
Homework: Neural networks and face images

773C

October 1, 2012

1 Introduction

This assignment gives you an opportunity to apply neural network learning to the problem
of face recognition. You will experiment with a neural network program to train a sunglasses
recognizer and a pose recognizer.

1.1 The face images

The image data can be found in the face data directory to browse and as a tarred gzipped file.
This directory contains 20 subdirectories, one for each person, named by userid. Each of

these directories contains several different face images of the same person.
You will be interested in the images with the following naming convention:
<userid> <pose> <expression> <eyes> <scale>.pgm

• <userid> is the user id of the person in the image, and this field has 20 values: an2i,
at33, boland, bpm, ch4f, cheyer, choon, danieln, glickman, karyadi, kawamura, kk49,
megak, mitchell, night, phoebe, saavik, steffi, sz24, and tammo.

• <pose> is the head position of the person, and this field has 4 values: straight, left,
right, up.

• <expression> is the facial expression of the person, and this field has 4 values: neutral,
happy, sad, angry.

• <eyes> is the eye state of the person, and this field has 2 values: open, sunglasses.

• <scale> is the scale of the image, and this field has 3 values: 1, 2, and 4. 1 indicates
a full-resolution image (128 columns × 120 rows); 2 indicates a half-resolution image
(64 × 60); 4 indicates a quarter-resolution image (32 × 30). For this assignment, you
will be using the quarter-resolution images for experiments, to keep training time to a
manageable level.

1

http://www.cse.unr.edu/~sushil/class/773/assignments/as3/nn/faces/
http://www.cse.unr.edu/~sushil/class/773/assignments/as3/nn/faces.tgz


If you’ve been looking closely in the image directories, you may notice that some images
have a .bad suffix rather than the .pgm suffix. As it turns out, 16 of the 640 images taken
have glitches due to problems with the camera setup; these are the .bad images. Some
people had more glitches than others, but everyone who got “faced” should have at least 28
good face images (out of the 32 variations possible, discounting scale).

1.2 Viewing the face images

To view the images, you can use the GIMP. gimp handles a variety of image formats,
including the PGM format in which our face images are stored.

This will bring up a window displaying the face. The + button increases the displayed size
of the image every time you press it. This will be useful for viewing the quarter-resolution
images, as you might imagine.

You can also obtain pixel values and image coordinates.

1.3 The neural network and image access code

We’re supplying C code for a three-layer fully-connected feedforward neural network which
uses the backpropagation algorithm to tune its weights. To make life as easy as possible,
we’re also supplying you with an image package for accessing the face images, as well as the
top-level program for training and testing, as a skeleton for you to modify. To help explore
what the nets actually learn, you’ll also find a utility program for visualizing hidden-unit
weights as images.

You may write your own neural net code or download and use some other neural net
package, I only provide documentation and support for the code described below.

The code is located in this tarred gzipped file.
Type make, or whatever command you need in your IDE and use the Makefile as a guide

to produce your executables. When the compilation is done, you should have one executable
program: facetrain. Briefly, facetrain takes lists of image files as input, and uses these
as training and test sets for a neural network. facetrain can be used for training and/or
recognition, and it also has the capability to save networks to files.

This very old code has been compiled on linux. It should compile with any compliant C
compiler with minor changes. Details of the routines, explanations of the source files, and
related information can be found in Section 3 of this handout.

2 The Assignment

Turn in a short write-up of your answers to ALL the questions found in the following sequence
of initial experiments.

1. Get the *.list.UNR files in this folder.

2

http://www.gimp.org/
http://www.cse.unr.edu/~sushil/class/773/assignments/as3/nn/src.tgz
http://www.cse.unr.edu/~sushil/class/773/assignments/as3/nn/trainset/


2. The code you have been given is currently set up to learn to recognize the person with
userid glickman. Modify this code to implement a “sunglasses” recognizer; i.e., train
a neural net which, when given an image as input, indicates whether the face in the
image is wearing sunglasses, or not. Refer to the beginning of Section 3 for an overview
of how to make changes to this code. You will need to change pathnames.

3. Train a network using the default learning parameter settings (learning rate 0.3, mo-
mentum 0.3) for 75 epochs, with the following command:

facetrain -n shades.net -t straightrnd train.list.UNR -1 straightrnd test1.list.UNR

-2 straightrnd test2.list.UNR -e 75

Note: If you are running this on your own machine, you will need to change the

filenames in the .UNR files.

facetrain’s arguments are described in Section 3.1.1, but a short description is in
order here. shades.net is the name of the network file which will be saved when
training is finished. straightrnd train.list.UNR, straightrnd test1.list.UNR,
and straightrnd test2.list.UNR are text files which specify the training set (70
examples) and two test sets (34 and 52 examples), respectively.

This command creates and trains your net on a randomly chosen sample of 70 of the
156 “straight” images, and tests it on the remaining 34 and 52 randomly chosen images,
respectively. One way to think of this test strategy is that roughly 1

3
of the images

(straightrnd test2.list.UNR) have been held over for testing. The remaining 2

3

have been used for a train and cross-validate strategy, in which 2

3
of these are being

used for as a training set (straightrnd train.list.UNR) and 1

3
are being used for

the validation set to decide when to halt training (straightrnd test1.list.UNR).

4. What code did you modify (A diff listing would be nice)? What was the maximum
classification accuracy achieved on the training set? How many epochs did it take to
reach this level? How about for the validation set? The test set? Note that if you
run it again on the same system with the same parameters and input, you should
get exactly the same results because, by default, the code uses the same seed to the
random number generator each time. You will need to read Section 3.1.2 carefully in
order to be able to interpret your experiments and answer these questions.

You might be wondering why you are only training on samples from a limited distribu-
tion (the “straight” images). The essential reason is training time. If you have access
to a very fast machine, then you are encouraged to do these experiments on the entire
set (replace straight with all in the command above.

The difference between the straightrnd *.list.UNR and the straighteven *.list.UNR

sets is that while the former divides the images purely randomly among the training
and test sets, the latter ensures a relatively even distribution of each individual’s im-
ages over the sets. Because we have only 7 or 8 “straight” images per individual, failure
to distribute them evenly would result in testing our network the most on those faces
on which it was trained the least.

3



5. Implement a pose recognizer; i.e. implement a neural net which, when given an image
as input, indicates whether the person in the image is looking straight ahead, up, to
the left, or to the right. You will also need to implement a different output encoding
for this task. (Hint: leave learning rate and momentum at 0.3, and use 6 hidden units).

6. Train the network for 100 epochs, this time on samples drawn from all of the images:

facetrain -n pose.net -t all train.list.UNR -1 all test1.list.UNR

-2 all test2.list.UNR -e 100

Since the pose-recognizing network should have substantially fewer weights to update,
even those of you with slow machines can get in on the fun of using all of the images.
In this case, 260 examples are in the training set, 140 examples are in test1, and 193
are in test2.

7. How did you encode your outputs this time? What was the maximum classification
accuracy achieved on the training set? How many epochs did it take to reach this
level? How about for each test set?

8. Now, try taking a look at how backpropagation tuned the weights of the hidden units
with respect to each pixel. First type make hidtopgm to compile the utility on your
system. Then, to visualize the weights of hidden unit n, type:

hidtopgm pose.net image-filename 32 30 n

Invoking gimp on the image image-filename should then display the range of weights,
with the lowest weights mapped to pixel values of zero, and the highest mapped to 255.
If the images just look like noise, try retraining using facetrain init0 (compile with
make facetrain init0), which initializes the hidden unit weights of a new network
to zero, rather than random values.

9. Do the hidden units seem to weight particular regions of the image greater than others?
Do particular hidden units seem to be tuned to different features of some sort?

3 Documentation

The code for this assignment is broken into several modules:

• pgmimage.c, pgmimage.h: the image package. Supports read/write of PGM image files
and pixel access/assignment. Provides an IMAGE data structure, and an IMAGELIST

data structure (an array of pointers to images; useful when handling many images).
You will not need to modify any code in this module to complete the as-

signment.

• backprop.c, backprop.h: the neural network package. Supports three-layer fully-
connected feedforward networks, using the backpropagation algorithm for weight tun-
ing. Provides high level routines for creating, training, and using networks. You will

not need to modify any code in this module to complete the assignment.

4



• imagenet.c: interface routines for loading images into the input units of a network, and
setting up target vectors for training. You will need to modify the routine load target,
when implementing the face recognizer and the pose recognizer, to set up appropriate
target vectors for the output encodings you choose.

• facetrain.c: the top-level program which uses all of the modules above to implement
a “TA” recognizer. You will need to modify this code to change network sizes and
learning parameters, both of which are trivial changes. The performance evaluation
routines performance on imagelist() and evaluate performance() are also in this
module; you will need to modify these for your face and pose recognizers.

• hidtopgm.c: the hidden unit weight visualization utility. It’s not necessary modify
anything here, although it may be interesting to explore some of the numerous possible
alternate visualization schemes.

Although you’ll only need to modify code in imagenet.c and facetrain.c, feel free to
modify anything you want in any of the files if it makes your life easier or if it allows you to
do a nifty experiment.

3.1 facetrain

3.1.1 Running facetrain

facetrain has several options which can be specified on the command line. This section
briefly describes how each option works. A very short summary of this information can be
obtained by running facetrain with no arguments.

-n <network file> - this option either loads an existing network file, or creates a new one
with the given name. At the end of training, the neural network will be saved to this
file.

-e <number of epochs> - this option specifies the number of training epochs which will
be run. If this option is not specified, the default is 100.

-T - for test-only mode (no training). Performance will be reported on each of the three
datasets specified, and those images misclassified will be listed, along with the corre-
sponding output unit levels.

-s <seed> - an integer which will be used as the seed for the random number generator.
The default seed is 102194. This allows you to reproduce experiments if necessary, by
generating the same sequence of random numbers. It also allows you to try a different
set of random numbers by changing the seed.

-S <number of epochs between saves> - this option specifies the number of epochs be-
tween saves. The default is 100, which means that if you train for 100 epochs (also the
default), the network is only saved when training is completed.

5



-t <training image list> - this option specifies a text file which contains a list of image
pathnames, one per line, that will be used for training. If this option is not specified, it
is assumed that no training will take place (epochs = 0), and the network will simply
be run on the test sets. In this case, the statistics for the training set will all be zeros.

-1 <test set 1 list> - this option specifies a text file which contains a list of image
pathnames, one per line, that will be used as a test set. If this option is not specified,
the statistics for test set 1 will all be zeros.

-2 <test set 2 list> - same as above, but for test set 2. The idea behind having two
test sets is that one can be used as part of the train/test paradigm, in which training
is stopped when performance on the test set begins to degrade. The other can then be
used as a “real” test of the resulting network.

3.1.2 Interpreting the output of facetrain

When you run facetrain, it will first read in all the data files and print a bunch of lines
regarding these operations. Once all the data is loaded, it will begin training. At this point,
the network’s training and test set performance is outlined in one line per epoch. For each
epoch, the following performance measures are output:

<epoch> <delta> <trainperf> <trainerr> <t1perf> <t1err> <t2perf> <t2err>

These values have the following meanings:

epoch is the number of the epoch just completed; it follows that a value of 0 means that
no training has yet been performed.

delta is the sum of all δ values on the hidden and output units as computed during
backprop, over all training examples for that epoch.

trainperf is the percentage of examples in the training set which were correctly classified.

trainerr is the average, over all training examples, of the error function 1

2

∑
(ti − oi)

2,
where ti is the target value for output unit i and oi is the actual output value for that
unit.

t1perf is the percentage of examples in test set 1 which were correctly classified.

t1err is the average, over all examples in test set 1, of the error function described above.

t2perf is the percentage of examples in test set 2 which were correctly classified.

t2err is the average, over all examples in test set 2, of the error function described above.

6



3.2 Tips

Although you do not have to modify the image or network packages, you will need to know
a little bit about the routines and data structures in them, so that you can easily implement
new output encodings for your networks. The following sections describe each of the packages
in a little more detail. You can look at imagenet.c, facetrain.c, and facerec.c to see
how the routines are actually used.

In fact, it is probably a good idea to look over facetrain.c first, to see how the training
process works. You will notice that load target() from imagenet.c is called to set up
the target vector for training. You will also notice the routines which evaluate performance
and compute error statistics, performance on imagelist() and evaluate performance().
The first routine iterates through a set of images, computing the average error on these
images, and the second routine computes the error and accuracy on a single image.

You will almost certainly not need to use all of the information in the following sections,
so don’t feel like you need to know everything the packages do. You should view these
sections as reference guides for the packages, should you need information on data structures
and routines.

Another fun thing to do, if you didn’t already try it in the last question of the assignment,
is to use the image package to view the weights on connections in graphical form; you will
find routines for creating and writing images, if you want to play around with visualizing
your network weights.

Finally, the point of this assignment is for you to obtain first-hand experience in working
with neural networks; it is not intended as an exercise in C hacking. An effort has been
made to keep the image package and neural network package as simple as possible. If you
need clarifications about how the routines work, don’t hesitate to ask.

3.3 The neural network package

As mentioned earlier, this package implements three-layer fully-connected feedforward neural
networks, using a backpropagation weight tuning method. We begin with a brief description
of the data structure, a BPNN (BackPropNeuralNet).

All unit values and weight values are stored as doubles in a BPNN.
Given a BPNN *net, you can get the number of input, hidden, and output units with

net->input n, net->hidden n, and net->output n, respectively.
Units are all indexed from 1 to n, where n is the number of units in the layer. To get

the value of the kth unit in the input, hidden, or output layer, use net->input units[k],
net->hidden units[k], or net->output units[k], respectively.

The target vector is assumed to have the same number of values as the number of units
in the output layer, and it can be accessed via net->target. The kth target value can be
accessed by net->target[k].

To get the value of the weight connecting the ith input unit to the jth hidden unit, use
net->input weights[i][j]. To get the value of the weight connecting the jth hidden unit
to the kth output unit, use net->hidden weights[j][k].

7



The routines are as follows:

void bpnn initialize(seed)

int seed;

This routine initializes the neural network package. It should be called before any
other routines in the package are used. Currently, its sole purpose in life is to initialize
the random number generator with the input seed.

BPNN *bpnn create(n in, n hidden, n out)

int n in, n hidden, n out;

Creates a new network with n in input units, n hidden hidden units, and n output

output units. All weights in the network are randomly initialized to values in the range
[−1.0, 1.0]. Returns a pointer to the network structure. Returns NULL if the routine
fails.

void bpnn free(net)

BPNN *net;

Takes a pointer to a network, and frees all memory associated with the network.

void bpnn train(net, learning rate, momentum, erro, errh)

BPNN *net;

double learning rate, momentum;

double *erro, *errh;

Given a pointer to a network, runs one pass of the backpropagation algorithm. Assumes
that the input units and target layer have been properly set up. learning rate and
momentum are assumed to be values between 0.0 and 1.0. erro and errh are pointers
to doubles, which are set to the sum of the δ error values on the output units and
hidden units, respectively.

void bpnn feedforward(net)

BPNN *net;

Given a pointer to a network, runs the network on its current input values.

BPNN *bpnn read(filename)

char *filename;

Given a filename, allocates space for a network, initializes it with the weights stored
in the network file, and returns a pointer to this new BPNN. Returns NULL on failure.

void bpnn save(net, filename)

BPNN *net;

char *filename;

Given a pointer to a network and a filename, saves the network to that file.

8



3.4 The image package

The image package provides a set of routines for manipulating PGM images. An image is a
rectangular grid of pixels; each pixel has an integer value ranging from 0 to 255. Images are
indexed by rows and columns; row 0 is the top row of the image, column 0 is the left column
of the image.

IMAGE *img open(filename)

char *filename;

Opens the image given by filename, loads it into a new IMAGE data structure, and
returns a pointer to this new structure. Returns NULL on failure.

IMAGE *img creat(filename, nrows, ncols)

char *filename;

int nrows, ncols;

Creates an image in memory, with the given filename, of dimensions nrows × ncols,
and returns a pointer to this image. All pixels are initialized to 0. Returns NULL on
failure.

int ROWS(img)

IMAGE *img;

Given a pointer to an image, returns the number of rows the image has.

int COLS(img)

IMAGE *img;

Given a pointer to an image, returns the number of columns the image has.

char *NAME(img)

IMAGE *img;

Given a pointer to an image, returns a pointer to its base filename (i.e., if the full file-
name is /usr/joe/stuff/foo.pgm, a pointer to the string foo.pgm will be returned).

int img getpixel(img, row, col)

IMAGE *img;

int row, col;

Given a pointer to an image and row/column coordinates, this routine returns the
value of the pixel at those coordinates in the image.

void img setpixel(img, row, col, value)

IMAGE *img;

int row, col, value;

Given a pointer to an image and row/column coordinates, and an integer value as-
sumed to be in the range [0, 255], this routine sets the pixel at those coordinates in the
image to the given value.

9



int img write(img, filename)

IMAGE *img;

char *filename;

Given a pointer to an image and a filename, writes the image to disk with the given
filename. Returns 1 on success, 0 on failure.

void img free(img)

IMAGE *img;

Given a pointer to an image, deallocates all of its associated memory.

IMAGELIST *imgl alloc()

Returns a pointer to a new IMAGELIST structure, which is really just an array of
pointers to images. Given an IMAGELIST *il, il->n is the number of images in the
list. il->list[k] is the pointer to the kth image in the list.

void imgl add(il, img)

IMAGELIST *il;

IMAGE *img;

Given a pointer to an imagelist and a pointer to an image, adds the image at the end
of the imagelist.

void imgl free(il)

IMAGELIST *il;

Given a pointer to an imagelist, frees it. Note that this does not free any images to
which the list points.

void imgl load images from textfile(il, filename)

IMAGELIST *il;

char *filename;

Takes a pointer to an imagelist and a filename. filename is assumed to specify a file
which is a list of pathnames of images, one to a line. Each image file in this list is
loaded into memory and added to the imagelist il.

3.5 hidtopgm

hidtopgm takes the following fixed set of arguments:
hidtopgm net-file image-file x y n

net-file is the file containing the network in which the hidden unit weights are to be found.

image-file is the file to which the derived image will be output.

x and y are the dimensions in pixels of the image on which the network was trained.

10



n is the number of the target hidden unit. n may range from 1 to the total number of
hidden units in the network.

3.6 outtopgm

outtopgm takes the following fixed set of arguments:
outtopgm net-file image-file x y n

This is the same as hidtopgm, for output units instead of input units. Be sure you specify
x to be 1 plus the number of hidden units, so that you get to see the weight w0 as
well as weights associated with the hidden units. For example, to see the weights for
output number 2 of a network containing 3 hidden units, do this:

outtopgm pose.net pose-out2.pgm 4 1 2

net-file is the file containing the network in which the hidden unit weights are to be found.

image-file is the file to which the derived image will be output.

x and y are the dimensions of the hidden units, where x is always 1 + the number of hidden
units specified for the network, and y is always 1.

n is the number of the target output unit. n may range from 1 to the total number of
output units for the network.

11


	Introduction
	The face images
	Viewing the face images
	The neural network and image access code

	The Assignment
	Documentation
	facetrain
	Running facetrain
	Interpreting the output of facetrain

	Tips
	The neural network package
	The image package
	hidtopgm
	outtopgm


