
Learning by
Training

Neural Nets

In this chapter, you learn how neuronlike elements, arranged in nets,
can be used to recognize instances of patterns, and you learn how neural
nets can learn using the back-propagation procedure.

First, you review the most conspicuous properties of real neurons, and
learn how those properties are modeled in neural nets.

Next, you learn how the back-propagation procedure alters the effect of
one simulated neuron on another so as to improve overall performance.

By way of illustration, you see how a simulated neural net can be
taught to recognize which people, among six, are acquaintances and which
are siblings.

Once you have finished this chapter, you will know how simulated
neural nets work, you will understand how the back-propagation procedure
improves their performance, and you will understand why working with
them remains an art.

SIMULATED NEURAL NETS

A vast literature explains what is known about how real neurons work
from every conceivable perspective. Many books and papers explain neu-
rons from the cellular perspective, diving deeply into membrane potentials
and ion pumps. Others deal with neurotransmitters and the details of the
activity at and near neuron synapses. Still others concentrate on how neu-
rons are connected, tracing the paths taken by neurons as they process

443

444 Chapter 22 Learning by Training Neural Nets

Figure 22.1 A neuron

consists of a cell body, one

axon, and many dendrites.

Dendrites receive inputs

from axons of other neurons

via excitation or inhibition

synapses. Real neurons may

have many more dendrites.

Axon

Dendrites

Nucleus

Cell body

information and carry messages from one place to another. And still oth-
ers exploit ideas from contemporary engineering, drawing inspiration from
subjects as diverse as transmission lines and frequency modulation.

Given this vast literature, the tendency of most people who try to
understand and duplicate neural-net function has been to concentrate on
only a few prominent characteristics of neurons.

In the rest of this section, you learn what those characteristics are and
how they are mimicked in feed-forward neural nets. Although feed-forward
nets are among the most popular, there are other kinds. For example, in
Chapter 23, you learn about perceptrons, and in Chapter 24, you learn
about interpolation and approximation nets.

Real Neurons Consist of Synapses, Dendrites,
Axons, and Cell Bodies

Most neurons, like the one shown in figure 22.1, consist of a cell body plus
one axon and many dendrites. The axon is a protuberance that delivers
the neuron’s output to connections with other neurons. Dendrites are
protuberances that provide plenty of surface area, facilitating connection
with the axons of other neurons. Dendrites often divide a great deal, form-
ing extremely bushy dendritic trees. Axons divide to some extent, but far
less than dendrites.

A neuron does nothing unless the collective influence of all its inputs
reaches a threshold level. Whenever that threshold level is reached, the
neuron produces a full-strength output in the form of a narrow pulse that
proceeds from the cell body, down the axon, and into the axon’s branches.
Whenever this happens, the neuron is said to fire. Because a neuron either
fires or does nothing, it is said to be an all-or-none device.

Axons influence dendrites over narrow gaps called synapses. Stimu-
lation at some synapses encourages neurons to fire. Stimulation at others
discourages neurons from firing. There is mounting evidence that learning

Simulated Neurons Consist of Multipliers, Adders, and Thresholds 445

Figure 22.2 A simulated

neuron. Inputs from other

neurons are multiplied by

weights, and then are added

together. The sum is then

compared with a threshold

level. If the sum is above the

threshold, the output is 1;

otherwise, the output is 0.

Sum Threshold

1

w

w

w

x

x

x

0

takes place in the vicinity of synapses and has something to do with the
degree to which synapses translate the pulse traveling down one neuron’s
axon into excitation or inhibition of the next neuron.

The number of neurons in the human brain is staggering. Current
estimates suggest there may be on the order of 1011 neurons per person.
If the number of neurons is staggering, the number of synapses must be
toppling. In the cerebellum—that part of the brain that is crucial to mo-
tor coordination—a single neuron may receive inputs from as many as 105

synapses. Inasmuch as most of the neurons in the brain are in the cerebel-
lum, each brain has on the order of 1016 synapses.

You can get a better feel for numbers like that if you know that there
are about 1.5× 106 characters in a book such as this one. Also, the United
States Library of Congress holds on the order of 20 × 106 books. If each
book were about the size of this one, that number of books would contain
about 30×1012 characters. Accordingly, there are as many synapses in one
brain as there would be characters in about 300 such libraries.

Simulated Neurons Consist of Multipliers,
Adders, and Thresholds

Simulated neural nets typically consist of simulated neurons like the one
shown in figure 22.2. The simulated neuron is viewed as a node connected
to other nodes via links that correspond to axon–synapse–dendrite connec-
tions.

Each link is associated with a weight. Like a synapse, that weight de-
termines the nature and strength of one node’s influence on another. More
specifically, one node’s influence on another is the product of the influ-

446 Chapter 22 Learning by Training Neural Nets

encing neuron’s output value times the connecting link’s weight. Thus, a
large positive weight corresponds to strong excitation, and a small negative
weight corresponds to weak inhibition.

Each node combines the separate influences received on its input links
into an overall influence using an activation function. One simple ac-
tivation function simply passes the sum of the input values through a
threshold function to determine the node’s output. The output of each
node is either 0 or 1 depending on whether the sum of the inputs is below
or above the threshold value used by the node’s threshold function.

Now you can understand what is modeled in these simplified neurons:
the weights model synaptic properties; the adder models the influence-
combining capability of the dendrites; and comparison with a threshold
models the all-or-none characteristic imposed by electrochemical mecha-
nisms in the cell body.

Much of the character of real neurons is not modeled, however. A
simulated neuron simply adds up a weighted sum of its inputs. Real neurons
may process information via complicated dendritic mechanisms that call to
mind electronic transmission lines and logical circuits. A simulated neuron
remains on as long as the sum of its weighted inputs is above threshold.
Real neurons may encode messages via complicated pulse arrangements
that call to mind frequency modulation and multiplexing.

Accordingly, researchers argue hotly about whether simulated neural
nets shed much light on real neural activity and whether these nets can
perform anything like as wonderfully as the real thing. Many people con-
sider real neural nets to be so different from contemporary simulations,
that they always take care to use the qualifiers simulated or real whenever
they use the phrase neural net. In the rest of this chapter, however, the
word simulated is dropped to avoid tedious repetition.

Feed-Forward Nets Can Be Viewed as
Arithmetic Constraint Nets

A handy way to do the computation required by a neural net is by arith-
metic constraint propagation. Accordingly, you need a representation spec-
ification for neurons that builds on arithmetic constraint-propagation nets:

A neural net is a representation

That is an arithmetic constraint net

In which

⊲ Operation frames denote arithmetic constraints modeling
synapses and neurons.

⊲ Demon procedures propagate stimuli through synapses
and neurons.

Feed-Forward Nets Can Recognize Regularity in Data 447

And, of course, you need the demon procedures. One moves information
across neurons; another moves information from one neuron to another.

When a value is written into a synapse’s input slot,

⊲ Write the product of the value and the synapse’s weight
into the synapse’s output slot.

When a value is written into a synapse’s output slot,

⊲ Check the following neuron to see whether all its input
synapses’ outputs have values.

⊲ If they do, add the output values of the input synapses
together, compare the sum with the neuron’s thresh-
old, and write the appropriate value into the neuron’s
output slot.

⊲ Otherwise, do nothing.

Feed-Forward Nets Can Recognize Regularity in Data

To get an idea of how neural nets can recognize regularity, consider the
neural net shown in figure 22.3. The net is equipped with weights that
enable it to recognize properties of pairs of people. Some of the pairs
involve siblings, and others involve acquaintances.

Two input connections receive a value of 1 to identify the pair of peo-
ple under consideration. All other input connections receive values of 0
because the corresponding people are not part of the pair under consider-
ation. Assume that the people in the top group of three are siblings, as
are people in the bottom group of three. Further assume that any pair of
people who are not siblings are acquaintances.

The nodes just to the right of the input links—the ones labeled H1 and
H2—are called hidden nodes because their outputs are not observable.
The output nodes convey conclusions. The Acquaintances node, for exam-
ple, receives a value of 1 when the input arrangement corresponds to two
people who are acquaintances.

The net is not fully connected so as to simplify discussion: The Robert,
Raquel, and Romeo inputs are not connected to the Siblings node, and the
Joan, James, and Juliet nodes are not connected to the Acquaintances
node.

Any of the first three inputs produces enough stimulation to fire H1,
because all the connecting weights are 1.0 and because H1’s threshold is
0.5. Similarly, any of the second three produces enough to fire H2. Thus,
H1 and H2 act as logical Or gates. At least one of H1 and H2 has to fire
because two inputs are always presumed to be on.

448 Chapter 22 Learning by Training Neural Nets

Figure 22.3 A neural net

that recognizes siblings and

acquaintances. All but the

two indicated weights are

1.0. Thresholds are indicated

inside the nodes.

Acquaintances

Siblings

H1

H2

Robert

Raquel

Romeo

Joan

James

Juliet

0.5

0.5

1.5

-1.5
-1.0

-1.0

If both H1 and H2 fire, then the weighted sum presented to the Ac-
quaintance node is 2 because both the weights involved are 1.0 and because
the Acquaintance node’s threshold is 1.5. If only one of H1 and H2 fire, then
the Acquaintance node does not fire. Thus, the Acquaintance node acts as
a logical And gate: It fires only when the input pair are acquaintances.

On the other hand, if both H1 and H2 fire, then the weighted sum
presented to the Siblings node is −2 because of the inhibiting −1 weights.
The value −2 is below that node’s threshold of −1.5, so the node does not
fire. If only one of H1 and H2 fire, then the weighted sum is −1, which is
above the Sibling node’s threshold of −1.5, so it fires. Thus, the Sibling
node fires if and only if the input pair causes exactly one hidden node to
fire; this happens only when the input pair are siblings.

Note that each link and node in this example has a clear role. Gen-
erally, however, recognition capability is distributed diffusely over many
more nodes and weights. Accordingly, the role of particular links and hid-
den nodes becomes obscure.

HILL CLIMBING AND BACK PROPAGATION

There are surprisingly simple procedures that enable neural-net weights to
be learned automatically from training samples. In this section, you learn
that hill climbing is one of those simple procedures.

Gradient Ascent Requires a Smooth Threshold Function 449

The Back-Propagation Procedure Does Hill
Climbing by Gradient Ascent

In the context of neural-net learning, each hill-climbing step amounts to
small changes to the weights. The quality measurement is a measurement
of how well the net deals with sample inputs for which the appropriate
outputs are known.

The hill-climbing procedure explained in Chapter 4 requires you to try
each possible step so that you can choose a step that does the most good. If
you were to carry that hill-climbing idea over straightforwardly, you would
try changing each weight, one at a time, keeping all other weights constant.
Then, you would change only the weight that does the most good.

Fortunately, you can do much better whenever the hill you are climbing
is a sufficiently smooth function of the weights. In fact, you can move
in the direction of most rapid performance improvement by varying all
the weights simultaneously in proportion to how much good is done by
individual changes. When you use this strategy, you are said to move in
the direction of the gradient in weight space and you are said to be doing
gradient ascent.

The back-propagation procedure is a relatively efficient way to
compute how much performance improves with individual weight changes.
The procedure is called the back-propagation procedure because, as you
soon see, it computes changes to the weights in the final layer first, reuses
much of the same computation to compute changes to the weights in the
penultimate layer, and ultimately goes back to the initial layer.

In the rest of this section, you learn about back propagation from
two perspectives. The first, heuristic perspective is intended to make the
back-propagation procedure seem reasonable; the second, mathematical
perspective is intended to validate the heuristic explanation.

First, however, you need to learn about two neural-net modifications
required in preparation for back propagation and gradient ascent.

Nonzero Thresholds Can Be Eliminated

You might think that, to learn, you would need separate procedures for
adjusting weights and for adjusting thresholds. Fortunately, however, there
is a trick that enables you to treat thresholds as though they were weights.

More specifically, a nonzero-threshold neuron is computationally equiv-
alent to a zero-threshold neuron with an extra link connected to an input
that is always held at −1.0. As shown in figure 22.4, the nonzero threshold
value becomes the connecting weight’s value. These threshold-equivalent
weights can be changed in the course of learning just like the other weights,
thus simplifying learning.

Gradient Ascent Requires a Smooth Threshold Function

Actually, the stair-step threshold function is unsuited for gradient ascent
because gradient ascent requires performance to be a smooth function of

450 Chapter 22 Learning by Training Neural Nets

Figure 22.4 Thresholds

are equivalent to links, with

weight values equal to the

threshold values, connected to

inputs held at −1.0.

0 T 0 T

T

-1

Figure 22.5 The Squashed

S function and its slope.

The slope of the Squashed

S function approaches 0

when the sum of the inputs

is either very negative or very

positive; the slope reaches

its maximum, 0.25, when the

input is 0. Because the slope

of the Squashed S function is

given by a particularly simple

formula, the Squashed S is a

popular threshold function.

0

0.5

1

0.0 +5.0-5.0

0

0.5

0.0 +5.0-5.0

Squashed S

Squashed S slope

the weights. The all-or-none character of the stair-step produces flat plains
and abrupt cliffs in weight space. Thus, the small steps inherent in gradient
ascent do nothing almost everywhere, thus defeating the whole procedure.

Accordingly, a squashed S threshold function, shown in figure 22.5,
replaces the stair-step function. The stair-step threshold function is some-
what more faithful to real neuron action, but the squashed S function
provides nearly the same effect with the added mathematical advantage of
smoothness that is essential for gradient ascent.

To make these modifications to the way neuron outputs are computed,
you need only to replace one when-written procedure with another:

Back Propagation Can Be Understood Heuristically 451

When a value is written into a synapse’s output slot,

⊲ Check the following neuron to see whether all its input
synapses’ outputs have values.

⊲ If they do, add the output values of the input synapses
together, pass the sum through the squashed S func-
tion, determine whether the result is greater than 0,
and write the appropriate value into the neuron’s out-
put slot.

⊲ Otherwise, do nothing.

Back Propagation Can Be Understood Heuristically

In this subsection, the back-propagation procedure is explained heuristi-
cally, with a minimum of mathematical equipment. If you prefer a briefer,
more mathematical approach, skip ahead to the next subsection.

The overall idea behind back propagation is to make a large change
to a particular weight, w , if the change leads to a large reduction in the
errors observed at the output nodes. For each sample input combination,
you consider each output’s desired value, d , its actual value, o, and the
influence of a particular weight, w , on the error, d − o. A big change to
w makes sense if that change can reduce a large output error and if the
size of that reduction is substantial. On the other hand, if a change to w

does not reduce any large output error substantially, little should be done
to that weight.

Note that most of the computation needed to compute the change to
any particular weight is also needed to compute the changes to weights that
are closer to the output nodes. Consider the net shown in figure 22.6. Once
you see how to compute a change for a typical weight, wi→j , between a node
in layer i and a node in layer j , you see that the required computations
involve computations needed for the weights, wj→k , between nodes in layer
j and nodes in layer k .

First note that a change in the input to node j results in a change in
the output at node j that depends on the slope of the threshold function.
Where the slope is steepest, a change in the input has the maximum effect
on the output. Accordingly, you arrange for the change in wi→j to depend
on the slope of the threshold function at node j on the ground that change
should be liberal only where it can do a lot of good.

The slope of the squashed S function is given by a particularly simple
formula, o(1−o). Thus, the use of the squashed S function as the threshold
function leads to the following conclusion about changes to wi→j :

Let the change in wi→j be proportional to oj (1 − oj).

Next, the change in the input to node j , given a change in the weight,
wi→j , depends on the output of node i . Again, on the ground that change

452 Chapter 22 Learning by Training Neural Nets

Figure 22.6 A trainable

neural net. Each link has a

weight that can be changed

so as to improve the net’s

ability to produce the

correct outputs for input

combinations in the training

set. Threshold-replacing links

are not shown.

Column
indexed

by h

Column
indexed

by i

Column
indexed

by j

Column
indexed

by k

Column
indexed

by z

should be liberal only where it can do a lot of good, you arrange for wi→j

to change substantially only if the output of node i is high:

Let the change in wi→j be proportional to oi , the output at node i .

Putting these considerations together, it seems that the change to a weight,
wi→j , should be proportional to oi , to oj (1 − oj), and to a factor that
captures how beneficial it is to change the output of node j . To make it
easier to write things down, let us agree that the Greek letter β stands for
the benefit obtained by changing the output value of a node. Thus, the
change to wi→j should be proportional to oi × oj (1 − oj) × βj .

Just how beneficial is it to change the output of node j ? Imagine
first that node j is connected to just one node in the next layer—namely,
node k . Then, the reasoning just completed can be reapplied with a slight
modification:

Because change should be liberal only where it can do substantial good,
the change to oj should be proportional to ok (1 − ok), the slope of the
threshold function at node k .
For the same reason, the change to oj should be proportional to wj→k ,
the weight on the link connecting node j to node k .

Of course, node j is connected to many nodes in the next layer. The overall
benefit obtained by changing oj must be the sum of the individual effects,
each of which includes a weight, wj→k , a slope ok (1−ok), and the factor βk

that indicates how beneficial it is to change ok , the output of node k . Thus,
the benefit that you obtain by changing the output of node j is summarized
as follows:

βj =
∑

k

wj→kok (1 − ok)βk .

At this point, recall that the change to wi→j is proportional to βj .
Evidently, the weight change in any layer of weights depends on a benefit

Back-Propagation Follows from Gradient Descent and the Chain Rule 453

calculation, βj , that depends, in turn, on benefit calculations, βk , needed
to deal with weights closer to the output nodes.

To finish the analysis, you need to answer only one remaining ques-
tion concerning the benefit you obtain by changing the value of an output
node. This value depends, of course, on how wrong the output node’s value
happens to be. If the difference between dz , the desired output at node
z , and oz , the actual output at that same node, is small, then the change
in the output at node z should be relatively small. On the other hand, if
the difference is large, the change in the output at node z should be large.
Accordingly, the appropriate change to oz should be in proportion to the
difference, dz − oz . Recasting this conclusion in the framework of benefit,
you have the following:

βz = dz − oz .

Finally, weight changes should depend on a rate parameter, r , that
should be as large as possible to encourage rapid learning, but not so large
as to cause changes to the output values that considerably overshoot the
desired values:

Let the change in wi→j be proportional to a rate parameter, r , deter-
mined experimentally.

Combining all the equations, you have the following back-propagation

formulas:

∆wi→j =roioj (1 − oj)βj ,

βj =
∑

k

wj→kok (1 − ok)βk for nodes in hidden layers,

βz =dz − oz for nodes in the output layer.

Once you have worked out the appropriate change in the weights for one
input combination, you face an important choice. Some neural-net enthu-
siasts make changes after considering each sample input. Others add up
the changes suggested by individual sample inputs and make actual changes
only after all the sample inputs are considered. In the example experiments
described later in this chapter, changes are made only after all the sample
inputs are considered, because this is the only way that is consistent with
the mathematics of gradient ascent described in the following subsection.

Back-Propagation Follows from Gradient
Descent and the Chain Rule

The previous subsection provides an heuristic argument leading to the back-
propagation formulas. This subsection provides a mathematical argument
leading to the same formulas. This mathematical argument rests on two
ideas drawn from calculus:

Suppose that y is a smooth function of several variables, xi . Further
suppose that you want to know how to make incremental changes to

454 Chapter 22 Learning by Training Neural Nets

the initial values of each xi so as to increase the value of y as fast
as possible. Then, the change to each initial xi value should be in
proportion to the partial derivative of y with respect to that particular
xi . In other words,

∆xi ∝

∂y

∂xi

.

When you make such a change, you are doing gradient ascent.
Suppose that y is a function of several intermediate variables, xi , and
that each xi is a function of one variable, z . Further suppose that you
want to know the derivative of y with respect to z . You obtain that
derivative by adding up the results that you obtained by multiplying
each partial derivative of y with respect to the xi by the derivative of
xi with respect to z :

dy

dz
=

∑

i

∂y

∂xi

dxi

dz
=

∑

i

dxi

dz

∂y

∂xi

.

When you compute such a derivative, you are using the chain rule.

Now recall that you have a set of weights that you want to improve, and
you have a sample set of inputs along with each input’s desired output.
You need a way to measure how well your weights are performing, and you
need a way to improve that measured performance.

The standard way of measuring performance is to pick a particular
sample input and then sum up the squared error at each of the outputs.
Once that is done for each sample input, you sum over all sample inputs
and add a minus sign for an overall measurement of performance that peaks
at 0:

P = −

∑

s

(

∑

z

(dsz − osz)
2
)

,

where

P is the measured performance,

s is an index that ranges over all sample inputs,

z is an index that ranges over all output nodes,

dsz is the desired output for sample input s at the z th node,

osz is the actual output for sample input s at the z th node.

Note that the reason that the sum of the squared errors is so popular is that
it is the choice that most often leads to pretty and tractable mathematics.
Otherwise, something else, such as adding up the absolute errors, would do
as well.

Of course, the performance measure, P , is a function of the weights.
Thus, you can deploy the idea of gradient ascent if you can calculate the
partial derivative of performance with respect to each weight. With these
partial derivatives in hand, you can climb the performance hill most rapidly
by altering all weights in proportion to the corresponding partial derivative.

Back-Propagation Follows from Gradient Descent and the Chain Rule 455

First, however, note that performance is given as a sum over all sample
inputs. Accordingly, you can compute the partial derivative of performance
with respect to a particular weight by adding up the partial derivative of
performance for each sample input considered separately. Thus, you can
reduce notational clutter by dropping the s subscript, thus focusing on the
sample inputs one at a time, with the understanding that each weight will
be adjusted by summing the adjustments derived from each sample input.
Consider, then, the partial derivative

∂P

∂wi→j

,

where the weight, wi→j is a weight connecting the ith layer of nodes to the
j th layer of nodes.

Now your goal is to find an efficient way to compute the partial deriva-
tive of P with respect to wi→j . You reach that goal by expressing the
partial derivative mostly in terms of computations that have to be done
anyway to deal with weights closer to the output layer of nodes.

The effect of wi→j on performance, P , is through the intermediate
variable, oj , the output of the j th node. Accordingly, you use the chain
rule to express the derivative of P with respect to wi→j :

∂P

∂wi→j

=
∂P

∂oj

∂oj

∂wi→j

=
∂oj

∂wi→j

∂P

∂oj

.

Now consider ∂oj/∂wi→j . You know that you determine oj by adding
up all the inputs to node j and passing the result through a threshold

function. Hence, oj = f
(
∑

i oiwi→j

)

, where f is the threshold function.
Treating the sum as an intermediate variable, σj =

∑

i oiwi→j , you can
apply the chain rule again:

∂oj

∂wi→j

=
df (σj)

dσj

∂σj

∂wi→j

=
df (σj)

dσj

oi = oi

df (σj)

dσj

.

Substituting this result back into the equation for ∂P/∂wi→j yields
the following key equation:

∂P

∂wi→j

= oi

df (σj)

dσj

∂P

∂oj

.

Note that the partial derivative, ∂P/∂oj can be expressed in terms of
the partial derivatives, ∂P/∂ok , in the next layer to the right. Because the
effect of oj on P is through the outputs of the nodes in the next layer, the
ok , you can apply the chain rule to calculate ∂P/∂oj :

∂P

∂oj

=
∑

k

∂P

∂ok

∂ok

∂oj

=
∑

k

∂ok

∂oj

∂P

∂ok

.

But you know that you determine ok by adding up all the inputs to
node k and passing the result through a threshold function. Hence, ok =

f
(
∑

j ojwj→k

)

where f is the threshold function. Treating the sum as an

456 Chapter 22 Learning by Training Neural Nets

intermediate variable, σk , and applying the chain rule again, you have the
following:

∂ok

∂oj

=
df (σk)

dσk

∂σk

∂oj

=
df (σk)

dσk

wj→k = wj→k

df (σk)

dσk

Substituting this result back into the equation for ∂P/∂oj yields the
following, additional key equation:

∂P

∂oj

=
∑

k

wj→k

df (σk)

dσk

∂P

∂ok

.

Thus, in summary, the two key equations have two important conse-
quences: first, the partial derivative of performance with respect to a weight
depends on the partial derivative of performance with respect to the follow-
ing output; and second, the partial derivative of performance with respect
to one output depends on the partial derivatives of performance with re-
spect to the outputs in the next layer. From these results, you conclude
that the partial derivative of P with respect to any weight in the ith layer
must be given in terms of computations already required one layer to the
right in the j th layer.

To anchor the computation, however, you still have to determine the
partial derivative of performance with respect to each output in the final
layer. This computation, however, is easy:

∂P

∂oz

=
∂

∂oz

− (dz − oz)
2

=2(dz − oz).

It remains to deal with the derivative of the threshold function, f , with
respect to its argument, σ, which corresponds to the sum of the inputs seen
by a node. Naturally, you choose f such that it is both intuitively satisfying
and mathematically tractable:

f (σ) =
1

1 + e−σ

df (σ)

dσ
=

d

dσ

[1

(1 + e−σ)

]

=(1 + e−σ)−2e−σ

=f (σ)(1 − f (σ))

=o(1 − o).

Unusually, the derivative is expressed in terms of each node’s output, o =
f (σ), rather than the sum of the inputs, σ. This way of expressing the
derivative is exactly what you want, however, because your overall goal is
to produce equations that express values in terms of other values to their
right.

Finally, weight changes should depend on a rate parameter, r , that
should be as large as possible to encourage rapid learning, but not so large

The Back-Propagation Procedure Is Straightforward 457

as to cause changes to the output values that considerably overshoot the
desired values.

Now, at last, you are ready to look at the back-propagation formu-

las. So that they look the same as the back-propagation formulas developed
in the previous, heuristic subsection, ∂P/∂o is written as β, and a factor
of 2 is absorbed into the rate parameter, r .

∆wi→j =roioj (1 − oj)βj ,

βj =
∑

k

wj→kok (1 − ok)βk for nodes in hidden layers,

βz =dz − oz for nodes in the output layer.

Once you compute changes for each sample input combination, the
chain rule dictates that you must add up the weight changes suggested by
those individual sample input combinations. Then you can make actual
changes to the weights.

The Back-Propagation Procedure Is Straightforward

The back-propagation equations are incorporated into the following back-
propagation procedure:

To do back propagation to train a neural net,

⊲ Pick a rate parameter, r .

⊲ Until performance is satisfactory,

⊲ For each sample input,

⊲ Compute the resulting output.

⊲ Compute β for nodes in the output layer using

βz = dz − oz .

⊲ Compute β for all other nodes using

βj =
∑

k

wj→kok (1 − ok)βk .

⊲ Compute weight changes for all weights using

∆wi→j = roioj (1 − oj)βj .

⊲ Add up the weight changes for all sample inputs, and
change the weights.

Because weight changes are proportional to output errors, the outputs will
only approach the 1 and 0 values used as training targets; they will never
reach those values. Accordingly, performance is usually deemed satisfactory
when all outputs that are trained using 1 as the target value actually exhibit
values that are greater than 0.9 and all that are trained using 0 as the target
value actually exhibit values that are less than 0.1.

458 Chapter 22 Learning by Training Neural Nets

BACK-PROPAGATION CHARACTERISTICS

In this section, you learn that back-propagation performance depends crit-
ically on your detailed choices and on the nature of the problem to be
solved.

Training May Require Thousands of Back Propagations

Changing weights by back propagation is efficient from a computational
point of view because the maximum number of additions and multiplica-
tions required for the adjustment of any particular weight is on the order
of the maximum number of links emanating from a node. Impracticably
many steps may be required, however.

Consider, for example, the net shown in figure 22.7, which is similar to
part of the net shown in figure 22.3. Assume that exactly two of the inputs
presented to the net have values of 1, and that the rest have values of 0. The
purpose of the net is to determine whether the two people corresponding
to the on inputs are acquaintances. The two people are judged to be
acquaintances if the output value is greater than 0.9; they are judged to
be not acquaintances if the output value is less than 0.1; and the result is
considered ambiguous otherwise.

The problem is to adjust the weights in the net, starting from some
set of initial values, until all judgments are consistent with the knowledge
that everyone knows everyone else, but that Robert, Raquel, and Romeo
are siblings and therefore know one another too well to be considered ac-
quaintances, as are Joan, James, and Juliet.

Table 1 expresses the same knowledge by listing the appropriate out-
put in the column labeled A, for acquaintances, for all 15 possible input
combinations. The table also has a column for identifying siblings, which
is involved in subsequent training.

These sample inputs are just what you need to execute the back-
propagation procedure. Suppose, for example, that the value of the rate
parameter is 1.0. Further suppose that the back-propagation procedure is
given the initial values for thresholds and weights shown in the first column
of table 2. Note that the first initial value is 0.1, the second is 0.2, and the
rest range up to 1.1 in 0.1 increments. These choices constitute a departure
from the usual practice of using random numbers for initial values. The
reason for the departure is that the use of a regular pattern of initial values
makes it easier for you to see how training changes the weights. For the
illustrations in this chapter, using random numbers for initial values pro-
duces results that are similar to the results for the regular pattern. In fact,
just about any numbers will do, as long as they differ from one another.

When all sample inputs produce an appropriate output value, the
thresholds and weights are as shown in the second column of table 2. These
thresholds and weights are, of course, much different from the ones used
earlier during the basic explanation of how neural nets work. The way the

Training May Require Thousands of Back Propagations 459

ALVINN Learns to Drive

The Alvinn system learns to drive a van along roads viewed through a television
camera. Once Alvinn has been trained on a particular road, it can drive at speeds in
excess of 40 miles per hour.

Alvinn, an acronym for autonomous land vehicle in a neural net, contains one
hidden layer of nodes, one output layer, and nearly 5000 trainable weights. Each of
Alvinn’s 960 inputs produce an image intensity recorded on a 30 by 32 photosensitive
array. As shown in the following diagram, each of these 960 inputs is connected, via
a trainable weight, to all of the five middle-level nodes. And finally, each of the five
middle-level nodes is connected, via a trainable weight, to all of the 32 output nodes.

Input retina

Steer left Steer right

Five
hidden
nodes

Thirty-two
output
nodes

If Alvinn’s leftmost output node exhibits the highest output level, Alvinn directs
the van’s steering mechanism to turn the van sharply left; if the rightmost output
node exhibits the highest output level, Alvinn directs the van sharply right; when
an intermediate node exhibits the highest output level, Alvinn directs the van in a
proportionately intermediate direction.

To smooth out the steering, Alvinn calculates the actual steering direction as
the average direction suggested not only by the node with the highest output level but
also by that node’s immediate neighbors, all contributing in proportion to their output
level.

To learn, Alvinn monitors the choices of a human driver. As the human driver
steers the van down the training road, periodic sampling of the inputs and the human-
selected steering direction provide fodder for back propagation.

One special twist is required, however. Because the human driver does so well,
few, if any, of the periodic samples cover situations in which the van is seriously mis-
aligned with the road. Accordingly, monitoring a human driver is not sufficient to
ensure that Alvinn can get back on track if the van drifts off track for some reason.
Fortunately, however, Alvinn can enrich the set of human-supplied training samples
by manufacturing synthetic views from those actually witnessed. Using straightforward
geometrical formulas, Alvinn transforms a straight-ahead view of a road seen through
the windshield of a well-steered van into a view of what the road would look like if the
van were, say, 10◦ or so off course to the left, thus inviting a right turn that would
bring the van back on course.

460 Chapter 22 Learning by Training Neural Nets

Figure 22.7 A learning prob-

lem involving acquaintances.

The task is to learn that any-

one in the top group of three

is an acquaintance of anyone

in the bottom group of three.

Threshold-replacing links are

not shown.

Acquaintances

Robert

Raquel

Romeo

Joan

James

Juliet

H1

H2

Table 1. Data for the neural-

net learning experiments. The

first six columns record the

possible input combinations.

The final two record the

corresponding outputs. The

column labeled A identifies

those pairs of people who are

acquaintances; the column

labeled S identifies siblings.

The first task involves only

the acquaintance column;

the second task involves both

the acquaintance and sibling

columns.

Robert Raquel Romeo Joan James Juliet A S

1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1

1 0 0 1 0 0 1 0

1 0 0 0 1 0 1 0

1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 0 0 1 0 1 0

0 1 0 0 0 1 1 0

0 0 1 1 0 0 1 0

0 0 1 0 1 0 1 0

0 0 1 0 0 1 1 0

0 0 0 1 1 0 0 1

0 0 0 1 0 1 0 1

0 0 0 0 1 1 0 1

Training May Require Thousands of Back Propagations 461

Table 2. Weight changes

observed in training a neural

net. Eventually, pairs of

people who are acquaintances

are recognized. Initial values

are changed through back

propagation until all outputs

are within 0.1 of the required

0.0 or 1.0 value.

Weight Initial End of
value first task

tH1 0.1 1.99

wRobert→H1 0.2 4.65

wRaquel→H1 0.3 4.65

wRomeo→H1 0.4 4.65

tH2 0.5 2.28

wJoan→H2 0.6 5.28

wJames→H2 0.7 5.28

wJuliet→H2 0.8 5.28

tAcquaintances 0.9 9.07

wH1→Acquaintances 1.0 6.27

wH2→Acquaintances 1.1 6.12

Figure 22.8 Results for a

learning experiment. The

square root of the average

squared error seen at the

output nodes is plotted

versus the number of back

propagations done during

staged learning about

acquaintances.

Weight change cycles

RMS
error

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

thresholds and weights work for acquaintances is the same, however. Any
input in the first group of three pushes H1’s output near 1; and any input
in the second group pushes H2’s output near 1; the Acquaintances node is
near 1 only if both H1 and H2 are near 1.

This net training took more than a few steps, however. As shown in
figure 22.8, performance becomes satisfactory only after about 225 weight
changes. The weights are changed after each complete set of sample inputs
is processed with the current weights. Because there are 15 sample inputs,
the sample inputs are processed 225 × 15 = 3375 times.

462 Chapter 22 Learning by Training Neural Nets

Figure 22.9 Learning

behavior can depend

considerably on the rate

parameter. Six different rate

parameters, from 0.25 to 8.0,

with everything else the same,

produced these six results.

Weight change cycles

RMS
error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900

1.02.0 0.5
0.25

4.0

8.0

Back Propagation Can Get Stuck or Become Unstable

Now it is time to consider what happens as the rate parameter varies.
Specifically, the experiments in the next group repeat the previous experi-
ment, but now the rate parameter varies from 0.25 to 8.0.

You have already seen, in figure 22.8, that the back-propagation pro-
cedure can produce a satisfactory solution after about 225 weight changes.
For that result, the value of the rate parameter is 1.0. As shown in fig-
ure 22.9, decreasing the rate parameter to 0.25 produces a satisfactory
solution too, but only after 900 weight changes—about four times as many
as for 1.0, as you would expect. Similarly, an intermediate value of 0.5
produces a satisfactory solution after 425 weight changes—about twice as
many as for 1.0.

Increasing the rate parameter to 2.0 again reduces the number of weight
changes required to produce a satisfactory solution, but now performance
is worse, rather than better, for a short time after getting started.

Increasing the rate parameter still further to 4.0 or 8.0 introduces se-
rious instability—errors increase as well as decrease. The reason for the
instability is that the steps are so large that the locally computed gradients
are not valid.

Thus, a rate parameter of 1.0 produces reasonably rapid solution, but
the steps are not so big as to introduce any apparent instability. Accord-
ingly, a rate parameter of 1.0 is used in the rest of the experiments in this
chapter. Note, however, that there is no right size for rate parameter in
general; the right size depends on the problem you are solving.

Back Propagation Can Be Done in Stages

For further illumination, suppose you add another output node as shown
in figure 22.10. The intent is that the output of the new node is to be 1
when the input combination indicates two siblings.

Further suppose that every pair of people who are not acquaintances
are siblings, as reflected in the column labeled S, for siblings, in table 22.1.

463

Figure 22.10 A learning

problem involving acquain-

tances and siblings. Hav-

ing learned that anyone in

the top group of three is an

acquaintance of anyone in

the bottom group of three,

the net is to learn that each

group consists of siblings.

Threshold-replacing links are

not shown.

Acquaintances

Siblings

Robert

Raquel

Romeo

Joan

James

Juliet

H1

H2

Now you can execute the back-propagation procedure again with the
added siblings information. This time, however, you can start with the
weights produced by the first experiment; you need new weights for only
the new node’s threshold and the new connecting links.

When all sample inputs produce an appropriate output value, the
weights and thresholds are as shown in the end-of-second-task column of
table 3.

As shown by the right portion of the line in figure 22.11, performance
becomes satisfactory after about 175 additional weight changes are per-
formed, given a value of 1.0 for the rate parameter. Again, it takes a large
number of steps to produce the result, but not so many as required to ad-
just the weights to recognize acquaintances. This reduction occurs because
many of the weights acquired to recognize acquaintances are appropriate
for recognizing siblings as well.

Back Propagation Can Train a Net to Learn to
Recognize Multiple Concepts Simultaneously

At this point, it is natural to ask what happens when you try to deal both
output nodes from the very beginning. For this particular example, as
shown in figure 22.12, about 425 weight changes produce a satisfactory set
of weights, whereas a total of 400 weight changes were required with staged
learning. In general, simultaneous learning may be either faster or slower

464 Chapter 22 Learning by Training Neural Nets

Table 3. Further weight

changes observed in training

a neural net. At first, only

the acquaintance relation is

learned. Then, for the second

task, the sibling relation is

learned. Dashes indicate that

the corresponding weight

is not yet present. Initial,

random values are changed

through back propagation

until all outputs are within 0.1

of the required 0.0 or 1.0

value.

Weight Initial End of End of
value 1st task 2nd task

tH1 0.1 1.99 2.71

wRobert→H1 0.2 4.65 6.02

wRaquel→H1 0.3 4.65 6.02

wRomeo→H1 0.4 4.65 6.02

tH2 0.5 2.28 2.89

wJoan→H2 0.6 5.28 6.37

wJames→H2 0.7 5.28 6.37

wJuliet→H2 0.8 5.28 6.37

tAcquaintances 0.9 9.07 10.29

wH1→Acquaintances 1.0 6.27 7.04

wH2→Acquaintances 1.1 6.12 6.97

tSiblings 1.2 – -8.32

wH1→Siblings 1.3 – -5.72

wH2→Siblings 1.4 – -5.68

Figure 22.11 Results for

staged learning. First, the net

is taught about acquaintances;

then, it is taught about

siblings. The square root of

the average squared error

seen at the output nodes is

plotted versus the number

of back propagations done

during staged learning about

acquaintances. Weight change cycles

RMS
error

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Acquaintance
training

Sibling
training

than staged learning. Which method is faster depends on the problem and
on the initial weights.

Trained Neural Nets Can Make Predictions

So far, you have learned that you can train a neural net to recognize ac-
quaintances and siblings. In each experiment, however, the training set of

Excess Weights Lead to Overfitting 465

Figure 22.12 The dotted

line shows the square root of

the average squared error

seen at the output nodes

during staged learning. The

solid line shows the square

root of the average squared

error seen at the output

nodes during simultaneous

learning. A little more work is

required, in this experiment, if

the learning is done in stages. Weight change cycles

RMS
error

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

Simultaneous
traning

Sequential
training

sample input–output combinations included every possible pair of people.
Thus, you have yet to see a neural net use what it has learned from sample
input–output combinations to predict the correct outputs for previously
unseen inputs.

Accordingly, suppose you divide the data shown in table 22.1 into a
training set and a test set. Let the training set consist of the original
data with every fifth sample input–output combination removed. The test
set consists of every fifth sample. Thus, you reserve 20 percent of the
data for testing whether the neural net can generalize from the data in the
training set.

The back-propagation procedure successfully trains the net to deal with
all the sample input–output combinations in the training set after only 225
weight changes. That is fewer changes than were required when the net
was trained on all the sample input–output combinations, because there
are three fewer input–output combinations to be accommodated.

Pleasingly, the trained net also deals successfully with the input–output
combinations in the test set, as demonstrated by the following table, in
which the d subscript denotes desired value and the o subscript denotes
observed value:

Robert Raquel Romeo Joan James Juliet Ad Ao Sd So

1 0 0 0 0 1 1 0.92 0 0.06
0 0 1 1 0 0 1 0.92 0 0.06
0 0 0 0 1 1 0 0.09 1 0.91

Excess Weights Lead to Overfitting

Intuitively, you might think that, if one neural net does well, a neural
net with more trainable weights would do even better. You must learn to

466 Chapter 22 Learning by Training Neural Nets

Figure 22.13 Another

neural net for dealing with

the acquaintances–siblings

problem. This one has too

many weights, and illustrates

the overfitting problem.

Acquaintances

Siblings

H1

H2

H3

Robert

Raquel

Romeo

Joan

James

Juliet

suppress this intuition, because neural nets become erratic and unreliable
if they have too many weights.

Consider, for example, the net shown in figure 22.13. Given that it
is enriched with a new node and nine new weights—including the one for
the new node’s threshold—you might think that this net would handle the
previous training problem with no difficulty, perhaps converging faster to an
equally good solution. In any event, you would think that the additional
new weights could do no harm, because the back-propagation procedure
conceivably could drive them all toward 0.

Given the new weights shown in figure 22.13, the back-propagation
procedure requires 300 weight changes to deal with all the sample input–
output combinations. Thus, adding new weights does speed convergence.
Unfortunately, however, the performance on the test set now exhibits er-
rors, as demonstrated by the following table:

Robert Raquel Romeo Joan James Juliet Ad Ao Sd So

1 0 0 0 0 1 1 0.99 0 0.00
0 0 1 1 0 0 1 0.06 (?) 0 0.94 (?)
0 0 0 0 1 1 0 0.97 (?) 1 0.01 (?)

Excess Weights Lead to Overfitting 467

Figure 22.14 Overfitting is

a consequence of too much

flexibility. Here, a piece of

wood provides a nice fit to

the black dots when forced

into conformance by a few

nails. A steel rod cannot

be forced into any sort of

conformance, however; and

a rope can meander all over

the terrain.

Nail

Nail

Nails

Thin
wood

Rope

The problem is that the additional weights provide too much flexibility,
making it possible to deal with the training set too easily. To see why both
too little and too much flexibility are bad, consider the points shown in
figure 22.14. You could drive nails into a few points and use those nails to
force a thin piece of wood into a shape that would fit smoothly through all
the points. If you tried to use a heavy steel rod, however, you would find it
too stiff to bend. If you tried to use a rope, you would find it too flexible,
because you could fit the rope to all the nails yet have wild meandering in
between.

The rope is analogous to a neural net with too many trainable weights:
A neural net with too many weights can conform to the input–output
samples in the training set in many ways, some of which correspond to
wild meandering. A net that conforms to the data with wild meandering
is said to exhibit overfitting.

To avoid overfitting, you can use one good heuristic: Be sure that the
number of trainable weights influencing any particular output is smaller
than the number of training samples. For the acquaintance–sibling net
shown in figure 22.3, each output value is determined by 11 trainable
weights and there are 12 input–output samples—a dangerously small mar-
gin, but training was successful nevertheless. For the acquaintance–sibling
net shown in figure 22.13, each output value is determined by 19 trainable
weights—an excess of more than 50 percent over the number of training
samples. Overfitting is inevitable.

468 Chapter 22 Learning by Training Neural Nets

Neural-Net Training Is an Art

You now know that you face many choices after you decide to work on a
problem by training a neural net using back propagation:

How can you represent information in neural net terms? How can you
use neural net inputs to express what you know? How can you use
neural net outputs to determine what you want to know?
How many neurons should you have in your neural net? How many
inputs? How many outputs? How many weights? How many hidden
layers?
What rate parameter should you use in the back-propagation formula?
Should you train your neural net in stages or simultaneously?

The wrong choices lead to poor performance. A small neural net may not
learn what you want it to learn. A big net will learn slowly, may get stuck
on local maxima, and may exhibit overfitting. A small rate parameter may
waste time. A large rate parameter may promote instability or provide
poor predictions.

Unfortunately, the proper choices depend on the nature of the samples.
Mathematically, you can view the samples as representative glimpses of a
hidden function, with one dimension for each input. If there are many
inputs, the function’s multidimensional character makes the function hard
to think about and impossible to visualize.

Accordingly, the best guide to your choices is trial and error, but-
tressed, if possible, by reference to the choices that have worked well in
similar problems. Thus, the successful deployment of neural-net technol-
ogy requires time and experience. Neural-net experts are artists; they are
not mere handbook users.

SUMMARY

Real neurons consist of synapses, dendrites, axons, and cell bodies.
Simulated neurons consist of multipliers, adders, and thresholds.
One way to learn is to train a simulated neural net to recognize regu-
larity in data.
The back-propagation procedure is a procedure for training neural nets.
Back propagation can be understood heuristically or by way of a math-
ematical analysis.
To enable back propagation, you need to perform a simple trick that
eliminates nonzero neuron thresholds. You also need to convert stair-
step threshold functions into squashed S threshold functions.
You can teach a neural net, via back propagation, to recognize several
concepts. These concepts can be taught one at a time or all at once.
You must choose a back-propagation rate parameter carefully. A rate
parameter that is too small leads to slow training; a rate parameter
that is too large leads to instability.

Background 469

An excess of trainable weights, relative to the number of training sam-
ples, can lead to overfitting and poor performance on test data.

BACKGROUND

There is a vast literature on the subject of neural nets. For an overview, see
Parallel Distributed Processing, edited by James L. McClelland and David
E. Rumelhart [1986], or Neurocomputing: Foundations of Research, edited
by James A. Anderson and Edward Rosenfeld [1989].

In the literature on neural nets, the papers by Geoffrey E. Hinton [1989,
1990] and by J. J. Hopfield [1982] have been particularly influential.

The discussion of Alvinn is based on the work of Dean A. Pomerleau
[1991]. NETtalk, a system that learns to speak, is another, often cited
application of neural nets [Terrence J. Sejnowski and Charles R. Rosenberg
1989].

