
Artificial Intelligence
CS482, CS682, MW 1 – 2:15, SEM 201, MS 227

Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Search Leftovers
• Non-determinism in search

• Solutions can be contingency plans (trees)

• How do we handle non-determinism?

• First: What types of determinism?

• Second: For each type, how do we handle it?

• Partial Observability

• What types of observability do we have?

• How do we handle each?

• Don’t forget Kriegspeil and partial observability in games

• Online-vs-Offline search and execution

• Learning search algorithms

Non-determinism in Actions

• Erratic vacuum-cleaners

• Bad suck actions example

• And-Or trees

• AND

• You can end up in multiple states as the result of an action

• You have to find a path from all of these states (AND)

• OR

• Try each action

• Any one action can lead to the goal state(s) (OR)

Non-determinism in actions
• Slippery vacuum world

• If at first you don’t succeed try, try again

• We need to add label to some portion of a plan and use the
label to refer to that portion – rather than repeating the
subplan And-Or graphs with labels

• Plan: [Suck, L1: Right, if State == 5 then L1 else Suck]

Searching with Partial observation

• Agents percepts cannot pin down the exact state the agent is in

• Let Agents have Belief states

• Search for a sequence of belief states that leads to a goal

• Search for a plan that leads to a goal

• First: NO percepts sensor-less

• States? (Belief states)

• Initial State?

• Actions?

• Transition Model?

• Goal test?

• Path cost?

Consider sensor-less vacuum world

Sensor-less vacuum world

• Assume belief states are
the same but no location
or dust sensors

• Initial state = {1, 2, 3, 4, 5,
6, 7, 8}

• Action: Right

• Result = {2, 4, 6, 8}

• Right, Suck

• Result = {4, 8}

• Right, Suck, Left, Suck

• Result = {7} guaranteed!

You do not need sensors to COERCE
the world into a specific state!

Sensor-less search

• Search in belief state space, where the problem is fully observable!

• Solution is a sequence, even if the environment is non-deterministic!

• Suppose the underlying problem (P) is

• {𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑝, 𝑅𝑒𝑠𝑢𝑙𝑡𝑝, 𝐺𝑜𝑎𝑙 − 𝑇𝑒𝑠𝑡𝑝, 𝑆𝑡𝑒𝑝 − 𝐶𝑜𝑠𝑡𝑝}

• What is the corresponding sensor-less problem

• States Belief States: every possible set of physical states

• If N physical states, number of belief states can be 2𝑁

• Initial State: Typically the set of all states in P

• Actions: Consider {s1, s2}

• If 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑝(s1) != 𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑝(s2) should we take the Union of both sets of

actions or the Intersection?

• Union if all actions are legal, intersection if not

Sensor-less search (cont’d)

• Transition model

• Union of all states that 𝑅𝑒𝑠𝑢𝑙𝑡𝑝(s) returns for all states, s, in your

current belief state

• 𝑏′ = 𝑅𝑒𝑠𝑢𝑙𝑡 𝑏, 𝑎 = {𝑠′ : 𝑠′ = 𝑅𝑒𝑠𝑢𝑙𝑡𝑝(s, a) and s ϵ b}

• This is the prediction step, 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑝(b, a)

• Goal-Test: If all physical states in belief state satisfy
𝐺𝑜𝑎𝑙 − 𝑇𝑒𝑠𝑡𝑝

• Path cost Tricky in general. Consider what happens if
actions in different physical states have different costs. For
now assume cost of an action is the same in all states

Examples

• Erratic - Right • Slippery – Right

• Action can increase
the number of
physical states in a
belief state

Belief states synposis

• Search through belief state space is usually worse than physical state
space (size)

• Alternatives:

• Logic representations

• Incremental belief-state search

• For each physical state in belief state find a solution that will take you to goal

• Fast failure but have to find one solution that works for all physical states in
initial state

Searching with observations

• Many problems require sensors

• Percept(s) or Percepts(s) function

• Vacuum world example

• Location sensor

• Current location dirt sensor. Cannot detect dirt in other square

• Percept(s1) = [A, Dirty]

• Observability

• Sensor-less problems Percepts(s) = Null for all s

• Fully observable Percepts(s) = s for every s

Example
• If you get [A, Dirty] you could be in {1, 3}

• Result({1, 3}, Right) is

• Now

• if you see (observe) [B, Dirty] you are in {2}

• If you observe [b, Clean] you are in {4}

• Transition Model is more complicated, otherwise this is not
very different from other search problems

3-stage transition model

• Prediction stage
• Predicted belief state is b^ = Predict(b, a)

• Observation prediction stage
• Possible-Percepts(b^) = {o : o = Percept(s) and s ϵ b^}

• Update stage
• 𝑏𝑜 = Update(b^, o) = {s : o = Percept(s) and s ϵ b^}

• So, Results(b, a)
• = {𝑏𝑜 : 𝑏𝑜 = Update(Predict(b, a), o) and o ϵ Possible-Percepts(Predict(b, a))}

Example: Slippery vacuum

And-Or solution

• Given this problem formulation, we can use the And-Or search
algorithm to come up with a plan to solve the problem

• Given [A, Dirty], Plan = {Suck, Right, if Bstate = {6} then Suck else []}

Partially observable environments

• An agent in a partially observable environment must update belief
state from percept

• b’ = Update(Predict(b, a), o)

• So the agent is only looking at the current o (percept) not the entire
history, as we considered earlier. This is recursive state estimation

• Example: Kindergarten vacuum world

Localization in robotics

• Maintaining belief states is a core function of any Intelligent Agent

• Monitoring, filtering, state estimation

• Robot:

• Four sonar sensors (NSWE) give correct data

• Robot has correct map of environment

• Move is broken Robot moves to random adjacent square

• Robot must determine current location

• Suppose it gets [NSW] obstacles N, S, and W

Robot localization

• It must be in one of the following squares after [NSW]

• Now it gets [NS], where can it be?

Robot localization

• Only one location possible

Percepts usually reduce uncertainity

Online search
• Not find plan then execute then stop

• Compute, execute, observe, compute, execute, …

• Interleave computation and action

• Great for

• dynamic domains

• Non deterministic domains

• Necessary in unknown environments

• Robot localization in an unknown environment (no map)

• Does not know about obstacles, where the goal is, that UP from (1,1) goes to (1, 2)

• Once in (1, 2) does not know that down will go to (1, 1)

• Some knowledge might be available

• If location of goal is known, might use Manhattan distance heuristic

• Competitive Ratio = Cost of shortest path without exploration/Cost of actual agent path

• Irreversible actions can lead to dead ends and CR can become infinite

Examples

• Adversary argument

Online search algorithms
• Local search is better!

• Online-DFS

Online local search
• Hill-climbing is already an online search algorithm but stops at

local optimum. How about randomization?

• Cannot do random restart (you can’t teleport a robot)

• How about just a random walk instead of hill-climbing?

• Can be very bad (two ways back for every way forward above)

• Let’s augment HC with memory

• Learning real-time A* (LRTA*)

• Updates cost estimates, g(s), for the state it leaves

• Likes unexplored states

• f(s) = h(s) not g(s) + h(s) for unexplored states

LRTA* Example

• We are in shaded state

LRTA* algorithm

Questions

• DFS always expands at least as many nodes as A* with an
admissable heuristic (True/False). Explain.

• H(n) = 0 is an admissible heuristic for the 8-puzzle

• BFS is complete even if 0 step costs are allowed

Types of task environments
Task Env Observable Agents Deterministic Episodic Static Discrete

Soccer

Explore Titan

Shopping for
used AI books
on the Net

Playing tennis

Playing tennis
against a wall

Performing a
high jump

Knitting a
sweater

Bidding on an
item in an
auction

