

USING UML IN A NON-SOFTWARE DESIGN TASK:
CREATING AN ELECTRONIC SOFTWARE ENGINEERING HANDBOOK

Sergiu Dascalu1 Marcel Karam2 Muhanna Muhanna1 Salyer Reed1

1 Department of Computer Science & Engineering

University of Nevada, Reno, USA
{dascalus, muhanna, sreed}@cse.unr.edu

 2 Department of Computer Science
 American University in Beirut, Lebanon
 marcel.karam@aub.edu.lb

Abstract: This paper describes a design experience in
which UML was used in a non-traditional way, that of
modeling an electronic software engineering handbook.
The handbook was created by eleven students who took a
graduate course in software engineering during Spring
2006 at the University of Nevada, Reno, USA. While all
other course projects involved developing software
applications, the electronic handbook project required
putting together a comprehensive repository of student
reviews on significant software engineering articles, thus
creating an expandable technical report on the discipline’s
current landscape and future directions. By accessing this
repository, one is able to adequately peruse a plethora of
information on various software engineering topics and
better comprehend the discipline’s vernacular. This paper
covers the UML-based specification and design process
of the electronic handbook and provides details of the end
product. Furthermore, it shows that UML can be used as a
powerful modeling tool outside the software development
domain. Several pointers to future developments are also
presented in the paper.

Keywords: software engineering, electronic handbook,
UML, specification, design.

1 INTRODUCTION

Software engineering (SE) encapsulates a broad

range of subjects and themes. Because of its vastness and
intricacies, the process of software engineering can
become distorted in large applications, resulting in project
delays and failures. To ensure systematic development
and better maintain project direction, modeling languages
such as the UML (Unified Modeling Language) [1, 2] are
utilized during various process activities, including
specification, analysis, design, deployment, and evolution.

UML resides, traditionally, in the realm of software
engineering for the purpose of system representation. By
transforming system components into a comprehensive
model, ambiguity is removed and visualization and
understanding of the system are enhanced. Thus, if
utilized properly, UML is a powerful design tool used by

many for the purpose of software modeling, abstraction,
and refinement.

An impressive trait of UML is its ability to adapt and
extend. As system components become obvious and
requirements of the system are clarified, they are
assimilated into the software system model, composed of
several sub-models and described using the UML
notation. UML’s adaptability and extensibility, ensured
by the language’s in-built mechanisms and its own design
philosophy [1, 2, 3] drive further growth and contribution.

This paper describes our recent effort to harness the
power and flexibility of UML outside its traditional
domain of application (that of software development), in a
project concerned with the creation of an electronic
handbook (compendium) entitled “Research in Software
Engineering: Current Landscape and the Road Ahead”.

This book, a technical report of rather large size
(currently, over 200 pages), has been put together by 11
students who took in Spring 2006 the graduate course
CS791z Topics on Software Engineering at the University
of Nevada, Reno (UNR), USA [4] under the advisement
of the course instructor, Dr. Sergiu Dascalu. The main
idea behind the handbook was to create an expandable
repository (collection) of reviews written by students on
current relevant software engineering research literature.
The reviews were organized in several major topics, each
of which having dedicated a chapter in the book (as
detailed later in this paper). Each chapter was created
through the joint contribution of the students working on
a specific assignment, e.g., the first assignment was on
“major research directions on software engineering”, the
second on “centers of excellence in software
engineering,” and so on.

Typically, for each class assignment each student had
to review two or three publications (journal or conference
papers) on the assignment’s specific topic. Having all
reviews organized in chapters put together in a single
handbook has the benefit of providing future students
with a comprehensive reference material easily available
as course material (the handbook will be made available
online, on the course website [4]). Furthermore, this
technical repository of SE reviews is intended to grow
each year through the contribution of new series of

students who will work on new topics (and thus will write
new chapters of the handbook). Yet another significant
benefit of the SE handbook is that when doing their
assignments the students are more careful in selecting
material and writing their reviews, as the idea of being co-
authors of the handbook entails additional responsibility,
which, as we have noticed first-hand, the students are
taking quite seriously.

An interesting experience related to creating this
electronic handbook on SE topics was provided by its
construction process, for which two graduate students,
Muhanna Muhanna and Salyer Reed, co-authors of this
paper, were responsible. While all other class projects
involved software modeling and implementation,
Muhanna and Salyer had to create an electronic book, not
a software application per se, but still a product (or
“system”) that required significant specification, design,
implementation, and integration. The idea came rather
naturally to use UML for modeling this book in a similar
way a software product would be modeled, following
traditional engineering phases (specification, design,
implementation, integration, and evolution) applied in this
case to developing and maintaining a non-software
product.

This paper reports on our experience with creating
the SE electronic handbook and provides further evidence
that UML is a powerful modeling notation that can be
used with significant advantages in the development of
products and artifacts other than “software products”.

In its remaining sections this paper is organized is
organized as follows: Section 2 briefly reviews related
work on applying UML for modeling non-software
systems, Section 3 presents the main chapters of the SE
handbook, Section 4 provides details of the handbook’s
UML model, Section 5 presents excerpts from the end
product (the electronic handbook), and Section 6 finalizes
the paper with several planned directions of future work
and our concluding remarks.

2 RELATED WORK

Traditionally, UML has been used extensively for

modeling software applications. Examples are abundant
in the SE literature and over the last years industry
practitioners have relied on UML as the main tool for
designing software-intensive systems. The authors of this
paper have also used UML heavily for developing their
software projects, as for example reported in [5, 6].

As originally indicated by Booch, Rumbaugh and
Jacobson, “the Unified Modeling Language (UML) is a
graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
intensive systems” [1]. The newest version of OMG’s
UML specification (Superstructure, formal document
version 2.0) further points out that “UML is a language

with a very broad scope that covers a large and diverse set
of application domains” [7].

Although it has been acknowledged for long that
UML is also suitable for business modeling and the
development of a large variety of non-software products,
the scientific literature contains rather few detailed reports
on applying UML on such cases. Among the ones we
surveyed, Torchiano and Bruno tackle the modeling of
enterprise systems using UML [8], Holt addresses the use
of UML in systems engineering [9], Eriksson and Penker
focus on business modeling with UML [10], and McNay
describes using UML in the e-commerce domain [11].

To the best of our knowledge, there is however no
published report on applying UML to modeling and
assembling an electronic handbook. Hence, although our
work is rather preliminary, this paper provides an account
of our experience on using UML in this particular type of
application. Furthermore, even though the handbook we
created is a specific one (on SE research), the adaptation of
employing UML to designing any other type of electronic
book should be straightforward and easy.

3 THE HANDBOOK AND ITS COMPONENTS

In essence, our “system” consists of the handbook
developed by the eleven students enrolled in Spring 2006
in the course CS791z Topics in Software Engineering at
UNR. Each chapter focuses on a specific area of software
engineering research (and, occasionally, practice), as
detailed below.

3.1 Chapter 1: Research Directions in Software

Engineering

Software engineering is a continuously developing
field in which advances occur daily. As these
improvements are built upon current software engineering
principles and practices, so, too, these advancements will
one day be the foundation for further growth and
enhancement – this is a typical iterative improvement
process in software engineering.

This chapter describes directions and intent of current
research efforts in software engineering. By reading this
chapter, one should be able to accurately identify current
research and development directions in SE.

3.2 Chapter 2: Major Software Engineering Centers

on Geographical Areas

 Software engineering is a broad field that blankets
many cultural and geographical regions. In this chapter,
the globe was divided into 11 geographical segments,
each student being assigned a particular region. For each
specific region three prominent research centers were
examined in detail and several other were briefly
inspected. Each student wrote a comprehensive review,

summarizing important projects, initiatives, and practices
pertaining to the surveyed centers.
 By assembling all the reviews into a single chapter,
one is able to quickly “partition” the world and examine
various projects and achievements particular to a specific
geographical region.

3.3 Chapter 3: The Software Development Lifecycle

The software development lifecycle (the software
process) encompasses a number of typical phases [12,
13]. From conception to retirement, the software process
is a complex cycle of intertwined, interdependent
activities. Each student was assigned a specific phase of
the software lifecycle and required to become well
acquainted with the phase, its activities, and its
terminology. To accomplish this task, students were asked
to peruse various resources – primarily the IEEE and
ACM digital libraries as well as the Internet – to
familiarize themselves with their assigned topics. Upon
successful assimilation of knowledge, students effectively
summarized relevant scientific publications about their
assigned phase in the software lifecycle. By merging the
combined efforts of all students, the complete software
lifecycle has been covered.

3.4 Chapter 4: Domain-Specific Software Engineering

Software is rapidly becoming an integral component
in many fields of human activity. There exists a mutual
benefit between the software engineering and the specific
field: software runs as a set of instructions, simplifying
tasks and computations in that given field, and software
engineering benefits by gaining insight from the feedback
provided by the field’s experts (the users of the software).

In this chapter, students investigated the integration
of software into various fields of activity, for example in
the medical domain, in bioinformatics, and in very large
control systems development. The responses from
students were quite diverse – each response was unique,
providing a plethora of information. By perusing the
reviews gathered in this chapter, a reader can construct a
good image of software engineering as an
“encompassing” discipline, necessary to provide support
in many domains of human activity.

3.5 Additional Handbook Components

Besides the four chapters included so far in the
handbook, other components of the book include a
glossary of terms, an index of authors (name index), an
index of subject topics (subject index), a list of
abbreviations, and a comprehensive list of references. As
is the case with the entire compendium, this set of
appendices will be the subject of future additions and
enhancements.

4 UML MODELING OF THE HANDBOOK

UML is a descriptive, graphical language
traditionally used in modeling complex software-intensive
systems [1, 2]. UML can adequately describe the system,
its components, and the components’ relationships, both
from a static (structural) and a dynamical (behavioral)
perspective.

By exploiting the flexibility and descriptive power of
UML the electronic compendium has been modeled in
terms of specification (requirements, use case diagram,
use cases, scenarios) and design (class diagram, system
level diagram). Excerpts from this model are provided
next.

4.1 System Requirements

System requirements are the services and

functionality that the system is to provide; once
requirements are defined, the system becomes malleable
and the development can progress successfully.

System requirements are divided into two categories:
functional and nonfunctional requirements [3, 12, 13].
Traditionally, functional requirements describe the
desired behavior of the system. In our electronic
handbook application, functional requirements are
paralleled to traditional functional requirements for
software; in a sense, they are the end deliverables of the
system. On the other hand, nonfunctional requirements
are constraints imposed on the system, for instance
implementation constraints, performance constraints, and
usability constraints.

Both the functional and nonfunctional requirements
of our system were divided into three levels of priority,
introduced respectively by the verbs: “shall”, “should”,
and “might”. The “shall level” insists that its
requirements will be implemented prior to releasing the
system. The “should level” includes requirements that are
important to the system, but can be omitted for the current
phase without compromising the phase’s objectives.
Finally, the “might level” includes requirements that may
be absent; however, they provide further functionality and
aesthetics to the overall system and are to be implemented
later.

For our SE handbook application, an abundance of
requirements were attained. For brevity and illustration
purposes, only several are shown in Fig. 1.

4.2 Use Case Diagram and Use Cases

In UML use case diagrams, actors (users) interact

with the system. Currently, there are three types of actors
in our system: contributors (student writers), assemblers
(students in charge of creating and maintaining the
handbook), and readers (everyone who reads the
handbook). A partial and simplified version of the
system’s use case diagram is shown in Fig. 2.

Fig. 1: Functional and Non-Functional Requirements

Fig. 2: Use Case Diagram of the SE Handbook (partial)

Contributors are the students. They partake in the
creation of the handbook by submitting articles and
reviews for processing and categorizing.

Assemblers are the individuals responsible for
merging contributors’ articles and producing the

compendium. Through meticulous and careful editing, the
assemblers undertook the responsibility of combining the
submissions into a useful and aesthetically pleasing
handbook. The assemblers are also obligated to upkeep
and maintain the compilation, for the system is dynamic
and new components are continuously added.

Finally, the readers – who are the consumers, or end-
users – delve into the contents of the handbook. The
handbook, as previously mentioned, is a tool, a roadmap
to a variety of topics in software engineering research.

The use case diagram depicts the interaction between
the actors and the system. Use cases provide means for
implementing system requirements based on user
interactions. For instance, as the handbook is dynamic,
assemblers must have methods for adding new items to it;
therefore, the “add item” requirement must be addressed
in a use case.

Use cases are parts of the use case diagram. They
describe particular interactions between the actors and the
system. For illustration purposes, several use case
descriptions are provided below. Larger and more detailed
descriptions of use cases can also be produced following
the template suggested in [3].

UC1 (Get Research): This allows the reader to obtain
information on a specific research direction in software
engineering.

UC2 (Add Direction): This allows the assembler to add a
new SE research direction to the compiled list of
directions.

UC3 (Get Center): This allows the reader to find the
name of a research facility (center) with a focus on
software engineering.

UC8 (Get Phase): This allows a reader to locate
information on a specific phase in the software lifecycle.

UC9 (Get Description): This returns a short description
of a specific phase in the software lifecycle.

UC12 (Get Index): This allows a reader to peruse a
specific index of the handbook.

4.3 Scenarios

In essence, scenarios are instances of use cases [1, 3].
They are concise and precise descriptions of possible
interaction between the actors and the system. Each use
case has one primary (or most regular) scenario and
several –often many– secondary (less frequent, or
exceptional) scenarios. Prior to executing a scenario, in
some cases preconditions must be satisfied – once these
conditions are fulfilled, the scenario may commence. An
example of scenario developed for our SE handbook is
presented in Fig. 3.

Fig. 3: Example of Scenario for the SE Handbook

 In modeling our electronic compendium scenarios
were useful to identify and describe in detail a large
variety of interactions between the actors (writers,
assemblers, readers) and the system (the electronic book).

4.4 Requirements Traceability Matrix

 This traceability matrix (partially shown in Fig. 4) is
a mapping of requirements onto use-case scenarios and
vice versa. It is a useful tool that can be used through
product development to trace back implementation and
design to requirements specification.

Fig. 4: Requirements Traceability Matrix (partial)

 By using the matrix shown in Fig. 4, the handbook’s
requirements and use-cases are clearly interrelated. The
matrix maps requirements to use cases, thus assisting in
the detailed construction of the compendium.

4.5 Architectural Design

High-level architecture in UML is a visual depiction
of the system’s objects and their relationships. To model

the handbook, a class diagram was produced. Elements
within the hierarchy are classes; each class has designated
properties (attributes) and functions (operations). Through
inheritance a parent class passes its traits to its children,
which in turn are able to append their own properties and
functions. Fig. 5 presents the main components of the
class diagram developed for the SE handbook.

Fig. 5: Class Diagram of the SE Handbook (partial)

5 THE END PRODUCT

The end product of our work is the initial version (or,
the first edition) of the electronic handbook on SE
research topics. Currently put together as a PDF file, it
will be soon made available online via the instructor’s
course website at UNR. While the design layout and the
general contents for the 2006 edition have been completed
some additional proofreading and editing is needed before
public presentation. Excerpts from this compendium are
shown in Fig. 6 (the cover page) and Fig. 7 (the table of
contents).

6 FUTURE WORK AND CONCLUSIONS

Naturally, future work for our SE handbook includes
addition of new chapters (on new SE topics) and
extension of the existing indexes, the glossary of terms,
the list of abbreviations, and the references. In terms of
UML modeling, it would be interesting to investigate the
suitability and application of other UML constructs to the
design and documentation of a generic electronic book.
Such constructs could include sequence diagrams,
statecharts, activity diagrams, and deployment diagrams.
Using UML for designing other non-software products
(e.g., hardware components or mechanical devices) is yet
another area of possible future exploration.

Although the handbook has been the main deliverable
of our work, the rewards of this joint effort go beyond the
bounds of its publication. The students who compiled the
compendium benefited from their experience by

assimilating new knowledge in the area of SE and by
exercising their analytical and technical writing skills.
Furthermore, for the authors of this paper, relying on
UML for developing a non-software product has proven
to be a useful experience, which opens perspectives for
similar endeavors in undertaking other non-software
design tasks.

Acknowledgements

We would like to thank all the students who
contributed, as part of their coursework, to the writing of
the SE handbook described in this paper. Besides the
paper’s co-authors, Muhanna Muhanna and Salyer Reed,
other students who wrote review material included in the
handbook were: Olusegun Akinwale, Sean Geffert, Tunya
Intrapairote, Robert Larmore, Mike McMahon, Jr., Sara
Nasser, Juan Quiroz, Chris Yoder, and Bei Yuan.

References

[1] Booch, G., Rumbaugh, J., and Jacobson, I., The Unified

Modeling Language: User Guide, Addison-Wesley, 1998.
[2] OMG’s UML Resource Page, accessed May 20, 2006 at

http://www.omg.org/uml/
[3] Arlow, J., and Neustadt, I., UML and the Unified Process:

Practical Object-Oriented Analysis and Design, Addison-
Wesley, 2002.

[4] UNR, CSE Department, CS791z Topics in Software
Engineering, course website 2006, accessed May 5, 2006 at

 http://www.cse.unr.edu/~dascalus/tse2006.html
[5] Dascalu, S.M., and Hitchcock, P., “An Approach to

Integrating Semi-formal and Formal Notations in Software
Specification,” Procs. of the 2002 ACM Symposium on
Applied Computing, Madrid, Spain, 2002, pp. 1014-1020.

[6] Kallman, J., Minaie, P., Truppi, J., Dascalu, S.M., and
Harris, F.C., Jr., “Software Modeling for Open Distributed
Network Monitoring Systems,” Lecture Notes in Computer
Science LNCS-3126, Springer-Verlag, 2004, pp. 158-169.

[7] Object Management Group (OMG): Unified Modeling
Language: Superstructure, version 2.0, August 2005,
http://www.omg.org/docs/formal/05-07-04.pdf

[8] Torchiano, M. and Bruno, G., “Enterprise Modeling by
Means of UML Instance Models,” ACM Software
Engineering Notes, 28(2), March 2003.

[9] Holt, I., UML for Systems Engineering: Watching the
Wheels, 1st ed., Inst. of Electrical Engineers (IEE), 2001.

[10] Eriksson, H.E. and Penker M., Business Modeling With
UML: Business Patterns at Work, Wiley & Sons, 2000.

[11] McNay, H.E., “UML for E-Business: New Use for Use
Cases,” Proceedings of IEEE IPCC 2001, pp. 245-249.

[12] Sommerville, I., Software Engineering, 7th Ed., Addison-
Wesley, 2004.

[13] Pressman, R., Software Engineering: A Practitioner’s
Approach, 6th Ed., McGraw-Hill, 2004.

Fig. 6: The Handbook’s Cover

 Fig. 7: Table of Contents (partial)

