
Learning by
Building

Identification Trees

In this chapter, you learn about a method that enables computers to
learn by assembling tests into an identification tree. You also learn how an
identification tree can be transformed into a perspicuous set of antecedent–

consequent rules.
Identification-tree building is the most widely used learning method.

Thousands of practical identification trees, for applications ranging from
medical diagnosis to process control, have been built using the ideas that
you learn about in this chapter.

By way of illustration, you see how the Sprouter and Pruner pro-
cedures construct rules that determine whether a person is likely to be
sunburned, given a database of sample people and their physical attributes.

Once you have finished this chapter, you will know how to build iden-
tification trees, and how to transform them into rules.

FROM DATA TO IDENTIFICATION TREES

In this section, you learn how to build identification trees by looking for
regularities in data.

423
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The World Is Supposed to Be Simple

Imagine that you are somehow unaware of the factors that leave some peo-
ple red and in pain after a few hours on the beach, while other people
just turn tanned and happy. Being curious, you go to the beach and start
jotting down notes. You observe that people vary in hair color, height,
and weight. Some smear lotion on their bodies; others do not. Ultimately,
some turn red. You want to use the observed properties to help you pre-
dict whether a new person—one who is not in the observed set—will turn
red.

One possibility, of course, is to look for a match between the properties
of the new person and those of someone observed previously. Unfortunately,
the chances of an exact match are usually slim. Suppose, for example, that
your observations produce the information that is listed in the following
table:

Name Hair Height Weight Lotion Result

Sarah blonde average light no sunburned

Dana blonde tall average yes none

Alex brown short average yes none

Annie blonde short average no sunburned

Emily red average heavy no sunburned

Pete brown tall heavy no none

John brown average heavy no none

Katie blonde short light yes none

Given that there are three possible hair colors, heights, and weights,
and that a person either uses or does not use lotion, there are 3 × 3 × 3 ×
2 = 54 possible combinations. If a new person’s properties are selected at
random, the probability of an exact match with someone already observed
is 8/54 = 0.15, or just 15 percent.

The probability can be lower in practice, because there can be many
more properties and many more possible values for each of those proper-
ties. Suppose, for example, that you record a dozen unrelated properties
for each observed person, that each property has five possible values, and
that each property value appears with equal frequency. Then, there would
be 512 = 2.44 × 108 combinations, and even with a table of 1 million ob-
servations, you would find an exact match only about 0.4 percent of the
time.

Thus, it can be wildly impractical to classify an unknown object by
looking for an exact match between the measured properties of that un-
known object and the measured properties of samples of known classifica-
tion.

You could, of course, treat the data as a feature space in which you
look for a close match, perhaps using the approach described in Chapter 2.
But if you do not know which properties are important, you may find a
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close match that is close because of the coincidental alignment of irrelevant
properties.

An alternative is to use the version-space method described in Chap-
ter 20 to isolate which properties matter and which do not. But you usually
have no a priori reason to believe that a class-characterizing model can be
expressed as a single combination of values for a subset of the attributes—
nor do you have any reason to believe your samples are noise free.

Still another alternative—the one this chapter focuses on—is to devise
a property-testing procedure such that the procedure correctly classifies
each of the samples. Once such a procedure works on a sufficient number
of samples, the procedure should work on objects whose classification is
not yet known.

One convenient way to represent property-testing procedures is to ar-
range the tests involved in an identification tree. Because an identifi-
cation tree is a special kind of decision tree, the specification refers to the
decision-tree specification provided in Chapter 19:

An identification tree is a representation

That is a decision tree

In which

⊲ Each set of possible conclusions is established implicitly
by a list of samples of known class.

For example, in the identification tree shown in figure 21.1, the first test
you use to identify burn-susceptible people—the one at the root of the
tree—is the hair-color test. If the result is blonde, then you check whether
lotion is in use; on the other hand, if the hair-color result is red or brown,
you need no subsequent test. In general, the choice of which test to use, if
any, depends on the results of previous tests.

Thus, the property-testing procedure embodied in an identification tree
is like a railroad switch yard. Each unknown object is directed down one
branch or another at each test, according to its properties, like railroad
cars at switches, according to their destination.

The identification tree shown in figure 21.1 can be used to classify the
people in the sunburn database, because each sunburned person ends up at
a leaf node alone or with other sunburned people. Curiously, however, the
identification tree shown in figure 21.2 can be used as well, even though
it contains tests that have nothing to do with sunburn susceptibility. The
identification tree in figure 21.1 seems more reasonable because you know
that hair color and exposure are reasonably congruent with sunburn sus-
ceptibility.

The identification tree in figure 21.1 seems to us to be better than
the one in figure 21.2, but how can a program reach the same conclusion
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Figure 21.1 An identifica-

tion tree that is consistent

with the sunburn database.

This tree is consistent with
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burn. Each checked name

identifies a person who turns

red.
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Figure 21.2 Another

identification tree that is
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without any prior knowledge of what lotion does or how hair color relates
to skin characteristics? One answer is to presume a variation on Occam’s
razor:

Occam’s razor, specialized to identification trees:

⊲ The world is inherently simple. Therefore the smallest
identification tree that is consistent with the samples is
the one that is most likely to identify unknown objects
correctly.

Thus, the identification tree in figure 21.1, being smaller than the one in
figure 21.2, is the tree that is more likely to identify sunburn-susceptible
people.

Consequently, the question turns from which is the right identification

tree to how can you construct the smallest identification tree?

Tests Should Minimize Disorder

Unfortunately, it is computationally impractical to find the smallest pos-
sible identification tree when many tests are required, so you have to be
content with a procedure that tends to build small trees, albeit trees that
are not guaranteed to be the smallest possible.

One way to start is to select a test for the root node that does the
best job of dividing the database of samples into subsets in which many
samples have the same classification. For each set containing more than
one kind of sample, you then select another test in an effort to divide that
inhomogeneous set into homogeneous subsets.

Consider, for example, the sunburn database and the four candidates
for the root test. As shown in figure 21.3, the weight test is arguably
the worst if you judge the tests according to how many people end up in
homogeneous sets. After you use the weight test, none of the sample people
are in a homogeneous set. The height test is somewhat better, because two
people are in a homogeneous set; the lotion-used test is still better, because
three people are in homogeneous sets. The hair-color test is best, however,
because four people—Emily, Alex, Pete, and John—are in homogeneous
sets. Accordingly, you use the hair-color test first.

The hair-color test leaves only one inhomogeneous set, consisting of
Sarah, Dana, Annie, and Katie. To divide this set further, you consider
what each of the remaining three tests does to the four people in the set.
The result is shown in figure 21.4.

This time, there can be no doubt. The lotion-used test divides the set
into two homogeneous subsets, whereas both the height and weight tests
leave at least one inhomogeneous subset.
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Figure 21.3 Each test

divides the sunburn database

into different subsets. Each

checked name identifies

a person who turns red.

Intuition suggests that the

hair-color test does the best

job of dividing the database

into homogeneous subsets.
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Figure 21.4 Once the

blonde-haired people have

been isolated, the available

tests perform as shown. Each

checked name identifies a

person who turns red. The
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Information Theory Supplies a Disorder Formula

For a real database of any size, it is unlikely that any test would produce
even one completely homogeneous subset. Accordingly, for real databases,
you need a powerful way to measure the total disorder, or inhomogeneity,
in the subsets produced by each test. Fortunately, you can borrow the
formula you need from information theory:

Average disorder =
∑

b

(
nb

nt

) × (
∑

c

−
nbc

nb

log2

nbc

nb

),

where

nb is the number of samples in branch b,

nt is the total number of samples in all branches,

nbc is the total of samples in branch b of class c.

To see why this borrowed formula works, first confine your attention
to the set of samples lying at the end of one branch b. You want a formula
involving nb and nbc that gives you a high number when a test produces
highly inhomogeneous sets and a low number when a test produces com-
pletely homogeneous sets. The following formula involving nbc and nb does
the job:

Disorder =
∑

c

−
nbc

nb

log2

nbc

nb

.

Although there is nothing sacred about this disorder formula, it cer-
tainly has desirable features, which is why information-theory experts use
a similar formula to measure information.†

To get a feel for the desirable features of the disorder formula, suppose
that you have a set that contains members of just two classes, class A and
class B. If the number of members from class A and the number of mem-
bers from class B are perfectly balanced, the measured disorder is 1, the
maximum possible value:

Disorder =
∑

c

−
nbc

nb

log2

nbc

nb

= −
1

2
log2

1

2
−

1

2
log2

1

2

=
1

2
+

1

2

= 1.

†In information theory, the disorder formula is sacred: It is the only formula that

satisfies certain general properties. The requirements imposed by heuristic tree

building are not so stringent, however.
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Figure 21.5 The disorder

in a set containing members

of two classes A and B, as a

function of the fraction of the

set belonging to class A. On

the left, the total number

of samples in both classes

combined is two; on the right,

the total number of samples

in both classes is eight.
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On the other hand, if there are only As or only Bs, the measured disor-
der is 0, the minimum possible value, because, in the limit, as x approaches
zero, x × log2(x ) is zero:

Disorder =
∑

c

−
nbc

nb

log2

nbc

nb

= −1 log2 1 − 0 log2 0

= −0 − 0

= 0.

As you move from perfect balance and perfect homogeneity, disorder
varies smoothly between zero and one, as shown in figure 21.5. The disorder
is zero when the set is perfectly homogeneous, and the disorder is one when
the set is perfectly inhomogeneous.

Now that you have a way of measuring the disorder in one set, you can
measure the average disorder of the sets at the ends of the branches under
a test. You simply weight the disorder in each branch’s set by the size of
the set relative to the total size of all the branches’ sets. In the following
formula, nb is the number of samples that the test sends down branch b,
and nt is the total number of samples in all branches:

Average disorder =
∑

b

nb

nt

× (Disorder in the branch b set).

Substituting for the disorder in the branch b set, you have the desired
formula for average disorder.

Now you can compute the average disorder produced when each test
is asked to work on the complete sample set. Looking back at figure 21.3,
note that the hair-color test divides those people into three sets. In the
blonde set, two people turn red and two do not. In the red-haired set, there
is only one person and that person turns red. In the brown-haired set, all
three people are unaffected.
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Hence, the average disorder produced by the hair-color test when the
complete sample set is used is 0.5:

Average disorder =
4

8
(−

2

4
log2

2

4
−

2

4
log2

2

4
)

+
1

8
× 0

+
3

8
× 0

= 0.5.

Working out the result for the other tests yields the following results:

Test Disorder
Hair 0.5
Height 0.69
Weight 0.94
Lotion 0.61

Because the hair test clearly produces the least average disorder, the hair
test is the first that should be used, which is consistent with the previous
informal analysis. Similarly, once the hair test is selected, the choice of an-
other test to separate out the sunburned people from among Sarah, Dana,
Annie, and Katie is decided by the following calculations:

Test Disorder
Height 0.5
Weight 1
Lotion 0

Thus, the lotion-used test is the clear winner. Using the hair test and
the lotion-used tests together ensures the proper identification of all the
samples.

In summary, to generate an identification tree, execute the following
procedure, named Sprouter:

To generate an identification tree using Sprouter,

⊲ Until each leaf node is populated by as homogeneous a
sample set as possible:

⊲ Select a leaf node with an inhomogeneous sample set.

⊲ Replace that leaf node by a test node that divides the
inhomogeneous sample set into minimally inhomoge-
neous subsets, according to some measure of disorder.



432 Chapter 21 Learning by Building Identification Trees

FROM TREES TO RULES

Once an identification tree is constructed, it is a simple matter to convert
it into a set of equivalent rules. You just trace each path in the iden-
tification tree, from root node to leaf node, recording the test outcomes
as antecedents and the leaf-node classification as the consequent. For the
sunburn illustration, the four rules corresponding to the four paths in the
identification tree are as follows:

If the person’s hair color is blonde
the person uses lotion

then nothing happens

If the person’s hair color is blonde
the person uses no lotion

then the person turns red

If the person’s hair color is red
then the person turns red

If the person’s hair color is brown
then nothing happens

In the rest of this section, you learn how to simplify such rule sets so as to
increase transparency and to decrease errors.

Unnecessary Rule Antecedents Should Be Eliminated

Once a rule set is devised, you can try to simplify that set by simplifying
each rule and then eliminating useless rules. To simplify a rule, you ask
whether any of the antecedents can be eliminated without changing what
the rule does on the samples.

Two of the rules have two antecedents. For each of the two, you ask
whether both antecedents are really necessary. Consider, for example, the
two antecedents in the following rule:

If the person’s hair color is blonde
the person uses lotion

then nothing happens

If you eliminate the first antecedent, the one about blonde hair, the rule
triggers for each person who uses lotion. Three of the sample people use
lotion: Dana, Alex, and Katie, none of whom turn red. Because none turn
red, it cannot be that hair color matters, so the dropped antecedent that
checks for blonde hair is unnecessary. Dropping that antecedent produces
the following, simplified rule:

If the person uses lotion
then nothing happens
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Optimizing a Nuclear Fuel Plant

Programs resembling Sprouter can be used to identify key parameters in chem-

ical processing. Westinghouse used such a program to improve yield at a plant in

which uranium hexafluoride gas is converted into uranium-dioxide fuel pellets. Ap-

proximately six processing steps are required to do the conversion, and among these

processing steps, there are approximately 30 controllable temperatures, pressures,

and flow rates:

UF
6 U0

2

High

Low
Flow

L H
L H

Pressure

Historically, process engineers noted that yield was high on some days and low

on others; of course, they wanted to control the 30 parameters so as to guarantee high

yield every day. Unfortunately, no one knew quite what to do. Worse yet, nuclear

fuel plants are not something with which to play, so experiments were forbidden.

Fortunately, Sprouter was able to use plant records to build an identification

tree to determine, on the basis of the parameters, when yield is high or low. In

the schematic identification tree example that follows, each test decides whether a

particular parameter value is high or low with respect to a threshold. Each of the

thresholds is determined by Sprouter itself so as to produce the simplest tree:

Parameter 17

Parameter 3 Parameter 27

High
Low

High

High

Low

Low
High Yield

Once such a tree is in hand, it is easy to convert identification into control.

You just have to find the shortest path from the root of the tree to one of the

high-yield subsets. In this schematic example, you can guarantee high yield by

keeping parameter 17 low and parameter 3 high. In the Westinghouse experience,

this approach was a spectacular success: Their entire investment was recovered in

the first half-day of improved yield.
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To make such reasoning easier, it is often helpful to construct what statis-
ticians call a contingency table, so called because it shows the degree to
which a result is contingent on a property. In the following contingency
table you see the number of lotion users who are blonde and not blonde,
and the number of lotion users who are sunburned and not sunburned. The
table clearly shows that knowledge about whether a person is blonde has
no bearing on determining whether the person becomes sunburned given
that the person uses lotion.

No change Sunburned

Person is blonde 2 0
Person is not blonde 1 0

Now consider the second antecedent in the same rule, the one that checks
for lotion. If you eliminate it, the rule triggers whenever the person is
blonde. Among the four blonde people, Sarah and Annie, neither of whom
use lotion, are both sunburned; on the other hand, Dana and Katie, both
of whom do use lotion, are not sunburned. Here is the contingency table:

No change Sunburned

Person uses lotion 2 0
Person uses no lotion 0 2

Plainly, the lotion antecedent has a bearing on the result for those people
who are blonde. The samples who are blonde are not sunburned if and
only if they use lotion. Accordingly, the dropped antecedent does make a
difference, and you cannot eliminate it.

Now turn to the other two-antecedent rule; it triggers on blondes who
do not use lotion:

If the person’s hair color is blonde
the person does not use lotion

then the person turns red

As before, you explore what happens as antecedents are eliminated one
at a time. Eliminating the first antecedent produces a rule that looks for
people who do not use lotion. Of the five who do not, both blondes are
sunburned; among the other three, one is sunburned and two are not:

No change Sunburned

Person is blonde 0 2
Person is not blonde 2 1

Evidently the dropped antecedent is important. Without it, you cannot be
sure that a person who matches the rule is going to be burned.

Eliminating the second antecedent produces a rule that looks for people
who are blonde. Of the four who are, two turn red and two do not:
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No change Sunburned

Person uses no lotion 0 2
Person uses lotion 2 0

Again, the dropped antecedent is important. You conclude that the rule
must remain as is; any simplification makes the rule fail on some of the
sample people.

Finally, you need to look at the one-antecedent rules:

If the person’s hair color is red
then the person turns red

If the person’s hair color is brown
then nothing happens

If a rule has one antecedent and that antecedent is dropped, then, by
convention, the rule is always triggered. Hence, the contingency tables for
the two rules both contain all eight samples:

No change Sunburned

Person is red haired 0 1
Person is not red haired 5 2

No change Sunburned

Person is brown haired 3 0
Person is not brown haired 2 3

Repeating what you have done with two antecedent rules, you retain the
red-hair antecedent in the first of these two rules, as well as the brown-hair
antecedent in the second. Of course, these results are obvious in any case,
for a rule with no antecedents will work correctly only if all the samples
have the same result.

Unnecessary Rules Should Be Eliminated

Once you have simplified individual rules by eliminating antecedents that
do not matter, you need to simplify the entire rule set by eliminating entire
rules. For the sunburn illustration, the four candidate rules, one of which
has been simplified, are as follows:

If the person’s hair color is blonde
the person uses no lotion

then the person turns red

If the person uses lotion
then nothing happens
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If the person’s hair color is red
then the person turns red

If the person’s hair color is brown
then nothing happens

In this example, note that two rules have consequents that indicate that
a person will turn red, and that two rules have consequents that indicate
that nothing will happen. You can replace the two that indicate a person
will turn red with a default rule, one that is to be used only if no other
rule applies. Because there are two possible results in the example, there
are two choices:

If no other rule applies
then the person turns red

If no other rule applies
then nothing happens

In general, it makes sense to choose the default rule that eliminates as
many other rules as possible; in the example, however, because both of the
possible conclusions are indicated by two rules, you must use some other,
tie-breaking criterion. One obvious tie breaker is to choose the default rule
that covers the most common consequent in the sample set, which happens
to be that nothing happens. In the example, this produces the following
simplified rule set:

If the person’s hair color is blonde
the person uses no lotion

then the person turns red

If the person’s hair color is red
then the person turns red

If no other rule applies
then nothing happens

Another obvious tie breaker is to choose the default rule that produces the
simplest rules, perhaps as measured by the total number of antecedents.
In the example, this choice produces the following simplified rule set:

If the person uses lotion
then nothing happens

If the person’s hair color is brown
then nothing happens

If no other rule applies
then the person turns red
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In summary, to convert an identification tree into a rule set, execute the
following procedure, named Pruner:

To generate rules from an identification tree using Pruner,

⊲ Create one rule for each root-to-leaf path in the identifi-
cation tree.

⊲ Simplify each rule by discarding antecedents that have no
effect on the conclusion reached by the rule.

⊲ Replace those rules that share the most common conse-
quent by a default rule that is triggered when no other
rule is triggered. In the event of a tie, use some heuristic
tie breaker to choose a default rule.

Fisher’s Exact Test Brings Rule Correction in
Line with Statistical Theory

Now let us leave the sunburn example to consider the following table, which
relates presence or absence of a certain result, R, to the presence or absence
of a certain property, P . Suppose that you denote the presence of the result
by R1 and its absence by R2. Similarly, suppose you denote the presence
of the property by P1 and its absence by P2. Then you have, in general,
the following contingency table:

R1 R2

P1 l m

P2 n o

Now the question is this: Do the values of l , m, n, and o indicate that
knowing about P is relevant to determining R? Consider, for example, the
following contingency table:

R1 R2

P1 1 0
P2 0 1

On the surface, if you use this table to decide whether to keep an antecedent
testing for P in a rule, it seems to indicate that you should keep the an-
tecedent, because, without the antecedent, the rule would misclassify an
example. But now consider the following contingency table:

R1 R2

P1 999 0
P2 0 1

Without the antecedent testing for P , you would again misclassify a sam-
ple, but this time only one sample in 1000, rather than one in two. Is
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a simplification worth an occasional error? Or is the table entry at the
intersection of column P2 and row R2 caused by noisy measurement?

And speaking of noise, are two examples really sufficient for you to
decide whether an antecedent should be retained? Should you reach the
same conclusion with two contingency tables, both of which have the same
numbers from a relative point of view, but one of which has 1000 times
more data, as in the following pair?

R1 R2

P1 1 0
P2 0 1

R1 R2

P1 1000 0
P2 0 1000

After thinking about such questions, you might decide on a strategy that
considers both the sizes of the entries and their relative sizes. To be con-
servative, if all numbers are small, you probably should get rid of an an-
tecedent rather than treat it as though it were solidly supported. Similarly,
if the ratio of l to m is the same or nearly the same as the ratio of n to
o, knowing about P is not helpful, and you should probably get rid of the
antecedent. On the other hand, if the numbers are large and if l/m is very
different from n/o, then knowing about P is quite enlightening, and you
should keep the antecedent.

To put this sort of reasoning on solid ground, you should consult a
statistician, who might take you through an analysis that leads, in several
steps, to Fisher’s exact test. The following paragraphs sketch those
steps.

First, think about your goal. One plausible goal is to determine whether
there is a statistical dependence between the result R and the property P .
Unfortunately, if there is a statistical dependence, you probably have no
clue about which of an infinite number of forms that dependence might
take, which means you do not know exactly for what you are to test.

Fortunately, statistical independence has only one form, making inde-
pendence much easier to deal with than dependence. Accordingly, your
statistician tells you to look for statistical dependence indirectly, through
a double negative. Instead of trying to show that the result, R, depends on
the property, P , you try to show that it is unlikely that R does not depend
on P . Said in another way, your goal is to decide whether your samples

cast significant doubt on the independence hypothesis.†

Your second step is to ask about the probability of observing a par-
ticular combination, l , m, n, o, given that R is independent of P . To

†A statistician would say that your goal is to perform a significance test on the

null hypothesis. I cannot think why.
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say something about that probability, however, you have to make more
assumptions, because with four things that can vary, the problem is still
severely underconstrained, even with independence assumed.

The standard approach is to assume that there is a certain fixed num-
ber of samples corresponding to P1, SP1

= l + m, a certain fixed number
corresponding to P2, SP2

= n + o, and a certain fixed number correspond-
ing to R1, SR1

= l + n. Of course, these assumptions fix the number
corresponding to R2, SR2

= m + o, inasmuch as SP1
+ SP2

must be equal
to SR1

+ SR2
.

These extra assumptions are equivalent to saying that the marginal

sums of the contingency table are constants:

R1 R2 Marginal sum

P1 l m SP1
= l + m

P2 n o SP2
= n + o

Marginal sum SR1
= l + n SR2

= m + o SP1
+ SP2

= SR1
+ SR2

Once you have fixed the size of the marginal sums, you are free to choose
a value for only one of l or m or n or o, which then, in cooperation with
the marginal sums, determines the rest.

Suppose you pick a value for l , the number of samples with result
R1 and property P1. Then, your statistician tells you that the following
probability formula, grimly full of factorials, provides the probability for
your value for l given the marginal sums:

p(l |SP1
,SP2

,SR1
,SR2

) =

SP1
!

l!(SP1
−l)! ×

SP2
!

(SR1
−l)!(SP2

−(SR1
−l))!

(SP1
+SP2

)!

SR1
!(SP1

+SP2
−SR1

)!

.

Note that the formula does not involve SR2
, because SR2

is determined by
the other marginal sums.

With the formula, you can plot, as in figure 21.6, the probabilities for
particular values of l given independence and SR1

= SR2
= SP1

= SP2
= 10.

Of course, whenever the values for SP1
and SP2

are unequal, the sym-
metry disappears—as shown, for example, in figure 21.7.

Your third step is to note that the combined probability of all extremely
high and low values of l is low. In the symmetric example—the one with 20
samples—the probability that l > 7 is less than 0.025. Also, the probability
that l < 3 is less than 0.025. Thus, the probability that l is outside the
three-to-seven range is less than 0.05, given that the property and the result
are independent.

If it is unlikely, however, that the observed value of l is outside the
central range, given independence, then, if the observed value actually is
outside the central range, independence must not be likely. More precisely,
if you say that the property and the result are independent whenever the
observed value of l is outside the central range, then the probability of
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Figure 21.6 The probability

of l samples exhibiting both

a certain property and result,

given that 10 samples have

the property, 10 do not, 10

samples exhibit the result, and

10 do not, for a total of 20

samples.
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Figure 21.7 The open circles

show the probability of l

samples exhibiting both a

certain property and result,

given that 10 samples have

the property, 10 do not, 10

samples exhibit the result,

and 10 do not, for a total

of 20 samples. The filled

circles show the probability

of l samples exhibiting both

a certain property and result,

given that 10 samples have

the property, 40 do not, 10

samples exhibit the result, and

40 do not, for a total of 50

samples.
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l
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blundering when the property and the result actually are independent is
less than 0.05.

Or, saying it still another way, if l lies outside the central range, you
can say that the property and the result are statistically dependent with
less than a five percent chance of wrongfully ruling out the independence
hypothesis. Your statistician says that the observed value is significant at
the 5-percent level using Fisher’s exact test.

Thus, the following contingency table is seriously unlikely, given inde-
pendence. Whenever you see such a table, you should retain an antecedent
involving a property P .

R1 R2 Marginal sum

P1 2 8 10
P2 8 2 10
Marginal sum 10 10 20

On the other hand, the following contingency table is reasonable, given
independence. Following your statistician’s line of reasoning, you should
drop an antecedent involving a property P .

R1 R2 Marginal sum

P1 4 6 10
P2 6 4 10
Marginal sum 10 10 20

Not surprisingly, when you use the test on the antecedents in the rules
derived from the sunburn example, you eliminate all the antecedents, for
there just are not enough data to say that there is significant evidence
in favor of rejecting the conservative assumption of independence. On the
other hand, were there five times as many data, with all results increased in
proportion, you would reinstate all the antecedents that seemed important
when reasoning without statistics.

Recall, for example, what happens when you drop the first antecedent
in the following rule:

If the person’s hair color is blonde
the person uses lotion

then nothing happens

Given the original data, the contingency table is as follows:

No change Sunburned

Person uses lotion 2 0
Person uses no lotion 0 2

With this table, l can be only 0, 1, or 2, and the probabilities are such that
the central region covers all three values. There is no value of l such that
the independence hypothesis is unlikely.
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On the other hand, if there are five times as many data, increased in
proportion, then the contingency table is as follows:

No change Sunburned

Person uses lotion 10 0
Person uses no lotion 0 10

With this table, l can take on any value from 0 to 10, and the probabilities
are such that the central region ranges from 3 to 7. Given l = 10, the
independence hypothesis is unlikely.

SUMMARY

According to Occam’s razor, the world is simple. Thus, the simplest
explanation that covers the data is likely to be the right explanation.
One way to recognize situations is to apply the sequence of tests dic-
tated by an identification tree. One way to learn is to build an identi-
fication tree, keeping it simple in harmony with Occam’s razor.
One way to build a simple identification tree is to use a disorder for-
mula, borrowed from information theory, to determine which tests to
include in the tree.
Once an identification tree is built, you usually should convert it into
a simple set of rules so as to make the knowledge embedded in it more
comprehensible. To do the conversion, you make a rule for each path
through the tree, and then you simplify the resulting set of rules.
To simplify a set of rules, you first eliminate unnecessary rule an-
tecedents using Fisher’s exact test. Then, you eliminate unnecessary
rules.

BACKGROUND

The discussion of decision trees is based on the work of Ross Quinlan on
Id3 and other decision-tree systems [1979, 1983]. Quinlan has worked out
many variations on the same idea using improved measures of tree quality.

Also, Quinlan and Ronald L. Rivest have worked out an alternative
approach based on finding a tree that enables identification using the min-
imum memory [1987].

The discussion of rule extraction from decision trees is also based on
Quinlan’s work [1986]. A good description of Fisher’s exact test is hard to
find, but some large libraries have an instructive pamphlet by Finney et al.
[1963].

The nuclear-fuel plant application is the work of W. J. Leech and his
associates [1986].


