <*/
int main( void )
{
gRootNodePtr = NULL;

BuildTree();

printf( “Preorder:  “ );
DescendTreePreorder( gRootNodePtr );

printf( “\nInorder:   “ );
DescendTreeInorder( gRootNodePtr );

printf( “\nPostorder: “ );



Source Code Listings

Learn C under Windows 95/NT   471

DescendTreePostorder( gRootNodePtr );

printf( “\n\nGoodbye...” );

return 0;
}

/***********************************> BuildTree <*/
void BuildTree( void )
{
int num;
FILE  *fp;

if ( ( fp = fopen( kNumbersFileName, “r” ) ) == 
NULL )
DoError( “Could not read numbers file!\n” );

printf( “Numbers:   “ );

while ( GetNumberFromFile( &num, fp ) )
{
printf( “%d, “, num );
AddNumberToTree( num );

}

printf( “\n-------\n” );

fclose( fp );
}

/***************************> GetNumberFromFile <*/
int GetNumberFromFile( int *numPtr, FILE *fp )
{
if ( fscanf( fp, “%d\n”, numPtr ) == EOF )
return false;

else



Source Code Listings

472   Learn C under Windows 95/NT 

return true;
}

/************************************> DoError <*/
void DoError( char *message )
{
printf( “%s\n”, message );
exit( 0 );

}

11.05 - treePrinter                                                                tree.c

#include <stdlib.h>
#include <stdio.h>
#include “treePrinter.h”

/***************************> AddNumberToTree <*/
void AddNumberToTree( int num )
{
struct Node*nodePtr;

nodePtr = malloc( sizeof( struct Node ) );

if ( nodePtr == NULL )
DoError( “Could not allocate memory!\n” );

nodePtr->number = num;
nodePtr->left = NULL;
nodePtr->right = NULL;

AddNodeToTree( nodePtr, &gRootNodePtr );
}

/*****************************> AddNodeToTree <*/



Source Code Listings

Learn C under Windows 95/NT   473

void AddNodeToTree( struct Node *newNodePtr, 
struct Node **curNodePtrPtr )

/*
This recursive function inserts a new tree node 
(pointed to by newNodePtr) into the subtree 
pointed to by the pointer pointed to by 
curNodePtr. We use two levels of pointer here so 
we can change the value of the pointer passed 
in. See the call to AddNodeToTree a few lines up.

Here’s the algorithm: AddNodeToTree first checks 
to see if *curNodePtrPtr is NULL. If so, this is 
where the new node belongs: *curNodePtrPtr is 
set to point to the new node and we are done.

If not, we’ll check the node *curNodePtrPtr does 
point to and repeat the search in either the 
left or right child, depending on whether the 
new number being added to the tree is less than 
or greater than/equal to the current node.

To help with the notation, think of:

*curNodePtrPtr

as equivalent to

gRootNodePtr
*/
{
if ( *curNodePtrPtr == NULL )
*curNodePtrPtr = newNodePtr;

else if ( newNodePtr->number < (*curNodePtrPtr)-
>number )
AddNodeToTree( newNodePtr, &( (*curNodePtrPtr)-
>left ) );

else
AddNodeToTree( newNodePtr, &( (*curNodePtrPtr)-
>right ) );



Source Code Listings

474   Learn C under Windows 95/NT 

}

/*************************> DescendTreePreorder <*/
void DescendTreePreorder( struct Node *nodePtr )
{
if ( nodePtr == NULL )
return;

VisitNode( nodePtr );
DescendTreePreorder( nodePtr->left );
DescendTreePreorder( nodePtr->right );

}

/**************************> DescendTreeInorder <*/
void DescendTreeInorder( struct Node *nodePtr )
{
if ( nodePtr == NULL )
return;

DescendTreePreorder( nodePtr->left );
VisitNode( nodePtr );
DescendTreePreorder( nodePtr->right );

}

/************************> DescendTreePostorder <*/
void DescendTreePostorder( struct Node *nodePtr )
{
if ( nodePtr == NULL )
return;

DescendTreePreorder( nodePtr->left );
DescendTreePreorder( nodePtr->right );
VisitNode( nodePtr );

}



Source Code Listings

Learn C under Windows 95/NT   475

/***********************************> VisitNode <*/
void VisitNode( struct Node *nodePtr )
{
printf( “%d, “, nodePtr->number );

}

12.01 - HelloWorld                                                 HelloWorld.c

#include <windows.h>

LRESULT CALLBACK WndProc (HWND hWnd, UINT iMessage, 
WPARAM wParam, LPARAM lParam);

//**********************************************
int APIENTRY WinMain(HINSTANCE hInstance, 

HINSTANCE hPrevInstance, 
LPSTR lpCmdLine, int nCmdShow)

{
     static char szAppName[] = "HelloWorld" ;
     HWND        hWnd ;
     MSG         message ;
     WNDCLASSEX  wndclass ;

     wndclass.cbSize        = sizeof (wndclass);
     wndclass.style         = CS_HREDRAW | CS_VREDRAW;
     wndclass.lpfnWndProc   = WndProc;
     wndclass.cbClsExtra    = 0;
     wndclass.cbWndExtra    = 0;
     wndclass.hInstance     = hInstance ;
     wndclass.hIcon         = 

LoadIcon(NULL, IDI_APPLICATION);
     wndclass.hCursor       = 

LoadCursor(NULL, IDC_ARROW);
     wndclass.hbrBackground = 

(HBRUSH)GetStockObject (WHITE_BRUSH);
     wndclass.lpszMenuName  = NULL;



Source Code Listings

476   Learn C under Windows 95/NT 

     wndclass.lpszClassName = szAppName;
     wndclass.hIconSm       = 

LoadIcon (NULL, IDI_APPLICATION);

     RegisterClassEx (&wndclass);

     hWnd = CreateWindow (szAppName,    // class
               "Hello World",           // caption
               WS_OVERLAPPEDWINDOW,     // style
               CW_USEDEFAULT,           // x pos
               CW_USEDEFAULT,           // y pos
               CW_USEDEFAULT,           // x size
               CW_USEDEFAULT,           // y size
               NULL,       // parent window handle
               NULL,       // window menu handle
               hInstance,  // instance handle

           NULL) ;     // creation parameters

     ShowWindow(hWnd, nCmdShow);
     UpdateWindow(hWnd);

     while ( GetMessage(&message, NULL, 0, 0) )
     {
          TranslateMessage(&message);
          DispatchMessage(&message);
     }
     
     return message.wParam;
}

//***********************************************
LRESULT CALLBACK WndProc (HWND hWnd, UINT iMessage, 

WPARAM wParam, LPARAM lParam)
{
     HDC         hdc;
     PAINTSTRUCT ps;
     RECT        rect;



Source Code Listings

Learn C under Windows 95/NT   477

     switch ( iMessage )
     {
         case WM_CREATE:
            return 0;

        case WM_PAINT :
          hdc = BeginPaint( hWnd, &ps );

            GetClientRect( hWnd, &rect );
            DrawText(hdc, "Hello World", -1, &rect,

             DT_SINGLELINE | DT_CENTER |
                   DT_VCENTER);

          EndPaint(hWnd, &ps);
            return 0;

        case WM_DESTROY:
            PostQuitMessage(0);
            return 0;
     }

     return DefWindowProc( hWnd, iMessage, 
             wParam, lParam );
}

 



Source Code Listings

478   Learn C under Windows 95/NT 



Learn C under Windows 95/NT   479

C
C Syntax Summary
The if Statement

syntax:

if ( expression )

statement

example:

if ( numEmployees > 20 )

BuyNewBuilding();

alternate syntax:

if ( expression )

statement

else

statement

example:

if ( temperature < 60 )

WearAJacket();

else

BringASweater();

The while Statement

syntax:

while ( expression )

statement

example:

while ( FireTooLow() )



C Syntax Summary

480   Learn C under Windows 95/NT 

AddAnotherLog();

The for Statement

syntax:

for ( expression1 ; expression2 ; expression3 )

statement

example:

int i, myArray[ 100 ];

for ( i=0; i<100; i++ )

   myArray[ i ] = 0;

The do Statement

syntax:

do

 statement

while ( expression ) ;

example:

do

  CallMeAtLeastOnce();

while ( KeepGoing() ) ;

The switch Statement

syntax:

switch ( expression )

{

case constant:

statements



C Syntax Summary

Learn C under Windows 95/NT   481

case constant:

statements

default:

statements

}

example:

switch ( theYear )

{

case 1066:

printf( “Battle of Hastings” );

break;

case 1492:

printf( “Columbus sailed the ocean blue” 
);

break;

case 1776:

printf( “Declaration of Independence\n” 
);

printf( “A very important document!!!” );

break;

default:

printf( “Don’t know what happened during 
this year” );

}

The break Statement

syntax:

break;



C Syntax Summary

482   Learn C under Windows 95/NT 

example:

i=1;

while ( i <= 9 )

{

PlayAnInning( i );

if ( ItsRaining() )

break;

i++;

}

The return Statement

syntax:

return;

example:

if ( FatalError() )

      return;

alternate syntax:

return( expression );

example:

int   AddThese( int num1, int num2 )

{

      return( num1 + num2 );

}

 

 



Learn C under Windows 95/NT   483

D
Selections from the 
Standard Library
This appendix contains excerpts reprinted from the C Library Refer-
ence found on the CodeWarrior disk and is being reprinted with per-
mission from MetroWerks. This is only part of the C Library Reference 
so make sure you check out the original.

atof(), atoi(), atol()  __________________________________________

Purpose Convert a character string to a numeric value.

Synopsis #include <stdlib.h>
double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);

Remarks The atof() function converts the character 
array pointed to by nptr to a floating point 
value of type double.
The atoi() function converts the character 
array pointed to by nptr to an integer value.
The atol() function converts the character 
array pointed to by nptr to an integer of type 
long int.
All three functions skip leading white space 
characters.
All three functions set the global variable 
errno to ERANGE if the converted value cannot 
be expressed in their respective type.

Return value atof() returns a floating point value of type 
double.
atoi() returns an integer value of type int.
atol() returns an integer value of type long 
int.



Selections from the Standard Library

484   Learn C under Windows 95/NT 

See also errno.h
stdio.h:  scanf()

bsearch()  ______________________________________

Purpose Efficient sorted array searching.

Synopsis #include <stdlib.h>
void *bsearch(const void *key,

const void *base,
size_t nmemb,
size_t size,
int (*compare)
(const void *,
const void *))

Remarks The bsearch() function efficiently searches a 
sorted array for an item using the binary search 
algorithm.
The key argument points to the item to search 
for.
The base argument points to the first byte of 
the array to search. The array must already be 
sorted in ascending order based on the 
comparison requirements of the function 
pointed to by the compare argument.
The nmemb argument specifies the number of 
array elements to search.
The size argument specifies the size of an 
array element.
The compare argument points to a 
programmer-supplied function that takes two 
pointers to different array elements and 
compares them based on the key. If the two 
elements are equal, compare must return a 
zero. The compare function must return a 
negative value if the first element is less than 
the second. Likewise, the function must return 
a positive value if the first argument is greater 
than the second. 



Selections from the Standard Library

Learn C under Windows 95/NT   485

Return value bsearch() returns a pointer to the element in 
the array matching the item pointed to by key. 
If no match was found, bsearch() returns a 
null pointer (NULL).

See also stdlib.h:  qsort()

exit()  ________________________________________

Purpose Terminate a program normally.

Synopsis #include <stdlib.h>
void exit(int status);

Remark The exit() function calls every function in
stalled with atexit() in the reverse order of 
their installation, flushes the buffers and closes 
all open streams, then calls the Toolbox system 
call ExitToShell.

Return value exit() does not return any value to the 
operating system. The status argument is kept 
to conform to the ANSI C Standard Library 
specification.

See also stdlib.h:  abort(), atexit()

fclose()  _______________________________________

Purpose Close an open file.

Synopsis #include <stdio.h>
int fclose(FILE *stream);

Remarks The fclose() function closes a file created by 
fopen(), freopen(), or tmpfile(). The 
function flushes any buffered data to its file and 
closes the stream. After calling fclose(), 
stream is no longer valid and cannot be used 
with file functions unless it is reassigned using 
fopen(), freopen(), or tmpfile().
All of a program’s open streams are flushed 
and closed  when a program terminates 
normally.



Selections from the Standard Library

486   Learn C under Windows 95/NT 

fclose() closes then deletes a file created by 
tmpfile().

Return value fclose() returns a zero if it is successful and 
returns a -1 if it fails to close a file.

See also stdio.h:  fopen(), freopen(), 
tmpfile()

stdlib.h:  exit(), abort()

feof()  _______________________________________

Purpose Check the end-of-file status of a stream.

Synopsis #include <stdio.h>
int feof(FILE *stream);

Remarks The feof() function checks the end-of-file 
status of the last read operation on stream. The 
function does not reset the end-of-file status.

Return value feof() returns a nonzero value if the stream is 
at the end-of-file and return zero if the stream is 
not at the end-of-file.

See also stdio.h:  clearerr(), ferror()

ferror()  ______________________________________

Purpose Check the error status of a stream.

Synopsis #include <stdio.h>
int ferror (FILE *stream);

Remarks The ferror() function returns the error status 
of the last read or write operation on stream. 
The function does not reset its error status.

Return value ferror() returns a nonzero value if stream’s 
error status is on, and returns zero if stream’s 
error status is off.

See also stdio.h:  clearerr(), feof()



Selections from the Standard Library

Learn C under Windows 95/NT   487

fflush()  ______________________________________

Purpose Empty a stream’s buffer to its file.

Synopsis #include <stdio.h>
int fflush(FILE *stream);

Remarks The fflush() function empties stream’s 
buffer to the file associated with stream.

Return value fflush() returns a nonzero value if it is 
unsuccessful and returns zero if it is successful.

See also stdio.h:  setvbuf()

fgetc()  _______________________________________

Purpose Read the next character from a stream.

Synopsis #include <stdio.h>
int fgetc(FILE *stream);

Remarks The fgetc() function reads the next character 
from stream and advances its file position 
indicator.

Return value fgetc() returns the character as an int. If the 
end-of-file has been reached, fgetc() returns 
EOF.

See also stdio.h: getc(), getchar()

fgetpos()  _____________________________________

Purpose Get a stream’s current file position indicator 
value.

Synopsis #include <stdio.h>
int fgetpos(FILE *stream, 

fpos_t *pos);

Remarks The fgetpos() function is used in conjunction 
with the fsetpos() function to allow random 
access to a file. The fgetpos() function gives 
unreliable results when used with streams 
associated with a console 



Selections from the Standard Library

488   Learn C under Windows 95/NT 

(stdin, stderr, stdout).
While the fseek() and ftell() functions use 
long integers to read and set the file position 
indicator, fgetpos() and fsetpos() use 
fpos_t values to operate on larger files. The 
fpos_t type, defined in stdio.h, can hold file 
position indicator values that do not fit in a 
long int.
The fgetpos() function stores the current 
value of the file position indicator for stream in 
the fpos_t variable pos points to.

Return value fgetpos() returns zero when successful and 
returns a nonzero value when it fails.

See also stdio.h:  fseek(), fsetpos(), 
ftell()

fgets()  _______________________________________

Purpose Read a character array from a stream.

Synopsis #include <stdio.h>
char *fgets(char *s, int n, 

FILE *stream);

Remarks The fgets() function reads characters
 sequentially from stream beginning at the 
current file position, and assembles them into s 
as a character array. The function stops reading 
characters when n characters have been read. 
The fgets() function finishes reading 
prematurely if it reaches a newline (‘\n’) 
character or the end-of-file.
Unlike the gets() function, fgets() appends 
the newline character (‘\n’) to s. It also null 
terminates the character array.

Return value fgets() returns a pointer to s if it is 
successful. If it reaches the end-of-file before 
reading any characters, s is untouched and 
fgets() returns a null pointer (NULL). If an 



Selections from the Standard Library

Learn C under Windows 95/NT   489

error occurs fgets() returns a null pointer 
and the contents of s may be corrupted.

See also stdio.h:  gets(), fprintf(), 
printf()

fopen()  ______________________________________

Purpose Open a file as a stream.

Synopsis #include <stdio.h>
FILE *fopen(const char *filename, 

const char *mode);

Remarks The fopen() function opens a file specified by 
filename, and associates a stream with it. The 
fopen() function returns a pointer to a FILE. 
This pointer is used to refer to the file when 
performing I/O operations.
The mode argument specifies how the file is to 
be used. Table 7 describes the values for mode. 
A file opened with an update mode (“+”) is 
buffered, so it cannot be written to and then 
read from (or vice versa) unless the read and 
write operations are separated by an operation 
that flushes the stream’s buffer or the last read 
or write reached the end-of-file. The fseek(), 
fsetpos(), rewind(), and fflush() 
functions flush a stream’s buffer.
All file modes, except the append modes (“a”, 
“a+”, “ab”, “ab+”), set the file position 
indicator to the beginning of the file. The
append modes set the file position indicator to 
the end-of-file.

Return value fopen() returns a pointer to a FILE if it 
successfully opens the specified file for the 
specified operation. fopen() returns a null 
pointer (NULL) when it is not successful.

See also stdio.h:  fclose()



Selections from the Standard Library

490   Learn C under Windows 95/NT 

fprintf()  _____________________________________

Purpose Send formatted text to a stream.

Synopsis #include <stdio.h>
int fprintf(FILE *stream, 

const char *format, ...);

Remarks The fprintf() function  writes formatted text 
to stream and advances the file position 
indicator. Its operation is the same as 
printf() with the addition of the stream 
argument. Refer to the description of 
printf().

Return value fprintf() returns the number of arguments 
written or a negative number if an error occurs.

See also stdio.h:  printf(), sprintf(), 
vfprintf(), vprintf(), 
vsprintf()

fputc()  _______________________________________

Purpose Write a character to a stream.

Synopsis #include <stdio.h>
int fputc(int c, FILE *stream);

Remarks The fputc() function writes character c to 
stream and advances stream’s file position 
indicator. Although the c argument is an int, it 
is converted to a char before being written to 
stream. fputc() is written as a function, not as 
a macro.

Return value fputc() returns the character written if it is 
successful, and returns EOF if it fails.

See also stdio.h:  putc(), putchar()

fputs()  _______________________________________

Purpose Write a character array to a stream.



Selections from the Standard Library

Learn C under Windows 95/NT   491

Synopsis #include <stdio.h>
int fputs(const char *s, 

FILE *stream);

Remarks The fputs() function writes the array pointed 
to by s to stream and advances the file position 
indicator. The function writes all characters in s 
up to, but not including, the terminating null 
character. Unlike  puts(), fputs() does not 
terminate the output of s with a newline 
(‘\n’).

Return value fputs() returns a zero if successful, and 
returns a nonzero value when it fails.

See also stdio.h:  puts()

fread()  _______________________________________

Purpose Read binary data from a stream.

Synopsis #include <stdio.h>
size_t fread(void *ptr, size_t size, 

size_t nmemb, 
FILE *stream);

Remarks The fread() function reads a block of binary 
or text data and updates the file position 
indicator.  The data read from stream are stored 
in the array pointed to by ptr. The size and 
nmemb arguments describe the size of each item 
and the number of items to read, respectively.
The fread() function reads nmemb items 
unless it reaches the end-of-file or a read error 
occurs.

Return value fread() returns the number of items read 
successfully.

See also stdio.h:  fgets(), fwrite()

free()  ________________________________________

Purpose Release previously allocated memory to heap.



Selections from the Standard Library

492   Learn C under Windows 95/NT 

Synopsis #include <stdlib.h>
void free(void *ptr);

Remarks The free() function releases a previously 
allocated memory  block, pointed to by ptr, to 
the heap. The ptr argument should hold an 
address returned by the memory allocation 
functions calloc(), malloc(), or 
realloc(). Once the memory block ptr 
points to has been released, it is no longer valid. 
The ptr variable should not be used to 
reference memory again until it is assigned a 
value from the memory allocation functions.

See also stdlib.h:  calloc(), malloc(), 
realloc()

Refer to the example for calloc()

freopen()  _____________________________________

Purpose Redirect a stream to another file.

Synopsis #include <stdio.h>
FILE *freopen(const char *filename, 

const char *mode, 
FILE *stream);

Remarks The freopen() function changes the file 
stream associated with another file. The 
function first closes the file the stream is 
associated with, and opens the new file, 
filename, with the specified mode, using the 
same stream.

Return value fopen() returns the value of stream, if it is
 successful. If fopen() fails it returns a null 
pointer (NULL).

See also stdio.h:  fopen()

fscanf()  ______________________________________

Purpose Read formatted text from a stream.



Selections from the Standard Library

Learn C under Windows 95/NT   493

Synopsis #include <stdio.h>
int fscanf(FILE *stream, 

const char *format, ...);

Remarks The fscanf() function reads programmer-
defined, formatted text from stream. The 
function operates identically to the scanf() 
function with the addition of the stream 
argument indicating the stream to read from. 
Refer to the scanf() function description.

Return value fscanf() returns the number of items read. If 
there is an error in reading data that is 
inconsistent with the format string, fscanf() 
sets errno to a nonzero value. fscanf() 
returns EOF if it reaches the end-of-file.

See also errno.h
stdio.h:  scanf()

fseek()  _______________________________________

Purpose Move the file position indicator.

Synopsis #include <stdio.h>
int fseek(FILE *stream, long offset, 

int whence);

Remarks The fseek() function moves the file position 
indicator to allow random access to a file.  
The function moves the file position indicator 
either absolutely or relatively. The whence 
argument can be one of three values defined in 
stdio.h: SEEK_SET, SEEK_CUR, 
SEEK_END.
The SEEK_SET value causes the file position 
indicator to be set offset bytes from the 
beginning of the file. In this case offset must be 
equal or greater than zero.
The SEEK_CUR value causes the file position 
indicator to be set offset bytes from its current 
position. The offset argument can be a negative 
or positive value.



Selections from the Standard Library

494   Learn C under Windows 95/NT 

The SEEK_END value causes the file position 
indicator to be set offset bytes from the end of 
the file. The offset argument must be equal or 
less than zero.
The fseek() function undoes the last 
ungetc() call and clears the end-of-file status 
of stream.

Return value fseek() returns zero if it is successful and
 returns a nonzero value if it fails.

See also stdio.h: fgetpos(), fsetpos(), 
ftell()

fsetpos()  _____________________________________

Purpose Set the file position indicator.

Synopsis #include <stdio.h>
int fsetpos(FILE *stream, 

const fpos_t *pos);

Remarks The fsetpos() function sets the file position 
indicator for stream using the value pointed to 
by pos. The function is used in conjunction 
with fgetpos() when dealing with files 
having sizes greater than what can be 
represented by the long int argument used by 
fseek().
fsetpos() undoes the previous call to 
ungetc() and clears the end-of-file status.

Return value fsetpos() returns zero if it is successful and 
returns a nonzero value if it fails.

See also stdio.h:  fgetpos(), fseek(), 
ftell()

ftell()  _______________________________________

Purpose Return the current file position indicator value.

Synopsis #include <stdio.h>
long int ftell(FILE *stream);



Selections from the Standard Library

Learn C under Windows 95/NT   495

Remarks The ftell() function returns the current 
value of stream’s file position indicator. It is 
used in conjunction with fseek() to provide 
random access to a file.
The function will not work correctly when it is 
given a stream associated to a console file, such 
as stdin, stdout, or stderr, where a file 
indicator position is not applicable. Also, 
ftell() cannot handle files with sizes larger 
than what can be represented with a long int. 
In such a case, use the fgetpos() and 
fsetpos() functions.

Return value ftell(), when successful, returns the current 
file position indicator value. If it fails, ftell() 
returns -1L and sets the global variable errno 
to a nonzero value.

See also errno.h
stdio.h: fgetpos()

fwrite()  ______________________________________

Purpose Write binary data to a stream.

Synopsis #include <stdio.h>
size_t fwrite(const void *ptr, 

size_t size, size_t nmemb, 
FILE *stream);

Remarks The fwrite() function writes nmemb items of 
size bytes each to stream. The items are 
contained in the array pointed to by ptr. After 
writing the array to stream, fwrite() 
advances the file position indicator accordingly.

Return value fwrite() returns the number of elements 
successfully written to stream.

See also stdio.h:  fread()



Selections from the Standard Library

496   Learn C under Windows 95/NT 

getc()  ________________________________________

Purpose Read the next character from a stream.

Synopsis #include <stdio.h>
int getc(FILE *stream);

Remarks The getc() function reads the next character 
from stream, advances the file position 
indicator, and returns the character as an int 
value. Unlike the fgetc() function, getc() is 
implemented as a macro.

Return value getc() returns the next character from the 
stream or returns EOF if the end-of-file has been 
reached or a read error has occurred.

See also stdio.h:  fgetc(), fputc(), 
getchar(), putchar()

getchar()  _____________________________________

Purpose Get the next character from stdin.

Synopsis #include <stdio.h>
int getchar(void);

Remarks The getchar() function reads a character 
from the stdin stream.

Return value getchar() returns the value of the next 
character from stdin as an int if it is 
successful. getchar() returns EOF if it reaches 
an end-of-file or an error occurs.

See also stdio.h:  fgetc(), getc(), putchar()

gets()  ________________________________________

Purpose Read a character array from stdin.

Synopsis #include <stdio.h>
char *gets(char *s);

Remarks The gets() function reads characters from 
stdin and stores them sequentially in the 



Selections from the Standard Library

Learn C under Windows 95/NT   497

character array pointed to by s. Characters are 
read until either a newline or an end-of-file is 
reached.
Unlike fgets(), the programmer cannot 
specify a limit on the number of characters to 
read. Also, gets() reads and ignores the 
newline character (‘\n’) so that it can 
advance the file position indicator to the next 
line. The newline character is not stored s. 
Like fgets(), gets() terminates the 
character string with a null character.
If an end-of-file is reached before any characters 
are read, gets() returns a null pointer (NULL) 
without affecting the character array at s. If a 
read error occurs, the contents of s may be 
corrupted.

Return value gets() returns s if it is successful and returns 
a null pointer if it fails.

See also stdio.h:  fgets()

malloc()  _____________________________________

Purpose Allocate a block of heap memory.

Synopsis #include <stdlib.h>
void *malloc(size_t size);

Remarks The malloc() function allocates a block of 
contiguous heap memory-size bytes.

Return value malloc() returns a pointer to the first byte of 
the allocated block if it is successful and returns 
a null pointer if it fails.

See also stdlib.h:  calloc(), free(), 
realloc()

memchr()  ____________________________________

Purpose Search for an occurrence of a character.



Selections from the Standard Library

498   Learn C under Windows 95/NT 

Synopsis #include <string.h>
void *memchr(const void *s, int c, 

size_t n);

Remarks The memchr() function looks for the first 
occurrence of c in the first n characters of the 
memory area pointed to by s.

Return value memchr() returns a pointer to the found 
character, or a null pointer (NULL) if c cannot be 
found.

See also string.h:  strchr(), strrchr()

memcmp()  ___________________________________

Purpose Compare two blocks of memory.

Synopsis #include <string.h>
int memcmp(const void *s1, 

const void *s2, size_t n);

Remarks The memcmp() function compares the first n 
characters of s1 to s2 one character at a time.

Return value memcmp() returns a zero if all n characters 
pointed to by s1 and s2 are equal.
memcmp() returns a negative value if the first 
nonmatching character pointed to by s1 is less 
than the character pointed to by s2.
memcmp() returns a positive value if the first 
nonmatching character pointed to by s1 is 
greater than the character pointed to by s2.

See also string.h:  strcmp(), strncmp()

memcpy()  ____________________________________

Purpose Copy a contiguous memory block.

Synopsis #include <string.h>
void *memcpy(const void *dest, 

const void *source, 
size_t n);



Selections from the Standard Library

Learn C under Windows 95/NT   499

Remarks The memcpy() function copies the first n 
characters from the item pointed to by source to 
the item pointed to by dest. The behavior of 
memcpy() is undefined if the areas pointed to 
by dest and source overlap. The memmove() 
function reliably copies overlapping memory 
blocks.

Return valuememcpy() returns the value of dest.

See also string.h:  memmove(),  strcpy(), 
strncpy()

Refer to the example for memchr().

memmove()  __________________________________

Purpose Copy an overlapping contiguous memory 
block.

Synopsis #include <string.h>
void *memmove(void *dest, 

const void *source, size_t n);

Remarks The memmove() function copies the first n 
characters of the item pointed to by source to 
the item pointed to by dest.
Unlike memcpy(), the memmove() function 
safely copies overlapping memory blocks.

Return value memmove() returns the value of dest.

See also string.h:  memcpy(), memset(), 
strcpy(), strncpy()

perror()  ______________________________________

Purpose Output an error message to stderr.

Synopsis #include <stdio.h>
void perror(const char *s);

Remarks The perror() function outputs the character 
array pointed to by s and the value of the 
global variable errno to stderr.



Selections from the Standard Library

500   Learn C under Windows 95/NT 

See also abort.h: abort()
errno.h

printf()  ______________________________________

Purpose Output formatted text.

Synopsis #include <stdio.h>
int printf(const char *format,  

...);

Remarks The printf() function outputs formatted text. 
The function takes one or more arguments, the 
first being format, a character array pointer. The 
optional arguments following format are items 
(integers, characters, floating point values, etc.) 
that are to be converted to character strings and 
inserted into the output of format at specified 
points.
The printf() function sends its output to 
stdout.
The format character array contains normal text 
and conversion specifications. Conversion 
specifications must have matching arguments 
in the same order in which they occur in 
format. 
A conversion specification describes the format 
its associated argument is to be converted to. A 
specification starts with a percent sign (%), 
optional flag characters, an optional minimum 
width, an optional precision width, and the 
necessary, terminating conversion type. 
Doubling the percent sign (%%) results in the 
output of a single %.
An optional flag character modifies the 
formatting of the output; it can be left or right 
justified, and numerical values can be padded 
with zeroes or output in alternate forms. More 
than one optional flag character can be used in 
a conversion specification. Table 8 describes the 
flag characters.



Selections from the Standard Library

Learn C under Windows 95/NT   501

The optional minimum width is a decimal digit 
string. If the converted value has more 
characters that the minimum width, it is 
expanded as required. If the converted value 
has fewer characters than the minimum width, 
it is, by default, right justified (padded on the 
left). If the - flag character is used, the 
converted value is left justified (padded on the 
right).
The optional precision width is a period 
character (.) followed by decimal digit string. 
For floating point values, the precision width 
specifies the number of digits to print after the 
decimal point. For integer values, the precision 
width functions identically to, and cancels, the 
minimum width specification. When used with 
a character array, the precision width indicates 
the maximum width of the output. 
A minimum width and a precision width can 
also be specified with an asterisk (*) instead of 
a decimal digit string. An asterisk indicates that 
there is a matching argument, preceding the 
conversion argument, specifying the minimum 
width or precision width.
The terminating character, the conversion type, 
specifies the conversion applied to the 
conversion specification’s matching argument. 
Table 9 describes the conversion type 
characters.
A conversion type can be prefixed with an h, l, 
or L. Using h indicates that the corresponding 
argument is a short int or unsigned short 
int. The l indicates the argument is a long 
int or unsigned long int. The L indicates 
the argument is a long double.

Return value printf(), like fprintf(), sprintf(), 
vfprintf(), and vprintf(), returns the 
number of arguments that were successfully 
output. printf() returns a negative value if it 
fails.



Selections from the Standard Library

502   Learn C under Windows 95/NT 

See also stdio.h:  fprintf(), sprintf(), 
vprintf(), vprintf()

putc()  _______________________________________

Purpose Write a character to a stream.

Synopsis #include <stdio.h>
int putc(int c, FILE *stream);

Remarks The putc() function outputs c to stream and 
advances stream’s file position indicator.
The putc() works identically to the fputc() 
function, except that it is written as a macro.

Return value putc() returns the character written when
 successful and return EOF when it fails.

See also stdio.h:  fputc(), putchar()

putchar()  _____________________________________

Purpose Write a character to stdout.

Synopsis #include <stdio.h>
int putchar(int c);

Remarks The putchar() function writes character c to 
stdout.

Return value putchar() returns c if it is successful and 
returns EOF if it fails.

See also stdio.h:  fputc(), putc()

puts()  _______________________________________

Purpose Write a character string to stdout.

Synopsis #include <stdio.h>
int puts(const char *s);

Remarks The puts() function writes a character string 
array to stdout, stopping at, but not including, 



Selections from the Standard Library

Learn C under Windows 95/NT   503

the terminating  null character. The function 
also appends a newline (‘\n’) to the output.

Return value puts() returns zero if successful and returns a 
nonzero value if it fails.

See also stdio.h:  fputs()

qsort()  _______________________________________

Purpose Sort an array.

Synopsis #include <stdlib.h>
void qsort(void *base, size_t nmemb, 

size_t size, int (*compare) 
(const void *, const void *))

Remarks The qsort() function sorts an array using the 
quicksort algorithm. It sorts the array without 
displacing it; the array occupies the same 
memory it had before the call to qsort().
The base argument is a pointer to the base of 
the array to be sorted.
The nmemb argument specifies the number of 
array elements to sort.
The size argument specifies the size of an array 
element.
The compare argument is a pointer to a pro
grammer-supplied compare function. The 
function takes two pointers to different array 
elements and compares them based on the key. 
If the two elements are equal, compare must 
return a zero. The compare function must 
return a negative number if the first element is 
less than the second. Likewise, the function 
must return a positive number if the first 
argument is greater than the second.

See also stdlib.h:  bsearch()



Selections from the Standard Library

504   Learn C under Windows 95/NT 

rand()  _______________________________________

Purpose Generate a pseudo-random integer value.

Synopsis #include <stdlib.h>
int rand(void);

Remarks A sequence of calls to the rand() function 
generates and returns a sequence of 
pseudo-random integer values from 0 to 
RAND_MAX. The RAND_MAX macro is defined in 
stdlib.h. 
By seeding the random number generator 
using srand(), different random number 
sequences can be generated with rand().

Return value rand() returns a pseudo-random integer value 
between 0 and RAND_MAX.

See also stdlib.h:  srand()

remove()  _____________________________________

Purpose Delete a file.

Synopsis #include <stdio.h>
int remove(const char *filename);

Remarks The remove() function deletes the named file 
specified by filename.

Return value remove() returns 0 if the file deletion is 
successful, and returns a nonzero value if it 
fails.

See also stdio.h:  fopen(), rename()

rename()  _____________________________________

Purpose Change the name of a file.

Synopsis #include <stdio.h>
int rename(const char *old, 

const char *new);



Selections from the Standard Library

Learn C under Windows 95/NT   505

Remarks The rename() function changes the name of a 
file, specified by old to the name specified by 
new.

Return value rename() returns a nonzero if it fails and 
returns zero if successful.

See also stdio.h:  freopen(), remove()

rewind()  _____________________________________

Purpose Reset the file position indicator to the
 beginning of the file.

Synopsis #include <stdio.h>
void rewind(FILE *stream);

Remarks The rewind() function sets the file indicator 
position of stream such that the next write or 
read operation will be from the beginning of 
the file. It also undoes any previous call to 
ungetc() and clears stream’s end-of-file and 
error status.

See also stdio.h:  fseek(), fsetpos()

scanf()  _______________________________________

Purpose Read formatted text.

Synopsis #include <stdio.h>
int scanf(const char *format, ...);

Remarks The scanf() function reads text and converts 
the text read to programmer specified types.
The format argument is a character array 
containing normal text, white space (space, tab, 
newline), and conversion specifications. The 
normal text specifies literal characters that must 
be matched in the input stream. A white space 
character indicates that white space characters 
are skipped until a non-white-space character is 
reached. The conversion specifications indicate 
what characters in the input stream are to be 



Selections from the Standard Library

506   Learn C under Windows 95/NT 

converted and stored.
The conversion specifications must have 
matching arguments in the order they appear 
in format. Because scanf() stores data in 
memory, the matching conversion specification 
arguments must be pointers to objects of the 
relevant types.
A conversion specification consists of the 
percent sign (%) prefix, followed by an optional 
maximum width or assignment suppression, 
and ending with a conversion type. A percent 
sign can be skipped by doubling it in format; 
%% signifies a single % in the input stream.
An optional width is a decimal number
 specifying the maximum width of an input 
field. scanf() will not read more characters 
for a conversion than is specified by the width.
An optional assignment suppression character 
(*) can be used to skip an item by reading it but 
not assigning it. A conversion specification 
with assignment suppression must not have a 
corresponding argument.
The last character, the conversion type, specifies 
the kind of conversion requested. Table 10 
describes the conversion type characters.
The conversion type may be preceded by u, U, 
l, or L. When used with integer conversion 
types, u and U specify unsigned integers. The 
l and L , when used with integer conversions, 
signify long integers. When used with floating 
point conversions, l signifies a double and L 
signifies a long double.

Return value scanf() returns the number of items 
successfully read and returns EOF if a 
conversion type does not match its argument or 
an end-of-file is reached.

See also stdio.h:  printf(), sscanf()



Selections from the Standard Library

Learn C under Windows 95/NT   507

setbuf()  ______________________________________

Purpose Change the buffer size of a stream.

Synopsis #include <stdio.h>
void setbuf(FILE *stream, 

char *buf);

Remarks The setbuf() function allows the 
programmer to set the buffer size for stream. It 
should be called after stream is opened, but 
before it is read from or written to.
The function makes the array pointed to by buf 
the buffer used by stream. The buf argument 
can either be a null pointer or point to an array 
of size BUFSIZ, defined in stdio.h.
If buf is a null pointer, the stream becomes 
unbuffered.

See also stdio.h:  setvbuf()
stdlib.h: malloc()

setvbuf()  _____________________________________

Purpose Change the buffering scheme for a stream.

Synopsis #include <stdio.h>
int setvbuf(FILE *stream, char *buf, 

int mode, size_t size);

Remarks The setvbuf() allows the manipulation of the 
buffering scheme as well as the size of the 
buffer used by stream. The function should be 
called after the stream is opened but before it is 
written to or read from.
The buf argument is a pointer to a character 
array. The size argument indicates the size of 
the character array pointed to by buf. The most 
efficient buffer size is a multiple of BUFSIZ, 
defined in stdio.h.
If buf is a null pointer, then the operating 
system creates its own buffer of size bytes.
The mode argument specifies the buffering 



Selections from the Standard Library

508   Learn C under Windows 95/NT 

scheme to be used with stream. mode can 
have one of three values defined in stdio.h: 
_IOFBF, _IOLBF, and _IONBF.

_IOFBF specifies that stream be
 buffered.

_IOLBF specifies that stream be line 
buffered.

_IONBF specifies that stream be 
unbuffered.

Return value setvbuf() returns zero if it is successful and 
returns a nonzero value if it fails.

See also stdio.h:  setbuf()
stdlib.h: malloc()

sprintf()  ______________________________________

Purpose Format a character string array.

Synopsis #include <stdio.h>
int sprintf(char *s, 

const char *format, ...);

Remarks The sprintf() function works identically to 
printf() with the addition of the s parameter. 
Output is stored in the character array pointed 
to by s instead of being sent to stdout. The 
function terminates the output character string 
with a null character.
For information on how to use sprintf() 
refer to the description of printf().

Return value sprintf() returns the number of characters 
assigned to s, not including the null character.

See also stdio.h:  fprintf(), printf()

srand()  ______________________________________

Purpose Set the pseudo-random number generator seed.

Synopsis #include <stdlib.h>
void srand(unsigned int seed);



Selections from the Standard Library

Learn C under Windows 95/NT   509

Remarks The srand() function sets the seed for the 
pseudo-random number generator to seed. 
Each seed value produces the same sequence of 
random numbers when it is used.

See also stdlib.h:  rand()

sscanf()  ______________________________________

Purpose Read formatted text into a character string.

Synopsis #include <stdio.h>
int sscanf(char *s, 

const char *format, ...);

Remarks The sscanf() operates identically to scanf() 
but reads its input from the character array 
pointed to by s instead of stdin. The character 
array pointed to s must be null terminated.
Refer to the description of scanf() for more 
information.

Return value scanf() returns the number of items 
successfully read and converted and returns 
EOF if it reaches the end of the string or a 
conversion specification does not match its
 argument.

See also stdio.h:  fscanf(), scanf()

strcat()  ______________________________________

Purpose Concatenate two character arrays.

Synopsis #include <string.h>
char *strcat(char *dest, 

const char *source);

Remarks The strcat() function appends a copy of the 
character array pointed to by source to the end 
of the character array pointed to by dest. The 
dest and source arguments must both point 
to null terminated character arrays. 



Selections from the Standard Library

510   Learn C under Windows 95/NT 

strcat() null terminates the resulting 
character array.

Return value strcat() returns the value of dest.

See also string.h:  strncat()

strchr()  ______________________________________

Purpose Search for an occurrence of a character.

Synopsis #include <string.h>
char *strchr(const char *s, int c);

Remarks The strchr() function searches for the first 
occurrence of the character c in the character 
array pointed to by s. The s argument must 
point to a null terminated character array.

Return value strchr() returns a pointer to the successfully 
located character. If it fails, strchr() returns a 
null pointer (NULL).

See also string.h:  memchr(), strrchr()

strcmp()  _____________________________________

Purpose Compare two character arrays.

Synopsis #include <string.h>
int strcmp(const char *s1, 

const char *s2);

Remarks The strcmp() function compares the character 
array pointed to by s1 to the character array 
pointed to by s2. Both s1 and s2 must point to 
null terminated character arrays.

Return value strcmp() returns a zero if s1 and s2 are equal, 
a negative value if s1 is less than s2, and a 
positive value if s1 is greater than s2.

See also string.h:  memcmp(), strcoll(), 
strncmp()



Selections from the Standard Library

Learn C under Windows 95/NT   511

strcpy()  ______________________________________

Purpose Copy one character array to another.

Synopsis #include <string.h>
char *strcpy(char  *dest, 

const char *source);

Remarks The strcpy() function copies the character  
array pointed to by source to the character 
array pointed to dest. The source argument 
must point to a null terminated character array. 
The resulting character array at dest is null 
terminated as well.
If the arrays pointed to by dest and source 
overlap, the operation of strcpy() is 
undefined.

Return value strcpy() returns the value of dest.

See also string.h:  memcpy(), memmove(), 
strncpy()

strcoll()  ______________________________________

Purpose Compare two character arrays according to 
locale.

Synopsis #include <string.h>
int strcoll(const char *s1, 

const char *s2);

Remarks The strcoll() function compares two 
character arrays based on the collating 
sequence set by the locale.h header file.
The MetroWerks C implementation of 
strcoll() compares two character arrays 
using strcmp(). It is included in the string 
library to conform to the ANSI C Standard 
Library specification.

Return value strcoll() returns zero if s1 is equal to s2, a 
negative value if s1 is less than s2, and a 
positive value if s1 is greater than s2.



Selections from the Standard Library

512   Learn C under Windows 95/NT 

See also locale.h
string.h:  memcmp(), strcmp(), 

strncmp()

strcspn()  _____________________________________

Purpose Count characters in one character array that are 
not in another.

Synopsis #include <string.h>
size_t strcspn(const char *s1, 

const char *s2);

Remarks The strcspn() function counts the initial 
length of the character array pointed to by s1 
that does not contain characters in the character 
array pointed to by s2. The function starts 
counting characters at the beginning of s1 and 
continues counting until a character in s2 
matches a character in s1. 
Both s1 and s2 must point to null terminated 
character arrays.

Return value strcspn() returns the length of characters in 
s1 that does not match any characters in s2.

See also string.h:  strpbrk(), strspn()

strerror()  _____________________________________

Purpose Return an error message in a character array.

Synopsis #include <string.h>
char *strerror(int errnum);

Remarks The strerror() function returns a pointer to 
a null terminated character array that contains 
an error message. The errnum argument has no 
effect on the message returned by 
strerror(); it is included to conform to the 
ANSI C Standard Library specification.



Selections from the Standard Library

Learn C under Windows 95/NT   513

Return value strerror() returns a pointer to a null 
terminated character array containing an error 
message.

strlen()  ______________________________________

Purpose Compute the length of a character array.

Synopsis #include <string.h>
size_t strlen(const char *s);

Remarks The strlen() function computes the number 
of characters in a null terminated character 
array pointed to by s. The null character (‘\0’) 
is not added to the character count.

Return value strlen() returns the number of characters in 
a character array not including the terminating 
null character.

strncat()  ______________________________________

Purpose Append a specified number of characters to a 
character array.

Synopsis #include <string.h>
char *strncat(char *dest, 

const char *source, size_t n);

Remarks The strncat() function appends a maximum 
of n characters from the character array pointed 
to by source to the character array pointed to by 
dest. The dest argument must point to a null 
terminated character array. The source 
argument does not necessarily have to point to 
a null terminated character array.
If a null character is reached in source before n 
characters have been appended, strncat() 
stops.
When done, strncat() terminates dest with 
a null character (‘\0’).

Return value strncat() returns the value of dest.



Selections from the Standard Library

514   Learn C under Windows 95/NT 

See also string.h:  strcat()

strncmp()  _____________________________________

Purpose Compare a specified number of characters.

Synopsis #include <string.h>
int strncmp(const char *s1, 

const char *s2, size_t n);

Remarks The strncmp() function compares n 
characters of the character array pointed to by 
s1 to n characters of the character array 
pointed to by s2. Both s1 and s2 do not 
necessarily have to be null terminated character 
arrays.
The function stops prematurely if it reaches a 
null character before n characters have been 
compared.

Return value strncmp() returns a zero if the first n 
characters of s1 and s2 are equal, a negative 
value if s1 is less than s2, and a positive value 
if s1 is greater than s2.

See also string.h:  memcmp(), strcmp()

strncpy()  _____________________________________

Purpose Copy a specified number of characters.

Synopsis #include <string.h>
char *strncpy(char *dest, 

const char *source, size_t n);

Remarks The strncpy() function copies a maximum of 
n characters from the character array pointed to 
by source to the character array pointed to by 
dest. Neither dest nor source must 
necessarily point to null terminated character 
arrays. Also, dest and source must not 
overlap.
If a null character (‘\0’) is reached in source 



Selections from the Standard Library

Learn C under Windows 95/NT   515

before n characters have been copied, 
strncpy() continues padding dest with null 
characters until n characters have been added 
to dest.
The function does not terminate dest with a 
null character if n characters are copied from 
source before reaching a null character.

Return value strncpy() returns the value of dest.

See also string.h:  memcpy(), memmove(), 
strcpy()

strpbrk()  _____________________________________

Purpose Look for the first occurrence of an array of 
characters in another.

Synopsis #include <string.h>
char *strpbrk(const char *s1, 

const char *s2);

Remarks The strpbrk() function searches the character 
array pointed to by s1 for the first occurrence 
of a character in the character array pointed to 
by s2.
Both s1 and s2 must point to null terminated 
character arrays.

Return value strpbrk() returns a pointer to the first 
character in s1 that matches any character in 
s2, and returns a null pointer (NULL) if no 
match was found.

See also string.h:  strcspn()

strrchr()  ______________________________________

Purpose Search for the last occurrence of a character.

Synopsis #include <string.h>
char *strrchr(const char *s, int c);



Selections from the Standard Library

516   Learn C under Windows 95/NT 

Remarks The strrchr() function searches for the last 
occurrence of c in the character array pointed 
to by s. The s argument must point to a null 
terminated character array.

Return value strrchr() returns a pointer to the character 
found or returns a null pointer (NULL) if it fails.

See also string.h:  memchr(), strchr()

strspn()  ______________________________________

Purpose Count characters in one character array that are 
in another.

Synopsis #include <string.h>
size_t strspn(const char *s1, 

const char *s2);

Remarks The strspn() function counts the initial 
number of characters in the character array 
pointed to by s1 that contains characters in the 
character array pointed to by s2. The function 
starts counting characters at the beginning of 
s1 and continues counting until it finds a 
character that is not in s2.
Both s1 and s2 must point to null terminated 
character arrays.

Return value strcspn() returns the number of characters in 
s1 that matches the characters in s2.

See also string.h:  strpbrk(), strscpn()

strstr()  _______________________________________

Purpose Search for a character array within another.

Synopsis #include <string.h>
char *strstr(const char *s1, 

const char *s2);

Remarks The strstr() function searches the character 
array pointed to by s1 for the first occurrence 



Selections from the Standard Library

Learn C under Windows 95/NT   517

of the character array pointed to by s2.
Both s1 and s2 must point to null terminated 
(‘\0’) character arrays.

Return value strstr() returns a pointer to the first 
occurrence of s2 in s1 and returns a null 
pointer (NULL) if s2 cannot be found.

See also string.h:  memchr(), strchr()

strtok()  ______________________________________

Purpose Extract tokens within a character array.

Synopsis #include <string.h>
char *strtok(char *str, 

const char *sep);

Remarks The strtok() function tokenizes the character 
array pointed to by str. The sep argument 
points to a character array containing token 
separator characters. The tokens in str are 
extracted by successive calls to strtok().
The first call to strtok() causes it to search for 
the first character in str that does not occur in 
sep. The function returns a pointer to the 
beginning of this first token. If no such 
character can be found, strtok() returns a 
null pointer (NULL).
If, on the first call, strtok() finds a token, it 
searches for the next token.
The function searches by skipping characters in 
the token in str until a character in sep is 
found. This character is overwritten with a null 
character to terminate the token string, thereby 
modifying the character array contents. The 
function also keeps its own pointer to the 
character after the null character for the next 
token. Subsequent token searches continue in 
the same manner from the internal pointer.
Subsequent calls to strtok() with a NULL str 
argument cause it to return pointers to 



Selections from the Standard Library

518   Learn C under Windows 95/NT 

subsequent tokens in the original str character 
array. If no tokens exist, strtok() returns a 
null pointer. The sep argument can be different 
for each call to strtok().
Both str and sep must be null terminated  
character arrays.

Return value When first called strtok() returns a pointer 
to the first token in str or returns a null pointer 
if no token can be found.
Subsequent calls to strtok() with a NULL str 
argument causes strtok() to return a pointer 
to the next token or return a null pointer (NULL) 
when no more tokens exist.
strtok() modifies the character array pointed 
to by str.

tmpfile()  _____________________________________

Purpose Open a temporary file.

Synopsis #include <stdio.h>
FILE *tmpfile(void);

Remarks The tmpfile() function creates and opens a 
binary file that is automatically removed when 
it is closed or when the program terminates.

Return value tmpfile() returns a pointer to the FILE 
variable of the temporary file if it is successful. 
If it fails, tmpfile() returns a null pointer 
(NULL).

See also stdio.h:  fopen(), tmpnam()

tmpnam()  ____________________________________

Purpose Create a unique temporary filename.

Synopsis #include <stdio.h>
char *tmpnam(char *s);

Remarks The tmpnam() functions creates a valid file
name character string that will not conflict with 



Selections from the Standard Library

Learn C under Windows 95/NT   519

any existing filename. A program can call the 
function up to TMP_MAX times before 
exhausting the unique filenames tmpnam() 
generates. The TMP_MAX macro is defined in 
stdio.h.
The s argument can either be a null pointer or 
pointer to a character array. The character array 
must be at least L_tmpnam characters long. The 
new temporary filename is placed in this array. 
The L_tmpnam macro is defined in stdio.h.
If s is NULL, tmpnam() returns with a pointer 
to an internal static object that can be modified 
by the calling program.
Unlike tmpfile(), a file created using a 
filename generated by the tmpnam() function 
is not automatically removed when it is closed.

Return value tmpnam() returns a pointer to a character array 
containing a unique, nonconflicting filename. If 
s is a null pointer (NULL), the pointer refers to 
an internal static object. If s points to a 
character array, tmpnam() returns the same 
pointer.

See also stdio.h:  fopen(), tmpfile()

tolower(), toupper()  ______________________________

Purpose Character conversion macros.

Synopsis #include <ctype.h>
int tolower(int c);
int toupper(int c);

Remarks The tolower() macro converts an uppercase 
letter to its lowercase equivalent. Non-
uppercase characters are returned unchanged. 
The toupper() macro converts a lowercase 
letter to its uppercase equivalent and returns all 
other characters unchanged.

Return value tolower() returns the lowercase equivalent of 
uppercase letters and returns all other 



Selections from the Standard Library

520   Learn C under Windows 95/NT 

characters unchanged.
toupper() returns the uppercase equivalent 
of a lowercase letter and returns all other 
characters unchanged.

See also ctype.h: isalpha(), islower(), 
isupper()

ungetc()  ______________________________________

Purpose Place a character back into a stream.

Synopsis #include <stdio.h>
int ungetc(int c, FILE *stream);

Remarks The ungetc() function places character c back 
into stream’s buffer. The next read operation 
will read the character placed by ungetc(). 
Only one character can be pushed back into a 
buffer until a read operation is performed.
The function’s effect is ignored  when an 
fseek(), fsetpos(), or rewind() operation 
is performed.

Return value ungetc() returns c if it is successful and 
returns EOF if it fails.

See also stdio.c:  fseek(), fsetpos(), 
rewind()

vfprintf()  _____________________________________

Purpose Write formatted output to a stream.

Synopsis #include <stdio.h>
int vfprintf(FILE *stream, 

const char *format, 
va_list arg);

Remarks The vfprintf() function works identically to 
the fprintf() function. Instead of the 
variable list of arguments that can be passed to 
fprintf(), vfprintf() accepts its 
arguments in the array of type va_list 



Selections from the Standard Library

Learn C under Windows 95/NT   521

processed by the va_start() macro from the 
stdarg.h header file.

Return value vfprintf() returns the number of characters 
written or EOF if it failed.

See also stdio.h:  fprintf(), printf()
stdarg.h

vprintf()  _____________________________________

Purpose Write formatted output to stdout.

Synopsis #include <stdio.h>
int vprintf(const char *format, 

va_list arg);

Remarks The vprintf() function works identically to 
the printf() function. Instead of the variable 
list of arguments that can be passed to 
printf(), vprintf() accepts its arguments 
in the array of type va_list processed by the 
va_start() macro from the stdarg.h header 
file.

Return value vprintf() returns the number of characters 
written or a negative value if it failed.

See also stdio.h:  fprintf(), printf()
stdarg.h

vsprintf()  _____________________________________

Purpose Write formatted output to a string.

Synopsis #include <stdio.h>
int vsprintf(char *s, 

const char *format, 
va_list arg);

Remarks The vsprintf() function works identically to 
the sprintf() function. Instead of the 
variable list of arguments that can be passed to 
sprintf(), vsprintf() accepts its 



Selections from the Standard Library

522   Learn C under Windows 95/NT 

arguments in the array of type va_list 
processed by the va_start() macro from the 
stdarg.h header file.

Return value vsprintf() returns the number of characters 
written to s or EOF if it failed.

See also stdio.h:  printf(), sprintf()
stdarg.h

 

 



Learn C under Windows 95/NT  523

E
Answers to 
Selected Exercises
Chapter 4  _________________________________________________ 

1.

2.



Answers to Selected Exercises

524   Learn C under Windows 95/NT 

3.

4.

Chapter 5  _________________________________________________ 

1. a. Missing quotes around “Hello, World”.
b. Missing comma between two variables.
c. =+ should be += (although this will compile with some 

older compilers).



Answers to Selected Exercises

Learn C under Windows 95/NT   525

d. Missing second parameter to printf(). Note that 
this error won’t be caught by the compiler and is 
known as a run-time error.

e. Another run-time error. This time, you are missing the 
%d in the first argument to printf().

f. This time, we’ve either got an extra \ or are missing an 
n following the \ in the first printf() parameter.

g. The left- and right-hand sides of the assignment are 
switched.

h. The declaration of anotherInt follows a 
nondeclaration.

2. a. 70
b. –6
c. –1
d. 4
e. –8
f. 2
g. 14
h. 1

Chapter 6  _________________________________________________ 

1. a. The if statement’s expression should be surrounded 
by parentheses.

b. We increment i inside the for loop’s expression, then 
decrement it in the body of the loop. This loop will 
never end!

c. The while loop has parentheses but is missing an 
expression.

d. The do statement should follow this format:
do
statement
while ( expression ) ;

e. Each case in this switch statement contains a text 
string, which is illegal. Also, case default should 
read default.

f. The printf() will never get called.
g. This is probably the most common mistake made by 

C programmers. The assignment operator (=) is used 



Answers to Selected Exercises

526   Learn C under Windows 95/NT 

instead of the logical equality operator (==). Since the 
assignment operator is perfectly legal inside an 
expression, the compiler won’t find this error, an 
annoying little error you’ll encounter again and again!

h. Once again, this code will compile, but it likely is not 
what you wanted. The third expression in the for 
loop is usually an assignment statement—something 
to move i toward its terminating condition. The 
expression i*20 is useless here, since it doesn’t 
change anything.

2. Look in the folder 06.05 - nextPrime2.

3. Look in the folder 06.06 - nextPrime3.

Chapter 7  _________________________________________________ 

1. a. Final value is 25.
b. Final value is 512. Try changing the for loop from 2 to 

3. Notice that this generates a number too large for a 2-
byte int to hold.

c. Final value is 1024.

2. Look in the folder 07.06 - power2.

3. Look in the folder 07.07 - nonPrimes.

Chapter 8  _________________________________________________ 

1. a. If the char type defaults to signed (very likely), c 
can hold values only from –128 to 127. Even if your 
char does default to unsigned, this is dangerous 
code. At the very least, use an unsigned char. Even 
better, use a short, int, or long.

b. Use %f, %g, or %e to print the value of a float, not %d.
c. The text string “a” is composed of two characters: ‘a’ 

and the terminating zero byte. The variable c is only a 
single byte in size. Even if c were 2 bytes long, you 
can’t copy a text string this way. Try copying the text 
one byte at a time into a variable large enough to hold 
the text string and its terminating zero byte.

d. Once again, this code uses the wrong approach to 
copying a text string, and there is not enough memory 
allocated to hold the text string and its zero byte.

e. The #define of kMaxArraySize must come before 



Answers to Selected Exercises

Learn C under Windows 95/NT   527

the first non-#define reference to it.
f. The following definition creates an array ranging from 

c[0] to c[kMaxArraySize-1]:

char c[ kMaxArraySize ];

The reference to c[kMaxArraySize] is out of 
bounds.

g. The problem occurs in the line:

cPtr++ = 0;

This line assigns the pointer variable cPtr a value of 0 
(making it point to location 0 in memory), then 
increments it to 1 (making it point to location 1 in 
memory). This code will not compile. Here’s a more 
likely scenario:

*cPtr++ = 0;

This code sets the char that cPtr points to to 0, then 
increments cPtr to point to the next char in the array.

h. The problem here is with the statement:

c++;

You can’t increment an array name. Even if you could, 
if you increment c, you no longer have a pointer to the 
beginning of the array! A more proper approach is to 
declare an extra char pointer, assign c to this char 
pointer, then increment the copy of c, rather than c
itself.

i. You don’t need to terminate a #define with a 
semicolon. This statement defines 
“kMaxArraySize” to “200;”, probably not what we 
had in mind.

2. Look in the folder 08.08 - dice2.

3. Look in the folder 08.09 - wordCount2.

Chapter 9  _________________________________________________ 

1. a. The semicolon after employeeNumber  is missing.
b. This code is really pretty useless. If the first character 

returned by getchar() is ‘\n’, the ; will get 
executed; otherwise, the loop just exits. Try changing 



Answers to Selected Exercises

528   Learn C under Windows 95/NT 

the == to != and see what happens.
c. This code will work, since the double quotes around 

the header file name tell the compiler to search the 
local directory in addition to the places it normally 
searches for system header files. On the other hand, it 
is considered better form to place angle brackets 
around a system header file: <stdio.h>.

d. The name field is missing its type. As it turns out, this 
code will compile, but it might not do what you think 
it does. Since the type is missing, the C compiler 
assumes that you want an array of ints. Even though 
it compiles, this is bad form!

e. Both next and prev should be declared as pointers.
f. There are several problems with this code. First, the 

while loop is completely useless. Also, the code 
should use ‘\0’ instead of 0 (although that’s really a 
question of style). Finally, by the time we get to the 
printf(), line points beyond the end of the string!

2. Look in the folder 09.06 - dice2.

3. Look in the folder 09.07 - cdTracker2.

4. Look in the folder 09.08 - cdTracker3.

Chapter 10  ________________________________________________ 

1. a. The arguments to fopen() appear in reverse order.
b. Once again, the arguments to fopen() are reversed. 

In addition, the first parameter to fscanf() contains 
a prompt, as if you were calling printf(). Also, the 
second parameter to fscanf() is defined as a char, 
yet the %d format specifier is used, telling fscanf() 
to expect an int. This will cause fscanf() to store a 
value of size int in the space allocated for a char. Not 
good!

c. The line is declared as a char pointer instead of as 
an array of chars. No memory was allocated for the 
string being read in by fscanf(). Also, since line is 
a pointer, the & in the fscanf() call shouldn’t be 
there.

d. This code is fine except for one problem. The file is 



Answers to Selected Exercises

Learn C under Windows 95/NT   529

opened for writing, yet we are trying to read from the 
file by using fscanf().

2. Look in the folder 10.04 - fileReader.

3. Look in the folder 10.05 - cdFiler2.

Chapter 11  ________________________________________________ 

1. a. In the next-to-last line, the address of myCat is cast to 
a struct. Instead, the address should be cast to a 
(struct Dog *).

b. The typedef defines FuncPtr to be a pointer to a 
function that returns an int. MyFunc() is declared to 
return a pointer to an int, not an int. 

c. The declaration of Number is missing the keyword 
union. Here’s the corrected declaration:

union   Number   myUnion;

d. The Player union fields must be accessed using u. 
Instead of myPlayer.myInt, refer to 
myPlayer.u.myInt. Instead of myPlayer.myFloat, 
refer to myPlayer.u.myFloat.

e. First off, myFuncPtr is not a function pointer and not 
a legal l-value. As is, the declaration just declares a 
function named myFuncPtr. This declaration fixes 
that problem:

int (*myFuncPtr)( int );

Next, main() doesn’t take a single int as a 
parameter. Besides that, calling main() yourself is a 
questionable practice. Finally, to call the function 
pointed to by myFuncPtr, use either myFuncPtr(); 
or (*myFuncPtr)(); instead of *myFuncPtr();. 

f. The function strcmp() returns zero if the strings are 
equal. The if would fail if the strings were the same. 
The message passed to printf() is wrong.

g. The parameters passed to strcpy() should be 
reversed.

h. No memory was allocated for s. When strcpy() 



Answers to Selected Exercises

530   Learn C under Windows 95/NT 

copies the string, it will be writing over unintended 
memory.

i. This is a common problem that tons of people, 
including battle-scarred veterans, run into. The 
function call in the loop is not a function call. Instead, 
the address of the function DoSomeStuff is 
evaluated. Because this address is not assigned to 
anything or used in any other way, the result of the 
evaluation is discarded. The expression 
“DoSomeStuff;” is effectively a no-op, making the 
entire loop a no-op.

2. Look in the folder 11.05 - treePrinter.

 

 



Learn C under Windows 95/NT 531

F
Bibliography

1. The C Programming Language, Brian W. Kernighan and 
Dennis M. Ritchie, 1988, Prentice Hall, Englewood 
Cliffs, NJ.

2. C:  A Reference Manual, Fourth Edition, Samuel 
Harbison, 1994, Prentice Hall, Englewood Cliffs, NJ.

3. Algorithms in C, Robert Sedgewick, 1990, Addison-
Wesley Publishing Company, Reading, MA.

4. Data Structures and C Programs, Second Edition, 
Christopher J. Van Wyk, 1990, Addison-Wesley
 Publishing Company, Reading, MA.

5. The Art of Computer Programming, Volume 1:  
Fundamental Algorithms, Second Edition, Donald E. 
Knuth, 1973, Addison-Wesley Publishing Company, 
Reading, MA.

6. Learn C++ on the PC, Dave Mark, 1993, Addison-
Wesley Publishing Company, Reading, MA.

7. The Art of Computer Programming, Volume 3:  Sorting 
and Searching, Donald E. Knuth, 1973, Addison-Wesley 
Publishing Company, Reading, MA.

 



Bibliography

532   Learn C under Windows 95/NT


	Table of Contents
	Chapter 1 - Welcome Aboard
	What's in the Package?
	Why Learn C?
	What Should You Know to Get Started?
	What Equipment Will You Need?
	The Lay of the Land
	The Chapters
	Conventions Used in This Book
	Strap Yourself In...

	Chapter 2 - Using CodeWarrior
	Opening a Project
	Compiling a Project
	What's Next?

	Chapter 3 - Programming Basics
	Reasons for Programming
	Programming Languages
	The Programming Process
	Flavors of Object Code
	What's Next?

	Chapter 4 - C Basics:  Functions
	C Functions
	ISO C and the Standard Library
	Same Program, Two Functions
	Generating Some Errors
	What's Next?
	Exercises

	Chapter 5 - C Basics:  Variables and Operators
	An Introduction to Variables
	Operators
	Operator Order
	Sample Programs
	Sprucing Up Your Code
	What's Next?
	Exercises

	Chapter 6 - Controlling Your Program's Flow
	Flow Control
	Expressions
	Sample Programs
	What's Next?
	Exercises

	Chapter 7 - Pointers and Parameters
	What Is a Pointer?
	Pointer Basics
	Function Parameters
	What Do Parameters Have to Do with Pointers?
	Global Variables and Function Returns
	More Sample Programs
	What's Next?
	Exercises

	Chapter 8 - Variable Data Types
	Other Data Types
	Working with Characters
	Arrays
	Text Strings
	#define
	A Sample Program:  wordCount
	What's Next?
	Exercises

	Chapter 9 - Designing Your Own Data Structures
	Using Arrays (Model A)
	Designing Data Structures (Model B)
	Allocating Your Own Memory
	Working with Linked Lists
	What's Next?
	Exercises

	Chapter 10 - Working with Files
	What Is a File?
	Working with Files, Part One
	Working with Files, Part Two
	Working with Files, Part Three
	What's Next?
	Exercises

	Chapter 11 - Advanced Topics
	What Is Typecasting?
	Unions
	Function Recursion
	Binary Trees
	Function Pointers
	Initializers
	The Remaining Operators
	Creating Your Own Types
	Static Variables
	More on Strings
	What's Next?
	Exercises

	Chapter 12 - Where Do You Go from Here?
	The Windows Graphical User Interface
	The Windows API
	Getting Started with Windows Programming
	Go Get 'Em

	Appendix A - Glossary
	Appendix B - Source Code Listings
	Appendix C - C Syntax Summary
	Appendix D - Selections from the Standard Library
	Appendix E - Answers to Selected Exercises
	Appendix F - Bibliography

