
A RECURSIVE HYPERSPHERIC CLASSIFICATION ALGORITHM

Salyer B. Reed
Carl G. Looney

Sergiu M. Dascalu
Department of Computer Science and Engineering

University of Nevada, Reno
Reno, Nevada 89557, USA

{sreed, looney, dascalus}@cse.unr.edu

Abstract

This paper presents a novel method for learning from a
labeled dataset to accurately classify unknown data. The
recursive algorithm, termed Recursive Hyperspheric
Classification, or RHC, can accurately learn the classes
of a labeled, n-dimensional dataset via a training method
that recursively spawns a set of hyperspheres,
endeavoring to separate and divide the feature space into
partitions. This produces a comprehensive mapping of
the space. These hyperspheres provide guidance for the
search because they are recursively traversed. Some
benchmarking has been performed on various data sets
and has shown to yield superior results to more
traditional artificial methods.

Keywords: Classification, recursive hyperspheres, center
of gravity, RHC

1 INTRODUCTION

 Classification, a subset of machine learning, is the
systematic process of partitioning a set of feature vectors
into classes. Clustering [8, 10] is the most common way
of doing this. However, once a set of feature vectors has
been classified, it can be used to recognize unknown
feature vectors, that is, to assign them to their correct
classes using information from the known classes. This
recognition process is sometimes also called classification
of the new unknown feature vectors by inferring their
classes based on rules or associations from the original set
of known (labeled) feature vectors.
 The Recursive Hyperspheric Classification (RHC)
method proposed here is an abstract and recursive
classification method used to obtain domain knowledge of
a labeled set of feature vectors and then provide accurate
inferences as to the class of each new unknown feature
vector.
 A plethora of classification techniques and algorithms
currently exist, including many regressive methods such
as artificial neural networks, fuzzy logic, and support
vector machines. Artificial neural networks are
ubiquitous in the machine learning community as they are
used extensively [9]. Since their conception, neural
networks have been useful in recognition processes and
compare favorably to all methods, including statistical

models [1]. Many popular neural networks (NNs),
including backpropagation and radial basis function
neural networks, are systems that embed knowledge as
weights gleaned from training on a known (labeled) set of
feature vectors. They then map unknown feature vectors
into an output label.
 Fuzzy neural networks (FNNs) use fuzzy rules that are
learned during training [2], but another type is similar to
probabilistic neural networks (PNNs) [6, 7] in that they
use fuzzy set theory in place of probability theory.
Genetic algorithms, too, have been used in conjunction
with neural networks to try to increase reliability and
accuracy [3], but they are relatively slow to learn and
rather non-optimal when compared with radial basis
function NNs that optimize weight learning.
 Support vector machines (SVMs) are very popular
today [11] although the learning process optimizes a
Lagrangian function and is very complicated. Also,
SVMs are hard to outperform when there are two or three
classes. Fuzzy support vector machines were defined in
[5] in 2002. Support vector based fuzzy neural networks
are slightly more accurate than SVMs, at least on certain
data sets [4].
 This paper examines a novel, fast method for learning
from a labeled dataset to classify (recognize) unknown,
i.e., unlabeled data. The RHC algorithm ensures fast
classification as well accurate results.
 In short, the RHC is a set of hyperspheres strategically
spawned in a dimensional space for the purpose of
classification. The system of hyperspheres, once created,
makes inferences from the known classes to the unknown
inputs by traversing the hierarchal structure of those
hyperspheres.
 The remaining sections describe the RHC algorithm
and its applications. In Section 2, the RHC algorithm is
discussed in detail, including the characteristics and
production of hyperspheres. Section 3 describes the
results, where benchmarking and validation of the
algorithm are performed using two popular datasets.
Finally, a brief discussion about the RHC algorithm is
included, followed by the conclusions and future work.

2 THE ALGORITHM

 It is the endeavor of the RHC algorithm to accurately
and precisely perform classification on various, complex
multivariate datasets. Once the classes are separated and
identified, validation and verification may be performed.

2.1 Algorithm Terminology

 In RHC, classification is achieved by first constructing
a collection of hyperspheres. Here, each hypersphere has
a designated focal point, i.e., center of gravity, and a
radius [Figure 1].

Figure 1. A hypersphere in two dimensions.

 Furthermore, every such hypersphere possesses two
additional properties: 1) a class designation; and 2) a set
of spawned hyperspheres. Essentially, every hypersphere
in the search space is a descriptive entity, for the
hypersphere provides direction in search, to be discussed
in later sections.

2.2 Initialization

 Prior to training, it is imperative that the classification
for each training vector be known. It is also beneficial to
know the dimensional boundaries of the space being
surveyed and probed by obtaining a diverse and broad set
of input vectors for training.

2.3 Creating the First Hypersphere

 After the initial acquisition of a multitude of input
vectors, the derivation of the first hypersphere
commences. It is imperative the first hypersphere
encapsulate all input vectors of the training set. As this
hypersphere encompasses all vectors in the dimensional
space, each vector resides within the bounding radius of
this hypersphere. The location of the center of gravity
(COG) is defined as follows:

n
v

COG i∑= ,

where vi is vector i, and n is the number of vectors in
the dataset.
 Following the determination of the center of gravity,
the radius of the hypersphere must be defined. As
mentioned, all input vectors must reside within the
bounds of the first hypersphere. Therefore, the radius is
defined as the minimum radius that encompasses all
vectors in the sample set, which is also the Euclidean
Distance of the farthest positioned vector from the COG
[Figure 2].

Figure 2. Creating a radius about the first COG.

 Finally, the hypersphere must be assigned a class.
Defining the hypersphere’s class designation is rather
mundane and simplistic. The heuristic exploited in RHC
assigns the hypersphere’s class to be that of the outermost
vector, which is the vector previously used in determining
the radius of the hypersphere.

2.4 Creating Hyperspheres

 As indicated, the first hypersphere envelops the entire
dataset of defined space. Therefore, every sample vector
is enclosed within this radius. However, having a solitary
hypersphere provides little insight into the taxonomy of
the data. It is the objective of RHC to partition the
sample space, and to accomplish this task RHC spawns
additional hyperspheres.
 During each iteration, every hypersphere in the space
will potentially spawn additional hyperspheres. When a
hypersphere spawns, or produces, an additional
hypersphere, the offspring is said to be a child of the
parent hypersphere. This is representative of a tree data
structure, so similar terminology is employed.
 The process of spawning begins here: for each
iteration, for all the vectors residing within the bounds of
the hypersphere but not within the radii of the
hypersphere’s spawn, separate them into sets according to
their classification. Next, for each set compare the set’s
class to that of the hypersphere. If the two classes are
dissimilar, proceed to spawn a new hypersphere from that
group of vectors. The algorithm, in pseudocode form, for
spawning new children, is described in Figure 3.

Spawn(Sphere)
{

FOR EACH Child IN Sphere.Children
Spawn(Child)

ENDFOR

FOR EACH Vector IN Sphere.Radius

IF Vector.Class DOES NOT EQUAL
Sphere.Class

IF Vector NOT IN ANY Sphere.Children
MultiMap.Add(Vector.Class, Vector)

ENDIF
ENDIF

ENDFOR

FOR EACH Key IN MultiMap
Child = CreateCentroid(MultiMap.Key.Values)
Sphere.Children.Add(Child)

ENDFOR
}

Figure 3. Spawning algorithm.

 When spawning a new child, the center of gravity for
the newly spawned child should be calculated using the
previous COG equation. On the other hand, the radius of
the spawn is given to be:

parentspawnparentspawn ccrr −−= ,

where rspawn is the radius of the spawn, rparent is the radius
of the parent, and ||cspawn – cparent|| is the Euclidean
Distance between the COG of the child and the COG of
the parent. It is noted that the redundant process of
spawning hyperspheres generates an assortment of
hyperspheres with diminishing radii [Figure 4].

Figure 4. Spawned hyperspheres.

2.5 The Stopping Condition

 The spawning of hyperspheres is a recursive process.
At each new epoch a child is spawned from a set of
vectors with similar classification, not already
encompassed by a child. Training is complete when

every hypersphere in the dimensional space does not
spawn an additional hypersphere. Once training is
concluded, the search space is completely described by
the hyperspheres.

3 CATEGORIZATION

 Following a complete RHC description of the
dimensional space, one may use the collective set of
hyperspheres for categorization.

3.1 Categorical Terminology

 Two or more hyperspheres are regarded as being
independent if they are not direct descendants of one
another; hyperspheres are dependent if the converse is
true.

Figure 5. The hierarchy of hyperspheres.

 To illustrate this principle, in Figure 5, all hyperspheres
are dependent upon Hypersphere A. Hyperspheres X and
Y are also dependent upon B but are independent of each
other. Hyperspheres B and Z are independent as well as
hyperspheres B and C.

3.2 Mapping

 Classifying new, unknown vectors is also a recursive
process. The system created by RHC assigns a class label
for each input vector. To produce this label the vector is
presented to the system. Starting with the first
hypersphere, the vector is checked for proximity. If the
vector resides within the hypersphere, the vector is
checked against all the hypersphere’s spawn. For each
spawn that encapsulates the vector, the vector is
compared to that spawn’s spawn. Eventually, if no other
spawn can describe, or enclose, the vector, the vector
assumes the class of the last hypersphere that encloses it.
 In the case a vector is described, or enclosed, by two or
more independent hyperspheres and their respective radii,
a comparison is made in the list of candidates. In all, the
hypersphere with the smallest radius is regarded as the
hypersphere most like the vector, and so the vector is
assigned to the class of this hypersphere.
 This navigation over the set of hyperspheres is
synonymous to a tree traversal. Starting from the root, or
first hypersphere, a search is performed on the children.
If the unlabeled vector resides within the boundaries of a

child, the child, too, is parsed. For all children not
encompassing the unlabeled vector, they are trimmed, or
excluded.
 It is noted that each child has a smaller radius than its
parent. This contraction facilitates defining and
constraining the search space. Ultimately, it is the
hyperspheres’ boundaries, or radii, that partition the space
into classes.

4 RESULTS AND BENCHMARKING

 RHC was evaluated for accuracy and performance. In
a comparison with many complex, yet highly accurate,
algorithms used in classification, RHC touts exceptional
speed and comparable performance.

4.1 Wisconsin Breast Cancer Dataset

 Training and validation for RHC was performed on the
Wisconsin Breast Cancer Dataset, which is a very popular
multivariate dataset widely employed by the machine
learning academia. The dataset is a compilation, or
repository, of tissue features, containing 699 feature
vectors; however, as sixteen vectors are incomplete, or
missing a feature value, the incomplete vectors are
removed, leaving 683 feature vectors. The features
include: clump thickness, uniformity of cell size,
uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal
nucleoli, and mitoses. The first feature, the ID, is
discarded, for the feature provides no statistical
significance. Therefore, only nine of the features were
used in training and validation. Finally, associated with
each vector is a single classification: malignant or benign.
 When testing the dataset, it is partitioned into two
subsets: a training set and a validation set. The training
set is first presented to the RHC algorithm. As
mentioned, the RHC spawns a multitude of hyperspheres,
which describe the space, from the training set. Once all
hyperspheres are spawned, validation is performed using
the validation set. It is here that the remaining vectors
from the set are introduced to the system for
classification.
 EHC, when using the Wisconsin Breast Cancer
Dataset, was benchmarked using GANN, or Genetic
Algorithm and Neural Network [3]; OSRE, or Orthogonal
Search-Based Rule Extraction [12]; a SVM, or support
vector machine [13]; and KMP-mse, or Kernel Matching
Pursuit Mean-Square Error [13]. The results of the
evaluation are shown in Table I.

Table I. Wisconsin Breast Cancer Comparison.

Algorithm Error Rates Correct
OSRE 6.35% 93.65%
GANN 5.28% 94.72%
SVM 3.41% 96.59%

KMP-mse 3.40% 96.60%
RHC 4.00% 96.00%

4.2 Iris Dataset

 RHC was also benchmarked using the famous
Anderson’s Iris Dataset. This dataset consists of 150
vectors. Each vector has four features: sepal length, sepal
width, petal length, and petal width. Finally, each vector
is assigned one of the three classifications: iris setosa, iris
virginica, and iris versicolor.
 Like the previous dataset, the iris dataset is divided
into a training set and a testing set. In this benchmark,
fivefold cross-validation was performed and the average
error was recorded.
 EHC, when using the iris dataset, was benchmarked
using GFHSNN, or General Fuzzy Hyperspheroidal
Neural Network [14]; GFMMNN, or General Fuzzy Min-
Max Neural Network [14]; and GFNN, or General Fuzzy
Neural Network [14]. The results of our comparison are
shown in Table II.

Table II. Iris Algorithm Comparison.

Algorithm
Average

Number of
Errors

Number of
Runs

GFHSNN 4.0 10
GFMMNN 3.1 8

GFNN 2.6 8
RHC 1.2 1*

5 DISCUSSION

 It is noted that, on occasion, a vector that is presented
to the system for categorization may reside outside the
radii of all hyperspheres. In this instance it may hold true
that the unknown vector cannot be accurately classified
by the defined space and sometimes should be labeled as
such. However, if the sample space is an accurate
depiction of the runtime space, then the vector may reside
slightly outside the bounds [Figure 6].

* It is noted that no matter how many runs are made, RHC
will always produce the same mapping; hence, one run is
sufficient.

Figure 6. Vectors falling outside all radii.

 In this case, considering the large distance from the
vector to other hyperspheres, the vector should be
considered the class of the first hypersphere. On the other
hand, for a vector, which resides near the COGs of other
hyperspheres, it is probable that the vector should reside
within the hypersphere to the nearest COG. Later
versions of RHC may take into consideration the
proximity of other hyperspheres.
 Also, in the improbable event that a parent spawns a
child with an identical COG, resulting, too, in equal radii,
the COG of the child must be nudged, or shifted, resulting
in its own unique COG [Figure 7]. The consequence for
not shifting includes spawning a child at each epoch so it
never satisfies the stopping condition.

Figure 7. Two hyperspheres with the same COG.

 Also, an interesting feature pertaining to RHC is no
matter the geometry of the space or cluster, RHC can
accurately predict the space, for RHC actively partitions
the space into hyperspheres.
 Finally, RHC boasts of being extensible. Many
artificial intelligence and statistical methods require
retraining should additions be appended to datasets.
RHC, like its predecessors, can be retrained; however, it
can, moreover, add additional hyperspheres of similar
feature vectors to the space by determining the smallest
hypersphere all vectors reside and spawn a hypersphere.
To accomplish this task the vectors must reside within a
small neighborhood. Once a hypersphere is created, the
hypersphere must reside fully within another hypersphere,
which is a leaf in the hierarchy [Figure 8].

Only when these conditions are satisfied may a
hypersphere be appended to the hierarchical taxonomy of
hyperspheres.

6 CONCLUSIONS AND FUTURE WORK

 RHC possesses an uncanny ability to classify a dataset
by spawning a set of hyperspheres in the dimensional
space. Furthermore, classification of unlabeled data is
achieved by traversing the hierarchical structure of the
generated hyperspheres. As an unlabeled vector is
introduced to the system, the methodical process of
navigating and pruning the hierarchical taxonomy
produces a list of hyperspherical candidates. Once
traversal is complete and a list of candidates is available,
the unlabeled vector assumes the class of the candidate
with the smallest radius. During this process, it is noted
that each traversal whittles away the search space, for the
children’s’ radii are essentially partitioning the space into
classes.
 RHC is a simplistic, yet powerful, algorithm for
classification. It can even classify rather noisy datasets.
Through constant recursion and iterations, RHC spawns a
set of hyperspheres that accurately map a search space.
Utilizing the hyperspheres, one is able to recursively
traverse them and successfully predict the classification of
various inputs, or vectors, as observed from the training
data.
 Ultimately, continued improvements and alterations to
RHC are expected, which will increase the accuracy and
strength of the algorithm. For example, a special
hybridized version of RHC could employ different
hypergeometric shapes used in search. Another hybrid
version will stretch and skew a hypersphere’s radius if it
resides near vectors with different classes than its own.
This is synonymous to an inverse Béizer curve; vectors
with classes not equal to the sphere’s own class are seen
as repulsive forces and distort the radius of the sphere.
This, in fact, results in the hyperspheres becoming
hyperblobs. Finally, further exploration of RHC in
different applications is anticipated, including control
systems and intelligent agents.

REFERENCES

[1] Burke, Harry B., David B. Rosen, and Phillip H.
Goodman. “Comparing Artificial Neural Networks to
Other Statistical Methods for Medical Outcome
Prediction.” IEEE International Conference on Neural
Networks. Vol. 4, 27 June – 2 July 1994. pp. 2213 –
16.

[2] Gabrys, B., and A. Burgiela, “General Fuzzy Min-
Max Neural Network for Clustering and Classification,”
IEEE Transactions on Neural Networks. Vol. 11.3, May
2000. pp. 769-83.

[3] Kermani, Bahram, Mark W. White, and H. Troy
Nagle. “Feature Extraction by Genetic Algorithms for
Neural Networks in Breast Cancer Classification.” IEEE
17th Annual Conference on Engineering in Medicine and
Biology Society. Vol. 1, 20 – 23 Sept. 1995. pp. 831
– 32.

[4] Lin, Chin-Teng, et al. “Support-Vector-Based Fuzzy
Neural Network for Pattern Classification,” IEEE
Transactions on Fuzzy Systems. Vol. 14.1, Feb 2006. pp.
31-41.

[5] Lin, Chun-Fu, and Sheng-De Wang. “Fuzzy Support
Vector Machines.” IEEE Transactions on Neural
Networks. Vol. 13.2, Mar. 2002. pp. 464-71.

[6] Looney, Carl. “A Fuzzy Neural Network with Mixed
Nearest Neighbor Strategies.” Technical Report,
Computer Science and Engineering Department.
University of Nevada, Reno. Nov. 2007.

[7] Looney, Carl, and Sergiu Dascalu. “A Simple Fuzzy
Neural Network.” CAINE. Nov. 2007. pp. 12-6.

[8] Looney, Carl. “Interactive Clustering and Merging
with a New Fuzzy Expected Value.” Pattern
Recognition. Vol. 35, 2002. pp. 2413-23.

[9] Looney, Carl. “Pattern Recognition Using Neural
Networks.” New York / Oxford: Oxford University
Press, 1997.

[10] Xu, Rui, and Donald Wunsch II. “Survey of
Clustering Algorithms.” IEEE Transactions on Neural
Networks. Vol. 16.3, May 2005. pp. 645-78.

[11] Vapnik, Vladimir. “Statistical Learning Theory.”
New York: Wiley-Interscience, 1998.

[12] Etchells, T. A., and P. J. G. Lisboa. “Orthogonal
Search-Based Rule Extraction (OSRE) for Trained Neural
Networks: A Practical and Efficient Approach.” IEEE
Transactions on Neural Networks. Vol. 17.2, Mar. 2006.
pp. 374-84.

[13] Vincent, P., and Y. Bengio. “Kernel Matching
Pursuit.” Machine Learning. 2002. pp. 169-91.

[14] Patil, P. M. and T. R. Sontakke. “A Novel Threshold
Optimization of ML-CFAR Detector in Weibull Cluster
Using Fuzzy-Neural Networks.” Signal Processing. Vol.
87.9, 2007. pp. 2100-10.

