
Artificial Intelligence
CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Questions

• Rational agents and performance metrics

• Suppose that the performance measure is concerned with just
the first T time steps of the environment and ignores everything
thereafter. Show that a rational agent’s action may depend not
just on the state of the environment but also on the time step it
has reached

Questions (True or False)
• An agent that senses only partial information about the state cannot be

perfectly rational

• There exist task environments in which no pure reflex agent can behave
rationally

• There exists a task environment in which every agent is rational

• The input to an agent program is the same as the input to the agent
function

• Every agent function is implementable by some program/machine
combination

• Suppose an agent selects its action uniformly at random from the set of
possible actions. There exists a deterministic task environment in which
this agent is rational

True or False

• It is possible for a given agent to be perfectly rational in two
distinct task environments

• Every agent is rational in an unobservable environment

• A perfectly rational poker-playing agent never loses

Types of task environments
Task Env Observable Agents Deterministic Episodic Static Discrete

Soccer

Exploring the
subsurface
oceans of
Titan

Shopping for
used AI books
on the net

Playing a
tennis match

Practicing
tennis against
a wall

Performing a
high jump

Knitting a
sweater

Bidding on an
item at
anauction

Types of task environments
Task Env Observable Agents Deterministic Episodic Static Discrete

Soccer Partial Multi Stochastic Sequential Dynamic Continuous

Exploring the
subsurface
oceans of
Titan

Partial Single? Stochastic Sequential Dynamic Continuous

Shopping for
used AI books
on the net

Partial Single ? Deterministic Sequential Static Discrete

Playing a
tennis match

Fully Multi Stochastic Episodic/Seq Dynamic Continuous

Practicing
tennis against
a wall

Fully Single Stochastic Episodic/seq Dynamic Continuous

Performing a
high jump

Fully Single Stochastic Sequential Static Continuous

Knitting a
sweater

Fully Single Deterministic Sequential Static Continuous

Bidding on an
item at an
auction

Fully Multi Stochastic/
Strategic

Sequential Static Discrete

Quotes

MURPHY'S LAWS
1.Nothing is as easy as it looks.

2.Everything takes longer than you think.

3.Anything that can go wrong will go wrong.

4.If there is a possibility of several things going wrong, the one that will

cause the most damage will be the one to go wrong. Corollary: If there is a

worse time for something to go wrong, it will happen then.

5.If anything simply cannot go wrong, it will anyway.

6.If you perceive that there are four possible ways in which a procedure can

go wrong, and circumvent these, then a fifth way, unprepared for, will

promptly develop.

7.Every solution breeds new problems.

The Murphy Philosophy

Smile . . . tomorrow will be worse.

Arthur C. Clarke

• Any sufficiently advanced technology is indistinguishable from magic.

Outline

• Problem solving agents

• Problem types

• Problem formulation

• Example Problems

• Basic Search Algorithms

Problem Solving Agents
• Restricted form of general agent

This is offline problem solving. Search for solution, then execute. During
execution we are not using subsequent percepts

Problem solving agent example
• Consider a holiday in Romantic Romania

• You are an agent, holiday touring in Arad,
Romania

• What are your performance measures?

• Improve suntan, look at the sights, check
out Transylvania, enjoy the nightlife,
become one of the undead, avoid
hangovers, …

• The action sequence to do this is long and
complicated and you need to read
guidebooks, books, talk to people, make
tradeoffs

• Very complex, let us simplify

• You have a non-refundable ticket to get
home from Bucharest tomorrow

• Now you have a goal: Get to Bucharest in
time to catch your flight tomorrow

Romantic Romania

• Goal: Get to Bucharest

• Formulate Problem:

• States: Cities

• Actions: Drive to city

• What level of abstraction?

• Turn wheel or Drive to Bucharest

• What is a state?

• What is an action?

• Goal: Set of states, specifically: {Bucharest}

• Solution: Sequence of actions that results in a goal state

What type of task environment?
Task Env Observable Agents Deterministic Episodic Static Discrete

Romantic
Romania

Task Env Observable Agents Deterministic Episodic Static Discrete

Romantic
Romania

Yes Single Yes Sequential Static Discrete

Problem solution

• A fixed sequence of actions

• Agent searches for a sequence of actions that will lead to a
goal state

• So we :

• Formulate the problem,

• Search for a solution,

• Execute the action sequence

• Execution phase does NOT consider percepts in this simple
example. In control theory: Open-Loop system

Back to Romanian problem formulation

• Initial State, S_0

• In(Arad)

• Actions

• Actions(S) returns set of actions possible in state S

• {Go(Sibiu), Go(Timisoara), Go(Zerind)}

• Transition Model: What does an action do?

• Result (In(Arad), Go(Zerind)) = In(Zerind)

• State space is a directed graph

• A Path in the state space is a sequence of states
connected by a sequence of actions

• Goal State(s)  In(Bucharest)

• Path COST function

• Some agents are better than others  lower cost

• Path costs are non-negative (>= 0)

State
Space
of our
problem

A solution is a sequence of actions leading from the initial state to a goal state

Abstraction

• The real world is absurdly complex so state space must be
abstracted for problem solving

• In(Arad) means somewhere in Arad but where

• Result(In (Arad), Go(Zerind)) = In (Zerind). Yay but how do you find
the highway out and what side do you drive on and where’s the gas
station, and …..

• In a more expressive, less abstract representation of the world,
In(Arad) must correspond to some real location in Arad (Hotel
Phoenix perhaps)

• Similarly a solution, a sequence of actions, must correspond to real
actions in the less abstract real-world. A Solution Path must
correspond to a real path

• Our abstraction should make the original problem easier while at
the same time enabling a correspondence with a more expressive
representation

Vacuum world. States and transitions

Vacuum world

• States

• ?

• Actions

• ?

• Transition model (see figure)

• Goal test

• ?

• Path cost

• ?

Vacuum world

• States

• Dirt location (0, 1), Robot location (0, 1)

• Initial state can be any state 

• Actions

• Left, Right, Suck, NoOp

• Transition model 

• Goal test

• No Dirt. All squares are clean

• Path cost

• 1 per action, 0 for NoOp

8 puzzle • States
• Location of every tile and blank

• Initial state
• Any state

• Actions
• Movement of blank

• Up, down, left, right

• Transition model
• New state after blank move

• Goal Test
• Test if configuration matches figure

• Path cost
• 1 per blank move

8 Queens • States

• ?

• Initial State

• ?

• Actions

• ?

• Transition model

• ?

• Goal Test

• ?

• Path cost

• ?

Real world problems

• Route finding

• TSP

• VLSI

• Robot Navigation

• Automatic assembly sequencing

Solving Romania

Romanian problem formulation

• Initial State, S_0

• In(Arad)

• Actions

• Actions(S) returns set of actions possible in state S

• {Go(Sibiu), Go(Timisoara), Go(Zerind)}

• Transition Model: What does an action do?

• Result (In(Arad), Go(Zerind)) = In(Zerind)

• State space is a directed graph

• A Path in the state space is a sequence of states
connected by a sequence of actions

• Goal State(s)  In(Bucharest)

• Path COST function

• Some agents are better than others  lower cost

• Path costs are non-negative (>= 0)

State
Space
of our
problem

A solution is a sequence of actions leading from the initial state to a goal state

Frontier

Frontier

Frontier

Frontier

Arad is loopy

Why should we ignore loopy (redundant) paths?
1. DynProg
2. PathCost
Should we always ignore redundant paths?

Graph search avoids redundant paths

 And, very importantly, getting rid of redundant paths reduces the number of
tree nodes from pow(b, d) to approximately 2 d^2 !!!!!
b = branching factor
d = tree depth

Graph search makes a state tree

Graph search frontier separates
explored and unexplored states

Implementing graph search
• Node != problem state (states do not have parent, action, path-

cost, …)
• Parent

• Action

• State

• Path-cost

• function ChildNode(problem, parent, action) returns Node
• return a Node with

• State = problem.Result(parent.State, action)

• Parent = parent

• Action = action

• Path-cost = parent.Path-cost + problem.Step-cost(parent.State, action)

• If node contains goal state, then you have to construct the
solution – a path – by following the parent chain to the root

Implementing graph search

• Frontier:

• Queue

• FIFO

• LIFO

• Priority

• Path-Cost?

• Explored-Set:

• Hash table

Ready for Search

• Different search strategies are defined by the order in which
we choose nodes from the frontier to expand

• Lifo, fifo, …

• We compare search strategies along the following dimensions

• Completeness: Does it always find a solution if one exists?

• Time Complexity: Number of nodes expanded/generated

• Space Complexity: Max number of nodes in Memory

• Optimality: Does it always find least-cost solution

• Time and space complexity are measured in terms of

• b  maximum branching factor of search tree

• d  depth of least cost solution

• m  maximum depth of the tree (may be infinite!)

Uninformed Search

• Breadth-first

• Uniform-cost

• Depth-first

• Depth-limited

• Iterative deepening

Breadth-first search – FIFO Q

BFS

• Complete: Yes – shallowest goal node

• Time == Number of nodes expanded – assume b constant

• O(b^d) if you check for goal state upon generation of node or

• O(b^(d+1)) if you check when you pick node for expansion

• Space == Space for nodes = number of nodes in explored set + number of
nodes in frontier

• O(b^(d-1)) in explored + O(b^d) in frontier

• Uh-oh! Can generate nodes at the rate of 100MB/sec so 24 hours means
8640GB

• Look at figure 3.13 in the book

• With b = 10, d = 16, and 1M nodes/sec, 350 Years and 10 exabytes of storage
needed

• Optimality: Optimal if path cost is non-decreasing function of depth

Uniform-cost search
• Expand node with lowest path-cost

• Goal test on expansion

• Replace frontier node if you find better path to same
node.State

Uniform cost search

• Draw the Uniform-cost search tree for getting from Sibiu to
Bucharest

Uniform cost search

• Complete if every step cost is > 0

• Optimal

• Time/Space – Strictly more than BFS

Depth-first search

• LIFO Q

DFS

• Often easy to implement recursively

• Completeness:

• Graph search version is complete in finite spaces

• Tree search version can be infinitely loopy

• Not-optimal

• Time: If d is depth of shallowest optimal solution, and m is
max depth of tree, DFS may generate O(b^m) >> O(b^d)

• Space: O(bm) ! Not bad and we can go lower to O(m) with
some fancy housekeeping (backtracking search)

• Some kind of DFS used a lot in AI because space requirements
are low

• What kinds?

Depth-limited search

• DFS with depth limit, l (el)

• If l < d you will never find solution (incomplete)

• If l > d non-optimal

• DFS = DLS with l = infinity

• Romanian problem depth is 20 == number of states

• Actually 9! The diameter of the state space (max steps between
any pair of states)

DLS (or DFS)

• Remove limit to make DFS

Iterative deepening DFS
• DLS but keep increasing limit

• Why?

• Space efficient like DFS and

• complete and optimal like BFS

• Not much extra work since the number of nodes at depth d is b^d

• And number of interior nodes = b^d -1

• Most nodes are leaves

• Numerical comparison for b = 10 and d = 5, solution at far right leaf:

• N(IDS) = 50 + 400 + 3; 000 + 20; 000 + 100; 000 = 123; 450

• N(BFS) = 10 + 100 + 1; 000 + 10; 000 + 100; 000 + 999; 990 = 1; 111; 100

Iterative deepening

Iterative lengthening

• Check textbook

Bidirectional Search

• b^(d/2) + b^(d/2) << b^d

• Search “forwards” from start and “backwords” from goal

• Check for frontier intersection

• One search must be BFS for good check on frontier intersection

• How do you search backwards for

• Romania

• Vacuum cleaner

• 8-queens

Comparison of uninformed search

Informed Search

• Best First Search
• A*

• Heuristics

• Basic idea
• Order nodes for expansion using a specific search strategy

• Remember uniform cost search?
• Nodes ordered by path length = path cost and we expand least cost

• This function was called g(n)

• Order nodes, n, using an evaluation function f(n)

• Most evaluation functions include a heuristic h(n)
• For example: Estimated cost of the cheapest path from the state at

node n to a goal state

• Heuristics provide domain information to guide informed search

Romania with straight line distance heuristic

h(n) = straight line distance to Bucharest

Greedy search
• F(n) = h(n) = straight line distance to goal

• Draw the search tree and list nodes in order of expansion (5 minutes)

Time?
Space?
Complete?
Optimal?

Greedy search

Greedy analayis

• Optimal?

• Path through Rimniu Velcea is shorter

• Complete?

• Consider Iasi to Fagaras

• Tree search no, but graph search with no repeated states version  yes

• In finite spaces

• Time and Space

• Worst case 𝑏𝑚 where m is the maximum depth of the search space

• Good heuristic can reduce complexity

𝐴∗
• f(n) = g(n) + h(n)

• = cost to state + estimated cost to goal

• = estimated cost of cheapest solution through n

𝐴∗

Draw the search tree and list the nodes
and their associated cities in order of
expansion for going from Arad to
Bucharest
5 minutes

A*

𝐴∗
• f(n) = g(n) + h(n)

• = cost to state + estimated cost to goal

• = estimated cost of cheapest solution through n

• Seem reasonable?

• If heuristic is admissible, 𝐴∗ is optimal and complete for Tree search

• Admissible heuristics underestimate cost to goal

• If heuristic is consistent, 𝐴∗ is optimal and complete for graph search

• Consistent heuristics follow the triangle inequality

• If n’ is successor of n, then h(n) ≤ c(n, a, n’) + h(n’)

• Is less than cost of going from n to n’ + estimated cost from n’ to goal

• Otherwise you should have expanded n’ before n and you need a different heuristic

• f costs are always non-decreasing along any path

𝐴∗ contours
• Non decreasing f implies

• We can draw contours

• Inside the 400 contour

• All nodes have f(n) ≤ 400

• Contour shape

• Circular if h(n) = 0

• Elliptical towards goal for h(n)

• If C* is optimal path cost

• A* expands all nodes with f(n) < C*

• A* may expand some nodes with f(n) = C* before getting to a goal state

• If b is finite and all step costs > e, then A* is complete since

• There will only be a finite number of nodes with f(n) < C*

Search

• Problem solving by searching for a solution in a space of
possible solutions

• Uninformed versus Informed search

• Atomic representation of state

• Solutions are fixed sequences of actions

