
1

Game Programming with
DXFramework

Jonathan Voigt
University of Michigan

Fall 2005

2

DirectX from 30,000 Feet

• DirectX is a general
hardware interface API

• Goal: Unified interface
for different hardware

• Much better than the
past
– Programs had to be

coded for specific
hardware

Hardware

DirectX

Application

3

DXFramework is a Simple
DirectX Game Engine

DXFramework goals:
• Simplicity
• 2D support
• Object oriented design
• Instruction by example

4

Types of Games to Create

Simple!
Fun!
Easy!
(2D!)

5

Incremental Development

Implementation

Evaluation

Design

Analysis

6

Arcade Game Demos
Fall 2004

Tea Party
Rigger and Trigger

DodgemBall

All of these games used DXFramework 0.9.3 in fall 2004

7

DXF Capabilities
• Genres: arcade, action, puzzle, role

playing, adventure, strategy
–Top down, side view, isometric

• Many other possibilities!

8

• Sounds & Music
– Midi background, sound

effects
– simple pan & volume

control
• Input

– Keyboard and mouse
– Joystick possible: use USB

joystick and be prepared
to turn it in with your
game!

DXF Capabilities

9

DXF and DXUT

• Microsoft’s DirectX utility library
– Included with SDK

• DXF’s major change since 0.9.3
• Included with package in
dxf/engine/common

– In DXFramework-Engine project

• See DirectX samples for more on
DXUT and DirectX

10

DXF Prerequisites

• Windows 2000/XP
• Microsoft Visual Studio .NET 2003
• DirectX SDK (August or June 2005)

• Creativity

11

Installation

• Refer to Getting Started guide:
–http://winter.eecs.umich.edu/dxf-wiki/

• Generally speaking:
–Download and Extract
– Install template files
–Restart all instances

12

A DXF Application is a graph of
Game States

• You create your game by defining game
states and the conditions for transitioning
between them

dxf::Model
(a dxf::StateManager)

TitleKeyboard
(demo)

Mouse
(demo)

Joystick
(demo)

UI
(demo)

DXFramework-Demo

13

Tetris as a graph of states

Title Options Game
High
Score

Start

Select
Players

Type &
Music

High
Score

Quit

Entered Name

Not a high score

14

Global Data
(data shared across states)

• What about global data?
–High scores
–Option settings

• Store states and their global data in
the Registrar Registrar

(public dxf::RegistrarInterface)

Game StatesGlobal Data

RegisterStates()

15

Initialization
main

Registrar
(public dxf::RegistrarInterface)

Game StatesGlobal Data

RegisterStates() dxf::Game
(DXFramework)

DirectXDXUT

“Title”
“Options”
“Game”

“High Score”

The first state
registered is used
as the initial state!

16

Execution

• Call Run()
– This starts the main loop:

Input Update Render
– Each iteration of this loop represents a frame

• This loop executes as fast as possible
– DXF uses variable discrete
– Faster hardware runs faster

• Time elapsed is available as a parameter
to the Update() function

17

Key Points in the Game Loop

• Load()
• Update()
• Render2D()
• DXFChangeState()
• Unload()

Poll input

Update() current
state

Did update
request a state

transition?

Unload() previous
state

Update current
state pointer

Set up video
device for
rendering

Render everything
to back buffer

Present the back
buffer to the

screen

Load() new state

NoYes

Start

18

Creating States

• Extend dxf::GameState
– Implement the necessary functions

• Need a complex GUI?
–Extend dxf::GUI as well

• Need sub-states?
–Extend dxf::StateManager as well

19

Registering States

• Registrar
–RegisterStates()
–DXFRegisterState(string, state pointer)

const std::wstring Registrar::kTitle = L”Title”;
const std::wstring Registrar::kKeyboard = L”Keyboard”;
…
dxf::DXFRegisterState(kTitle, &title);
dxf::DXFRegisterState(kKeyboard, &keyboard);
…
dxf::DXFChangeState(Registrar::kKeyboard);

20

DXF Engine Architecture

dxf::Game

dxf::Model

dxf::Console dxf::Controller

dxf::View
states

debugging input devices

video device

top level container

21

Other DXF Components

• Sprites
– Almost everything on the screen
– Many acceptable formats (like .png)

• Sounds
• Fonts
• Console

• All usually members of game states or
registrar

22

Sprites are Everywhere!

Width:
16 pixels

Height:
64 pixels

Paddle
Sprite

Zeros (text) are not sprites, they
are created by special Font object

Back buffer/screen:
800x600

Sprites

Position:
782, 462

Origin:
(0, 0)

+x

+y

23

The Back Buffer

• Sprite ‘cache’
• Order matters
• Same size as screen when fullscreen
• Size of window ‘client area’ when

windowed

24

Title::Load() {
DXFSetClear(true);
DXFSetClearColor(WHITE);

}

Pong::Render2D() {
center.Render2D();
scoreboard.Render2D();
font.Render2D(…);
font.Render2D(…);
left.Render2D();
right.Render2D();
…
ball.SetAnimation(1);
ball.SetColor(…);
ball.Render2D(…);
ball.SetColor(…);
ball.Render2D(…);
ball.SetColor(…);
ball.Render2D(…);
ball.SetColor(…);
…
ball.Render2D();

}

Drawing to the Back Buffer
(Render2D)

25

Button Input

BUTTON_PRESSED

BUTTON_DOWNBUTTON_RELEASED

BUTTON_UP

DXFCheckKeyboard()
DXFCheckMouse()
DXFCheckJoystick()

Button is DownButton is Up

26

Mouse Input

• DXFGetMousePosition()

–Returns X,Y position on back buffer

• Passing this to Sprite’s
CheckIntersection function is useful
–See Button in DXFramework-Demo
–Very recent bug fix, see discussion or

FAQ for details, or download a new copy
of the framework

27

Collision Detection

• Simple: Check bounding rectangles

No collision

Overlap in both dimensions
(Collision)

Overlap in y

Overlap in x

28

Collision Detection

• Simple: Check bounding circles
– Distance between center points
– Collision if distance between center points is

less than sum of radii

1 2

1 2

1 2

29

Fonts

• Use the font class to draw text to
screen

• Text is expensive
–Keep amount of text low

• Consider text rendered on sprites

30

Sounds

• Use sound class for sounds
• Wave files, Midi files, MP3, others

–Ogg? Not sure

• Usage similar to sprites
–Create using filename
– ‘Render’ using Play

31

The DXF Console

• Essential debugging tool
– No stdout available!
– A decent substitution

• ` key toggles
• Output using Console::output like you

would use cout:
– Console::output << “The number is: “ << x <<
std::endl;

• Output is flushed only when a newline is
encountered!

32

Creating and Registering
Custom Commands

• Registrar’s other function registers
custom console commands

• Define command in global scope with
correct function signature

• Pass pointer and string to
DXFRegisterCommand

33

Using the DXUT GUI with
DXFramework states

• Program by example
• See comments in UI Demo

34

Questions? Need help?

• I’m here to help
• Check the FAQ on the Wiki

– I’ll fill in content as I get it

• Post in the CTools discussion forum
• Send me mail to schedule an

appointment
–voigtjr@gmail.com
–1101 Beal Ave (ATL Building) Room 155

