Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Questions

* Rational agents and performance metrics
Suppose that the performance measure is concerned with just
the first T time steps of the environment and ignores everything
thereafter. Show that a rational agent’s action may depend not
just on the state of the environment but also on the time step it

has reached

Questions (True or False)

An agent that senses only partial information about the state cannot b
perfectly rational

There exist task environments in which no pure reflex agent can behav
rationally

There exists a task environment in which every agent is rational

The input to an agent program is the same as the input to the agent
function

Every agent function is implementable by some program/machine
combination

Suppose an agent selects its action uniformly at random from the set o
possible actions. There exists a deterministic task environment in whic
this agent is rational

True or False

* It is possible for a given agent to be perfectly rational in two
distinct task environments

* Every agent is rational in an unobservable environment

* A perfectly rational poker-playing agent never loses

Types of task environments
o S e o

Soccer

Exploring the
subsurface
oceans of
Titan

Shopping for
used Al books
on the net

Playing a
tennis match

Practicing
tennis against
a wall

Performing a
high jump
Knitting a

sweater

Bidding on an
item at
anauction

Types of task environments

Soccer

Exploring the
subsurface
oceans of
Titan

Shopping for
used Al books
on the net

Playing a
tennis match

Practicing
tennis against
a wall

Performing a
high jump

Knitting a
sweater

Bidding on an
item at an
auction

Partial

Partial

Partial

Fully

Fully

Fully

Fully

Fully

Multi

Single?

Single ?

Multi

Single

Single

Single

Multi

Stochastic

Stochastic

Deterministic

Stochastic

Stochastic

Stochastic

Deterministic

Stochastic/
Strategic

Sequential

Sequential

Sequential

Episodic/Seq

Episodic/seq

Sequential

Sequential

Sequential

Dynamic

Dynamic

Static

Dynamic

Dynamic

Static

Static

Static

Continuous

Continuous

Discrete

Continuous

Continuous

Continuous

Continuous

Discrete

Quotes

MURPHY'S LAWS

1.Nothing is as easy as it looks.
2.Everything takes longer than you think.
3.Anything that can go wrong will go wrong.
4.1f there is a possibility of several things going wrong, the one that will
cause the most damage will be the one to go wrong. Corollary: If there is a
worse time for something to go wrong, it will happen then.
5.1f anything simply cannot go wrong, it will anyway.
6.1f you perceive that there are four possible ways in which a procedure can
go wrong, and circumvent these, then a fifth way, unprepared for, will
promptly develop.
7.Every solution breeds new problems.

The Murphy Philosophy

Smile . . . tomorrow will be worse.

Arthur C. Clarke

* Any sufficiently advanced technology is indistinguishable from magi

Outline

Problem solving agents

Problem types

Problem formulation

Example Problems

Basic Search Algorithms

Problem Solving Agents

* Restricted form of general agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seg, an action sequence, mitially empty
state, some description of the current world state
goal, a goal, mitially null
problem, a problem formulation

state +— UPDATE-STATE(state, percept)
if seq 15 empty then
goal +— FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM state, goal)
seq «— SEARCH(problem)
if seq = failure then return a null action
action «+— FIRST(seq)
seq +— REST(seq)
return action

Figure 3.1 A sumple problem-solving agent. It first formulates a goal and a problem, searches for a
sequence of actions that would solve the problem, and then executes the actions one at a time. When

this 1s complete, 1t formulates another goal and starts over.

This is offline problem solving. Search for solution, then execute. During
execution we are not using subsequent percepts

Problem solving agent example

* Consider a holiday in Romantic Romania

You are an agent, holiday touring in Arad,
Romania

What are your performance measures?

Improve suntan, look at the sights, check
out Transylvania, enjoy the nightlife,
become one of the undead, avoid
hangovers, ...

/\ l’\
Oradea/\ . CIUJ-Napoca ol ,(“\ /

N A
» 2hk B
: RdA S fif"'&’ Tirgu Murles /_A” qBa““
"a g

Mwes‘—'—Mba Iuha‘ R O M A N l A

AD A I'. o
-J_'-
T1m1soara S‘b“’ AN AN A

LN Brasov Galatl -
Resita I a« ~

d /]/ Yoy \[” ’\J'l Braﬂaf

N \ Ea {

Iron Gate [\\..\ leeSt'

_/.__\

J

The action sequence to do this is long and
complicated and you need to read
guidebooks, books, talk to people, make
tradeoffs

Very complex, let us simplify \ ‘

J
St
,L

BUCHARES

\'UGDSLA\V!A_

BULGARIA

You have a non-refundable ticket to get
home from Bucharest tomorrow

Now you have a goal: Get to Bucharest in
time to catch your flight tomorrow

Romantic Romania

* Goal: Get to Bucharest
* Formulate Problem:

States: Cities ara®

Actions: Drive to city s

imisoara

* What level of abstraction?

Turn wheel or Drive to Bucharest guensaa |1

?i|

What is a state? Dobretay_ 120 |

What is an action?
* Goal: Set of states, specifically: {Bucharest}
* Solution: Sequence of actions that results in a goal state

What type of task environment?

Romantic
Romania

Romantic Yes Single Sequential Static Discrete

Romania

Problem solution

A fixed sequence of actions

Agent searches for a sequence of actions that will lead to a
goal state

So we :
Formulate the problem,
Search for a solution,
Execute the action sequence

Execution phase does NOT consider percepts in this simple
example. In control theory: Open-Loop system

Back to Romanian problem formulation

* Initial State, S_ O
In(Arad)
* Actions
Actions(S) returns set of actions possible in state S
{Go(Sibiu), Go(Timisoara), Go(Zerind)}
* Transition Model: What does an action do?
Result (In(Arad), Go(Zerind)) = In(Zerind)
* State space is a directed graph

* A Path in the state space is a sequence of states
connected by a sequence of actions

* Goal State(s) 2 In(Bucharest)
* Path COST function

Some agents are better than others = lower cost
Path costs are non-negative (>= 0)

—

State
Space
of our
problem

A solution is a sequence of actions leading from the initial state to a goal state

Abstraction

* The real world is absurdly complex so state space must be
abstracted for problem solving

* In(Arad) means somewhere in Arad but where

* Result(In (Arad), Go(Zerind)) = In (Zerind). Yay but how do you find
the highway out and what side do you drive on and where’s the gas
station, and

In @ more expressive, less abstract representation of the world,
In(Arad) must correspond to some real location in Arad (Hotel
Phoenix perhaps)

* Similarly a solution, a sequence of actions, must correspond to real
actions in the less abstract real-world. A Solution Path must
correspond to a real path

* Qur abstraction should make the original problem easier while at
the same time enabling a correspondence with a more expressive
representation

Vacuum world. States and transition

Vacuum world

States
?

Actions
?

Transition model (see figure)
Goal test
?

Path cost
?

Vacuum world

* States
Dirt location (0, 1), Robot location (0, 1)
Initial state can be any state = Nl B =
. C# i W | s
* Actions - :
Left, Right, Suck, NoOp "
o LCEﬂ p DR =4
* Transition model = ¢ '3‘ L “ o
* Goal test) -
No Dirt. All squares are clean Lcdﬂ] =
\

Path cost &
1 per action, O for NoOp

8 puzzle - otates

Location of every tile and blank
* Initial state

Any state
* Actions
7l 2 ||| 4 1l 2|f 3 Movement of blank
5 6 alll 5 W e Up, down, left, right
s s I s * Transition model
N - New state after blank move
* Goal Test
Test if configuration matches fig
* Path cost

1 per blank move

8 Queens - States

°?

* Initial State

- 7

* Actions
- ?

* Transition model
- ?

* Goal Test
- ?

* Path cost
- ?

Real world problems

Route finding
TSP

VLSI

Robot Navigation

Automatic assembly sequencing

Solving Romania

function TREE-SEARCH(problem) returns a solution, or failure
mitialize the usi:ﬂg the 1mitial state of problem
loop do
if the frontier 1s empty then return failure
choose a leaf node and remove 1t from the frontier
if the node contains a goal state then return the corresponding solution
expandlthe chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

mitialize the frontier using the 1nitial state of problem

initialize the explored ser to be emprty

loop do
if the frontier 15 empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node ro the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold 1talic are the additions needed to handle repeated states.

Romanian problem formulation

—

* Initial State, S_ O

In(Arad)
* Actions State
Actions(S) returns set of actions possible in state S - S|]:c>ace
_ o . of our
{Go(Sibiu), Go(Timisoara), Go(Zerind)} Sroblem

* Transition Model: What does an action do?
Result (In(Arad), Go(Zerind)) = In(Zerind)
* State space is a directed graph _—

* A Path in the state space is a sequence of states
connected by a sequence of actions

* Goal State(s) 2 In(Bucharest)
* Path COST function

Some agents are better than others = lower cost
Path costs are non-negative (>= 0)

A solution is a sequence of actions leading from the initial state to a goal state

(a) The initial state -

(b) After] expanding

(c) After expanding Sibiu

Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are

shown 1n faint dashed lines.

(a) The initial state

(b) After cxpandw
Csibiu D Climisour CZerind >

(c) After expanding Sibiu

Arad is loopy <

Figure 3.6 FILES: figures/search-map.eps (Tue Nov 3 16:23:38 2009). Partial search trees for
finding a route from Arad to Bucharest. Nodes that have been expanded are shaded; nodes that have
been generated but not yet expanded are outlined in bold; nodes that have not yet been generated are
shown i famnt dashed lines.

Why should we ignore loopy (redundant) paths?
1. DynProg

2. PathCost

Should we always ignore redundant paths?

Graph search avoids redundant path

And, very importantly, getting rid of redundant paths reduces the number of

b = branching factor
d = tree depth

function GRAPH-SEARCH(problem) returns a solution, or failure

mitialize the frontier using the 1nitial state of problem

initialize the explored ser to be emprty

loop do
if the frontier 15 empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node ro the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCH marked in bold 1talic are the additions needed to handle repeated states.

Graph search makes a state tree

~ %

Figure 3.8 FILES: fioures/romania-graph-search.eps (Tue Nov 3 13:48:17 2009). A sequence
of search trees generated by a graph search on the Romama problem of Figure 3.2. At each stage, we
have extended each path by one step. Notice that at the third stage, the northernmost city (Oradea) has
become a dead end: both of its successors are already explored via other paths.

Graph search frontier separates
explored and unexplored states

u)—}Q
{) ()

(a) (b) (c)

Implementing graph search

* Node != problem state (states do not have parent, action, path-
cost, ...)
Parent
Action
State
Path-cost
* function ChildNode(problem, parent, action) returns Node

return a Node with
State = problem.Result(parent.State, action)

Parent = parent
Action = action
Path-cost = parent.Path-cost + problem.Step-cost(parent.State, action)
* If node contains goal state, then you have to construct the
solution — a path — by following the parent chain to the root

Implementing graph search

* Frontier:

Queue
FIFO
LIFO
Priority
* Path-Cost?
* Explored-Set:

Hash table

Ready for Search

* Different search strategies are defined by the order in which
we choose nodes from the frontier to expand

Lifo, fifo, ...
* We compare search strategies along the following dimensions
Completeness: Does it always find a solution if one exists?
Time Complexity: Number of nodes expanded/generated
Space Complexity: Max number of nodes in Memory
Optimality: Does it always find least-cost solution
* Time and space complexity are measured in terms of
b =2 maximum branching factor of search tree

d = depth of least cost solution
m = maximum depth of the tree (may be infinite!)

Uninformed Search

Breadth-first
Uniform-cost
Depth-first
Depth-limited
Iterative deepening

Breadth-first search - FIFO Q

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem . INITIAL-STATE, PATH-COST=0
if problem GOAL-TEST(node STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element
erplored «— an empty set
loop do
if EMPTY?(frontier) then return failure
node «— POP(frontier) /¥ chooses the shallowest node in fronfier */
add node STATE to explored
for each actfion in problem ACTIONS(node. STATE) do
child «— CHILD-NODE(problem. node, action)
if child STATE 1s not mn explored or frontier then
if problem .GOAL-TEST(child . STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

BEFS
>®

& © 6 ® & ©

Complete: Yes — shallowest goal node

Time == Number of nodes expanded — assume b constant
O(b~d) if you check for goal state upon generation of node or
O(b”(d+1)) if you check when you pick node for expansion

Space == Space for nodes = number of nodes in explored set + number of
nodes in frontier

O(b”(d-1)) in explored + O(b”d) in frontier

Uh-oh! Can generate nodes at the rate of 100MB/sec so 24 hours means
8640GB

Look at figure 3.13 in the book

With b =10, d = 16, and 1M nodes/sec, 350 Years and 10 exabytes of stora
needed

Optimality: Optimal if path cost is non-decreasing function of depth

Uniform-cost search

* Expand node with lowest path-cost
* Goal test on expansion

* Replace frontier node if you find better path to same
node.State

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem INITIAL-STATE, PATH-COST=10
frontier < a priority queue ordered by PATH-COST, with node as the only element
erplored +— an empty set
loop do
if EMPTY?(frontier) then return failure
node «— POP(frontier) /* chooses the lowest-cost node 1 frontier */
if problem GOAL-TEST(node STATE) then return SOLUTION(node)
add node. STATE to explored
for each acfion in problem ACTIONS(node STATE) do
child +—— CHILD-NODE(problem., node, action)
if child STATE 1s not in explored or frontier then
frontier «— INSERT(child, frontier)
else if child STATE 1s in frontier with higher PATH-COST then
replace that frontier node with child

Uniform cost search

* Draw the Uniform-cost search tree for getting from Sibiu to
Bucharest

Sibiu) :
99 Fagaras

Eimnicu Vilcea

Bucharest

Uniform cost search

* Complete if every step costis >0
* Optimal
* Time/Space — Strictly more than BFS

Depth- flrst search

IR

%ﬁ’}?})

p
B
et

DFS

Often easy to implement recursively
* Completeness:

Graph search version is complete in finite spaces
Tree search version can be infinitely loopy
* Not-optimal
* Time: If d is depth of shallowest optimal solution, and m is
max depth of tree, DFS may generate O(b”m) >> O(b”d)

* Space: O(bm) ! Not bad and we can go lower to O(m) with
some fancy housekeeping (backtracking search)

* Some kind of DFS used a lot in Al because space requirements
are low

* What kinds?

Depth-limited search

> DFS with depth limit, | (el)
If | < d you will never find solution (incomplete)
If | > d non-optimal
DFS = DLS with | = infinity
* Romanian problem depth is 20 == number of states

Actually 9! The diameter of the state space (max steps between
any pair of states)

DLS (or DFS)

* Remove limit to make DFS

function DEPTH-LIMITED-SEARCH(problem., limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem INITIAL-STATE), problem., limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
if problem GOAL-TEST(node STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else

cutoff_occurred? — false

for each action in problem ACTIONS(node.STATE) do
child +— CHILD-NODE(problem., node, action)
result +— RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff_occurred? — true
else if resuli = failure then return resuli

if cutoff_oceurred? then return cutoff else return failure

[terative deepening DFS

* DLS but keep increasing limit
* Why?
Space efficient like DFS and
complete and optimal like BFS

Not much extra work since the number of nodes at depth d is bAd
And number of interior nodes = bAd -1
Most nodes are leaves

Numerical comparison for b = 10 and d = 5, solution at far right lea
N(IDS) = 50 + 400 + 3; 000 + 20; 000 + 100; 000 = 123; 450
N(BFS) =10+ 100 + 1; 000 + 10; 000 + 100; 000 + 999; 990 =1; 111

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fatlure
for depth =0 to oo do
result «— DEPTH-LIMITED-SEARCH(problem., depth)
if resulf # cutoff then return result

e el
OO,
L. O WO NP

PRSI Ry S

fn A

Limit = 0 b
Limit = 1 @

[terative deepening

[terative lengthening

* Check textbook

Bidirectional Search

bA(d/2) + bAd/2) << bAd
Search “forwards” from start and “backwords” from goal

Check for frontier intersection

One search must be BFS for good check on frontier intersection

How do you search backwards for
Romania
Vacuum cleaner
8-queens

Comparison of uninformed search

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes* Yes® No Yes, if | > d Yes
Time pt+] pl "/l b b b
Space il plC /el bm bl bd
Optimal? Yes® Yes No No Yes®

Informed Search

* Best First Search
A*
Heuristics

* Basic idea

Order nodes for expansion using a specific search strategy

Remember uniform cost search?
* Nodes ordered by path length = path cost and we expand least cost
* This function was called g(n)

Order nodes, n, using an evaluation function f(n)

Most evaluation functions include a heuristic h(n)

For example: Estimated cost of the cheapest path from the state at
node n to a goal state

Heuristics provide domain information to guide informed search

Romania with straight line distance heuristic

[§ Vaslui

] Hirsowa
P Mehadia 146
Ta

|
Dobreta [J___ 120

Efarie

h(n) = straight line distance to Bucharest

Straight—lme distance

to Bucharest

Arad 3166
Bucharest]
Craiova 160
Dobreta 242
Eforie 1561
Fagaras 178
Ginrgin T7
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti o
Eimnicu Vilcea 1903
Sibin 153
Timisoara 379
Urziceni 80
Vaslui 199
Zerind 374

Greedy search

* F(n) = h(n) = straight line distance to goal
* Draw the search tree and list nodes in order of expansion (5 minut

Arad 166 Mehad ia 241
Bucharest] MNeamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibin 253
Giurgiu 77 Timisoara R Wt
Hirsova 151 Urziceni &
lasi 226 Vashu 199
Lugoj 244 Zerind 374
Aradl]
Time? el
Space? imisoara
?
Complete. ™ Lugos
Optimal? 70|

Mehadia
75 |
Dobretag—__120

Eforie

Greedy search

(a) The initial state >

ib) After expanding Arad

253 1] 374

ic) After expanding Sibiu

id) After expanding Fagaras

[] lasi
Arad}

1113|

imisoara

Greedy analayis

111

* Optimal? 0

Lugaoj

[Hirsova
Mehadia

Path through Rimniu Velcea is shorter ﬁé .
Dobreta g 120
Eforie

* Complete?
Consider lasi to Fagaras
Tree search no, but graph search with no repeated states version = ye
In finite spaces
* Time and Space
Worst case b™ where m is the maximum depth of the search space
Good heuristic can reduce complexity

A*
* f(n) = g(n) +h(n)

. = cost to state + estimated cost to goal
J = estimated cost of cheapest solution through n

Arad 366 Mehadia 241
Bucharest] Meamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni B
Lasi 226G Vashn 199
Lugaoj 244 Lerind 374

Draw the search tree and list the nodes
and their associated cities in order of
expansion for going from Arad to
Bucharest

5 minutes

Eforie

(a) The initial state T

(b After expanding Arad

393= 14[H+253 Sd7=115+329 489=T5+374

(c) After expanding Sibin

44T=118+329

489=T5+374

GESH=2H0+366 4]15=23% 1T 6TI=291+380 413=2X+193

(dy After expanding Rimnicu Vilcea

447=118+329

489=T5+374

HdH=280H 306 415=239+174 a71=291+380

526=360+160 417=317+1M) S553=3NKH253

(e} After expanding Fagaras

447=118+329 449=T54+374

591=338+253 A50=d500) S26=366+160 417=317+100 553=300+253
(fy After expanding Pitest < Arsd
T T imiso=rs CZexind 3
$47=118+320 L49=T5+374

A a=2R+366 &7 1=291+380
CSivin_> (Buchares CCrmiovay (Piesti D Sibiu_J
SQ1=33K+253 AS50=450+] 526=368+1 A=3(WH-253
P Buche reg Craicva aimaia ¥ ilces

418=418+H0 &15=455+ 160 HI7T=4]14+193

A*
f(n) = g(n) + h(n)
= cost to state + estimated cost to goal

= estimated cost of cheapest solution through n

Seem reasonable?
If heuristic is admissible, A* is optimal and complete for Tree search

Admissible heuristics underestimate cost to goal
If heuristic is consistent, A* is optimal and complete for graph search
Consistent heuristics follow the triangle inequality
If n” is successor of n, then h(n) <c(n, a, n’) + h(n’)
Is less than cost of going from n to n” + estimated cost from n’ to goal
* Otherwise you should have expanded n’ before n and you need a different heuristic

f costs are always non-decreasing along any path

A* contours

* Non decreasing f implies
We can draw contours If:-’*‘

Inside the 400 contour >~
All nodes have f(n) €400 |™~.. "

Contour shape
Circular if h(n) =0
Elliptical towards goal for h(n)

* If C* is optimal path cost DO
A* expands all nodes with f(n) < C* A G
A* may expand some nodes with f(n) = C* before getting to a goal state

If b is finite and all step costs > e, then A* is complete since
There will only be a finite number of nodes with f(n) < C*

Search

Problem solving by searching for a solution in a space of
possible solutions

Uninformed versus Informed search

Atomic representation of state

Solutions are fixed sequences of actions

