Artificial Intelligence

CS482, CS682, MW 1 — 2:15, SEM 201, MS 227
Prerequisites: 302, 365

Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil

mailto:sushil@cse.unr.edu
http://www.cse.unr.edu/~sushil

Constraint satisfaction problems

* Constraints on the values of variables that define system state

* What’s new

State is no longer a black box
Previously all you could do with states was

* Test if two states were the same
« Tell if a state was a goal state

Now: State space is defined by the values of a set of variables
Each variable’s set of values is the variable’s domain

There can be
Unary
Binary
Path

Constraints

CSP

* Find values of variables that satisfy all problem constraints
* How?
Search, of course
Can we use any search method?
Hmm, some intuition from considering specific problems will help

Three colour problem

| Morthern

Territory

Western

Australia |]
South A

Australia

[N
Tasmania t} @
(a) (b)

Figure 6.1 TILES: figures/ausiralia.eps (Tue Nov 3 16:22:26 2009) figures/australia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The pnncipal states and ferntories of Australia. Colonng this map
can be viewed as a constraint satisfaction problem (CSP). The goal 1s fo assign colors fo each region
50 that no neighbonng regions have the same color. (b) The map-colonng problem represented as a
constraint graph.

Neighboring regions cannot have the same color
Colors = {red, blue, green}

Consider using a local search
Wa N Nsw |aueen |Victora [sA [T

{r,g,b} |[{rgb} |{rg b} |[{rgb} |{ng b} |{rg b} |[{rg b}

- 3 to the power 7 possible states = 2187
- But not all states are legal
- Forexample: {r,r,r, 1,1, 1, r}is NOT legal because it violates our constraint

- Suppose we do sequential assighnment of values to variables
- Assignr (say) to WA then we can immediately reduce the number of possible
values for NT and SA to be {g, b}, and if we chose NT = {g}, then SA has to be

{b}.

Propagation of constraints

g
Morthern

? P07
v, 0, "

r | Territory
| Oueensland
Western | I
Australia | |
South —_
| Auvstralia b | New , '
South °~

e .
.’ .’ | @
T asmania W 2

(a) (b)

Figure 6.1 FILES: fisures/australia.eps (Tue Nov 3 16:22:26 2009) ficures/anstralia-csp.eps
(Tue Nov 3 16:22:25 2009). (a) The principal states and terntories of Australia. Colonng this map
can be viewed as a constraint satisfaction problem (CSP). The goal 1s to assign colors to each region
so that no neighboning regions have the same color. (b) The map-colonng problem represented as a
constraint graph.

Types

* Discrete finite domains
Map coloring, scheduling with time limits
Can enumerate all legal value combinations (that specify constraints)

* Discrete infinite domains
Ex: Variable values can be the set of integers
Needs a constraint language to specify constraints
We have solutions for linear constraints over integers
We can prove that no algorithm exists for solving general nonlinear
constraints over integers

* Continuous domains

Hubble telescope scheduling is continuous over time and must obey
a variety of astronomical, precedence, and power constraints

Linear programming —> poly time algorithms

Types

* Unary constraints
Truck height < 14 feet
* Binary constraints
WA |=SA

Cryptarithmetic puzzles

T WO @T/@ﬁ}ﬁ’);‘i 0
+T WO <

FOUR

@ C,

(a) (b)

Figure 6.2 FILES: ficures/cryptarithmetic.eps (Tue Nov 3 13:31:28 2009). (a) A cryptanthmetic
problem. Each letter stands for a distinct digit; the aim 1s to find a substitution of digits for letters such
that the resulting sum is arithmetically comrect, with the added restriction that no leading zeroes are
allowed. (b) The constraint hypergraph for the cryptanthmetic problem showing the Alldiff constraint
(square box at the top) as well as the column addition constraints (four square boxes in the nuddle).
The variables 'y, C2, and C's represent the carry digits for the three colummns.

Wouldn't it be nice to have a
constraint propagation algorithm?

function AC-3(c=p) returns false if an inconsistency 15 found and true otherwise
inputs: csp, a binary CSP with components (X, [,)
local variables: gueue, a quene of arcs, ufially all the ares i csp

while gueue 15 not empty do
(Xi, X;)— REMOVE-FIRST(queue)
if REVISE(esp, X:, X;) then
if size of [}, = 0 then return false
for each X in X, NEIGHEBORS - [X,] do
add (X5, X,) to queue
reurm irue

function EEVISE(cap, X, X ;) returns tme iff we revise the domain of X,
revized +— falze
for each = in [, do
if no value v m [; allows (z.y) to sahsfy the constramt between X, and X ; then
delete = from I,
revised +— true
refurn remased

Figure 6.3 The arcconsistency algonthm AC-3. After applymmg AC-3, either every arc 15 arc-
consistent, or some vanable has an empty domain, indicatng that the CSP cannot be solved. The
name “AC-3" was used by the algonthm’s mventor (7) because 1t’s the third version developed mn the
papet.

Properties

* Node consistency (unary)

* Arc consistency (binary)
Network arc consistency (all arcs are consistent)

* ACS3 is the most popular arc consistency algorithm
Fails quickly if no consistent set of values found

Start:
Considers all pairs of arcs

If making an arc (xi, xj) consistent causes domain reduction
* Add all neighboring arcs that go to xi to set of arcs to be considered

Success leaves a much smaller search space for search
Domains will have been reduced

Suppose n variables, max domain size is d, then complexity is
O(cd”3) where c is number of binary constraints

More constraint types and approach

* Path (triples)
* Global constraints (n variables)

Special purpose algorithms (heuristics)

Alldiff constraints (Sudoku)
Remove any variable with singleton domain
Remove that value from the domains of all other variables

Repeat
* While
* singletons values remain
* No domains are empty
* Not more variables than domain values

* Resource constraints (Ex: Atmost 100)
* Bounds and bounds propagation

Search

* Constraints have been met and propagated

* But the problem still remains to be solved (multiple values in
domains)

Search through remaining assignments
* For CSPs Backtracking search is good
Choose a value for variable, x

Choose a subsequent legal value for next variable, y
Backtrack to x if no legal value found fory

Australia coloring

WA =red WA=red
NT=green NT=blue
/ \ Ty e
WA=red WA=red
NT=green NT=green
Q=red OQ=klue
—_— | —_— |

Figure 6.6 FILES: figures/australia-search.eps (Tue Nov 3 16:22:25 2009). Part of the search
tree for the map-coloring problem in Figure 6.1.

Backtracking search algorithm

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns a solution, or failure
if assignment 1s complete then return assignment
var «— SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value 1s consistent with assignment then
add {var = value} to assignment
inferences «— INFERENCE(csp, var, value)
if inferences # failure then
add inferences to assignment
result +— BACKTRACK(assignment, csp)
if result + failure then
return result
remove {var = value } and inferences from assignment
return failure

Figure 6.5 A simple backfracking algorithm for constraint satisfaction problems. The algo-
rithm 1s modeled on the recursive depth-first search of Chapter ??. By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, we can implement the general-
purpose heuristics discussed 1n the text. The function INFERENCE can optionally be used to impose
arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from
the current assignment and a new value 15 tried.

L.ocal search for CSPs

function MIN-CONFLICTS(csp, maz_steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem
mazr_steps, the number of steps allowed before giving up

current +— an mifial complete assignment for csp

for i = 1 to maz_steps do
if current 1s a solution for csp then return current

var «+— a randomly chosen conflicted vaniable from csp VARIABLES
value +— the value v for var that mimmizes CONFLICTS(var, v, current, csp)
set var = value 1n current

return failure

Figure 6.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The 1nitial state may
be chosen randomly or by a greedy assignment process that chooses a mmimal-conflict value for each
vanable in furn. The CONFLICTS function counts the number of constraints violated by a particular

value, given the rest of the current assignment.

SudoKu

1

713182

3[2]19]7]6

1

b

817161419(3

1

1

41215131716(9

31617]19[8])2]4]5

1

51418

1

69514

AL418(13]19]2

BlO9[6]7]13]4]5]8]2

cl2]5

F

GI3|7[2]16[8]9]5

HL8

)

(

)

(a

FILES: figures/sudoku.eps (Tue Nov 3 13:49:46 2009). (a) A Sudoku puzzle and (b)

Figure 6.4

its solution.

