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Abstract 
 
This paper presents a novel method for learning from a 
labeled dataset to accurately classify unknown data.  The 
recursive algorithm, termed Recursive Hyperspheric 
Classification, or RHC, can accurately learn the classes 
of a labeled, n-dimensional dataset via a training method 
that recursively spawns a set of hyperspheres, 
endeavoring to separate and divide the feature space into 
partitions.  This produces a comprehensive mapping of 
the space.  These hyperspheres provide guidance for the 
search because they are recursively traversed.  Some 
benchmarking has been performed on various data sets 
and has shown to yield superior results to more 
traditional artificial methods. 
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1    INTRODUCTION 
 
     Classification, a subset of machine learning, is the 
systematic process of partitioning a set of feature vectors 
into classes.  Clustering [8, 10] is the most common way 
of doing this.  However, once a set of feature vectors has 
been classified, it can be used to recognize unknown 
feature vectors, that is, to assign them to their correct 
classes using information from the known classes.  This 
recognition process is sometimes also called classification 
of the new unknown feature vectors by inferring their 
classes based on rules or associations from the original set 
of known (labeled) feature vectors. 
    The Recursive Hyperspheric Classification (RHC) 
method proposed here is an abstract and recursive 
classification method used to obtain domain knowledge of 
a labeled set of feature vectors and then provide accurate 
inferences as to the class of each new unknown feature 
vector. 
     A plethora of classification techniques and algorithms 
currently exist, including many regressive methods such 
as artificial neural networks, fuzzy logic, and support 
vector machines.  Artificial neural networks are 
ubiquitous in the machine learning community as they are 
used extensively [9].  Since their conception, neural 
networks have been useful in recognition processes and 
compare favorably to all methods, including statistical 

models [1].  Many popular neural networks (NNs), 
including backpropagation and radial basis function 
neural networks, are systems that embed knowledge as 
weights gleaned from training on a known (labeled) set of 
feature vectors.  They then map unknown feature vectors 
into an output label. 
     Fuzzy neural networks (FNNs) use fuzzy rules that are 
learned during training [2], but another type is similar to 
probabilistic neural networks (PNNs) [6, 7] in that they 
use fuzzy set theory in place of probability theory.  
Genetic algorithms, too, have been used in conjunction 
with neural networks to try to increase reliability and 
accuracy [3], but they are relatively slow to learn and 
rather non-optimal when compared with radial basis 
function NNs that optimize weight learning. 
     Support vector machines (SVMs) are very popular 
today [11] although the learning process optimizes a 
Lagrangian function and is very complicated.  Also, 
SVMs are hard to outperform when there are two or three 
classes.  Fuzzy support vector machines were defined in 
[5] in 2002.  Support vector based fuzzy neural networks 
are slightly more accurate than SVMs, at least on certain 
data sets [4].   
     This paper examines a novel, fast method for learning 
from a labeled dataset to classify (recognize) unknown, 
i.e., unlabeled data.  The RHC algorithm ensures fast 
classification as well accurate results. 
     In short, the RHC is a set of hyperspheres strategically 
spawned in a dimensional space for the purpose of 
classification.  The system of hyperspheres, once created, 
makes inferences from the known classes to the unknown 
inputs by traversing the hierarchal structure of those 
hyperspheres. 
     The remaining sections describe the RHC algorithm 
and its applications.  In Section 2, the RHC algorithm is 
discussed in detail, including the characteristics and 
production of hyperspheres.  Section 3 describes the 
results, where benchmarking and validation of the 
algorithm are performed using two popular datasets.  
Finally, a brief discussion about the RHC algorithm is 
included, followed by the conclusions and future work. 
 
 
 
 



2    THE ALGORITHM 
 
    It is the endeavor of the RHC algorithm to accurately 
and precisely perform classification on various, complex 
multivariate datasets.  Once the classes are separated and 
identified, validation and verification may be performed. 
 
2.1    Algorithm Terminology 
 
    In RHC, classification is achieved by first constructing 
a collection of hyperspheres.  Here, each hypersphere has 
a designated focal point, i.e., center of gravity, and a 
radius [Figure 1]. 
 

 
 

Figure 1.  A hypersphere in two dimensions. 
 
    Furthermore, every such hypersphere possesses two 
additional properties: 1) a class designation; and 2) a set 
of spawned hyperspheres.  Essentially, every hypersphere 
in the search space is a descriptive entity, for the 
hypersphere provides direction in search, to be discussed 
in later sections. 
 
2.2    Initialization 
 
    Prior to training, it is imperative that the classification 
for each training vector be known.  It is also beneficial to 
know the dimensional boundaries of the space being 
surveyed and probed by obtaining a diverse and broad set 
of input vectors for training. 
 
2.3    Creating the First Hypersphere 
 
    After the initial acquisition of a multitude of input 
vectors, the derivation of the first hypersphere 
commences.  It is imperative the first hypersphere 
encapsulate all input vectors of the training set.  As this 
hypersphere encompasses all vectors in the dimensional 
space, each vector resides within the bounding radius of 
this hypersphere.  The location of the center of gravity 
( COG ) is defined as follows: 
 

n
v

COG i∑= , 

 
where vi   is vector i, and n is the number of vectors in 
the dataset. 
    Following the determination of the center of gravity, 
the radius of the hypersphere must be defined.  As 
mentioned, all input vectors must reside within the 
bounds of the first hypersphere.  Therefore, the radius is 
defined as the minimum radius that encompasses all 
vectors in the sample set, which is also the Euclidean 
Distance of the farthest positioned vector from the COG 
[Figure 2]. 
 

 
 

Figure 2.  Creating a radius about the first COG. 
 
    Finally, the hypersphere must be assigned a class.  
Defining the hypersphere’s class designation is rather 
mundane and simplistic.  The heuristic exploited in RHC 
assigns the hypersphere’s class to be that of the outermost 
vector, which is the vector previously used in determining 
the radius of the hypersphere. 
 
2.4    Creating Hyperspheres 
 
    As indicated, the first hypersphere envelops the entire 
dataset of defined space.  Therefore, every sample vector 
is enclosed within this radius.  However, having a solitary 
hypersphere provides little insight into the taxonomy of 
the data.  It is the objective of RHC to partition the 
sample space, and to accomplish this task RHC spawns 
additional hyperspheres. 
    During each iteration, every hypersphere in the space 
will potentially spawn additional hyperspheres.  When a 
hypersphere spawns, or produces, an additional 
hypersphere, the offspring is said to be a child of the 
parent hypersphere.  This is representative of a tree data 
structure, so similar terminology is employed. 
    The process of spawning begins here: for each 
iteration, for all the vectors residing within the bounds of 
the hypersphere but not within the radii of the 
hypersphere’s spawn, separate them into sets according to 
their classification.  Next, for each set compare the set’s 
class to that of the hypersphere.  If the two classes are 
dissimilar, proceed to spawn a new hypersphere from that 
group of vectors.  The algorithm, in pseudocode form, for 
spawning new children, is described in Figure 3. 



 
Spawn(Sphere) 
{ 

FOR EACH Child IN Sphere.Children 
Spawn(Child) 

ENDFOR 
 
FOR EACH Vector IN Sphere.Radius 

IF Vector.Class DOES NOT EQUAL 
Sphere.Class 

IF Vector NOT IN ANY Sphere.Children 
MultiMap.Add(Vector.Class, Vector) 

ENDIF 
ENDIF 

ENDFOR 
 

FOR EACH Key IN MultiMap 
Child = CreateCentroid(MultiMap.Key.Values) 
Sphere.Children.Add(Child) 

ENDFOR 
} 

 
Figure 3.  Spawning algorithm. 

 
    When spawning a new child, the center of gravity for 
the newly spawned child should be calculated using the 
previous COG equation.  On the other hand, the radius of 
the spawn is given to be: 
 

parentspawnparentspawn ccrr −−= , 

 
where rspawn is the radius of the spawn, rparent is the radius 
of the parent, and ||cspawn – cparent|| is the Euclidean 
Distance between the COG of the child and the COG of 
the parent.  It is noted that the redundant process of 
spawning hyperspheres generates an assortment of 
hyperspheres with diminishing radii [Figure 4]. 
 

 
 

Figure 4.  Spawned hyperspheres. 
 
2.5    The Stopping Condition 
 
    The spawning of hyperspheres is a recursive process.  
At each new epoch a child is spawned from a set of 
vectors with similar classification, not already 
encompassed by a child.  Training is complete when 

every hypersphere in the dimensional space does not 
spawn an additional hypersphere.  Once training is 
concluded, the search space is completely described by 
the hyperspheres. 
 
3    CATEGORIZATION 
 
    Following a complete RHC description of the 
dimensional space, one may use the collective set of 
hyperspheres for categorization. 
 
3.1    Categorical Terminology 
 
    Two or more hyperspheres are regarded as being 
independent if they are not direct descendants of one 
another; hyperspheres are dependent if the converse is 
true. 
 

 
 

Figure 5.  The hierarchy of hyperspheres. 
 
    To illustrate this principle, in Figure 5, all hyperspheres 
are dependent upon Hypersphere A.  Hyperspheres X and 
Y are also dependent upon B but are independent of each 
other.  Hyperspheres B and Z are independent as well as 
hyperspheres B and C. 
 
3.2    Mapping 
 
    Classifying new, unknown vectors is also a recursive 
process.  The system created by RHC assigns a class label 
for each input vector.  To produce this label the vector is 
presented to the system.  Starting with the first 
hypersphere, the vector is checked for proximity.  If the 
vector resides within the hypersphere, the vector is 
checked against all the hypersphere’s spawn.  For each 
spawn that encapsulates the vector, the vector is 
compared to that spawn’s spawn.  Eventually, if no other 
spawn can describe, or enclose, the vector, the vector 
assumes the class of the last hypersphere that encloses it. 
    In the case a vector is described, or enclosed, by two or 
more independent hyperspheres and their respective radii, 
a comparison is made in the list of candidates.  In all, the 
hypersphere with the smallest radius is regarded as the 
hypersphere most like the vector, and so the vector is 
assigned to the class of this hypersphere. 
     This navigation over the set of hyperspheres is 
synonymous to a tree traversal.  Starting from the root, or 
first hypersphere, a search is performed on the children.  
If the unlabeled vector resides within the boundaries of a 



child, the child, too, is parsed.  For all children not 
encompassing the unlabeled vector, they are trimmed, or 
excluded. 
     It is noted that each child has a smaller radius than its 
parent.  This contraction facilitates defining and 
constraining the search space.  Ultimately, it is the 
hyperspheres’ boundaries, or radii, that partition the space 
into classes. 
 
4    RESULTS AND BENCHMARKING 
 
    RHC was evaluated for accuracy and performance.  In 
a comparison with many complex, yet highly accurate, 
algorithms used in classification, RHC touts exceptional 
speed and comparable performance. 
 
4.1    Wisconsin Breast Cancer Dataset 
 
    Training and validation for RHC was performed on the 
Wisconsin Breast Cancer Dataset, which is a very popular 
multivariate dataset widely employed by the machine 
learning academia.  The dataset is a compilation, or 
repository, of tissue features, containing 699 feature 
vectors; however, as sixteen vectors are incomplete, or 
missing a feature value, the incomplete vectors are 
removed, leaving 683 feature vectors.  The features 
include: clump thickness, uniformity of cell size, 
uniformity of cell shape, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, normal 
nucleoli, and mitoses.  The first feature, the ID, is 
discarded, for the feature provides no statistical 
significance.  Therefore, only nine of the features were 
used in training and validation.  Finally, associated with 
each vector is a single classification: malignant or benign. 
    When testing the dataset, it is partitioned into two 
subsets: a training set and a validation set.  The training 
set is first presented to the RHC algorithm.  As 
mentioned, the RHC spawns a multitude of hyperspheres, 
which describe the space, from the training set.  Once all 
hyperspheres are spawned, validation is performed using 
the validation set.  It is here that the remaining vectors 
from the set are introduced to the system for 
classification. 
     EHC, when using the Wisconsin Breast Cancer 
Dataset, was benchmarked using GANN, or Genetic 
Algorithm and Neural Network [3]; OSRE, or Orthogonal 
Search-Based Rule Extraction [12]; a SVM, or support 
vector machine [13]; and KMP-mse, or Kernel Matching 
Pursuit Mean-Square Error [13].  The results of the 
evaluation are shown in Table I. 
 
 
 
 
 
 
 

Table I.  Wisconsin Breast Cancer Comparison. 
 

Algorithm Error Rates Correct 
OSRE 6.35% 93.65% 
GANN 5.28% 94.72% 
SVM 3.41% 96.59% 

KMP-mse 3.40% 96.60% 
RHC 4.00% 96.00% 

 
 
4.2    Iris Dataset 

 
     RHC was also benchmarked using the famous 
Anderson’s Iris Dataset.  This dataset consists of 150 
vectors.  Each vector has four features: sepal length, sepal 
width, petal length, and petal width.  Finally, each vector 
is assigned one of the three classifications: iris setosa, iris 
virginica, and iris versicolor. 
     Like the previous dataset, the iris dataset is divided 
into a training set and a testing set.  In this benchmark, 
fivefold cross-validation was performed and the average 
error was recorded. 
     EHC, when using the iris dataset, was benchmarked 
using GFHSNN, or General Fuzzy Hyperspheroidal 
Neural Network [14]; GFMMNN, or General Fuzzy Min-
Max Neural Network [14]; and GFNN, or General Fuzzy 
Neural Network [14].  The results of our comparison are 
shown in Table II. 
 

Table II.  Iris Algorithm Comparison. 
 

Algorithm 
Average 

Number of 
Errors 

Number of 
Runs 

GFHSNN 4.0 10 
GFMMNN 3.1 8 

GFNN 2.6 8 
RHC 1.2 1*

 
 

 
5    DISCUSSION 
 
    It is noted that, on occasion, a vector that is presented 
to the system for categorization may reside outside the 
radii of all hyperspheres.  In this instance it may hold true 
that the unknown vector cannot be accurately classified 
by the defined space and sometimes should  be labeled as 
such.  However, if the sample space is an accurate 
depiction of the runtime space, then the vector may reside 
slightly outside the bounds [Figure 6]. 
                                                 
* It is noted that no matter how many runs are made, RHC 
will always produce the same mapping; hence, one run is 
sufficient. 



 
 

 
 

Figure 6.  Vectors falling outside all radii. 
 
     In this case, considering the large distance from the 
vector to other hyperspheres, the vector should be 
considered the class of the first hypersphere.  On the other 
hand, for a vector, which resides near the COGs of other 
hyperspheres, it is probable that the vector should reside 
within the hypersphere to the nearest COG.  Later 
versions of RHC may take into consideration the 
proximity of other hyperspheres. 
     Also, in the improbable event that a parent spawns a 
child with an identical COG, resulting, too, in equal radii, 
the COG of the child must be nudged, or shifted, resulting 
in its own unique COG [Figure 7].  The consequence for 
not shifting includes spawning a child at each epoch so it 
never satisfies the stopping condition. 
 

 
 

Figure 7.  Two hyperspheres with the same COG. 
 

    Also, an interesting feature pertaining to RHC is no 
matter the geometry of the space or cluster, RHC can 
accurately predict the space, for RHC actively partitions 
the space into hyperspheres. 
    Finally, RHC boasts of being extensible.  Many 
artificial intelligence and statistical methods require 
retraining should additions be appended to datasets.  
RHC, like its predecessors, can be retrained; however, it 
can, moreover, add additional hyperspheres of similar 
feature vectors to the space by determining the smallest 
hypersphere all vectors reside and spawn a hypersphere.  
To accomplish this task the vectors must reside within a 
small neighborhood.  Once a hypersphere is created, the 
hypersphere must reside fully within another hypersphere, 
which is a leaf in the hierarchy [Figure 8]. 

 
Only when these conditions are satisfied may a 
hypersphere be appended to the hierarchical taxonomy of 
hyperspheres. 
 
6    CONCLUSIONS AND FUTURE WORK 
 
    RHC possesses an uncanny ability to classify a dataset 
by spawning a set of hyperspheres in the dimensional 
space.  Furthermore, classification of unlabeled data is 
achieved by traversing the hierarchical structure of the 
generated hyperspheres.  As an unlabeled vector is 
introduced to the system, the methodical process of 
navigating and pruning the hierarchical taxonomy 
produces a list of hyperspherical candidates.  Once 
traversal is complete and a list of candidates is available, 
the unlabeled vector assumes the class of the candidate 
with the smallest radius.  During this process, it is noted 
that each traversal whittles away the search space, for the 
children’s’ radii are essentially partitioning the space into 
classes. 
    RHC is a simplistic, yet powerful, algorithm for 
classification.  It can even classify rather noisy datasets.  
Through constant recursion and iterations, RHC spawns a 
set of hyperspheres that accurately map a search space.  
Utilizing the hyperspheres, one is able to recursively 
traverse them and successfully predict the classification of 
various inputs, or vectors, as observed from the training 
data. 
     Ultimately, continued improvements and alterations to 
RHC are expected, which will increase the accuracy and 
strength of the algorithm.  For example, a special 
hybridized version of RHC could employ different 
hypergeometric shapes used in search.  Another hybrid 
version will stretch and skew a hypersphere’s radius if it 
resides near vectors with different classes than its own.  
This is synonymous to an inverse Béizer curve; vectors 
with classes not equal to the sphere’s own class are seen 
as repulsive forces and distort the radius of the sphere.  
This, in fact, results in the hyperspheres becoming 
hyperblobs.  Finally, further exploration of RHC in 
different applications is anticipated, including control 
systems and intelligent agents. 
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