
What’s New in Python
Release 2.6.4

A. M. Kuchling

January 04, 2010

Python Software Foundation
Email: docs@python.org

Contents

1 Python 3.0 ii

2 Changes to the Development Process iii
2.1 New Issue Tracker: Roundup. iii
2.2 New Documentation Format: reStructuredText Using Sphinx. iv

3 PEP 343: The ‘with’ statement iv
3.1 Writing Context Managers. v
3.2 The contextlib module. .vii

4 PEP 366: Explicit Relative Imports From a Main Module viii

5 PEP 370: Per-usersite-packages Directory viii

6 PEP 371: Themultiprocessing Package viii

7 PEP 3101: Advanced String Formatting xi

8 PEP 3105:print As a Function xii

9 PEP 3110: Exception-Handling Changes xiii

10 PEP 3112: Byte Literals xiv

11 PEP 3116: New I/O Library xv

12 PEP 3118: Revised Buffer Protocol xv

13 PEP 3119: Abstract Base Classes xvi

14 PEP 3127: Integer Literal Support and Syntax xviii

15 PEP 3129: Class Decorators xix

16 PEP 3141: A Type Hierarchy for Numbers xix
16.1 Thefractions Module .xix

17 Other Language Changes xx
17.1 Optimizations. .xxiii
17.2 Interpreter Changes. .xxiii

18 New and Improved Modules xxiv
18.1 Theast module .xxxv
18.2 Thefuture_builtins module .xxxvi
18.3 Thejson module: JavaScript Object Notation. .xxxvi
18.4 Theplistlib module: A Property-List Parser. .xxxvii
18.5 ctypes Enhancements. .xxxvii
18.6 Improved SSL Support. .xxxviii

19 Deprecations and Removals xxxviii

20 Build and C API Changes xxxviii
20.1 Port-Specific Changes: Windows. xl
20.2 Port-Specific Changes: Mac OS X. xl
20.3 Port-Specific Changes: IRIX. .xli

21 Porting to Python 2.6 xli

22 Acknowledgements xlii
Indexxliii

Author A.M. Kuchling (amk at amk.ca)

Release2.6.4

Date January 04, 2010

This article explains the new features in Python 2.6, released on October 1 2008. The release schedule is described in
PEP 361.

The major theme of Python 2.6 is preparing the migration path to Python 3.0, a major redesign of the language.
Whenever possible, Python 2.6 incorporates new features and syntax from 3.0 while remaining compatible with ex-
isting code by not removing older features or syntax. When it’s not possible to do that, Python 2.6 tries to do what it
can, adding compatibility functions in afuture_builtins module and a-3 switch to warn about usages that will
become unsupported in 3.0.

Some significant new packages have been added to the standard library, such as themultiprocessing andjson
modules, but there aren’t many new features that aren’t related to Python 3.0 in some way.

Python 2.6 also sees a number of improvements and bugfixes throughout the source. A search through the change logs
finds there were 259 patches applied and 612 bugs fixed between Python 2.5 and 2.6. Both figures are likely to be
underestimates.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides a convenient
overview. For full details, you should refer to the documentation for Python 2.6. If you want to understand the rationale
for the design and implementation, refer to the PEP for a particular new feature. Whenever possible, “What’s New in
Python” links to the bug/patch item for each change.

1 Python 3.0

The development cycle for Python versions 2.6 and 3.0 was synchronized, with the alpha and beta releases for both
versions being made on the same days. The development of 3.0 has influenced many features in 2.6.

http://www.python.org/dev/peps/pep-0361

Python 3.0 is a far-ranging redesign of Python that breaks compatibility with the 2.x series. This means that existing
Python code will need some conversion in order to run on Python 3.0. However, not all the changes in 3.0 necessarily
break compatibility. In cases where new features won’t cause existing code to break, they’ve been backported to 2.6
and are described in this document in the appropriate place. Some of the 3.0-derived features are:

• A __complex__() method for converting objects to a complex number.

• Alternate syntax for catching exceptions:except TypeError as exc .

• The addition offunctools.reduce() as a synonym for the built-inreduce() function.

Python 3.0 adds several new built-in functions and changes the semantics of some existing built-ins. Functions that are
new in 3.0 such asbin() have simply been added to Python 2.6, but existing built-ins haven’t been changed; instead,
the future_builtins module has versions with the new 3.0 semantics. Code written to be compatible with 3.0
can dofrom future_builtins import hex, map as necessary.

A new command-line switch,-3 , enables warnings about features that will be removed in Python 3.0. You can run
code with this switch to see how much work will be necessary to port code to 3.0. The value of this switch is available
to Python code as the boolean variablesys.py3kwarning , and to C extension code asPy_Py3kWarningFlag .

See Also:

The 3xxx series of PEPs, which contains proposals for Python 3.0.PEP 3000describes the development process for
Python 3.0. Start withPEP 3100that describes the general goals for Python 3.0, and then explore the higher-numbered
PEPS that propose specific features.

2 Changes to the Development Process

While 2.6 was being developed, the Python development process underwent two significant changes: we switched
from SourceForge’s issue tracker to a customized Roundup installation, and the documentation was converted from
LaTeX to reStructuredText.

2.1 New Issue Tracker: Roundup

For a long time, the Python developers had been growing increasingly annoyed by SourceForge’s bug tracker. Source-
Forge’s hosted solution doesn’t permit much customization; for example, it wasn’t possible to customize the life cycle
of issues.

The infrastructure committee of the Python Software Foundation therefore posted a call for issue trackers, asking
volunteers to set up different products and import some of the bugs and patches from SourceForge. Four different
trackers were examined:Jira, Launchpad, Roundup, andTrac. The committee eventually settled on Jira and Roundup
as the two candidates. Jira is a commercial product that offers no-cost hosted instances to free-software projects;
Roundup is an open-source project that requires volunteers to administer it and a server to host it.

After posting a call for volunteers, a new Roundup installation was set up athttp://bugs.python.org. One installation
of Roundup can host multiple trackers, and this server now also hosts issue trackers for Jython and for the Python web
site. It will surely find other uses in the future. Where possible, this edition of “What’s New in Python” links to the
bug/patch item for each change.

Hosting of the Python bug tracker is kindly provided byUpfront Systemsof Stellenbosch, South Africa. Martin
von Loewis put a lot of effort into importing existing bugs and patches from SourceForge; his scripts for this import
operation are athttp://svn.python.org/view/tracker/importer/and may be useful to other projects wishing to move from
SourceForge to Roundup.

See Also:

http://bugs.python.org The Python bug tracker.

http://www.python.org/dev/peps/pep-3000
http://www.python.org/dev/peps/pep-3100
http://www.atlassian.com/software/jira/
http://www.launchpad.net
http://roundup.sourceforge.net/
http://trac.edgewall.org/
http://bugs.python.org
http://www.upfrontsystems.co.za/
http://svn.python.org/view/tracker/importer/
http://bugs.python.org

http://bugs.jython.org: The Jython bug tracker.

http://roundup.sourceforge.net/ Roundup downloads and documentation.

http://svn.python.org/view/tracker/importer/ Martin von Loewis’s conversion scripts.

2.2 New Documentation Format: reStructuredText Using Sphinx

The Python documentation was written using LaTeX since the project started around 1989. In the 1980s and early
1990s, most documentation was printed out for later study, not viewed online. LaTeX was widely used because it
provided attractive printed output while remaining straightforward to write once the basic rules of the markup were
learned.

Today LaTeX is still used for writing publications destined for printing, but the landscape for programming tools
has shifted. We no longer print out reams of documentation; instead, we browse through it online and HTML has
become the most important format to support. Unfortunately, converting LaTeX to HTML is fairly complicated and
Fred L. Drake Jr., the long-time Python documentation editor, spent a lot of time maintaining the conversion process.
Occasionally people would suggest converting the documentation into SGML and later XML, but performing a good
conversion is a major task and no one ever committed the time required to finish the job.

During the 2.6 development cycle, Georg Brandl put a lot of effort into building a new toolchain for processing the
documentation. The resulting package is called Sphinx, and is available fromhttp://sphinx.pocoo.org/.

Sphinx concentrates on HTML output, producing attractively styled and modern HTML; printed output is still sup-
ported through conversion to LaTeX. The input format is reStructuredText, a markup syntax supporting custom exten-
sions and directives that is commonly used in the Python community.

Sphinx is a standalone package that can be used for writing, and almost two dozen other projects (listed on the Sphinx
web site) have adopted Sphinx as their documentation tool.

See Also:

Documenting Python(in Documenting Python) Describes how to write for Python’s documentation.

Sphinx Documentation and code for the Sphinx toolchain.

Docutils The underlying reStructuredText parser and toolset.

3 PEP 343: The ‘with’ statement

The previous version, Python 2.5, added the ‘with ‘ statement as an optional feature, to be enabled by afrom
__future__ import with_statement directive. In 2.6 the statement no longer needs to be specially enabled;
this means thatwith is now always a keyword. The rest of this section is a copy of the corresponding section from
the “What’s New in Python 2.5” document; if you’re familiar with the ‘with ‘ statement from Python 2.5, you can
skip this section.

The ‘with ‘ statement clarifies code that previously would usetry...finally blocks to ensure that clean-up code
is executed. In this section, I’ll discuss the statement as it will commonly be used. In the next section, I’ll examine the
implementation details and show how to write objects for use with this statement.

The ‘with ‘ statement is a control-flow structure whose basic structure is:

with expression [as variable]:
with-block

The expression is evaluated, and it should result in an object that supports the context management protocol (that is,
has__enter__() and__exit__() methods).

http://bugs.jython.org
http://roundup.sourceforge.net/
http://svn.python.org/view/tracker/importer/
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/examples.html
http://sphinx.pocoo.org/examples.html
http://sphinx.pocoo.org/
http://docutils.sf.net

The object’s__enter__() is called beforewith-block is executed and therefore can run set-up code. It also may
return a value that is bound to the namevariable, if given. (Note carefully thatvariable is not assigned the result of
expression.)

After execution of thewith-blockis finished, the object’s__exit__() method is called, even if the block raised an
exception, and can therefore run clean-up code.

Some standard Python objects now support the context management protocol and can be used with the ‘with ‘ state-
ment. File objects are one example:

with open (’ /etc/passwd ’ , ’ r ’) as f:
for line in f:

print line
. . . more processing code . . .

After this statement has executed, the file object inf will have been automatically closed, even if thefor loop raised
an exception part- way through the block.

Note: In this case,f is the same object created byopen() , becausefile.__enter__() returnsself.

Thethreading module’s locks and condition variables also support the ‘with ‘ statement:

lock = threading . Lock()
with lock:

Critical section of code
. . .

The lock is acquired before the block is executed and always released once the block is complete.

The localcontext() function in thedecimal module makes it easy to save and restore the current decimal
context, which encapsulates the desired precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal(’ 578 ’)
print v. sqrt()

with localcontext(Context(prec =16)):
All code in this block uses a precision of 16 digits.
The original context is restored on exiting the block.
print v. sqrt()

3.1 Writing Context Managers

Under the hood, the ‘with ‘ statement is fairly complicated. Most people will only use ‘with ‘ in company with
existing objects and don’t need to know these details, so you can skip the rest of this section if you like. Authors of
new objects will need to understand the details of the underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

• The expression is evaluated and should result in an object called a “context manager”. The context manager
must have__enter__() and__exit__() methods.

• The context manager’s__enter__() method is called. The value returned is assigned toVAR. If no as VAR
clause is present, the value is simply discarded.

• The code inBLOCK is executed.

• If BLOCK raises an exception, the__exit__(type, value, traceback)() is called with the excep-
tion details, the same values returned bysys.exc_info() . The method’s return value controls whether the

exception is re-raised: any false value re-raises the exception, andTrue will result in suppressing it. You’ll only
rarely want to suppress the exception, because if you do the author of the code containing the ‘with ‘ statement
will never realize anything went wrong.

• If BLOCKdidn’t raise an exception, the__exit__() method is still called, buttype, value, andtracebackare
all None.

Let’s think through an example. I won’t present detailed code but will only sketch the methods necessary for a database
that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the database are grouped into a transaction.
Transactions can be either committed, meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See any database textbook for more
information.)

Let’s assume there’s an object representing a database connection. Our goal will be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:

cursor . execute(’ insert into ... ’)
cursor . execute(’ delete from ... ’)
... more operations ...

The transaction should be committed if the code in the block runs flawlessly or rolled back if there’s an exception.
Here’s the basic interface forDatabaseConnection that I’ll assume:

class DatabaseConnection :
Database interface
def cursor (self):

" Returns a cursor object and starts a new transaction "
def commit (self):

" Commits current transaction "
def rollback (self):

" Rolls back current transaction "

The__enter__() method is pretty easy, having only to start a new transaction. For this application the resulting
cursor object would be a useful result, so the method will return it. The user can then addas cursor to their ‘with ‘
statement to bind the cursor to a variable name.

class DatabaseConnection :
. . .
def __enter__ (self):

Code to start a new transaction
cursor = self . cursor()
return cursor

The__exit__() method is the most complicated because it’s where most of the work has to be done. The method
has to check if an exception occurred. If there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function, returning the default value ofNone. None is
false, so the exception will be re-raised automatically. If you wished, you could be more explicit and add areturn
statement at the marked location.

class DatabaseConnection :
. . .
def __exit__ (self , type , value, tb):

if tb is None:
No exception, so commit
self . commit()

else :
Exception occurred, so rollback.
self . rollback()
return False

3.2 The contextlib module

Thecontextlib module provides some functions and a decorator that are useful when writing objects for use with
the ‘with ‘ statement.

The decorator is calledcontextmanager() , and lets you write a single generator function instead of defining
a new class. The generator should yield exactly one value. The code up to theyield will be executed as the
__enter__() method, and the value yielded will be the method’s return value that will get bound to the variable in
the ‘with ‘ statement’sas clause, if any. The code after theyield will be executed in the__exit__() method.
Any exception raised in the block will be raised by theyield statement.

Using this decorator, our database example from the previous section could be written as:

from contextlib import contextmanager

@contextmanager
def db_transaction (connection):

cursor = connection . cursor()
try :

yield cursor
except :

connection . rollback()
raise

else :
connection . commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:

. . .

Thecontextlib module also has anested(mgr1, mgr2, ...)() function that combines a number of con-
text managers so you don’t need to write nested ‘with ‘ statements. In this example, the single ‘with ‘ statement both
starts a database transaction and acquires a thread lock:

lock = threading . Lock()
with nested (db_transaction(db), lock) as (cursor, locked):

. . .

Finally, the closing(object)() function returnsobject so that it can be bound to a variable, and calls
object.close at the end of the block.

import urllib , sys
from contextlib import closing

with closing(urllib . urlopen(’ http://www.yahoo.com ’)) as f:
for line in f:

sys . stdout . write(line)

See Also:

PEP 343- The “with” statement PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike
Bland, Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a ‘with ‘ statement,
which can be helpful in learning how the statement works.

http://www.python.org/dev/peps/pep-0343

The documentation for thecontextlib module.

4 PEP 366: Explicit Relative Imports From a Main Module

Python’s-m switch allows running a module as a script. When you ran a module that was located inside a package,
relative imports didn’t work correctly.

The fix for Python 2.6 adds a__package__ attribute to modules. When this attribute is present, relative imports
will be relative to the value of this attribute instead of the__name__ attribute.

PEP 302-style importers can then set__package__ as necessary. Therunpy module that implements the-m
switch now does this, so relative imports will now work correctly in scripts running from inside a package.

5 PEP 370: Per-user site-packages Directory

When you run Python, the module search pathsys.path usually includes a directory whose path ends in
"site-packages" . This directory is intended to hold locally-installed packages available to all users using a
machine or a particular site installation.

Python 2.6 introduces a convention for user-specific site directories. The directory varies depending on the platform:

• Unix and Mac OS X:~/.local/

• Windows:%APPDATA%/Python

Within this directory, there will be version-specific subdirectories, such aslib/python2.6/site-packages on
Unix/Mac OS andPython26/site-packages on Windows.

If you don’t like the default directory, it can be overridden by an environment variable.PYTHONUSERBASE sets the
root directory used for all Python versions supporting this feature. On Windows, the directory for application-specific
data can be changed by setting theAPPDATA environment variable. You can also modify thesite.py file for your
Python installation.

The feature can be disabled entirely by running Python with the-s option or setting thePYTHONNOUSERSITE
environment variable.

See Also:

PEP 370- Per-usersite-packages Directory PEP written and implemented by Christian Heimes.

6 PEP 371: The multiprocessing Package

The newmultiprocessing package lets Python programs create new processes that will perform a computation
and return a result to the parent. The parent and child processes can communicate using queues and pipes, synchronize
their operations using locks and semaphores, and can share simple arrays of data.

The multiprocessing module started out as an exact emulation of thethreading module using processes
instead of threads. That goal was discarded along the path to Python 2.6, but the general approach of the module is
still similar. The fundamental class is theProcess , which is passed a callable object and a collection of arguments.
Thestart() method sets the callable running in a subprocess, after which you can call theis_alive() method
to check whether the subprocess is still running and thejoin() method to wait for the process to exit.

Here’s a simple example where the subprocess will calculate a factorial. The function doing the calculation is written
strangely so that it takes significantly longer when the input argument is a multiple of 4.

http://www.python.org/dev/peps/pep-0370

import time
from multiprocessing import Process, Queue

def factorial (queue, N):
" Compute a factorial. "
If N is a multiple of 4, this function will take much longer.
if (N % 4) == 0:

time . sleep(. 05 * N/ 4)

Calculate the result
fact = 1L
for i in range (1, N +1):

fact = fact * i

Put the result on the queue
queue . put(fact)

if __name__ == ’ __main__ ’ :
queue = Queue()

N = 5

p = Process(target =factorial, args =(queue, N))
p. start()
p. join()

result = queue . get()
print ’ Factorial ’ , N, ’ =’ , result

A Queue is used to communicate the input parameterN and the result. TheQueue object is stored in a global
variable. The child process will use the value of the variable when the child was created; because it’s aQueue, parent
and child can use the object to communicate. (If the parent were to change the value of the global variable, the child’s
value would be unaffected, and vice versa.)

Two other classes,Pool andManager , provide higher-level interfaces.Pool will create a fixed number of worker
processes, and requests can then be distributed to the workers by callingapply() or apply_async() to add a
single request, andmap() or map_async() to add a number of requests. The following code uses aPool to spread
requests across 5 worker processes and retrieve a list of results:

from multiprocessing import Pool

def factorial (N, dictionary):
" Compute a factorial. "
. . .

p = Pool(5)
result = p. map(factorial, range (1, 1000 , 10))
for v in result:

print v

This produces the following output:

1
39916800
51090942171709440000
8222838654177922817725562880000000

33452526613163807108170062053440751665152000000000
. . .

The other high-level interface, theManager class, creates a separate server process that can hold master copies of
Python data structures. Other processes can then access and modify these data structures using proxy objects. The
following example creates a shared dictionary by calling thedict() method; the worker processes then insert values
into the dictionary. (Locking is not done for you automatically, which doesn’t matter in this example.Manager ‘s
methods also includeLock() , RLock() , andSemaphore() to create shared locks.)

import time
from multiprocessing import Pool, Manager

def factorial (N, dictionary):
" Compute a factorial. "
Calculate the result
fact = 1L
for i in range (1, N +1):

fact = fact * i

Store result in dictionary
dictionary[N] = fact

if __name__ == ’ __main__ ’ :
p = Pool(5)
mgr = Manager()
d = mgr. dict() # Create shared dictionary

Run tasks using the pool
for N in range (1, 1000 , 10):

p. apply_async(factorial, (N, d))

Mark pool as closed -- no more tasks can be added.
p. close()

Wait for tasks to exit
p. join()

Output results
for k, v in sorted(d . items()):

print k, v

This will produce the output:

1 1
11 39916800
21 51090942171709440000
31 8222838654177922817725562880000000
41 33452526613163807108170062053440751665152000000000
51 15511187532873822802242430164693032110632597200169861120000...

See Also:

The documentation for themultiprocessing module.

PEP 371- Addition of the multiprocessing package PEP written by Jesse Noller and Richard Oudkerk; imple-
mented by Richard Oudkerk and Jesse Noller.

http://www.python.org/dev/peps/pep-0371

7 PEP 3101: Advanced String Formatting

In Python 3.0, the% operator is supplemented by a more powerful string formatting method,format() . Support for
thestr.format() method has been backported to Python 2.6.

In 2.6, both 8-bit and Unicode strings have a.format() method that treats the string as a template and takes the
arguments to be formatted. The formatting template uses curly brackets ({, }) as special characters:

>>> # Substitute positional argument 0 into the string.
>>> " User ID: {0} " . format(" root ")
’User ID: root’
>>> # Use the named keyword arguments
>>> " User ID: {uid} Last seen: {last_login} " . format(
... uid =" root " ,
... last_login = " 5 Mar 2008 07:20 ")
’User ID: root Last seen: 5 Mar 2008 07:20’

Curly brackets can be escaped by doubling them:

>>> " Empty dict: {{}} " . format()
"Empty dict: {}"

Field names can be integers indicating positional arguments, such as{0} , {1} , etc. or names of keyword arguments.
You can also supply compound field names that read attributes or access dictionary keys:

>>> import sys
>>> print ’ Platform: {0.platform} \n Python version: {0.version} ’ . format(sys)
Platform: darwin
Python version: 2.6a1+ (trunk:61261M, Mar 5 2008, 20:29:41)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)]’

>>> import mimetypes
>>> ’ Content-type: {0[.mp4]} ’ . format(mimetypes . types_map)
’Content-type: video/mp4’

Note that when using dictionary-style notation such as[.mp4] , you don’t need to put any quotation marks around
the string; it will look up the value using.mp4 as the key. Strings beginning with a number will be converted to an
integer. You can’t write more complicated expressions inside a format string.

So far we’ve shown how to specify which field to substitute into the resulting string. The precise formatting used is
also controllable by adding a colon followed by a format specifier. For example:

>>> # Field 0: left justify, pad to 15 characters
>>> # Field 1: right justify, pad to 6 characters
>>> fmt = ’ {0:15} ${1:>6} ’
>>> fmt . format(’ Registration ’ , 35)
’Registration $ 35’
>>> fmt . format(’ Tutorial ’ , 50)
’Tutorial $ 50’
>>> fmt . format(’ Banquet ’ , 125)
’Banquet $ 125’

Format specifiers can reference other fields through nesting:

>>> fmt = ’ {0:{1}} ’
>>> width = 15
>>> fmt . format(’ Invoice #1234 ’ , width)
’Invoice #1234 ’
>>> width = 35

>>> fmt . format(’ Invoice #1234 ’ , width)
’Invoice #1234 ’

The alignment of a field within the desired width can be specified:

Character Effect
< (default) Left-align
> Right-align
^ Center
= (For numeric types only) Pad after the sign.

Format specifiers can also include a presentation type, which controls how the value is formatted. For example,
floating-point numbers can be formatted as a general number or in exponential notation:

>>> ’ {0:g} ’ . format(3.75)
’3.75’
>>> ’ {0:e} ’ . format(3.75)
’3.750000e+00’

A variety of presentation types are available. Consult the 2.6 documentation for acomplete list(in The Python Library
Reference); here’s a sample:

b Binary. Outputs the number in base 2.
c Character. Converts the integer to the corresponding Unicode character before printing.
d Decimal Integer. Outputs the number in base 10.
o Octal format. Outputs the number in base 8.
x Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.
e Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent.
g General format. This prints the number as a fixed-point number, unless the number is too large, in which case

it switches to ‘e’ exponent notation.
n Number. This is the same as ‘g’ (for floats) or ‘d’ (for integers), except that it uses the current locale setting to

insert the appropriate number separator characters.
% Percentage. Multiplies the number by 100 and displays in fixed (‘f’) format, followed by a percent sign.

Classes and types can define a__format__() method to control how they’re formatted. It receives a single argu-
ment, the format specifier:

def __format__ (self , format_spec):
if isinstance (format_spec, unicode):

return unicode (str (self))
else :

return str (self)

There’s also aformat() built-in that will format a single value. It calls the type’s__format__() method with
the provided specifier:

>>> format(75.6564 , ’ .2f ’)
’75.66’

See Also:

Format String Syntax(in The Python Library Reference) The reference documentation for format fields.

PEP 3101- Advanced String Formatting PEP written by Talin. Implemented by Eric Smith.

8 PEP 3105: print As a Function

Theprint statement becomes theprint() function in Python 3.0. Makingprint() a function makes it possible
to replace the function by doingdef print(...) or importing a new function from somewhere else.

http://www.python.org/dev/peps/pep-3101

Python 2.6 has a__future__ import that removesprint as language syntax, letting you use the functional form
instead. For example:

>>> from __future__ import print_function
>>> print (’ # of entries ’ , len (dictionary), file =sys . stderr)

The signature of the new function is:

def print(*args, sep=’ ’, end=’\n’, file=None)

The parameters are:

• args: positional arguments whose values will be printed out.

• sep: the separator, which will be printed between arguments.

• end: the ending text, which will be printed after all of the arguments have been output.

• file: the file object to which the output will be sent.

See Also:

PEP 3105- Make print a function PEP written by Georg Brandl.

9 PEP 3110: Exception-Handling Changes

One error that Python programmers occasionally make is writing the following code:

try :
. . .

except TypeError , ValueError : # Wrong!
. . .

The author is probably trying to catch bothTypeError and ValueError exceptions, but this code actually
does something different: it will catchTypeError and bind the resulting exception object to the local name
"ValueError" . The ValueError exception will not be caught at all. The correct code specifies a tuple of
exceptions:

try :
. . .

except (TypeError , ValueError):
. . .

This error happens because the use of the comma here is ambiguous: does it indicate two different nodes in the parse
tree, or a single node that’s a tuple?

Python 3.0 makes this unambiguous by replacing the comma with the word “as”. To catch an exception and store the
exception object in the variableexc , you must write:

try:
...

except TypeError as exc:
...

Python 3.0 will only support the use of “as”, and therefore interprets the first example as catching two different
exceptions. Python 2.6 supports both the comma and “as”, so existing code will continue to work. We therefore
suggest using “as” when writing new Python code that will only be executed with 2.6.

See Also:

PEP 3110- Catching Exceptions in Python 3000PEP written and implemented by Collin Winter.

http://www.python.org/dev/peps/pep-3105
http://www.python.org/dev/peps/pep-3110

10 PEP 3112: Byte Literals

Python 3.0 adopts Unicode as the language’s fundamental string type and denotes 8-bit literals differently, either as
b’string’ or using abytes constructor. For future compatibility, Python 2.6 addsbytes as a synonym for the
str type, and it also supports theb” notation.

The 2.6str differs from 3.0’sbytes type in various ways; most notably, the constructor is completely different.
In 3.0,bytes([65, 66, 67]) is 3 elements long, containing the bytes representingABC; in 2.6,bytes([65,
66, 67]) returns the 12-byte string representing thestr() of the list.

The primary use ofbytes in 2.6 will be to write tests of object type such asisinstance(x, bytes) . This will
help the 2to3 converter, which can’t tell whether 2.x code intends strings to contain either characters or 8-bit bytes;
you can now use eitherbytes or str to represent your intention exactly, and the resulting code will also be correct
in Python 3.0.

There’s also a__future__ import that causes all string literals to become Unicode strings. This means that\u
escape sequences can be used to include Unicode characters:

from __future__ import unicode_literals

s = (’ \u751f \u3080 \u304e \u3000 \u751f \u3054 ’
’ \u3081 \u3000 \u751f \u305f \u307e \u3054 ’)

print len (s) # 12 Unicode characters

At the C level, Python 3.0 will rename the existing 8-bit string type, calledPyStringObject in Python
2.x, to PyBytesObject . Python 2.6 uses#define to support using the namesPyBytesObject() ,
PyBytes_Check() , PyBytes_FromStringAndSize() , and all the other functions and macros used with
strings.

Instances of thebytes type are immutable just as strings are. A newbytearray type stores a mutable sequence of
bytes:

>>> bytearray([65, 66, 67])
bytearray(b’ABC’)
>>> b = bytearray(u’ \u21ef \u3244 ’ , ’ utf-8 ’)
>>> b
bytearray(b’\xe2\x87\xaf\xe3\x89\x84’)
>>> b[0] = ’ \xe3 ’
>>> b
bytearray(b’\xe3\x87\xaf\xe3\x89\x84’)
>>> unicode (str (b), ’ utf-8 ’)
u’\u31ef \u3244’

Byte arrays support most of the methods of string types, such asstartswith() /endswith() ,
find() /rfind() , and some of the methods of lists, such asappend() , pop() , andreverse() .

>>> b = bytearray(’ ABC’)
>>> b. append(’ d’)
>>> b. append(ord (’ e’))
>>> b
bytearray(b’ABCde’)

There’s also a corresponding C API, with PyByteArray_FromObject() ,
PyByteArray_FromStringAndSize() , and various other functions.

See Also:

PEP 3112- Bytes literals in Python 3000 PEP written by Jason Orendorff; backported to 2.6 by Christian Heimes.

http://www.python.org/dev/peps/pep-3112

11 PEP 3116: New I/O Library

Python’s built-in file objects support a number of methods, but file-like objects don’t necessarily support all of them.
Objects that imitate files usually supportread() andwrite() , but they may not supportreadline() , for exam-
ple. Python 3.0 introduces a layered I/O library in theio module that separates buffering and text-handling features
from the fundamental read and write operations.

There are three levels of abstract base classes provided by theio module:

• RawIOBase defines raw I/O operations: read() , readinto() , write() , seek() , tell() ,
truncate() , andclose() . Most of the methods of this class will often map to a single system call. There
are alsoreadable() , writable() , andseekable() methods for determining what operations a given
object will allow.

Python 3.0 has concrete implementations of this class for files and sockets, but Python 2.6 hasn’t restructured
its file and socket objects in this way.

• BufferedIOBase is an abstract base class that buffers data in memory to reduce the number of system calls
used, making I/O processing more efficient. It supports all of the methods ofRawIOBase, and adds araw
attribute holding the underlying raw object.

There are five concrete classes implementing this ABC.BufferedWriter and BufferedReader
are for objects that support write-only or read-only usage that have aseek() method for random ac-
cess. BufferedRandom objects support read and write access upon the same underlying stream, and
BufferedRWPair is for objects such as TTYs that have both read and write operations acting upon un-
connected streams of data. TheBytesIO class supports reading, writing, and seeking over an in-memory
buffer.

• TextIOBase : Provides functions for reading and writing strings (remember, strings will be Unicode in Python
3.0), and supporting universal newlines.TextIOBase defines thereadline() method and supports itera-
tion upon objects.

There are two concrete implementations.TextIOWrapper wraps a buffered I/O object, supporting all of the
methods for text I/O and adding abuffer attribute for access to the underlying object.StringIO simply
buffers everything in memory without ever writing anything to disk.

(In Python 2.6,io.StringIO is implemented in pure Python, so it’s pretty slow. You should therefore stick
with the existingStringIO module orcStringIO for now. At some point Python 3.0’sio module will be
rewritten into C for speed, and perhaps the C implementation will be backported to the 2.x releases.)

In Python 2.6, the underlying implementations haven’t been restructured to build on top of theio module’s classes.
The module is being provided to make it easier to write code that’s forward-compatible with 3.0, and to save developers
the effort of writing their own implementations of buffering and text I/O.

See Also:

PEP 3116- New I/O PEP written by Daniel Stutzbach, Mike Verdone, and Guido van Rossum. Code by Guido van
Rossum, Georg Brandl, Walter Doerwald, Jeremy Hylton, Martin von Loewis, Tony Lownds, and others.

12 PEP 3118: Revised Buffer Protocol

The buffer protocol is a C-level API that lets Python types exchange pointers into their internal representations. A
memory-mapped file can be viewed as a buffer of characters, for example, and this lets another module such asre
treat memory-mapped files as a string of characters to be searched.

The primary users of the buffer protocol are numeric-processing packages such as NumPy, which expose the internal
representation of arrays so that callers can write data directly into an array instead of going through a slower API. This

http://www.python.org/dev/peps/pep-3116

PEP updates the buffer protocol in light of experience from NumPy development, adding a number of new features
such as indicating the shape of an array or locking a memory region.

The most important new C API function isPyObject_GetBuffer(PyObject *obj, Py_buffer *view,
int flags) , which takes an object and a set of flags, and fills in thePy_buffer structure with information
about the object’s memory representation. Objects can use this operation to lock memory in place while an external
caller could be modifying the contents, so there’s a correspondingPyBuffer_Release(Py_buffer *view)
to indicate that the external caller is done.

Theflagsargument toPyObject_GetBuffer() specifies constraints upon the memory returned. Some examples
are:

• PyBUF_WRITABLEindicates that the memory must be writable.

• PyBUF_LOCKrequests a read-only or exclusive lock on the memory.

• PyBUF_C_CONTIGUOUSandPyBUF_F_CONTIGUOUSrequests a C-contiguous (last dimension varies the
fastest) or Fortran-contiguous (first dimension varies the fastest) array layout.

Two new argument codes forPyArg_ParseTuple() , s* andz* , return locked buffer objects for a parameter.

See Also:

PEP 3118- Revising the buffer protocol PEP written by Travis Oliphant and Carl Banks; implemented by Travis
Oliphant.

13 PEP 3119: Abstract Base Classes

Some object-oriented languages such as Java support interfaces, declaring that a class has a given set of methods or
supports a given access protocol. Abstract Base Classes (or ABCs) are an equivalent feature for Python. The ABC
support consists of anabc module containing a metaclass calledABCMeta, special handling of this metaclass by the
isinstance() and issubclass() built-ins, and a collection of basic ABCs that the Python developers think
will be widely useful. Future versions of Python will probably add more ABCs.

Let’s say you have a particular class and wish to know whether it supports dictionary-style access. The phrase
“dictionary-style” is vague, however. It probably means that accessing items withobj[1] works. Does it imply
that setting items withobj[2] = value works? Or that the object will havekeys() , values() , anditems()
methods? What about the iterative variants such asiterkeys() ? copy() andupdate() ? Iterating over the
object withiter() ?

The Python 2.6collections module includes a number of different ABCs that represent these distinc-
tions. Iterable indicates that a class defines__iter__() , and Container means the class defines a
__contains__() method and therefore supportsx in y expressions. The basic dictionary interface of getting
items, setting items, andkeys() , values() , anditems() , is defined by theMutableMapping ABC.

You can derive your own classes from a particular ABC to indicate they support that ABC’s interface:

import collections

class Storage (collections . MutableMapping):
. . .

Alternatively, you could write the class without deriving from the desired ABC and instead register the class by calling
the ABC’sregister() method:

import collections

class Storage :
. . .

http://www.python.org/dev/peps/pep-3118

collections . MutableMapping . register(Storage)

For classes that you write, deriving from the ABC is probably clearer. Theregister() method is useful when
you’ve written a new ABC that can describe an existing type or class, or if you want to declare that some third-party
class implements an ABC. For example, if you defined aPrintableType ABC, it’s legal to do:

Register Python’s types
PrintableType . register(int)
PrintableType . register(float)
PrintableType . register(str)

Classes should obey the semantics specified by an ABC, but Python can’t check this; it’s up to the class author to
understand the ABC’s requirements and to implement the code accordingly.

To check whether an object supports a particular interface, you can now write:

def func (d):
if not isinstance (d, collections . MutableMapping):

raise ValueError (" Mapping object expected, not %r" % d)

Don’t feel that you must now begin writing lots of checks as in the above example. Python has a strong tradition
of duck-typing, where explicit type-checking is never done and code simply calls methods on an object, trusting that
those methods will be there and raising an exception if they aren’t. Be judicious in checking for ABCs and only do it
where it’s absolutely necessary.

You can write your own ABCs by usingabc.ABCMeta as the metaclass in a class definition:

from abc import ABCMeta, abstractmethod

class Drawable ():
__metaclass__ = ABCMeta

@abstractmethod
def draw (self , x, y, scale =1.0):

pass

def draw_doubled (self , x, y):
self . draw(x, y, scale =2.0)

class Square (Drawable):
def draw (self , x, y, scale):

. . .

In theDrawable ABC above, thedraw_doubled() method renders the object at twice its size and can be imple-
mented in terms of other methods described inDrawable . Classes implementing this ABC therefore don’t need to
provide their own implementation ofdraw_doubled() , though they can do so. An implementation ofdraw() is
necessary, though; the ABC can’t provide a useful generic implementation.

You can apply the@abstractmethod decorator to methods such asdraw() that must be implemented; Python
will then raise an exception for classes that don’t define the method. Note that the exception is only raised when you
actually try to create an instance of a subclass lacking the method:

>>> class Circle (Drawable):
... pass
...
>>> c = Circle()
Traceback (most recent call last):

File "<stdin>" , line 1, in <module>
TypeError : Can’t instantiate abstract class Circle with abstract methods draw
>>>

Abstract data attributes can be declared using the@abstractproperty decorator:

from abc import abstractproperty
. . .

@abstractproperty
def readonly (self):

return self . _x

Subclasses must then define areadonly() property.

See Also:

PEP 3119- Introducing Abstract Base ClassesPEP written by Guido van Rossum and Talin. Implemented by
Guido van Rossum. Backported to 2.6 by Benjamin Aranguren, with Alex Martelli.

14 PEP 3127: Integer Literal Support and Syntax

Python 3.0 changes the syntax for octal (base-8) integer literals, prefixing them with “0o” or “0O” instead of a leading
zero, and adds support for binary (base-2) integer literals, signalled by a “0b” or “0B” prefix.

Python 2.6 doesn’t drop support for a leading 0 signalling an octal number, but it does add support for “0o” and “0b”:

>>> 0o21, 2* 8 + 1
(17, 17)
>>> 0b101111
47

Theoct() built-in still returns numbers prefixed with a leading zero, and a newbin() built-in returns the binary
representation for a number:

>>> oct (42)
’052’
>>> future_builtins . oct(42)
’0o52’
>>> bin(173)
’0b10101101’

The int() andlong() built-ins will now accept the “0o” and “0b” prefixes when base-8 or base-2 are requested,
or when thebaseargument is zero (signalling that the base used should be determined from the string):

>>> int (’ 0o52 ’ , 0)
42
>>> int (’ 1101 ’ , 2)
13
>>> int (’ 0b1101 ’ , 2)
13
>>> int (’ 0b1101 ’ , 0)
13

See Also:

PEP 3127- Integer Literal Support and Syntax PEP written by Patrick Maupin; backported to 2.6 by Eric Smith.

http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3127

15 PEP 3129: Class Decorators

Decorators have been extended from functions to classes. It’s now legal to write:

@foo
@bar
class A:

pass

This is equivalent to:

class A:
pass

A = foo(bar(A))

See Also:

PEP 3129- Class DecoratorsPEP written by Collin Winter.

16 PEP 3141: A Type Hierarchy for Numbers

Python 3.0 adds several abstract base classes for numeric types inspired by Scheme’s numeric tower. These classes
were backported to 2.6 as thenumbers module.

The most general ABC isNumber. It defines no operations at all, and only exists to allow checking if an object is a
number by doingisinstance(obj, Number) .

Complex is a subclass ofNumber. Complex numbers can undergo the basic operations of addition, subtraction,
multiplication, division, and exponentiation, and you can retrieve the real and imaginary parts and obtain a number’s
conjugate. Python’s built-in complex type is an implementation ofComplex .

Real further derives fromComplex , and adds operations that only work on real numbers:floor() , trunc() ,
rounding, taking the remainder mod N, floor division, and comparisons.

Rational numbers derive fromReal , havenumerator anddenominator properties, and can be converted
to floats. Python 2.6 adds a simple rational-number class,Fraction , in the fractions module. (It’s called
Fraction instead ofRational to avoid a name clash withnumbers.Rational .)

Integral numbers derive fromRational , and can be shifted left and right with<< and>>, combined using
bitwise operations such as& and| , and can be used as array indexes and slice boundaries.

In Python 3.0, the PEP slightly redefines the existing built-insround() , math.floor() , math.ceil() , and
adds a new one,math.trunc() , that’s been backported to Python 2.6.math.trunc() rounds toward zero,
returning the closestIntegral that’s between the function’s argument and zero.

See Also:

PEP 3141- A Type Hierarchy for Numbers PEP written by Jeffrey Yasskin.

Scheme’s numerical tower, from the Guile manual.

Scheme’s number datatypesfrom the R5RS Scheme specification.

16.1 The fractions Module

To fill out the hierarchy of numeric types, thefractions module provides a rational-number class. Rational num-
bers store their values as a numerator and denominator forming a fraction, and can exactly represent numbers such as

http://www.python.org/dev/peps/pep-3129
http://www.python.org/dev/peps/pep-3141
http://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html#Numerical-Tower
http://schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2

2/3 that floating-point numbers can only approximate.

TheFraction constructor takes twoIntegral values that will be the numerator and denominator of the resulting
fraction.

>>> from fractions import Fraction
>>> a = Fraction(2, 3)
>>> b = Fraction(2, 5)
>>> float (a), float (b)
(0.66666666666666663, 0.40000000000000002)
>>> a+b
Fraction(16, 15)
>>> a/ b
Fraction(5, 3)

For converting floating-point numbers to rationals, the float type now has anas_integer_ratio() method that
returns the numerator and denominator for a fraction that evaluates to the same floating-point value:

>>> (2.5) . as_integer_ratio()
(5, 2)
>>> (3.1415) . as_integer_ratio()
(7074029114692207L, 2251799813685248L)
>>> (1. / 3) . as_integer_ratio()
(6004799503160661L, 18014398509481984L)

Note that values that can only be approximated by floating-point numbers, such as 1./3, are not simplified to the
number being approximated; the fraction attempts to match the floating-point valueexactly.

The fractions module is based upon an implementation by Sjoerd Mullender that was in Python’s
Demo/classes/ directory for a long time. This implementation was significantly updated by Jeffrey Yasskin.

17 Other Language Changes

Some smaller changes made to the core Python language are:

• The hasattr() function was catching and ignoring all errors, under the assumption that they meant a
__getattr__() method was failing somehow and the return value ofhasattr() would therefore be
False . This logic shouldn’t be applied toKeyboardInterrupt and SystemExit , however; Python
2.6 will no longer discard such exceptions whenhasattr() encounters them. (Fixed by Benjamin Peterson;
issue 2196.)

• When calling a function using the** syntax to provide keyword arguments, you are no longer required to use a
Python dictionary; any mapping will now work:

>>> def f (* * kw):
... print sorted(kw)
...
>>> ud=UserDict . UserDict()
>>> ud[’ a’] = 1
>>> ud[’ b’] = ’ string ’
>>> f(* * ud)
[’a’, ’b’]

(Contributed by Alexander Belopolsky;issue 1686487.)

It’s also become legal to provide keyword arguments after a*args argument to a function call.

http://bugs.python.org/issue2196
http://bugs.python.org/issue1686487

>>> def f (* args, * * kw):
... print args, kw
...
>>> f(1, 2, 3, * (4, 5, 6), keyword =13)
(1, 2, 3, 4, 5, 6) {’keyword’: 13}

Previously this would have been a syntax error. (Contributed by Amaury Forgeot d’Arc;issue 3473.)

• A new built-in, next(iterator, [default]) returns the next item from the specified iterator. If the
defaultargument is supplied, it will be returned ifiterator has been exhausted; otherwise, theStopIteration
exception will be raised. (Backported inissue 2719.)

• Tuples now haveindex() andcount() methods matching the list type’sindex() andcount() methods:

>>> t = (0, 1, 2, 3, 4, 0, 1, 2)
>>> t . index(3)
3
>>> t . count(0)
2

(Contributed by Raymond Hettinger)

• The built-in types now have improved support for extended slicing syntax, accepting various combinations
of (start, stop, step) . Previously, the support was partial and certain corner cases wouldn’t work.
(Implemented by Thomas Wouters.)

• Properties now have three attributes,getter , setter anddeleter , that are decorators providing useful
shortcuts for adding a getter, setter or deleter function to an existing property. You would use them like this:

class C(object):
@property
def x(self):

return self . _x

@x. setter
def x(self , value):

self . _x = value

@x. deleter
def x(self):

del self . _x

class D(C):
@C. x. getter
def x(self):

return self . _x * 2

@x. setter
def x(self , value):

self . _x = value / 2

• Several methods of the built-in set types now accept multiple iterables:intersection() ,
intersection_update() , union() , update() , difference() anddifference_update() .

>>> s=set(’ 1234567890 ’)
>>> s. intersection(’ abc123 ’ , ’ cdf246 ’) # Intersection between all inputs
set([’2’])
>>> s. difference(’ 246 ’ , ’ 789 ’)
set([’1’, ’0’, ’3’, ’5’])

http://bugs.python.org/issue3473
http://bugs.python.org/issue2719

(Contributed by Raymond Hettinger.)

• Many floating-point features were added. Thefloat() function will now turn the stringnan into an IEEE
754 Not A Number value, and+inf and-inf into positive or negative infinity. This works on any platform
with IEEE 754 semantics. (Contributed by Christian Heimes;issue 1635.)

Other functions in themath module,isinf() and isnan() , return true if their floating-point argument is
infinite or Not A Number. (issue 1640)

Conversion functions were added to convert floating-point numbers into hexadecimal strings (issue 3008). These
functions convert floats to and from a string representation without introducing rounding errors from the con-
version between decimal and binary. Floats have ahex() method that returns a string representation, and the
float.fromhex() method converts a string back into a number:

>>> a = 3.75
>>> a. hex()
’0x1.e000000000000p+1’
>>> float . fromhex(’ 0x1.e000000000000p+1 ’)
3.75
>>> b=1. / 3
>>> b. hex()
’0x1.5555555555555p-2’

• A numerical nicety: when creating a complex number from two floats on systems that support signed zeros (-0
and +0), thecomplex() constructor will now preserve the sign of the zero. (Fixed by Mark T. Dickinson;
issue 1507.)

• Classes that inherit a__hash__() method from a parent class can set__hash__ = None to indicate that
the class isn’t hashable. This will makehash(obj) raise aTypeError and the class will not be indicated as
implementing theHashable ABC.

You should do this when you’ve defined a__cmp__() or __eq__() method that compares objects by
their value rather than by identity. All objects have a default hash method that usesid(obj) as the
hash value. There’s no tidy way to remove the__hash__() method inherited from a parent class,
so assigningNone was implemented as an override. At the C level, extensions can settp_hash to
PyObject_HashNotImplemented() . (Fixed by Nick Coghlan and Amaury Forgeot d’Arc;issue 2235.)

• The GeneratorExit exception now subclassesBaseException instead ofException . This means
that an exception handler that doesexcept Exception: will not inadvertently catchGeneratorExit .
(Contributed by Chad Austin;issue 1537.)

• Generator objects now have agi_code attribute that refers to the original code object backing the generator.
(Contributed by Collin Winter;issue 1473257.)

• The compile() built-in function now accepts keyword arguments as well as positional parameters. (Con-
tributed by Thomas Wouters;issue 1444529.)

• The complex() constructor now accepts strings containing parenthesized complex numbers, meaning that
complex(repr(cplx)) will now round-trip values. For example,complex(’(3+4j)’) now returns
the value (3+4j). (issue 1491866)

• The stringtranslate() method now acceptsNone as the translation table parameter, which is treated as the
identity transformation. This makes it easier to carry out operations that only delete characters. (Contributed by
Bengt Richter and implemented by Raymond Hettinger;issue 1193128.)

• The built-in dir() function now checks for a__dir__() method on the objects it receives. This method
must return a list of strings containing the names of valid attributes for the object, and lets the object control the
value thatdir() produces. Objects that have__getattr__() or __getattribute__() methods can
use this to advertise pseudo-attributes they will honor. (issue 1591665)

http://bugs.python.org/issue1635
http://bugs.python.org/issue1640
http://bugs.python.org/issue3008
http://bugs.python.org/issue1507
http://bugs.python.org/issue2235
http://bugs.python.org/issue1537
http://bugs.python.org/issue1473257
http://bugs.python.org/issue1444529
http://bugs.python.org/issue1491866
http://bugs.python.org/issue1193128
http://bugs.python.org/issue1591665

• Instance method objects have new attributes for the object and function comprising the method; the new syn-
onym for im_self is __self__ , and im_func is also available as__func__ . The old names are still
supported in Python 2.6, but are gone in 3.0.

• An obscure change: when you use thelocals() function inside aclass statement, the resulting dictionary
no longer returns free variables. (Free variables, in this case, are variables referenced in theclass statement
that aren’t attributes of the class.)

17.1 Optimizations

• Thewarnings module has been rewritten in C. This makes it possible to invoke warnings from the parser, and
may also make the interpreter’s startup faster. (Contributed by Neal Norwitz and Brett Cannon;issue 1631171.)

• Type objects now have a cache of methods that can reduce the work required to find the correct method imple-
mentation for a particular class; once cached, the interpreter doesn’t need to traverse base classes to figure out
the right method to call. The cache is cleared if a base class or the class itself is modified, so the cache should
remain correct even in the face of Python’s dynamic nature. (Original optimization implemented by Armin
Rigo, updated for Python 2.6 by Kevin Jacobs;issue 1700288.)

By default, this change is only applied to types that are included with the Python core. Ex-
tension modules may not necessarily be compatible with this cache, so they must explicitly add
Py_TPFLAGS_HAVE_VERSION_TAGto the module’stp_flags field to enable the method cache. (To
be compatible with the method cache, the extension module’s code must not directly access and modify the
tp_dict member of any of the types it implements. Most modules don’t do this, but it’s impossible for the
Python interpreter to determine that. Seeissue 1878for some discussion.)

• Function calls that use keyword arguments are significantly faster by doing a quick pointer comparison, usually
saving the time of a full string comparison. (Contributed by Raymond Hettinger, after an initial implementation
by Antoine Pitrou;issue 1819.)

• All of the functions in thestruct module have been rewritten in C, thanks to work at the Need For Speed
sprint. (Contributed by Raymond Hettinger.)

• Some of the standard built-in types now set a bit in their type objects. This speeds up checking whether an
object is a subclass of one of these types. (Contributed by Neal Norwitz.)

• Unicode strings now use faster code for detecting whitespace and line breaks; this speeds up thesplit()
method by about 25% andsplitlines() by 35%. (Contributed by Antoine Pitrou.) Memory usage is
reduced by using pymalloc for the Unicode string’s data.

• Thewith statement now stores the__exit__() method on the stack, producing a small speedup. (Imple-
mented by Jeffrey Yasskin.)

• To reduce memory usage, the garbage collector will now clear internal free lists when garbage-collecting the
highest generation of objects. This may return memory to the operating system sooner.

17.2 Interpreter Changes

Two command-line options have been reserved for use by other Python implementations. The-J switch has been
reserved for use by Jython for Jython-specific options, such as switches that are passed to the underlying JVM.-X has
been reserved for options specific to a particular implementation of Python such as CPython, Jython, or IronPython.
If either option is used with Python 2.6, the interpreter will report that the option isn’t currently used.

Python can now be prevented from writing.pyc or .pyo files by supplying the-B switch to the Python interpreter,
or by setting thePYTHONDONTWRITEBYTECODE environment variable before running the interpreter. This
setting is available to Python programs as thesys.dont_write_bytecode variable, and Python code can change
the value to modify the interpreter’s behaviour. (Contributed by Neal Norwitz and Georg Brandl.)

http://bugs.python.org/issue1631171
http://bugs.python.org/issue1700288
http://bugs.python.org/issue1878
http://bugs.python.org/issue1819

The encoding used for standard input, output, and standard error can be specified by setting thePYTHONIOENCOD-
ING environment variable before running the interpreter. The value should be a string in the form<encoding> or
<encoding>:<errorhandler> . Theencodingpart specifies the encoding’s name, e.g.utf-8 or latin-1 ;
the optionalerrorhandlerpart specifies what to do with characters that can’t be handled by the encoding, and should
be one of “error”, “ignore”, or “replace”. (Contributed by Martin von Loewis.)

18 New and Improved Modules

As in every release, Python’s standard library received a number of enhancements and bug fixes. Here’s a partial list
of the most notable changes, sorted alphabetically by module name. Consult theMisc/NEWS file in the source tree
for a more complete list of changes, or look through the Subversion logs for all the details.

• The asyncore andasynchat modules are being actively maintained again, and a number of patches and
bugfixes were applied. (Maintained by Josiah Carlson; seeissue 1736190for one patch.)

• The bsddb module also has a new maintainer, Jesús Cea, and the package is now available as a standalone
package. The web page for the package iswww.jcea.es/programacion/pybsddb.htm. The plan is to remove
the package from the standard library in Python 3.0, because its pace of releases is much more frequent than
Python’s.

Thebsddb.dbshelve module now uses the highest pickling protocol available, instead of restricting itself
to protocol 1. (Contributed by W. Barnes.)

• Thecgi module will now read variables from the query string of an HTTP POST request. This makes it possible
to use form actions with URLs that include query strings such as “/cgi-bin/add.py?category=1”. (Contributed
by Alexandre Fiori and Nubis;issue 1817.)

Theparse_qs() andparse_qsl() functions have been relocated from thecgi module to theurlparse
module. The versions still available in thecgi module will triggerPendingDeprecationWarning mes-
sages in 2.6 (issue 600362).

• Thecmath module underwent extensive revision, contributed by Mark Dickinson and Christian Heimes. Five
new functions were added:

– polar() converts a complex number to polar form, returning the modulus and argument of the complex
number.

– rect() does the opposite, turning a modulus, argument pair back into the corresponding complex num-
ber.

– phase() returns the argument (also called the angle) of a complex number.

– isnan() returns True if either the real or imaginary part of its argument is a NaN.

– isinf() returns True if either the real or imaginary part of its argument is infinite.

The revisions also improved the numerical soundness of thecmath module. For all functions, the real and
imaginary parts of the results are accurate to within a few units of least precision (ulps) whenever possible. See
issue 1381for the details. The branch cuts forasinh() , atanh() : andatan() have also been corrected.

The tests for the module have been greatly expanded; nearly 2000 new test cases exercise the algebraic functions.

On IEEE 754 platforms, thecmath module now handles IEEE 754 special values and floating-point exceptions
in a manner consistent with Annex ‘G’ of the C99 standard.

• A new data type in thecollections module: namedtuple(typename, fieldnames) is a factory
function that creates subclasses of the standard tuple whose fields are accessible by name as well as index. For
example:

http://bugs.python.org/issue1736190
http://www.jcea.es/programacion/pybsddb.htm
http://bugs.python.org/issue1817
http://bugs.python.org/issue600362
http://bugs.python.org/issue1381

>>> var_type = collections . namedtuple(’ variable ’ ,
... ’ id name type size ’)
>>> # Names are separated by spaces or commas.
>>> # ’id, name, type, size’ would also work.
>>> var_type . _fields
(’id’, ’name’, ’type’, ’size’)

>>> var = var_type(1, ’ frequency ’ , ’ int ’ , 4)
>>> print var[0], var . id # Equivalent
1 1
>>> print var[2], var . type # Equivalent
int int
>>> var . _asdict()
{’size’: 4, ’type’: ’int’, ’id’: 1, ’name’: ’frequency’}
>>> v2 = var . _replace(name =’ amplitude ’)
>>> v2
variable(id=1, name=’amplitude’, type=’int’, size=4)

Several places in the standard library that returned tuples have been modified to returnnamedtuple instances.
For example, theDecimal.as_tuple() method now returns a named tuple withsign , digits , and
exponent fields.

(Contributed by Raymond Hettinger.)

• Another change to thecollections module is that thedeque type now supports an optionalmaxlenparam-
eter; if supplied, the deque’s size will be restricted to no more thanmaxlenitems. Adding more items to a full
deque causes old items to be discarded.

>>> from collections import deque
>>> dq=deque(maxlen =3)
>>> dq
deque([], maxlen=3)
>>> dq. append(1) ; dq . append(2) ; dq . append(3)
>>> dq
deque([1, 2, 3], maxlen=3)
>>> dq. append(4)
>>> dq
deque([2, 3, 4], maxlen=3)

(Contributed by Raymond Hettinger.)

• TheCookie module’sMorsel objects now support anhttponly attribute. In some browsers. cookies with
this attribute set cannot be accessed or manipulated by JavaScript code. (Contributed by Arvin Schnell;issue
1638033.)

• A new window method in thecurses module,chgat() , changes the display attributes for a certain number
of characters on a single line. (Contributed by Fabian Kreutz.)

Boldface text starting at y=0,x=21
and affecting the rest of the line.
stdscr . chgat(0, 21, curses . A_BOLD)

TheTextbox class in thecurses.textpad module now supports editing in insert mode as well as overwrite
mode. Insert mode is enabled by supplying a true value for theinsert_modeparameter when creating the
Textbox instance.

• Thedatetime module’sstrftime() methods now support a%f format code that expands to the number of
microseconds in the object, zero-padded on the left to six places. (Contributed by Skip Montanaro;issue 1158.)

http://bugs.python.org/issue1638033
http://bugs.python.org/issue1638033
http://bugs.python.org/issue1158

• Thedecimal module was updated to version 1.66 ofthe General Decimal Specification. New features include
some methods for some basic mathematical functions such asexp() andlog10() :

>>> Decimal(1) . exp()
Decimal("2.718281828459045235360287471")
>>> Decimal(" 2.7182818 ") . ln()
Decimal("0.9999999895305022877376682436")
>>> Decimal(1000) . log10()
Decimal("3")

The as_tuple() method ofDecimal objects now returns a named tuple withsign , digits , and
exponent fields.

(Implemented by Facundo Batista and Mark Dickinson. Named tuple support added by Raymond Hettinger.)

• Thedifflib module’sSequenceMatcher class now returns named tuples representing matches, witha,
b, andsize attributes. (Contributed by Raymond Hettinger.)

• An optionaltimeout parameter, specifying a timeout measured in seconds, was added to theftplib.FTP
class constructor as well as theconnect() method. (Added by Facundo Batista.) Also, theFTP class’s
storbinary() andstorlines() now take an optionalcallbackparameter that will be called with each
block of data after the data has been sent. (Contributed by Phil Schwartz;issue 1221598.)

• The reduce() built-in function is also available in thefunctools module. In Python 3.0, the built-in has
been dropped andreduce() is only available fromfunctools ; currently there are no plans to drop the
built-in in the 2.x series. (Patched by Christian Heimes;issue 1739906.)

• When possible, thegetpass module will now use/dev/tty to print a prompt message and read the pass-
word, falling back to standard error and standard input. If the password may be echoed to the terminal, a warning
is printed before the prompt is displayed. (Contributed by Gregory P. Smith.)

• The glob.glob() function can now return Unicode filenames if a Unicode path was used and Unicode
filenames are matched within the directory. (issue 1001604)

• A new function in theheapq module,merge(iter1, iter2, ...) , takes any number of iterables re-
turning data in sorted order, and returns a new generator that returns the contents of all the iterators, also in
sorted order. For example:

>>> list (heapq . merge([1, 3, 5, 9], [2, 8, 16]))
[1, 2, 3, 5, 8, 9, 16]

Another new function,heappushpop(heap, item) , pushesitemontoheap, then pops off and returns the
smallest item. This is more efficient than making a call toheappush() and thenheappop() .

heapq is now implemented to only use less-than comparison, instead of the less-than-or-equal comparison it
previously used. This makesheapq ‘s usage of a type match thelist.sort() method. (Contributed by
Raymond Hettinger.)

• An optional timeout parameter, specifying a timeout measured in seconds, was added to the
httplib.HTTPConnection andHTTPSConnection class constructors. (Added by Facundo Batista.)

• Most of theinspect module’s functions, such asgetmoduleinfo() andgetargs() , now return named
tuples. In addition to behaving like tuples, the elements of the return value can also be accessed as attributes.
(Contributed by Raymond Hettinger.)

Some new functions in the module includeisgenerator() , isgeneratorfunction() , and
isabstract() .

• The itertools module gained several new functions.

izip_longest(iter1, iter2, ...[, fillvalue]) makes tuples from each of the elements; if
some of the iterables are shorter than others, the missing values are set tofillvalue. For example:

http://www2.hursley.ibm.com/decimal/decarith.html
http://bugs.python.org/issue1221598
http://bugs.python.org/issue1739906
http://bugs.python.org/issue1001604

>>> tuple (itertools . izip_longest([1, 2, 3], [1, 2, 3, 4, 5]))
((1, 1), (2, 2), (3, 3), (None, 4), (None, 5))

product(iter1, iter2, ..., [repeat=N]) returns the Cartesian product of the supplied iterables,
a set of tuples containing every possible combination of the elements returned from each iterable.

>>> list (itertools . product([1, 2, 3], [4, 5, 6]))
[(1, 4), (1, 5), (1, 6),

(2, 4), (2, 5), (2, 6),
(3, 4), (3, 5), (3, 6)]

The optionalrepeatkeyword argument is used for taking the product of an iterable or a set of iterables with
themselves, repeatedN times. With a single iterable argument,N-tuples are returned:

>>> list (itertools . product([1, 2], repeat =3))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

With two iterables,2N-tuples are returned.

>>> list (itertools . product([1, 2], [3, 4], repeat =2))
[(1, 3, 1, 3), (1, 3, 1, 4), (1, 3, 2, 3), (1, 3, 2, 4),

(1, 4, 1, 3), (1, 4, 1, 4), (1, 4, 2, 3), (1, 4, 2, 4),
(2, 3, 1, 3), (2, 3, 1, 4), (2, 3, 2, 3), (2, 3, 2, 4),
(2, 4, 1, 3), (2, 4, 1, 4), (2, 4, 2, 3), (2, 4, 2, 4)]

combinations(iterable, r) returns sub-sequences of lengthr from the elements ofiterable.

>>> list (itertools . combinations(’ 123 ’ , 2))
[(’1’, ’2’), (’1’, ’3’), (’2’, ’3’)]
>>> list (itertools . combinations(’ 123 ’ , 3))
[(’1’, ’2’, ’3’)]
>>> list (itertools . combinations(’ 1234 ’ , 3))
[(’1’, ’2’, ’3’), (’1’, ’2’, ’4’),

(’1’, ’3’, ’4’), (’2’, ’3’, ’4’)]

permutations(iter[, r]) returns all the permutations of lengthr of the iterable’s elements. Ifr is not
specified, it will default to the number of elements produced by the iterable.

>>> list (itertools . permutations([1, 2, 3, 4], 2))
[(1, 2), (1, 3), (1, 4),

(2, 1), (2, 3), (2, 4),
(3, 1), (3, 2), (3, 4),
(4, 1), (4, 2), (4, 3)]

itertools.chain(*iterables) is an existing function initertools that gained a new constructor in
Python 2.6.itertools.chain.from_iterable(iterable) takes a single iterable that should return
other iterables.chain() will then return all the elements of the first iterable, then all the elements of the
second, and so on.

>>> list (itertools . chain . from_iterable([[1, 2, 3], [4, 5, 6]]))
[1, 2, 3, 4, 5, 6]

(All contributed by Raymond Hettinger.)

• The logging module’s FileHandler class and its subclassesWatchedFileHandler ,
RotatingFileHandler , and TimedRotatingFileHandler now have an optionaldelay param-
eter to their constructors. Ifdelayis true, opening of the log file is deferred until the firstemit() call is made.
(Contributed by Vinay Sajip.)

TimedRotatingFileHandler also has autcconstructor parameter. If the argument is true, UTC time will
be used in determining when midnight occurs and in generating filenames; otherwise local time will be used.

• Several new functions were added to themath module:

– isinf() andisnan() determine whether a given float is a (positive or negative) infinity or a NaN (Not
a Number), respectively.

– copysign() copies the sign bit of an IEEE 754 number, returning the absolute value ofx combined with
the sign bit ofy. For example,math.copysign(1, -0.0) returns -1.0. (Contributed by Christian
Heimes.)

– factorial() computes the factorial of a number. (Contributed by Raymond Hettinger;issue 2138.)

– fsum() adds up the stream of numbers from an iterable, and is careful to avoid loss of precision through
using partial sums. (Contributed by Jean Brouwers, Raymond Hettinger, and Mark Dickinson;issue 2819.)

– acosh() , asinh() andatanh() compute the inverse hyperbolic functions.

– log1p() returns the natural logarithm of1+x (basee).

– trunc() rounds a number toward zero, returning the closestIntegral that’s between the function’s
argument and zero. Added as part of the backport ofPEP 3141’s type hierarchy for numbers.

• The math module has been improved to give more consistent behaviour across platforms, especially with
respect to handling of floating-point exceptions and IEEE 754 special values.

Whenever possible, the module follows the recommendations of the C99 standard about 754’s special val-
ues. For example,sqrt(-1.) should now give aValueError across almost all platforms, while
sqrt(float(’NaN’)) should return a NaN on all IEEE 754 platforms. Where Annex ‘F’ of the C99
standard recommends signaling ‘divide-by-zero’ or ‘invalid’, Python will raiseValueError . Where Annex
‘F’ of the C99 standard recommends signaling ‘overflow’, Python will raiseOverflowError . (Seeissue
711019andissue 1640.)

(Contributed by Christian Heimes and Mark Dickinson.)

• mmapobjects now have arfind() method that searches for a substring beginning at the end of the string
and searching backwards. Thefind() method also gained anendparameter giving an index at which to stop
searching. (Contributed by John Lenton.)

• Theoperator module gained amethodcaller() function that takes a name and an optional set of argu-
ments, returning a callable that will call the named function on any arguments passed to it. For example:

>>> # Equivalent to lambda s: s.replace(’old’, ’new’)
>>> replacer = operator . methodcaller(’ replace ’ , ’ old ’ , ’ new’)
>>> replacer(’ old wine in old bottles ’)
’new wine in new bottles’

(Contributed by Georg Brandl, after a suggestion by Gregory Petrosyan.)

Theattrgetter() function now accepts dotted names and performs the corresponding attribute lookups:

>>> inst_name = operator . attrgetter(
... ’ __class__.__name__ ’)
>>> inst_name(’ ’)
’str’
>>> inst_name(help)
’_Helper’

(Contributed by Georg Brandl, after a suggestion by Barry Warsaw.)

http://bugs.python.org/issue2138
http://bugs.python.org/issue2819
http://bugs.python.org/issue711019
http://bugs.python.org/issue711019
http://bugs.python.org/issue1640

• Theos module now wraps several new system calls.fchmod(fd, mode) andfchown(fd, uid, gid)
change the mode and ownership of an opened file, andlchmod(path, mode) changes the mode of a sym-
link. (Contributed by Georg Brandl and Christian Heimes.)

chflags() and lchflags() are wrappers for the corresponding system calls (where they’re available),
changing the flags set on a file. Constants for the flag values are defined in thestat module; some possible
values includeUF_IMMUTABLEto signal the file may not be changed andUF_APPENDto indicate that data
can only be appended to the file. (Contributed by M. Levinson.)

os.closerange(low, high) efficiently closes all file descriptors fromlow to high, ignoring any errors
and not includinghigh itself. This function is now used by thesubprocess module to make starting processes
faster. (Contributed by Georg Brandl;issue 1663329.)

• The os.environ object’s clear() method will now unset the environment variables using
os.unsetenv() in addition to clearing the object’s keys. (Contributed by Martin Horcicka;issue 1181.)

• Theos.walk() function now has afollowlinks parameter. If set to True, it will follow symlinks pointing
to directories and visit the directory’s contents. For backward compatibility, the parameter’s default value is
false. Note that the function can fall into an infinite recursion if there’s a symlink that points to a parent directory.
(issue 1273829)

• In the os.path module, thesplitext() function has been changed to not split on leading pe-
riod characters. This produces better results when operating on Unix’s dot-files. For example,
os.path.splitext(’.ipython’) now returns(’.ipython’, ”) instead of(”, ’.ipython’) .
(issue 115886)

A new function,os.path.relpath(path, start=’.’) , returns a relative path from thestart path,
if it’s supplied, or from the current working directory to the destinationpath . (Contributed by Richard Barran;
issue 1339796.)

On Windows,os.path.expandvars() will now expand environment variables given in the form “%var%”,
and “~user” will be expanded into the user’s home directory path. (Contributed by Josiah Carlson;issue
957650.)

• The Python debugger provided by thepdb module gained a new command: “run” restarts the Python program
being debugged and can optionally take new command-line arguments for the program. (Contributed by Rocky
Bernstein;issue 1393667.)

• The pdb.post_mortem() function, used to begin debugging a traceback, will now use the traceback re-
turned bysys.exc_info() if no traceback is supplied. (Contributed by Facundo Batista;issue 1106316.)

• The pickletools module now has anoptimize() function that takes a string containing a pickle and
removes some unused opcodes, returning a shorter pickle that contains the same data structure. (Contributed by
Raymond Hettinger.)

• A get_data() function was added to thepkgutil module that returns the contents of resource files included
with an installed Python package. For example:

>>> import pkgutil
>>> print pkgutil . get_data(’ test ’ , ’ exception_hierarchy.txt ’)
BaseException

+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StandardError

...

(Contributed by Paul Moore;issue 2439.)

http://bugs.python.org/issue1663329
http://bugs.python.org/issue1181
http://bugs.python.org/issue1273829
http://bugs.python.org/issue115886
http://bugs.python.org/issue1339796
http://bugs.python.org/issue957650
http://bugs.python.org/issue957650
http://bugs.python.org/issue1393667
http://bugs.python.org/issue1106316
http://bugs.python.org/issue2439

• Thepyexpat module’sParser objects now allow setting theirbuffer_size attribute to change the size
of the buffer used to hold character data. (Contributed by Achim Gaedke;issue 1137.)

• TheQueue module now provides queue variants that retrieve entries in different orders. ThePriorityQueue
class stores queued items in a heap and retrieves them in priority order, andLifoQueue retrieves the most
recently added entries first, meaning that it behaves like a stack. (Contributed by Raymond Hettinger.)

• The random module’sRandom objects can now be pickled on a 32-bit system and unpickled on a 64-bit
system, and vice versa. Unfortunately, this change also means that Python 2.6’sRandom objects can’t be
unpickled correctly on earlier versions of Python. (Contributed by Shawn Ligocki;issue 1727780.)

The newtriangular(low, high, mode) function returns random numbers following a triangular dis-
tribution. The returned values are betweenlow andhigh, not includinghigh itself, and withmodeas the most
frequently occurring value in the distribution. (Contributed by Wladmir van der Laan and Raymond Hettinger;
issue 1681432.)

• Long regular expression searches carried out by there module will check for signals being delivered, so time-
consuming searches can now be interrupted. (Contributed by Josh Hoyt and Ralf Schmitt;issue 846388.)

The regular expression module is implemented by compiling bytecodes for a tiny regex-specific virtual machine.
Untrusted code could create malicious strings of bytecode directly and cause crashes, so Python 2.6 includes a
verifier for the regex bytecode. (Contributed by Guido van Rossum from work for Google App Engine;issue
3487.)

• The rlcompleter module’s Completer.complete() method will now ignore exceptions triggered
while evaluating a name. (Fixed by Lorenz Quack;issue 2250.)

• Thesched module’sscheduler instances now have a read-onlyqueue attribute that returns the contents of
the scheduler’s queue, represented as a list of named tuples with the fields(time, priority, action,
argument) . (Contributed by Raymond Hettinger;issue 1861.)

• Theselect module now has wrapper functions for the Linuxepoll() and BSDkqueue() system calls.
modify() method was added to the existingpoll objects;pollobj.modify(fd, eventmask) takes
a file descriptor or file object and an event mask, modifying the recorded event mask for that file. (Contributed
by Christian Heimes;issue 1657.)

• Theshutil.copytree() function now has an optionalignoreargument that takes a callable object. This
callable will receive each directory path and a list of the directory’s contents, and returns a list of names that
will be ignored, not copied.

The shutil module also provides anignore_patterns() function for use with this new parameter.
ignore_patterns() takes an arbitrary number of glob-style patterns and returns a callable that will ig-
nore any files and directories that match any of these patterns. The following example copies a directory tree,
but skips both.svn directories and Emacs backup files, which have names ending with ‘~’:

shutil . copytree(’ Doc/library ’ , ’ /tmp/library ’ ,
ignore =shutil . ignore_patterns(’ *~ ’ , ’ .svn ’))

(Contributed by Tarek Ziadé;issue 2663.)

• Integrating signal handling with GUI handling event loops like those used by Tkinter or GTk+ has long been a
problem; most software ends up polling, waking up every fraction of a second to check if any GUI events have
occurred. Thesignal module can now make this more efficient. Callingsignal.set_wakeup_fd(fd)
sets a file descriptor to be used; when a signal is received, a byte is written to that file descriptor. There’s also a
C-level function,PySignal_SetWakeupFd() , for setting the descriptor.

Event loops will use this by opening a pipe to create two descriptors, one for reading and one for writing. The
writable descriptor will be passed toset_wakeup_fd() , and the readable descriptor will be added to the list
of descriptors monitored by the event loop viaselect() or poll() . On receiving a signal, a byte will be
written and the main event loop will be woken up, avoiding the need to poll.

http://bugs.python.org/issue1137
http://bugs.python.org/issue1727780
http://bugs.python.org/issue1681432
http://bugs.python.org/issue846388
http://bugs.python.org/issue3487
http://bugs.python.org/issue3487
http://bugs.python.org/issue2250
http://bugs.python.org/issue1861
http://bugs.python.org/issue1657
http://bugs.python.org/issue2663

(Contributed by Adam Olsen;issue 1583.)

Thesiginterrupt() function is now available from Python code, and allows changing whether signals can
interrupt system calls or not. (Contributed by Ralf Schmitt.)

The setitimer() and getitimer() functions have also been added (where they’re available).
setitimer() allows setting interval timers that will cause a signal to be delivered to the process after a
specified time, measured in wall-clock time, consumed process time, or combined process+system time. (Con-
tributed by Guilherme Polo;issue 2240.)

• The smtplib module now supports SMTP over SSL thanks to the addition of theSMTP_SSLclass. This
class supports an interface identical to the existingSMTPclass. (Contributed by Monty Taylor.) Both class
constructors also have an optionaltimeout parameter that specifies a timeout for the initial connection attempt,
measured in seconds. (Contributed by Facundo Batista.)

An implementation of the LMTP protocol (RFC 2033) was also added to the module. LMTP is used in place of
SMTP when transferring e-mail between agents that don’t manage a mail queue. (LMTP implemented by Leif
Hedstrom;issue 957003.)

SMTP.starttls() now complies withRFC 3207and forgets any knowledge obtained from the server not
obtained from the TLS negotiation itself. (Patch contributed by Bill Fenner;issue 829951.)

• The socket module now supports TIPC (http://tipc.sf.net), a high-performance non-IP-based protocol de-
signed for use in clustered environments. TIPC addresses are 4- or 5-tuples. (Contributed by Alberto Bertogli;
issue 1646.)

A new function,create_connection() , takes an address and connects to it using an optional timeout
value, returning the connected socket object. This function also looks up the address’s type and connects
to it using IPv4 or IPv6 as appropriate. Changing your code to usecreate_connection() instead of
socket(socket.AF_INET, ...) may be all that’s required to make your code work with IPv6.

• The base classes in theSocketServer module now support calling ahandle_timeout() method after
a span of inactivity specified by the server’stimeout attribute. (Contributed by Michael Pomraning.) The
serve_forever() method now takes an optional poll interval measured in seconds, controlling how often
the server will check for a shutdown request. (Contributed by Pedro Werneck and Jeffrey Yasskin;issue 742598,
issue 1193577.)

• Thesqlite3 module, maintained by Gerhard Haering, has been updated from version 2.3.2 in Python 2.5 to
version 2.4.1.

• The struct module now supports the C99_Bool type, using the format character’?’ . (Contributed by
David Remahl.)

• The Popen objects provided by thesubprocess module now haveterminate() , kill() , and
send_signal() methods. On Windows,send_signal() only supports theSIGTERMsignal, and all
these methods are aliases for the Win32 API functionTerminateProcess() . (Contributed by Christian
Heimes.)

• A new variable in thesys module, float_info , is an object containing information derived from the
float.h file about the platform’s floating-point support. Attributes of this object includemant_dig (number
of digits in the mantissa),epsilon (smallest difference between 1.0 and the next largest value representable),
and several others. (Contributed by Christian Heimes;issue 1534.)

Another new variable,dont_write_bytecode , controls whether Python writes any.pyc or .pyo files
on importing a module. If this variable is true, the compiled files are not written. The variable is initially set
on start-up by supplying the-B switch to the Python interpreter, or by setting thePYTHONDONTWRITE-
BYTECODE environment variable before running the interpreter. Python code can subsequently change the
value of this variable to control whether bytecode files are written or not. (Contributed by Neal Norwitz and
Georg Brandl.)

http://bugs.python.org/issue1583
http://bugs.python.org/issue2240
http://tools.ietf.org/html/rfc2033.html
http://bugs.python.org/issue957003
http://tools.ietf.org/html/rfc3207.html
http://bugs.python.org/issue829951
http://tipc.sf.net
http://bugs.python.org/issue1646
http://bugs.python.org/issue742598
http://bugs.python.org/issue1193577
http://bugs.python.org/issue1534

Information about the command-line arguments supplied to the Python interpreter is available by reading at-
tributes of a named tuple available assys.flags . For example, theverbose attribute is true if Python was
executed in verbose mode,debug is true in debugging mode, etc. These attributes are all read-only. (Con-
tributed by Christian Heimes.)

A new function,getsizeof() , takes a Python object and returns the amount of memory used by the object,
measured in bytes. Built-in objects return correct results; third-party extensions may not, but can define a
__sizeof__() method to return the object’s size. (Contributed by Robert Schuppenies;issue 2898.)

It’s now possible to determine the current profiler and tracer functions by callingsys.getprofile() and
sys.gettrace() . (Contributed by Georg Brandl;issue 1648.)

• The tarfile module now supports POSIX.1-2001 (pax) tarfiles in addition to the POSIX.1-1988 (ustar) and
GNU tar formats that were already supported. The default format is GNU tar; specify theformat parameter
to open a file using a different format:

tar = tarfile . open(" output.tar " , " w" ,
format =tarfile . PAX_FORMAT)

The newencoding anderrors parameters specify an encoding and an error handling scheme for character
conversions.’strict’ , ’ignore’ , and’replace’ are the three standard ways Python can handle errors,;
’utf-8’ is a special value that replaces bad characters with their UTF-8 representation. (Character conversions
occur because the PAX format supports Unicode filenames, defaulting to UTF-8 encoding.)

TheTarFile.add() method now accepts anexclude argument that’s a function that can be used to exclude
certain filenames from an archive. The function must take a filename and return true if the file should be excluded
or false if it should be archived. The function is applied to both the name initially passed toadd() and to the
names of files in recursively-added directories.

(All changes contributed by Lars Gustäbel).

• An optionaltimeout parameter was added to thetelnetlib.Telnet class constructor, specifying a time-
out measured in seconds. (Added by Facundo Batista.)

• The tempfile.NamedTemporaryFile class usually deletes the temporary file it created when the file is
closed. This behaviour can now be changed by passingdelete=False to the constructor. (Contributed by
Damien Miller;issue 1537850.)

A new class,SpooledTemporaryFile , behaves like a temporary file but stores its data in memory until a
maximum size is exceeded. On reaching that limit, the contents will be written to an on-disk temporary file.
(Contributed by Dustin J. Mitchell.)

The NamedTemporaryFile andSpooledTemporaryFile classes both work as context managers, so
you can writewith tempfile.NamedTemporaryFile() as tmp: (Contributed by Alexan-
der Belopolsky;issue 2021.)

• The test.test_support module gained a number of context managers useful for writing tests.
EnvironmentVarGuard() is a context manager that temporarily changes environment variables and au-
tomatically restores them to their old values.

Another context manager,TransientResource , can surround calls to resources that may or may not be
available; it will catch and ignore a specified list of exceptions. For example, a network test may ignore certain
failures when connecting to an external web site:

with test_support . TransientResource(IOError ,
errno =errno . ETIMEDOUT):

f = urllib . urlopen(’ https://sf.net ’)
. . .

Finally, check_warnings() resets thewarning module’s warning filters and returns an object that will
record all warning messages triggered (issue 3781):

http://bugs.python.org/issue2898
http://bugs.python.org/issue1648
http://bugs.python.org/issue1537850
http://bugs.python.org/issue2021
http://bugs.python.org/issue3781

with test_support . check_warnings() as wrec:
warnings . simplefilter(" always ")
... code that triggers a warning ...
assert str (wrec . message) == " function is outdated "
assert len (wrec . warnings) == 1, " Multiple warnings raised "

(Contributed by Brett Cannon.)

• The textwrap module can now preserve existing whitespace at the beginnings and ends of the newly-created
lines by specifyingdrop_whitespace=False as an argument:

>>> S = """ This sentence has a bunch of
... extra whitespace. """
>>> print textwrap . fill(S, width =15)
This sentence
has a bunch
of extra
whitespace.
>>> print textwrap . fill(S, drop_whitespace =False , width =15)
This sentence

has a bunch
of extra
whitespace.

>>>

(Contributed by Dwayne Bailey;issue 1581073.)

• The threading module API is being changed to use properties such asdaemon instead ofsetDaemon()
andisDaemon() methods, and some methods have been renamed to use underscores instead of camel-case;
for example, theactiveCount() method is renamed toactive_count() . Both the 2.6 and 3.0 versions
of the module support the same properties and renamed methods, but don’t remove the old methods. No date
has been set for the deprecation of the old APIs in Python 3.x; the old APIs won’t be removed in any 2.x version.
(Carried out by several people, most notably Benjamin Peterson.)

The threading module’sThread objects gained anident property that returns the thread’s identifier, a
nonzero integer. (Contributed by Gregory P. Smith;issue 2871.)

• The timeit module now accepts callables as well as strings for the statement being timed and for the setup
code. Two convenience functions were added for creatingTimer instances:repeat(stmt, setup,
time, repeat, number) and timeit(stmt, setup, time, number) create an instance and
call the corresponding method. (Contributed by Erik Demaine;issue 1533909.)

• TheTkinter module now accepts lists and tuples for options, separating the elements by spaces before passing
the resulting value to Tcl/Tk. (Contributed by Guilherme Polo;issue 2906.)

• The turtle module for turtle graphics was greatly enhanced by Gregor Lingl. New features in the module
include:

– Better animation of turtle movement and rotation.

– Control over turtle movement using the newdelay() , tracer() , andspeed() methods.

– The ability to set new shapes for the turtle, and to define a new coordinate system.

– Turtles now have anundo() method that can roll back actions.

– Simple support for reacting to input events such as mouse and keyboard activity, making it possible to
write simple games.

– A turtle.cfg file can be used to customize the starting appearance of the turtle’s screen.

– The module’s docstrings can be replaced by new docstrings that have been translated into another language.

http://bugs.python.org/issue1581073
http://bugs.python.org/issue2871
http://bugs.python.org/issue1533909
http://bugs.python.org/issue2906

(issue 1513695)

• An optional timeout parameter was added to theurllib.urlopen() function and the
urllib.ftpwrapper class constructor, as well as theurllib2.urlopen() function. The parameter
specifies a timeout measured in seconds. For example:

>>> u = urllib2 . urlopen(" http://slow.example.com " ,
timeout=3)

Traceback (most recent call last):
...

urllib2.URLError : <urlopen error timed out>
>>>

(Added by Facundo Batista.)

• The Unicode database provided by theunicodedata module has been updated to version 5.1.0. (Updated by
Martin von Loewis;issue 3811.)

• Thewarnings module’sformatwarning() andshowwarning() gained an optionalline argument that
can be used to supply the line of source code. (Added as part ofissue 1631171, which re-implemented part of
thewarnings module in C code.)

A new function,catch_warnings() , is a context manager intended for testing purposes that lets you tem-
porarily modify the warning filters and then restore their original values (issue 3781).

• The XML-RPCSimpleXMLRPCServer andDocXMLRPCServer classes can now be prevented from im-
mediately opening and binding to their socket by passing True as thebind_and_activate constructor
parameter. This can be used to modify the instance’sallow_reuse_address attribute before calling the
server_bind() andserver_activate() methods to open the socket and begin listening for connec-
tions. (Contributed by Peter Parente;issue 1599845.)

SimpleXMLRPCServer also has a_send_traceback_header attribute; if true, the exception and for-
matted traceback are returned as HTTP headers “X-Exception” and “X-Traceback”. This feature is for debug-
ging purposes only and should not be used on production servers because the tracebacks might reveal passwords
or other sensitive information. (Contributed by Alan McIntyre as part of his project for Google’s Summer of
Code 2007.)

• Thexmlrpclib module no longer automatically convertsdatetime.date anddatetime.time to the
xmlrpclib.DateTime type; the conversion semantics were not necessarily correct for all applications.
Code usingxmlrpclib should convertdate andtime instances. (issue 1330538) The code can also handle
dates before 1900 (contributed by Ralf Schmitt;issue 2014) and 64-bit integers represented by using<i8> in
XML-RPC responses (contributed by Riku Lindblad;issue 2985).

• Thezipfile module’sZipFile class now hasextract() andextractall() methods that will unpack
a single file or all the files in the archive to the current directory, or to a specified directory:

z = zipfile . ZipFile(’ python-251.zip ’)

Unpack a single file, writing it relative
to the /tmp directory.
z. extract(’ Python/sysmodule.c ’ , ’ /tmp ’)

Unpack all the files in the archive.
z. extractall()

(Contributed by Alan McIntyre;issue 467924.)

Theopen() , read() andextract() methods can now take either a filename or aZipInfo object. This
is useful when an archive accidentally contains a duplicated filename. (Contributed by Graham Horler;issue
1775025.)

http://bugs.python.org/issue1513695
http://bugs.python.org/issue3811
http://bugs.python.org/issue1631171
http://bugs.python.org/issue3781
http://bugs.python.org/issue1599845
http://bugs.python.org/issue1330538
http://bugs.python.org/issue2014
http://bugs.python.org/issue2985
http://bugs.python.org/issue467924
http://bugs.python.org/issue1775025
http://bugs.python.org/issue1775025

Finally,zipfile now supports using Unicode filenames for archived files. (Contributed by Alexey Borzenkov;
issue 1734346.)

18.1 The ast module

Theast module provides an Abstract Syntax Tree representation of Python code, and Armin Ronacher contributed a
set of helper functions that perform a variety of common tasks. These will be useful for HTML templating packages,
code analyzers, and similar tools that process Python code.

Theparse() function takes an expression and returns an AST. Thedump() function outputs a representation of a
tree, suitable for debugging:

import ast

t = ast . parse("""
d = {}
for i in ’ abcdefghijklm ’ :

d[i + i] = ord(i) - ord(’ a’) + 1
print d
""")
print ast . dump(t)

This outputs a deeply nested tree:

Module(body=[
Assign(targets=[

Name(id=’d’, ctx=Store())
], value=Dict(keys=[], values=[]))

For(target=Name(id=’i’, ctx=Store()),
iter=Str(s=’abcdefghijklm’), body=[

Assign(targets=[
Subscript(value=

Name(id=’d’, ctx=Load()),
slice=
Index(value=

BinOp(left=Name(id=’i’, ctx=Load()), op=Add(),
right=Name(id=’i’, ctx=Load()))), ctx=Store())

], value=
BinOp(left=

BinOp(left=
Call(func=

Name(id=’ord’, ctx=Load()), args=[
Name(id=’i’, ctx=Load())

], keywords=[], starargs=None, kwargs=None),
op=Sub(), right=Call(func=

Name(id=’ord’, ctx=Load()), args=[
Str(s=’a’)

], keywords=[], starargs=None, kwargs=None)),
op=Add(), right=Num(n=1)))

], orelse=[])
Print(dest=None, values=[

Name(id=’d’, ctx=Load())
], nl=True)

])

http://bugs.python.org/issue1734346

Theliteral_eval() method takes a string or an AST representing a literal expression, parses and evaluates it, and
returns the resulting value. A literal expression is a Python expression containing only strings, numbers, dictionaries,
etc. but no statements or function calls. If you need to evaluate an expression but cannot accept the security risk of
using aneval() call, literal_eval() will handle it safely:

>>> literal = ’ (" a" , " b" , {2:4, 3:8, 1:2}) ’
>>> print ast . literal_eval(literal)
(’a’, ’b’, {1: 2, 2: 4, 3: 8})
>>> print ast . literal_eval(’ " a" + " b" ’)
Traceback (most recent call last):

...
ValueError : malformed string

The module also includesNodeVisitor andNodeTransformer classes for traversing and modifying an AST,
and functions for common transformations such as changing line numbers.

18.2 The future_builtins module

Python 3.0 makes many changes to the repertoire of built-in functions, and most of the changes can’t be introduced in
the Python 2.x series because they would break compatibility. Thefuture_builtins module provides versions
of these built-in functions that can be imported when writing 3.0-compatible code.

The functions in this module currently include:

• ascii(obj) : equivalent torepr() . In Python 3.0,repr() will return a Unicode string, whileascii()
will return a pure ASCII bytestring.

• filter(predicate, iterable) , map(func, iterable1, ...) : the 3.0 versions return itera-
tors, unlike the 2.x built-ins which return lists.

• hex(value) , oct(value) : instead of calling the__hex__() or __oct__() methods, these versions
will call the __index__() method and convert the result to hexadecimal or octal.oct() will use the new
0o notation for its result.

18.3 The json module: JavaScript Object Notation

The newjson module supports the encoding and decoding of Python types in JSON (Javascript Object Notation).
JSON is a lightweight interchange format often used in web applications. For more information about JSON, see
http://www.json.org.

json comes with support for decoding and encoding most built-in Python types. The following example encodes and
decodes a dictionary:

>>> import json
>>> data = { " spam" : " foo " , " parrot " : 42}
>>> in_json = json . dumps(data) # Encode the data
>>> in_json
’{"parrot": 42, "spam": "foo"}’
>>> json . loads(in_json) # Decode into a Python object
{"spam" : "foo", "parrot" : 42}

It’s also possible to write your own decoders and encoders to support more types. Pretty-printing of the JSON strings
is also supported.

json (originally called simplejson) was written by Bob Ippolito.

http://www.json.org

18.4 The plistlib module: A Property-List Parser

The.plist format is commonly used on Mac OS X to store basic data types (numbers, strings, lists, and dictionaries)
by serializing them into an XML-based format. It resembles the XML-RPC serialization of data types.

Despite being primarily used on Mac OS X, the format has nothing Mac-specific about it and the Python implemen-
tation works on any platform that Python supports, so theplistlib module has been promoted to the standard
library.

Using the module is simple:

import sys
import plistlib
import datetime

Create data structure
data_struct = dict (lastAccessed =datetime . datetime . now(),

version =1,
categories =(’ Personal ’ , ’ Shared ’ , ’ Private ’))

Create string containing XML.
plist_str = plistlib . writePlistToString(data_struct)
new_struct = plistlib . readPlistFromString(plist_str)
print data_struct
print new_struct

Write data structure to a file and read it back.
plistlib . writePlist(data_struct, ’ /tmp/customizations.plist ’)
new_struct = plistlib . readPlist(’ /tmp/customizations.plist ’)

read/writePlist accepts file-like objects as well as paths.
plistlib . writePlist(data_struct, sys . stdout)

18.5 ctypes Enhancements

Thomas Heller continued to maintain and enhance thectypes module.

ctypes now supports ac_bool datatype that represents the C99bool type. (Contributed by David Remahl;issue
1649190.)

Thectypes string, buffer and array types have improved support for extended slicing syntax, where various combi-
nations of(start, stop, step) are supplied. (Implemented by Thomas Wouters.)

All ctypes data types now supportfrom_buffer() andfrom_buffer_copy() methods that create a ctypes
instance based on a provided buffer object.from_buffer_copy() copies the contents of the object, while
from_buffer() will share the same memory area.

A new calling convention tellsctypes to clear theerrno or Win32 LastError variables at the outset of each wrapped
call. (Implemented by Thomas Heller;issue 1798.)

You can now retrieve the Unixerrno variable after a function call. When creating a wrapped function, you can
supplyuse_errno=True as a keyword parameter to theDLL() function and then call the module-level methods
set_errno() andget_errno() to set and retrieve the error value.

The Win32 LastError variable is similarly supported by theDLL() , OleDLL() , and WinDLL() func-
tions. You supplyuse_last_error=True as a keyword parameter and then call the module-level methods
set_last_error() andget_last_error() .

http://bugs.python.org/issue1649190
http://bugs.python.org/issue1649190
http://bugs.python.org/issue1798

Thebyref() function, used to retrieve a pointer to a ctypes instance, now has an optionaloffsetparameter that is a
byte count that will be added to the returned pointer.

18.6 Improved SSL Support

Bill Janssen made extensive improvements to Python 2.6’s support for the Secure Sockets Layer by adding a new
module,ssl , that’s built atop theOpenSSLlibrary. This new module provides more control over the protocol negoti-
ated, the X.509 certificates used, and has better support for writing SSL servers (as opposed to clients) in Python. The
existing SSL support in thesocket module hasn’t been removed and continues to work, though it will be removed
in Python 3.0.

To use the new module, you must first create a TCP connection in the usual way and then pass it to the
ssl.wrap_socket() function. It’s possible to specify whether a certificate is required, and to obtain certificate
info by calling thegetpeercert() method.

See Also:

The documentation for thessl module.

19 Deprecations and Removals

• String exceptions have been removed. Attempting to use them raises aTypeError .

• Changes to theException interface as dictated byPEP 352continue to be made. For 2.6, themessage
attribute is being deprecated in favor of theargs attribute.

• (3.0-warning mode) Python 3.0 will feature a reorganized standard library that will drop many outdated modules
and rename others. Python 2.6 running in 3.0-warning mode will warn about these modules when they are
imported.

The list of deprecated modules is:audiodev , bgenlocations , buildtools , bundlebuilder ,
Canvas , compiler , dircache , dl , fpformat , gensuitemodule , ihooks , imageop , imgfile ,
linuxaudiodev , mhlib , mimetools , multifile , new, pure , statvfs , sunaudiodev ,
test.testall , andtoaiff .

• Thegopherlib module has been removed.

• TheMimeWriter module andmimify module have been deprecated; use theemail package instead.

• Themd5module has been deprecated; use thehashlib module instead.

• Theposixfile module has been deprecated;fcntl.lockf() provides better locking.

• Thepopen2 module has been deprecated; use thesubprocess module.

• Thergbimg module has been removed.

• Thesets module has been deprecated; it’s better to use the built-inset andfrozenset types.

• Thesha module has been deprecated; use thehashlib module instead.

20 Build and C API Changes

Changes to Python’s build process and to the C API include:

• Python now must be compiled with C89 compilers (after 19 years!). This means that the Python source tree has
dropped its own implementations ofmemmove() andstrerror() , which are in the C89 standard library.

http://www.openssl.org/
http://www.python.org/dev/peps/pep-0352

• Python 2.6 can be built with Microsoft Visual Studio 2008 (version 9.0), and this is the new default compiler.
See thePCbuild directory for the build files. (Implemented by Christian Heimes.)

• On Mac OS X, Python 2.6 can be compiled as a 4-way universal build. Theconfigure script can take a
--with-universal-archs=[32-bit|64-bit|all] switch, controlling whether the binaries are built
for 32-bit architectures (x86, PowerPC), 64-bit (x86-64 and PPC-64), or both. (Contributed by Ronald Ous-
soren.)

• The BerkeleyDB module now has a C API object, available asbsddb.db.api . This object can be used by
other C extensions that wish to use thebsddb module for their own purposes. (Contributed by Duncan Grisby.)

• The new buffer interface, previously described inthe PEP 3118 section, addsPyObject_GetBuffer() and
PyBuffer_Release() , as well as a few other functions.

• Python’s use of the C stdio library is now thread-safe, or at least as thread-safe as the underlying library is. A
long-standing potential bug occurred if one thread closed a file object while another thread was reading from or
writing to the object. In 2.6 file objects have a reference count, manipulated by thePyFile_IncUseCount()
andPyFile_DecUseCount() functions. File objects can’t be closed unless the reference count is zero.
PyFile_IncUseCount() should be called while the GIL is still held, before carrying out an I/O operation
using theFILE * pointer, andPyFile_DecUseCount() should be called immediately after the GIL is
re-acquired. (Contributed by Antoine Pitrou and Gregory P. Smith.)

• Importing modules simultaneously in two different threads no longer deadlocks; it will now raise an
ImportError . A new API function,PyImport_ImportModuleNoBlock() , will look for a module
in sys.modules first, then try to import it after acquiring an import lock. If the import lock is held by another
thread, anImportError is raised. (Contributed by Christian Heimes.)

• Several functions return information about the platform’s floating-point support.PyFloat_GetMax() returns
the maximum representable floating point value, andPyFloat_GetMin() returns the minimum positive
value.PyFloat_GetInfo() returns an object containing more information from thefloat.h file, such as
"mant_dig" (number of digits in the mantissa),"epsilon" (smallest difference between 1.0 and the next
largest value representable), and several others. (Contributed by Christian Heimes;issue 1534.)

• C functions and methods that usePyComplex_AsCComplex() will now accept arguments that have a
__complex__() method. In particular, the functions in thecmath module will now accept objects with
this method. This is a backport of a Python 3.0 change. (Contributed by Mark Dickinson;issue 1675423.)

• Python’s C API now includes two functions for case-insensitive string comparisons,
PyOS_stricmp(char*, char*) and PyOS_strnicmp(char*, char*, Py_ssize_t) .
(Contributed by Christian Heimes;issue 1635.)

• Many C extensions define their own little macro for adding integers and strings to the module’s dictio-
nary in the init* function. Python 2.6 finally defines standard macros for adding values to a module,
PyModule_AddStringMacro andPyModule_AddIntMacro() . (Contributed by Christian Heimes.)

• Some macros were renamed in both 3.0 and 2.6 to make it clearer that they are macros, not func-
tions. Py_Size() becamePy_SIZE() , Py_Type() becamePy_TYPE() , andPy_Refcnt() became
Py_REFCNT() . The mixed-case macros are still available in Python 2.6 for backward compatibility. (issue
1629)

• Distutils now places C extensions it builds in a different directory when running on a debug version of Python.
(Contributed by Collin Winter;issue 1530959.)

• Several basic data types, such as integers and strings, maintain internal free lists of objects that can be re-
used. The data structures for these free lists now follow a naming convention: the variable is always named
free_list , the counter is always namednumfree , and a macroPy<typename>_MAXFREELIST is al-
ways defined.

• A new Makefile target, “make patchcheck”, prepares the Python source tree for making a patch: it fixes trailing
whitespace in all modified.py files, checks whether the documentation has been changed, and reports whether

http://bugs.python.org/issue1534
http://bugs.python.org/issue1675423
http://bugs.python.org/issue1635
http://bugs.python.org/issue1629
http://bugs.python.org/issue1629
http://bugs.python.org/issue1530959

theMisc/ACKS andMisc/NEWS files have been updated. (Contributed by Brett Cannon.)

Another new target, “make profile-opt”, compiles a Python binary using GCC’s profile-guided optimization. It
compiles Python with profiling enabled, runs the test suite to obtain a set of profiling results, and then compiles
using these results for optimization. (Contributed by Gregory P. Smith.)

20.1 Port-Specific Changes: Windows

• The support for Windows 95, 98, ME and NT4 has been dropped. Python 2.6 requires at least Windows 2000
SP4.

• The new default compiler on Windows is Visual Studio 2008 (version 9.0). The build directories for Visual
Studio 2003 (version 7.1) and 2005 (version 8.0) were moved into the PC/ directory. The newPCbuild
directory supports cross compilation for X64, debug builds and Profile Guided Optimization (PGO). PGO builds
are roughly 10% faster than normal builds. (Contributed by Christian Heimes with help from Amaury Forgeot
d’Arc and Martin von Loewis.)

• The msvcrt module now supports both the normal and wide char variants of the console I/O API. The
getwch() function reads a keypress and returns a Unicode value, as does thegetwche() function. The
putwch() function takes a Unicode character and writes it to the console. (Contributed by Christian Heimes.)

• os.path.expandvars() will now expand environment variables in the form “%var%”, and “~user” will
be expanded into the user’s home directory path. (Contributed by Josiah Carlson;issue 957650.)

• Thesocket module’s socket objects now have anioctl() method that provides a limited interface to the
WSAIoctl() system interface.

• The_winreg module now has a function,ExpandEnvironmentStrings() , that expands environment
variable references such as%NAME%in an input string. The handle objects provided by this module now support
the context protocol, so they can be used inwith statements. (Contributed by Christian Heimes.)

_winreg also has better support for x64 systems, exposing theDisableReflectionKey() ,
EnableReflectionKey() , andQueryReflectionKey() functions, which enable and disable registry
reflection for 32-bit processes running on 64-bit systems. (issue 1753245)

• Themsilib module’sRecord object gainedGetInteger() andGetString() methods that return field
values as an integer or a string. (Contributed by Floris Bruynooghe;issue 2125.)

20.2 Port-Specific Changes: Mac OS X

• When compiling a framework build of Python, you can now specify the framework name to be used by providing
the--with-framework-name= option to theconfigurescript.

• Themacfs module has been removed. This in turn required themacostools.touched() function to be
removed because it depended on themacfs module. (issue 1490190)

• Many other Mac OS modules have been deprecated and will removed in Python 3.0:_builtinSuites ,
aepack , aetools , aetypes , applesingle , appletrawmain , appletrunner , argvemulator ,
Audio_mac , autoGIL , Carbon , cfmfile , CodeWarrior , ColorPicker , EasyDialogs ,
Explorer , Finder , FrameWork , findertools , ic , icglue , icopen , macerrors , MacOS,
macfs , macostools , macresource , MiniAEFrame , Nav, Netscape , OSATerminology , pimp ,
PixMapWrapper , StdSuites , SystemEvents , Terminal , andterminalcommand .

http://bugs.python.org/issue957650
http://bugs.python.org/issue1753245
http://bugs.python.org/issue2125
http://bugs.python.org/issue1490190

20.3 Port-Specific Changes: IRIX

A number of old IRIX-specific modules were deprecated and will be removed in Python 3.0:al andAL, cd , cddb ,
cdplayer , CL andcl , DEVICE, ERRNO, FILE , FL andfl , flp , fm , GET, GLWS, GLandgl , IN , IOCTL, jpeg ,
panelparser , readcd , SVandsv , torgb , videoreader , andWAIT.

21 Porting to Python 2.6

This section lists previously described changes and other bugfixes that may require changes to your code:

• Classes that aren’t supposed to be hashable should set__hash__ = None in their definitions to indicate the
fact.

• String exceptions have been removed. Attempting to use them raises aTypeError .

• The__init__() method ofcollections.deque now clears any existing contents of the deque before
adding elements from the iterable. This change makes the behavior matchlist.__init__() .

• object.__init__() previously accepted arbitrary arguments and keyword arguments, ignoring them. In
Python 2.6, this is no longer allowed and will result in aTypeError . This will affect __init__() meth-
ods that end up calling the corresponding method onobject (perhaps through usingsuper()). Seeissue
1683368for discussion.

• The Decimal constructor now accepts leading and trailing whitespace when passed a string. Previously it
would raise anInvalidOperation exception. On the other hand, thecreate_decimal() method of
Context objects now explicitly disallows extra whitespace, raising aConversionSyntax exception.

• Due to an implementation accident, if you passed a file path to the built-in__import__() function, it would
actually import the specified file. This was never intended to work, however, and the implementation now
explicitly checks for this case and raises anImportError .

• C API: thePyImport_Import() andPyImport_ImportModule() functions now default to absolute
imports, not relative imports. This will affect C extensions that import other modules.

• C API: extension data types that shouldn’t be hashable should define theirtp_hash slot to
PyObject_HashNotImplemented() .

• Thesocket module exceptionsocket.error now inherits fromIOError . Previously it wasn’t a subclass
of StandardError but now it is, throughIOError . (Implemented by Gregory P. Smith;issue 1706815.)

• Thexmlrpclib module no longer automatically convertsdatetime.date anddatetime.time to the
xmlrpclib.DateTime type; the conversion semantics were not necessarily correct for all applications.
Code usingxmlrpclib should convertdate andtime instances. (issue 1330538)

• (3.0-warning mode) TheException class now warns when accessed using slicing or index access; having
Exception behave like a tuple is being phased out.

• (3.0-warning mode) inequality comparisons between two dictionaries or two objects that don’t implement com-
parison methods are reported as warnings.dict1 == dict2 still works, butdict1 < dict2 is being
phased out.

Comparisons between cells, which are an implementation detail of Python’s scoping rules, also cause warnings
because such comparisons are forbidden entirely in 3.0.

http://bugs.python.org/issue1683368
http://bugs.python.org/issue1683368
http://bugs.python.org/issue1706815
http://bugs.python.org/issue1330538

22 Acknowledgements

The author would like to thank the following people for offering suggestions, corrections and assistance with various
drafts of this article: Georg Brandl, Steve Brown, Nick Coghlan, Ralph Corderoy, Jim Jewett, Kent Johnson, Chris
Lambacher, Martin Michlmayr, Antoine Pitrou, Brian Warner.

Index

A
APPDATA, viii

E
environment variable

APPDATA, viii
PYTHONDONTWRITEBYTECODE, xxiii ,

xxxi
PYTHONIOENCODING,xxiv
PYTHONNOUSERSITE,viii
PYTHONUSERBASE,viii

P
Python Enhancement Proposals

PEP 3000,iii
PEP 3100,iii
PEP 3101,xii
PEP 3105,xiii
PEP 3110,xiii
PEP 3112,xiv
PEP 3116,xv
PEP 3118,xvi
PEP 3119,xviii
PEP 3127,xviii
PEP 3129,xix
PEP 3141,xix
PEP 343,vii
PEP 352,xxxviii
PEP 361,ii
PEP 370,viii
PEP 371,x

PYTHONDONTWRITEBYTECODE,xxiii , xxxi
PYTHONIOENCODING,xxiv
PYTHONNOUSERSITE,viii
PYTHONUSERBASE,viii

R
RFC

RFC 2033,xxxi
RFC 3207,xxxi

xliii

	Python 3.0
	Changes to the Development Process
	New Issue Tracker: Roundup
	New Documentation Format: reStructuredText Using Sphinx

	PEP 343: The `with' statement
	Writing Context Managers
	The contextlib module

	PEP 366: Explicit Relative Imports From a Main Module
	PEP 370: Per-user site-packages Directory
	PEP 371: The multiprocessing Package
	PEP 3101: Advanced String Formatting
	PEP 3105: print As a Function
	PEP 3110: Exception-Handling Changes
	PEP 3112: Byte Literals
	PEP 3116: New I/O Library
	PEP 3118: Revised Buffer Protocol
	PEP 3119: Abstract Base Classes
	PEP 3127: Integer Literal Support and Syntax
	PEP 3129: Class Decorators
	PEP 3141: A Type Hierarchy for Numbers
	The fractions Module

	Other Language Changes
	Optimizations
	Interpreter Changes

	New and Improved Modules
	The ast module
	The future_builtins module
	The json module: JavaScript Object Notation
	The plistlib module: A Property-List Parser
	ctypes Enhancements
	Improved SSL Support

	Deprecations and Removals
	Build and C API Changes
	Port-Specific Changes: Windows
	Port-Specific Changes: Mac OS X
	Port-Specific Changes: IRIX

	Porting to Python 2.6
	Acknowledgements
	Index

