
Artificial Intelligence
CS482, CS682, MW 1 – 2:15, SEM 201, MS 227
Prerequisites: 302, 365
Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil
Logic

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Overview

• So we can use the domain independent inference engine to

• Diagnose disease

• Configure complex mainframes

• Tech support

• Wumpus world navigation

• …

• The knowledge base is a set of sentences in a formal language
that supports sound rules of inference

Logics are formal languages

• Syntax

• Defines legal sentences in language

• Semantics

• Defines the meaning of sentences – truth value

• Inference generates new sentences from KB

• Entailment means that one thing follows from another

• KB

• Red sox won and

• Cardinals won

• Entails

• Cardinals won

• Models. m is a model of alpha if alpha is true in m’s world

• M(alpha) set of all models of alpha

Inference

Syntax and Semantics

Equivalence

Validity, Satisfiability

• SAT was first problem to be proven NP-Complete

Proof methods

• Application of inference rules

• Generate legitimate new sentences from old sentences using
sound rules of inference

• Proof = a sequence of rule applications

• Search for this sequence using a search algorithm

• Sentences need to be in Normal Form usually

• If in Horn Clause form then searching is usually linear!!

• Model checking

• Truth table enumeration

• Use search with min-conflict heuristic …

Modus Ponens

• Use Modus Ponens to prove something

• If there is an sentence of the form E1E2, and there is
another sentence of the form E1, then E2 logically follows

• If E2 is the theorem you want to prove, you are done,
otherwise add E2 to the list of sentences, because E2 will
always be true when all the rest of the sentences are true.
• Monotonicity

• Trivial Example:
• R1: Feathers(Squigs)  Bird(Squigs)
• R2: Feathers(Squigs)
• R3: Feathers(Derks)
• Then
• Prove Bird(Squigs)
• Apply Modus Ponens to R1 and R2

KB

Resolution is a sound rule of
inference

• Subsumes modus ponens

• If

• E1 V E2

• !E2 V E3

• Then

• E1 V E3 logically follows

• Trivial Example 2
• Feathers(Squigs)
• Feathers(Squigs)  Bird(Squigs)

• Rewrite
• Feathers(Squigs)
• !Feathers(Squigs) V Bird(Squigs)

• Resolve
• E1 V E2
• !E2 V E3

• What are E1, E2, E3?

Resolutions proof by refutation

• Assume that the negation of the theorem is T

• Show that the axioms and the assumed negation of the
Theorem leads to a contradiction

• Conclude that the assumed negation of the theorem
cannot be true because it leads to a contradiction

• Conclude that the Theorem must be true because the
assumed negation of the theorem cannot be true

• Trivial Example

• Feathers(squigs)  Bird(squigs)

• Feathers(squigs)

Resolution proof by refutation

• Remove  and
rewrite
• !Feathers(squigs) V

Bird(squigs)

• Feathers(squigs)

• Add negation of
theorem to be
proven

1. !Bird(squigs)

2. !Feathers(squigs) V
Bird(squigs)

3. Feathers(squigs)

• RESOLVE
1. !Bird(squigs)
2. !Feathers(squigs) V Bird(squigs)
3. Feathers(squigs)
4. Bird(squigs)

• Contradiction
• !Bird(squigs)
• Bird(squigs)

• Contradiction! Therefore…Nil,
• Therefore !Bird(squigs) must be

false,
• Therefore Bird(squigs) must be

true

Limits of PL

• Both proofs were examples of forward chaining in
propositional logic
• Resolution is sound and complete

• There is also backward chaining

• We will look at both in the context of expert systems, later…

• PL is painful. Why?

• Consider
• We cannot express “pits cause breezes neighboring squares”

• Instead:
• B[1,1]  P[1,2] V P[2,1]

• B[1,2]  ….

• B[1,3]  …

• ….

• ugh

The frame problem

• Effect axioms correspond to the transition model of Wworld

• L[1,1]0 /\ FacingEast0 /\ Forward0 L[2,1]1 /\ !L[1,1]1

• If I am in L[1,1] at time 0 and facing east at time 0 and I act to
move Forward at time 0 then

• I will be in L[2,1] at time 1 and I will not be in L[1,1] at time 1
• Fluents refers to aspects of the world that change

• Atemporal variables do not need the superscript 0, 1, …

• Suppose now that I start and I move to L[2,1]

• If I Ask if I am in L[2,1]  can prove it

• If I Ask do I have arrow in L[2,1] I cannot prove or disprove it
• I need to represent everything that remains unchanged in KB as a

result of the action Forward (or any other action sentence)

• Ugh, I have to represent (have sentences) for every thing that
changes  this is the frame problem

PL

First order logic

Logics:

• For each logic (language)

• What are the sound rules of inference?

• Are they complete?

• What is the complexity of finding proofs?

Syntax

Complex sentences

Here’s a(nother) vocabulary

• Objects + Variables == Terms

• Terms + Predicates == Atomic Formulas

• Atomic formulas + negation == Literals

• Literals + Connectives + quantifiers == wffs

• Well formed formulas (wffs)

• Sentences (all variables bound)

• A(x)[Feathers(x) V !Feathers(y)]
• Y is not bound

Interpretation

• Objects in a world correspond to object symbols in logic

• Relations in a world correspond to predicates in logic

• Interpretation: Full accounting of the correspondence
between objects and object symbols and between
relations and predicates

Quantification

• Universal

• A(x)[UNRStudent(x)  Smart(x)]

• If the above expression is true it implies that you get a
true expression when you substitute any object for x
inside the square brackets

• Common Issue:

• Typically  is the main connective with A

• A(x) [UNRStudent(x) /\ Smart(x)]

• Everyone is at UNR and Everyone is Smart

Existential Quantification

• Existential

• E(x) [UNLVStudent(x) /\ Smart(x)]

• There exists at least one object substitutable for x
inside the square brackets that makes the sentence
true

• Common issue

• /\ is the main connective with E

• Typically not 

• E(x) [UNLVStudent(x)  Smart(x)]

• Is true if there is anyone not at UNLV

Quantifiers

Marcus intuition for informal proofs

• Man(marcus)
• Pompein(marcus)
• Born(marcus, 40)
• A(x) [man(x) mortal(x)]
• Erupted(Volcano, 79)
• A(x) [Pompein(x)  Died(x, 79)]
• A(x) A(t1) A(t2) [mortal(x) & born(x, t1) & gt(t2 – t1, 150) 

Dead(x, t2)]
• Now = 2013

• Is Marcus alive?

• That is, what is the truth of: !Alive(Marcus, Now) or
• That is, what is the truth of: Dead(Marcus, Now)

Need a couple more assertions

1. Man(marcus)

2. Pompein(marcus)

3. Born(marcus, 40)

4. A(x) [man(x) mortal(x)]

5. Erupted(Volcano, 79)

6. A(x) [Pompein(x)  died(x, 79)]

7. A(x) A(t1) A(t2) [mortal(x) & born(x, t1) & gt(t2 – t1,
150)  dead(x, t2)]

8. Now = 2013

9. A(x) A(t) [!dead(x, t)  alive(x, t)]

10. A(x)A(t) [alive(x, t)  !dead(x, t)]

11. A(x)A(t1) A(2)[died(x, t1) & gt(t2, t1)  dead(x, t2)]

Not a resolution proof

• We deduced that Marcus was not alive

• We used a variety of rules and bound variables to literals

• Search for rules and bindings

• Guided by what we were trying to prove

• Looking for sentences that involved Alive

• Ensure you understand the proof for Wumpus world that
proves that there is no pit in [1,2] and no pit in [2,1]

• It would be far simpler for search to find proofs if we had a
smaller branching factor for our search procedure

• Use the single resolution rule in searching for proof

Resolutions proof by refutation

• Assume that the negation of the theorem (sentence you
are trying to prove) is T

• Show that the sentences and the assumed negation of
the Theorem leads to a contradiction

• Conclude that the assumed negation of the theorem
cannot be true because it leads to a contradiction

• Conclude that the Theorem must be true because the
assumed negation of the theorem cannot be true

• NOTE

• Sentences must be in a specific form: “Clause form”

• Once you put all your sentences in clause form, you cleverly keep
applying the resolution rule until you get a contradiction (nil)

