Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil
Logic

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Overview

Inference engine e (JOMain—independent algorithms

Knowledge base e Jomain=specific content

* So we can use the domain independent inference engine to
Diagnose disease
Configure complex mainframes

Tech support
Wumpus world navigation

* The knowledge base is a set of sentences in a formal language
that supports sound rules of inference

Logics are formal languages

* Syntax
Defines legal sentences in language

* Semantics
Defines the meaning of sentences — truth value

* Inference generates new sentences from KB
Entailment means that one thing follows from another

KB

* Red sox won and
* Cardinals won

* Entails

* Cardinals won

Models. m is a model of alpha if alpha is true in m’s world
M(alpha) set of all models of alpha

Inference

K B F; o = sentence «v can be derived from /' B by procedure 1

Consequences of A' BB are a haystack; «v is a needle.
Entailment = needle in haystack; inference = finding it

Soundness: 7 is sound if
whenever ' B ; a, it is also true that A'B = a

Completeness: 7 is complete if
whenever ' B = o, it is also true that A B =, a

Preview: we will define a logic (first-order logic) which is expressive enough
to say almost anything of interest, and for which there exists a sound and

complete inference procedure.

That is, the procedure will answer any question whose answer follows from
what i1s known by the A' B.

Syntax and Semantics

Rules for evaluating truth with respect to a model m:

-5

S1 NS5
S,V S,
Sl — Sg
le.,

51 — Sg

is true iff S s false

is true iff S Is true and
is true iff S Is true or
is true iff S Is false or
is false iff St Is true and

52
S
52
52

Is true
Is true
Is true
is false

is true iff S7 = S5 istrue and S5 = 57 is true

Equivalence

Two sentences are logically equivalent iff true in same models:

o= /Jifand only if « = and J = a

(aNB) = (BANa) commutativity of A
(V@) = (fVa) commutativity of V
((anNB)AN~y) = (aN(F A7) associativity of A
(Vv B)Vy) = (aV(FVy)) associativity of V
—(—a) = o double-negation elimination
(a« = () = (-7 = —a) contraposition
(a =) = (—a Vv [3) implication elimination
(a & F) = ((a = F)AN(J = «)) biconditional elimination
—(a AN F) = (-aV —3) De Morgan
—(aV) = (—naN—-3) De Morgan
(an(BVy) = ((aNP)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVF)A(aVy)) distributivity of V' over A

Validity, Satisfiability

A sentence i1s valid if it is true in all models,

eg., True, AV-A A=A (AN(A= B)) =B

Validity is connected to inference via the Deduction Theorem:

KB Eaifandonly if (KB = «) is valid

A sentence is satisfiable if it I1s true in some model

eg., AV B, C

A sentence i1s unsatisfiable if it is true in no models
eg., AN—-A

Satisfiability is connected to inference via the following:
KB = «aif and only if (KB /A —a) is unsatisfiable

l.e., prove a by reductio ad absurdum

* SAT was first problem to be proven NP-Complete

Proof methods

* Application of inference rules

Generate legitimate new sentences from old sentences using
sound rules of inference

Proof = a sequence of rule applications
Search for this sequence using a search algorithm

Sentences need to be in Normal Form usually

If in Horn Clause form then searching is usually linear!!
Horn Form (restricted)
KB = conjunction of Horn clauses
Horn clause =
Truth table enumeration {> proposition symbol: or

Use search with min-conflict h {» (conjunction of symbols) = symbol
Eg., CAN (B — :1} AN ((_\' ND = B}

* Model checking

Modus Ponens

* Use Modus Ponens to prove something

* If there is an sentence of the form E1=»E2, and there is
another sentence of the form E1, then E2 logically follows

* If E2 is the theorem you want to prove, you are done,
otherwise add E2 to the list of sentences, because E2 will
always be true when all the rest of the sentences are true.

Monotonicity
* Trivial Example:
R1: Feathers(Squigs) = Bird(Squigs)
R2: Feathers(Squigs) KB
R3: Feathers(Derks)
Then
Prove Bird(Squigs)
Apply Modus Ponens to R1 and R2

Resolution is a sound rule of

inference

* Subsumes modus ponens
o If

E1VE2

IE2 V E3
* Then

E1V E3 logically follows

Trivial Example 2
Feathers(Squigs)
Feathers(Squigs) =2 Bird(Squi

Rewrite
Feathers(Squigs)
IFeathers(Squigs) V Bird(Squi

Resolve
E1VE2
lE2 V E3

What are E1, E2, E3?

Resolutions proof by refutation

* Assume that the negation of the theorem is T

* Show that the axioms and the assumed negation of the
Theorem leads to a contradiction

* Conclude that the assumed negation of the theorem
cannot be true because it leads to a contradiction

* Conclude that the Theorem must be true because the
assumed negation of the theorem cannot be true
* Trivial Example
Feathers(squigs) =2 Bird(squigs)
Feathers(squigs)

Resolution proof by refutation

* Remove = and © RESOLVE
. IBird(squigs)
rewrite IFeathers(squigs) V Bird(squi
IFeathers(squigs) V Feathers(squigs)
Bird(squigs) Bird(squigs)
Feathers(squigs) . Contradiction
quig IBird(squigs)
* Add negation of Bird(squigs)
theorem to be - .
. Contradiction! Therefore...Nil,
proven . Therefore !Bird(squigs) must be
IBird(squigs) false, . .
, . Therefore Bird(squigs) must b
IFeathers(squigs) V true

Bird(squigs)
Feathers(squigs)

Limits of PL

Both proofs were examples of forward chaining in
propositional logic

Resolution is sound and complete
There is also backward chaining
We will look at both in the context of expert systems, later...
PL is painful. Why?
Consider

We cannot express “pits cause breezes neighboring squares”

Instead:
B[1,1] €=> P[1,2] V P[2,1]
B[1,2] €=
B[1,3] €= ...

ugh

The frame problem

* Effect axioms correspond to the transition model of Wworld
* L[1,1]0 /\ FacingEastO /\ Forward0 =»L[2,1]1 /\ IL[1,1]1

* Iflamin L[1,1] at time O and facing east at time 0 and | act to
move Forward at time O then

* | will bein L[2,1] at time 1 and | will not be in L[1,1] at time 1
Fluents refers to aspects of the world that change
Atemporal variables do not need the superscript O, 1, ...

* Suppose now that | start and | move to L[2,1]

* If I Ask if | am in L[2,1] =2 can prove it

* If | Ask do | have arrow in L[2,1] | cannot prove or disprove it

| need to represent everything that remains unchanged in KB as a
result of the action Forward (or any other action sentence)

Ugh, | have to represent (have sentences) for every thing that
changes = this is the frame problem

PL

@ Propositional logic is declarative: pieces of syntax correspond to facts

@ Propositional logic allows partial /disjunctive/negated information
(unlike most data structures and databases)

@ Propositional logic is compositional:
meaning of B, /A I, 5 is derived from meaning of I, and of F 5

@ Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

@ Propositional logic has very limited expressive power
(unlike natural language)
E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square

First order logic

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

e Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . ..

e Relations: red, round, bogus, prime, multistoried . . .,
brother of, bigger than, inside, part of, has color, occurred after, owns,
comes between, ...

e Functions: father of, best friend, third inning of, one more than, end of

Logics:

Language Ontological Epistemological
Commitment Commitment
Propositional logic | facts true/false /unknown
First-order logic facts, objects, relations true/false /unknown
Temporal logic facts, objects, relations, times| true/false/unknown
Probability theory | facts degree of belief
Fuzzy logic facts + degree of truth known interval value

* For each logic (language)
What are the sound rules of inference?
Are they complete?
What is the complexity of finding proofs?

Syntax
Constants IingJohn., 2. UCBHB..
Predicates Brother., >, ...
Functions Sqrt, LeftLegOf, ...

Variables r, Yy, a, b, ...
Connectives A V = = &
Equality —

Quantifiers 7 S

Atomic sentence = predicate(terms, term,,)

or termy = terms

Term = function(termy,..., termy,)
or constant or variable

E.g., Brother(KingJohn, RichardT heLionheart)
> (Length(LeftLegO f(Richard)), Length(Le ft LegO f (King.John)))

Complex sentences

Complex sentences are made from atomic sentences using connectives
=S, SIASy, SiVS; S = 5, S e 5

E.g. Sibling(King.John, Richard) = Sibling(Richard, King.John)
>(1,2) v <(1,2)
>(1,2) A =>(1,2)

Here’s a(nother) vocabulary

* Objects + Variables == Terms

* Terms + Predicates == Atomic Formulas

* Atomic formulas + negation == Literals

* Literals + Connectives + quantifiers == wffs
* Well formed formulas (wffs)

* Sentences (all variables bound)

* A(x)[Feathers(x) V IFeathers(y)]
Y is not bound

Interpretation

* Objects in a world correspond to object symbols in logic
* Relations in a world correspond to predicates in logic

* Interpretation: Full accounting of the correspondence
between objects and object symbols and between
relations and predicates

Quantification

* Universal

A(x)[UNRStudent(x) = Smart(x)]

If the above expression is true it implies that you get a
true expression when you substitute any object for x
inside the square brackets

Common Issue:

Typically = is the main connective with A
A(x) [UNRStudent(x) /\ Smart(x)]
Everyone is at UNR and Everyone is Smart

Existential Quantification

* Existential

E(x) [UNLVStudent(x) /\ Smart(x)]

There exists at least one object substitutable for x

inside the square brackets that makes the sentence
true

Common issue

/\ is the main connective with E
Typically not =»

E(x) [UNLVStudent(x) =2 Smart(x)]

Is true if there is anyone not at UNLV

Quantifiers

Quantifier duality: each can be expressed using the other

Va Likes(z, [ceCream) —dx —Likes(x, [ceCream)
dx Likes(x, Broccoli) -V 2z —Likes(x, Broccoli)
dr Yy isnot thesameasVy =

dx Vy Loves(x,y)

“There is a person who loves everyone in the world”

Yy dx Loves(z,y)

“Everyone in the world is loved by at least one person”

Marcus intuition for informal proof

Man(marcus)

Pompein(marcus)

Born(marcus, 40)

A(x) [man(x) =»mortal(x)]
Erupted(Volcano, 79)

* A(x) [Pompein(x) =» Died(x, 79)]

* A(x) A(t1) A(t2) [mortal(x) & born(x, t1) & gt(t2 —t1, 150) =»
Dead(x, t2)]

* Now = 2013

* |s Marcus alive?

That is, what is the truth of: !Alive(Marcus, Now) or
That is, what is the truth of: Dead(Marcus, Now)

Need a couple more assertions

Man(marcus)

Pompein(marcus)

Born(marcus, 40)

A(x) [man(x) =»mortal(x)]
Erupted(Volcano, 79)

A(x) [Pompein(x) = died(x, 79)]

A(x) A(tl) A(t2) [mortal(x) & born(x, t1) & gt(t2 —t1,
150) =» dead(x, t2)]

Now = 2013

9. A(x) A(t) [!dead(x, t) =» alive(x, t)]

10. A(x)A(t) [alive(x, t) = !dead(x, t)]

11. A(x)A(t1) A(2)[died(x, t1) & gt(t2, t1) = dead(x, t2)]

N O U AEWwWwbhe

o0

Not a resolution proof

We deduced that Marcus was not alive

We used a variety of rules and bound variables to literals

Search for rules and bindings
Guided by what we were trying to prove
Looking for sentences that involved Alive

Ensure you understand the proof for Wumpus world that
proves that there is no pitin [1,2] and no pitin [2,1]

It would be far simpler for search to find proofs if we had a
smaller branching factor for our search procedure

Use the single resolution rule in searching for proof

Resolutions proof by refutation

Assume that the negation of the theorem (sentence you
are trying to prove) is T

Show that the sentences and the assumed negation of
the Theorem leads to a contradiction

Conclude that the assumed negation of the theorem
cannot be true because it leads to a contradiction

Conclude that the Theorem must be true because the
assumed negation of the theorem cannot be true

NOTE
Sentences must be in a specific form: “Clause form”

Once you put all your sentences in clause form, you cleverly keep
applying the resolution rule until you get a contradiction (nil)

