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Abstract— This paper introduces Evolutionary Pursuit (EP) as a novel and adaptive represen-

tation method for image encoding and classification. In analogy to projection pursuit methods,

EP seeks to learn an optimal basis for the dual purpose of data compression and pattern classi-

fication. The challenge for EP is to increase the generalization ability of the learning machine

as a result of seeking the trade-off between minimizing the empirical risk encountered during

training and narrowing the confidence interval for reducing the guaranteed risk during future

testing on unseen images. Towards that end, EP implements strategies characteristic of genetic

algorithms (GAs) for searching the space of possible solutions to determine the optimal basis.

EP starts by projecting the original data into a lower dimensional whitened Principal Component

Analysis (PCA) space. Directed but random rotations of the basis vectors in this space are then

searched by GAs where evolution is driven by a fitness function defined in terms of performance

accuracy (‘empirical risk’) and class separation (‘confidence interval’). Accuracy indicates the

extent to which learning has been successful so far, while separation gives an indication of the

expected fitness on future trials. The feasibility of the new method has been successfully tested

on face recognition where the large number of possible bases requires some type of greedy search

algorithm. The particular face recognition task involves 1,107 FERET frontal face images corre-
�
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sponding to 369 subjects. To assess both accuracy and generalization capability the data includes

for each subject images acquired at different times or under different illumination conditions. The

results reported show that EP improves on face recognition performance when compared against

PCA (‘Eigenfaces’) and displays better generalization abilities than the Fisher linear discriminant

(‘Fisherfaces’).

Index Terms — Evolutionary pursuit, face recognition, genetic algorithms, optimal basis, Prin-

cipal Component Analysis (PCA), Fisher Linear Discriminant (FLD)
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1 Introduction

Pattern recognition depends heavily on the particular choice of features used by the classifier.

One usually starts with a given set of features and then attempts to derive an optimal subset of

features leading to high classification performance with the expectation that similar performance

will be displayed also on future trials using novel data. Standard methods approach this task by

ranking the features according to some criteria such as ANOVA and/or information theory based

measures such as “infomax”, and then deleting the lower ranked features. Ranking by itself is

usually not enough because criteria like those listed above do not capture possible non-linear in-

teractions among the features, nor do they measure the ability for generalization. The process of

feature selection should involve the derivation of salient features with the twin goals of reducing

the amount of data used for classification and simultaneously providing enhanced discriminatory

power. The search for such features is then driven by the need to increase the generalization abil-

ity of the learning machine as a result of seeking the trade-off between minimizing the empirical

risk encountered during training and narrowing the confidence interval for reducing the guaran-

teed risk while testing on unseen data [43]. The search for an optimal feature set amounts then to

searching for an optimal basis where the feature values correspond to the projections taken along

the basis axes.

The search for the best feature set — optimal basis — is analogue to finding an optimal neural

code, referred to biologically as a lattice of receptive fields (RFs) (‘kernels’). Several attempts

have been made recently to computationally derive such an optimal neural code [31], [1], [37].

The search for such a code involves constrained optimization using design criteria such as (A)

redundancy reduction, (B) minimization of the reconstruction error, (C) maximization of infor-

mation transmission (‘infomax’) [24], and (D) sparseness or independence [31]. Furthermore,

to the design criteria listed above one should add as an important criteria (‘functionality’) (E)

successful pattern classification, referred to and used by Edelman [11] in the context of neural

Darwinism. The search for such an optimal basis leads also to the class of Projection Pursuit (PP)

methods as possible candidates for universal approximation. As an example, projection pursuit
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regression implements an additive model with univariate basis functions [14] [19].

The rationale behind feature extraction using an optimal basis representation is that most prac-

tical computational methods for both regression and classification use parameterization in the

form of a linear combination of basis functions. This leads to a taxonomy based on the type of

the basis functions used by a particular method and the corresponding optimization procedure

used for parameter estimation. According to this taxonomy, most practical methods use basis

function representation — those are called dictionary or kernel methods, where the particular

type of chosen basis functions constitutes a kernel.

Since most practical methods use nonlinear models, the determination of optimal kernels be-

comes a nonlinear optimization problem. When the objective function lacks an analytical form

suitable for gradient descent or the computation involved is prohibitively expensive, one should

use (directed) random search techniques for nonlinear optimization and variable selection sim-

ilar to evolutionary computation and genetic algorithms (GAs) [17]. GAs work by maintaining

a constant-sized population of candidate solutions known as individuals (‘chromosomes’). The

power of a genetic algorithm lies in its ability to exploit, in a highly efficient manner, information

about a large number of individuals. The search underlying GAs is such that breadth and depth —

exploration and exploitation — are balanced according to the observed performance of the indi-

viduals evolved so far. By allocating more reproductive occurrences to above average individual

solutions, the overall effect is to increase the population’s average fitness. We advance in this

paper a novel and adaptive representation method and, in analogy to the pursuit methods referred

to earlier, our novel method is called Evolutionary Pursuit (EP). As successful face recognition

methodology depends heavily on the particular choice of the features used by the (pattern) clas-

sifier [5], [38], [3], and as the size of the original face space is very large to start with, we chose

to assess the feasibility of EP using face recognition benchmark studies [26].

The outline for this paper is as follows. Sect. 2 provides general background on representation

and discrimination coding schemes — the Principal Component Analysis (PCA) and the Fisher

Linear Discriminant (FLD) — and their use for face recognition in terms of Eigenfaces [42] and

Fisherfaces [2], respectively. Sect. 3 describes the overall solution for the face recognition prob-

4



lem and specifically addresses the tasks of lowering the dimensionality of the search space and

finding an optimal feature set for face classification. The actual search for the optimal and re-

duced feature set is addressed in Sect. 4, where we introduce the evolutionary pursuit method and

its particular implementation for face recognition. Experimental results are reported in Sect. 5

and they show that EP improves on face recognition performance when compared against PCA

(‘Eigenfaces’) and displays better generalization abilities than FLD (‘Fisherfaces’). The last sec-

tion reviews the characteristics and merits of EP and discusses its possible impact on building

further connections between functional approximation using regularization and statistical learn-

ing theory when the concern is that of reducing the guaranteed risk while testing on unseen data.

2 Representation and Discrimination Coding Schemes

Efficient coding schemes for face recognition require both low-dimensional feature represen-

tations and enhanced discrimination abilities. As this paper addresses the twin problems of low-

ering space dimensionality and enhancing discrimination performance we survey first Principal

Component Analysis (PCA) [21] and Fisher Linear Discriminant (FLD) [13] as encoding meth-

ods. As our benchmark studies involve face recognition, the use of PCA and FLD for face

recognition in terms of Eigenfaces [42] and Fisherfaces [2], respectively, is briefly discussed as

well.

����� ���	��

��������������������
�� 
�!#"$

����%�&'��&)(*�+�+"-,

One popular technique for feature selection and dimensionality reduction is PCA [15], [10].

PCA is a standard decorrelation technique and following its application one derives an orthog-

onal projection basis which directly leads to dimensionality reduction, and possibly to feature

selection. Let .0/2143 be a random vector representing an image, where 5 is the dimensionality

of the image space. The vector is formed by concatenating the rows or the columns of the image

which may be normalized to have a unit norm. The covariance matrix of . is defined as follows:

6�798;:-<>= .@? :BA .DCFE = .@? :)A .DC*EHGFI (1)
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where
:)A � C is the expectation operator,

�
denotes the transpose operation, and

6�7 / 1 3�� 3 . The

PCA of a random vector . factorizes the covariance matrix
6 7

into the following form:

6�7 8������ G	��
 �
� � 8 =����������������
3 E��

� 8�� 
���� <! "� �  #� � �$��� �  3 I (2)

where
� /@1 3%� 3 is an orthonormal eigenvector matrix and

� / 1 3�� 3 a diagonal eigen-

value matrix with diagonal elements in decreasing order (
 ��'&( #��& �)�)� &� #* ). ��� � ��� � ����� � � 3 and

 "� �  #� � ����� �  3 are the eigenvectors and the eigenvalues of
6 7

, respectively.

An important property of PCA is decorrelation, i.e., the components of the transformation,

.,+ 8-� G . , are decorrelated since the covariance matrix of ..+ is diagonal,
6470/�81�

, and the

diagonal elements are the variances of the corresponding components. Another property of PCA

is its optimal signal reconstruction in the sense of minimum Mean Square Error (MSE) when

only a subset of principal components, 2 8 =3�4�5�6�������'�#7 E where 8 9 5 and 2 / 1 3��
7

, are

used to represent the original signal. Following this property, an immediate application of PCA

is the dimensionality reduction:
: 8 2 G�. (3)

The lower dimensional vector
: / 1

7
captures the most expressive features of the original

data . . As PCA derives projection axes based on the observed variations using all the training

samples, it enjoys good generalization abilities [32] for image reconstruction when tested with

novel images not seen during training. The disadvantage of PCA is that it does not distinguish

the different roles of the within- and the between-class variations, and it treats them equally.

This should lead to poor testing performance when the distributions of the face classes are not

separated by the mean-difference but instead by the covariance-difference [15], [30], [27]. High

variance by itself does not necessarily lead to good discrimination ability unless the correspond-

ing distribution is multimodal and the modes correspond to the classes to be discriminated. One

should also be aware that as PCA encodes only for 2nd order statistics, it lacks phase and thus

locality information.

PCA was first applied to reconstruct human faces by Kirby and Sirovich [23]. They showed

that any particular face can be economically represented along the eigenpictures coordinate space,
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and that any face can be approximately reconstructed by using just a small collection of eigen-

pictures and the corresponding projections (‘coefficients’). Since eigenpictures are fairly good

at representing face images, one could consider using the projections along them as classifica-

tion features to recognize human faces. As a result, Turk and Pentland [42] developed a well

known face recognition method, known as Eigenfaces, where the eigenfaces correspond to the

eigenvectors associated with the dominant eigenvalues of the face covariance matrix. The eigen-

faces define a feature space, or “face space”, which drastically reduces the dimensionality of the

original space, and face detection and identification are carried out in the reduced space.

��� � � ��&���� ��� ��

��� ���-��& � �	������
���
�! ( � ���B,

Another widely used technique for feature selection is the Fisher Linear Discriminant (FLD)

[13]. Let � � ��� � � ����� �	��
 and 5 � � 5 � � �$��� � 5�
 denote the classes and the number of images within

each class, respectively. Let 
 � ��
 � � �$��� ��
�
 and 
 be the means of the classes and the grand

mean. The within- and between-class scatter matrices
6��

and
6��

are defined as follows:

6���8 
� �
� � 2 A �

�
C 6
�
8 
� �
� � 2 A �

�
C : <>= . ?�


�
E = .@?�


�
E G�� �
�
I (4)

6�� 8 
� �
� � 2 A �

�
C A 


�
?�
 C A 


�
?�
 C G (5)

where 2 A �
�
C and

6
�

are a priori probability and the covariance matrix of class �
�
, respectively,

and
6�� � 6�� /21�3�� 3 .

FLD derives a projection matrix � that maximizes the ratio � � G 6�� � ����� � G 6�� � � [2]. This ratio

is maximized when � consists of the eigenvectors of the matrix
6 � �� 6��

[40]. The eigenvalue

equation is defined as follows:
6 � �� 6�� � 8 � ! (6)

where � ��! / 1�3�� 3 are the eigenvector and eigenvalue matrices of
6"� �� 6��

. Although both
6��

and
6��

are symmetric,
6#� �� 6��

is not necessarily symmetric. However, the eigenvalue and

eigenvector matrices can be obtained as the result of simultaneous diagonalization of
6#�

and
6��

[15].
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FLD overcomes one of PCA’s drawbacks as it can distinguish within- and between-class scat-

ters. Furthermore, FLD induces non-orthogonal projection axes, a characteristic known to have

great functional significance in biological sensory systems [9]. The drawback of FLD is that it

requires large sample sizes for good generalization. One possible remedy for this drawback is to

artificially generate additional data and thus increase the sample size [12].

FLD is behind several face recognition methods [40], [2], [12], [25]. As the original image

space is high dimensional, most methods first perform dimensionality reduction using PCA, as it

is the case with the Fisherfaces method suggested by Belhumeur, Hespanha, and Kriegman [2].

Using similar arguments, Swets and Weng [40] point out that the Eigenfaces method only derives

the Most Expressive Features (MEF). As explained earlier, such PCA inspired features do not

necessarily provide for good discrimination. As a consequence, subsequent FLD projections are

used to build the Most Discriminating Features (MDF) classification space. The MDF space is,

however, superior to the MEF space for face recognition only when the training images are rep-

resentative of the range of face (class) variations; otherwise, the performance difference between

the MEF and MDF is not significant [40].

3 Face Basis and Recognition

Our methodology for face recognition is shown in Fig. 1. The main thrust is to find out an op-

timal basis along which faces can be projected leading to a compact and efficient face encoding

in terms of recognition ability. Towards that end, PCA first projects the face images into a lower

dimensional space. The next step is the whitening transformation and it counteracts the fact that

the Mean-Square-Error (MSE) principle underlying PCA preferentially weights low frequencies.

Directed but random rotations of the lower dimensional (whitened PCA) space for enhanced

recognition performance are then driven by evolution and use domain specific knowledge (‘fit-

ness’). The fitness driving evolution in search of the optimal face basis considers both the recog-

nition rates (‘classification accuracy’) and the scatter index (‘generalization ability’). Evolution

is implemented using Evolutionary Pursuit (EP) as a special form of Genetic Algorithms (GAs).
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Note that the reachable space of EP is increased as a result of using non-orthonormal whitening

and a set of rotation transformations. One can expect better performance from non-orthogonal

bases over orthogonal ones as non-orthogonality embodies a characteristic known to have great

functional significance in biological sensory systems [9].

Fig. 1 goes here

�
��� � ����!'� 
���
���� � ��
�&�� ���	� � ! ����


After dimensionality reduction using PCA, the lower dimensional feature set � / 1
7
�
*

is

derived as follows:

� 8 = :�� :��������5:6* E (7)

where 	 is the number of training samples and
:
�
��
 8�
 ��� � �$��� �
	 � comes from Eq. 3. Now � is

subject to the whitening transformation and yields yet another feature set � /21
7
�
*

:

� 8�� � (8)

where
� 8�� 
�� � <! � ��� �� �  � ��� �� � ����� �  � ��� �7 I and

� / 1
7
�
7

.

The reason why the whitening procedure can lead to non-orthogonal basis of the overall trans-

formation is as follows. First, let � / 1
7
�
7

be a rotation matrix ( � G � 8 ��� G 8�� ) and apply

� to the feature set � . Then, using Eqs. 8, 7 and 3 one derives the overall transformation matrix,
� / 1�3��

7
, which combines three transformations (dimensionality reduction, whitening, and

rotation):
� 8 2 � � (9)

Now assume the basis vectors in
�

are orthogonal (using proof by contradiction):

� G � 8 ! (10)
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where ! /21
7
�
7

is a diagonal matrix. Using Eqs. 9 and 10 one derives the following equation:

� � 8 ! 8 � � (11)

where � is a constant and
� /21

7
�
7

is a unit matrix. Eq. 11 holds only when all the eigenvalues

are equal, and when this is not the case the basis vectors in
�

are not orthogonal (see Fig. 7).

�
� � � ��!'� ! ����
 � � ��
�&�� ���	� � ! ����
�&

The rotation transformations are carried out in the whitened 8 dimensional space, in which the

feature set � lies (see Eq. 8). Let � 8 = � ��� ��������� 7 E be the basis of this space where
� � � � � � �$��� � � 7

are unit vectors and � / 1
7
�
7

. Our evolutionary pursuit approach would later on search for a

(reduced) subset of some basis vectors rotated from
� � � �!� � ����� � � 7 in terms of best discrimination

and generalization performance. The rotation procedure is carried out by pairwise axes rotations.

In particular, if the basis vectors
�
�

and
���

are rotated by �
	 , then a new basis � � ��� � � �$��� �
� 7 is

derived as follows:
= � � � ������� � 7 E 8 =�� ��� ��������� 7 E ��	 (12)

where ��	 / 1
7
�
7

is a rotation matrix. There are a total of 
 8 8 A 8 ? 
 C � � rotation angles

corresponding to the 
 pairs of basis vectors to be rotated. For the purpose of evolving an

optimal basis for (face) recognition, it makes no difference if the angles are confined to ( � ��� � � ),
since the positive directions and the order of axes are irrelevant. The overall rotation matrix

� /21
7
�
7

is defined as follows:

� 8 � � � � �)�)� � 7�� 7 � ��� � � (13)

�
� � � � � ��� ��� � ��
���! ����


Let � 8 =��
�
� �
�
� ���$���

�
� E , � / 1

7
�! , be the optimal basis derived by the evolutionary pursuit

method (see Sect. 4). The new feature set " /�1# �
*

is derived as follows:

" 8 = " � " �4����� " * E 8 ��G�� (14)
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where � is the whitened feature set from Eq. 8, and "
�
/21  �5
 8 
 ��� � ����� � 	 , is the feature vector

corresponding to the i-th face image.

Let " �	 � � 8 
 ��� � ���$� � 	 , be the prototype for class
�

. The classification rule is then specified

as follows:
� "
�
? " �	 � � 8������� � "

�
? " �� � � � "

�
/ � 	 (15)

The new face image "
�
is classified to the class � 	 from which the Euclidean distance is minimum.

4 Evolutionary Pursuit (EP)

The task for EP is to search for a face basis through the rotated axes defined in a properly

whitened PCA space. Evolution is driven by a fitness function defined in terms of performance

accuracy and class separation (scatter index). Accuracy indicates the extent to which learning has

been successful so far, while the scatter index gives an indication of the expected fitness on future

trials. Together the accuracy and the scatter index give an indication of the overall performance

ability. In analogy to the statistical learning theory [43], the scatter index is the conceptual analog

for the capacity of the classifier and its use is to prevent overfitting. By combining these two

terms together (with proper weights), GA can evolve balanced results and yield good recognition

performance and generalization abilities.

One should also point out that just using more principal components (PCs) does not neces-

sarily lead to better performance, since some PCs might capture the within-class scatter which is

unwanted for the purpose of recognition [25], [27]. In our experiments we searched the 20 and 30

dimensional whitened PCA spaces corresponding to the leading eigenvalues, since it is in those

spaces that most of the variations characteristic of human faces occur.

	���� ����� ��� ��& ��� ��� � ��� ��& � 
�!'� ! ����
 ��
�

� ��
�� ! ����� ����� � ! �>� &

As discussed in Sect. 3.2, different basis vectors are derived corresponding to different sets

of rotation angles. GAs are used to search among the different rotation transformations and

different combinations of basis vectors in order to find out the optimal subset of vectors (‘face
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basis’), where optimality is defined with respect to classification accuracy and generalization

ability. The optimal basis is evolved from a larger vector set
< � � �
� � � ���$� �
� 7 I rotated from a basis

� � � � � � �$��� � � 7 in 8 dimensional space by a set of rotation angles � � ��� � � ���$� ��� 7 �37 � ��� � � with each

angle in the range of ( � �
� � � ). If the angles are discretized with small enough steps, then we

can use GAs to search this discretized space. GAs require the solutions to be represented in the

form of bit strings or chromosomes. If we use 10 bits (resolution) to represent each angle, then

each discretized (angle) interval is less than 0.09 degrees, and we need

 � � = 8 A 8 ? 
 C � � E bits

to represent all the angles. As we also have 8 basis vectors (projection axes) to choose from,

another 8 bits should be added to the chromosome to facilitate that choice. Fig. 2 shows the

chromosome representation, and �
�
�5
 8 
 ��� � �$��� �58 , taking value of 0 or 1, indicates whether the

i-th vector is chosen as a basis vector or not.

Fig. 2 goes here

Let 5�� be the number of different choices of basis vectors in the search space. The size of the

genospace, too large to search it exhaustively, is defined as follows:

5�� 8 � �
7�� 7 � ����� 7

(16)

As it searches the genospace, the GA makes its choices via genetic operators as a function

of a probability distribution driven by the fitness function. The genetic operators are selection,

crossover (or recombination), and mutation [17]. In our experiments, we use (i) proportionate

selection: preselection of parents in proportion to their relative fitness; (ii) two-point crossover:

exchange the sections between the crossover points as shown in Fig. 3; and (iii) fixed probability

mutation: each position of a chromosome is given a fixed probability of undergoing mutation

(flipping the corresponding bit). Note that the crossover operator is not restricted to operate on

an angle boundary, since any arbitrary position of a chromosome can be chosen as a crossover

point.
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Fig. 3 goes here

	�� � � ��� � ��! 
�� & & � � 

� ! ����

Fitness values guide GAs on how to choose offspring for the next generation from the current

parent generation. If
��� � � ��� � � ����� ��� 7 �37 � ��� � ��� � � � � � � ���$� � � 7 represents the parameters to be

evolved by GA, then the fitness function � A�� C is defined as follows:

� A�� C 8 �	� A
� C��  � � A�� C (17)

where �
� A�� C is the performance accuracy term, � � A
� C is the class separation (‘generalization’)

term, and
 

is a positive constant that determines the importance of the second term relative to the

first one. In our experiments, we set ��� A
� C to be the number of faces correctly recognized as the

top choice after the rotation and selection of a subset of axes, and � � A�� C the scatter measurement

among different classes.
 

is empirically chosen such that ��� A
� C contributes more to the fitness

than � � A�� C does. Note that the fitness function is similar to the cost functional derived using

regularization theory, a very useful tool for solving ill-posed problems in computer vision and

improving the generalization ability of RBF networks [41], [36], [18]. The two terms, ��� A
� C and

� � A
� C , put opposite pressures on the fitness function: the performance accuracy term ��� A
� C tends

to choose basis vectors which lead to small scatter, while the class separation term � � A�� C favors

basis vectors which cause large scatter. By combining those two terms together (with proper

weight
 

), GA can evolve balanced results displaying good performance during both training and

future test trials.

Let the rotation angle set be �
� 	 �� ���

� 	 �� � ����� � �
� 	 �7�� 7 � ��� � � , and the basis vectors after the transfor-

mation be �
� 	 �� �
�

� 	 �� � ����� �
�
� 	 �7

according to Eqs. 12 and 13. If GA chooses � vectors � � ��� � � ����� ���  
from �

� 	 �� �
�
� 	 �� � ����� �
�

� 	 �7
, then the new feature set, � /21  �

*
, is specified as follows:

� 8 = � � � �0�$��� �  EHG�� (18)

where � is the whitened feature set (see Eq. 8).
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Let � � �	� � � ���$� �	��
 and 5 � � 5 � � ����� � 5�
 denote the classes and number of images within each

class, respectively. Let 
 � ��
 � � �$��� ��
�
 and 
 � be the means of corresponding classes and the

grand mean in the new feature space, ��� � 	 = � � ��� � � ����� � �  E , we then estimate



�
8 


5
� 3���
� � � �

�
�
�� � 
 8 
 � � � ����� ��� (19)

where �
�
�
��
, � 8 
 ��� � ���$� � 5

�
, represents the sample images from class �

�
, and


 � 8 

	

� �
� � 5

�


�

(20)

where 	 is the total number of images for all the classes. Thus, � � A
� C is computed as follows:

� � A
� C 8
�		
 
� �
� � A 


�
?�
 � C G A 


�
?�
 � C (21)

Driven by the fitness function, GA evolves the optimal solution
��� � � � � � � �� � ����� � � �7�� 7 � ��� � � �

� � � � � �� � ���$� � � �7 . Let � in Eq. 13 represent this particular basis set corresponding to the rotation an-

gles � � � ��� �� � ���$� ��� �7 �37 � ��� � � (remember
=�� ��� �4�$����� 7 E in Eq. 12 is a unit matrix), and let the column

vectors in � be
� � � � � � �$��� � ��7 :

� 8 =�� ��� ������� � 7 E (22)

If
�
�
� � �

�
� � �$��� � �

�
� are the basis vectors corresponding to � � � � � �� � �$��� � � �7 , then the optimal basis,

� /�1
7
�! , can be expressed as follows:

� 8 =��
�
� �
�
� �$�����

�
� E (23)

where 
 � / < 
 ��� � ����� ��8 I , 
 ��
8 
 	 for � 
8 � , and ��� 8 .

	�� � � �������>��� � ! ����

� � % � � � & � �H!)(�� �+, "$� ���>�	��! ���
The evolutionary pursuit (EP) algorithm works as follows:

1. Compute the eigenvector and eigenvalue matrices,
�

and
�

, of the covariance matrix,
6 7

,

using singular value decomposition (SVD) or Jacobi’s method (see Eq. 2). Choose then the

first 8 leading eigenvectors from
�

as basis vectors and project the original image set onto

those vectors to form the feature set � (Eq. 7) in this reduced PCA space.
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2. Whiten the feature set � and derive the new feature set � in the whitened PCA space

(Eq. 8).

3. Set
= � ��� ��������� 7 E to be a 8 � 8 unit matrix:

=�� ��� ��������� 7 E 8 � 7 .

4. Begin the evolution loop until the stopping criterion is met — such as the fitness does not

change further or the maximum number of trials is reached.

(a) Sweep the 8 A 8 ? 
 C � � pairs of axes according to a fixed order to get the rotation

angle set �
� 	 �� ���

� 	 �� � ����� ���
� 	 �7 �37 � ��� � � from the individual chromosome representation

(see Fig. 2), and rotate the unit basis vectors,
� � � �!� � ����� � � 7 , in this 8 dimensional

space to derive the new projection axes, �
� 	 �� �
�

� 	 �� � ���$� �
�
� 	 �7

, by applying Eqs. 12 and

13.

(b) Compute the fitness value (Eq. 17) in the feature space defined by the � projec-

tion axes, � � � � � � �$��� ���  , which are chosen from the set of the rotated basis vectors�
�
� 	 �� �
�

� 	 �� � �$��� ���
� 	 �7��

corresponding to the � +
�
� from the individual chromosome rep-

resentation (see Fig. 2).

(c) Find the sets of angles and the subsets of projection axes that maximize the fitness

value, and keep those chromosomes as the best solutions so far.

(d) Change the values of rotation angles and the subsets of the projection axes according

to GA’s genetic operators, and repeat the evolution loop.

5. Carry out recognition using the face basis, � 8 = �
�
� �
�
� �$�����

�
� E , evolved by the EP (Eqs. 14

and 15).

The computational complexity of the algorithm falls mainly into two parts: the PCA compu-

tation of step 1 and the evolution loop of step 4. In step 1, the SVD of matrix of size 5 � 5
has the complexity of � A 5��'C according to [4], and the derivation of the feature set � (Eq. 7)

is � A 8 	 52C . In step 4, the rotation transformations of (a) and the fitness value computations of

(b) account for most of the computation. In step 4 (a), each rotation transformation changes two

15



column vectors (pairwise axes rotation), and there are 8 A 8 ? 
 C � � rotations in total, hence the

complexity is � A 8 � C . In step 4 (b), if we only count the number of multiplication, then Eq. 18

accounts for the major part of the computation with the computational complexity � A � 8 	 C . The

overall complexity of the evolution procedure also depends on the maximum number of trials.

Note that training (steps 1 to 4) is done off-line.

5 Experiments

We assessed the feasibility and performance of our novel evolutionary pursuit method on the

face recognition task, using 1,107 face images from the FERET standard facial database [34].

Robustness of the EP method is shown in terms of both absolute performance indices and com-

parative performance against traditional face recognition schemes such as Eigenfaces and Fish-

erfaces.

����� � � � ��� ��� � ��
���! ����


As the new evolutionary pursuit method is tested using a large database of facial images we

review basics on face processing and the FERET standard facial database used for evaluating

face recognition algorithms [34]. The face is a unique feature of human beings. Even the faces

of “identical twins” differ in some respects [38]. Humans can detect and identify faces in a scene

with little or no effort. This skill is quite robust, despite large changes in the visual stimulus

due to viewing conditions, expression, aging, and disguises such as glasses or changes in hair

style. Building automated systems that accomplish this task is, however, very difficult. There

are several related face processing subproblems: (i) detection of a pattern as a face, (ii) face

recognition, (iii) analysis of facial expressions, and (iv) characterization (gender or ethnicity)

based on physical features. An automated vision system that performs those operations will

find countless nonintrusive applications, e.g., surveillance, criminal identification and retrieval of

missing children, workstation and building security, credit card (ATM) verification, and video-

document retrieval [5], [38], [33].
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The robustness of the evolutionary pursuit method described in this paper is comparatively

assessed against Eigenfaces and Fisherfaces using the US Army FacE REcognition Technology

(FERET) facial database [34], which has become the standard data set for benchmark studies.

The FERET database consists now of 13,539 facial images corresponding to 1,565 sets (each

set represents a human subject) among whom 366 sets are duplicates whose images have been

acquired at a later time. The images used for our experiments are of size � ��� ������� with 256 gray

scale levels. Since images are acquired during different photo sessions, the lighting conditions

and the size of the face may vary. The diversity of the FERET database is across gender, ethnicity,

and age. The image sets are acquired without any restrictions imposed on facial expression and

with at least two frontal images shot at different times during the same photo session.

��� � ������� �	��� � 
�!'��� �#��& � ��!'&

In order to compute the within-class scatter, Fisherfaces [2] and our novel evolutionary pursuit

method require at least two training images for each class. To accommodate this requirement

we chose a FERET subset of 1,107 images corresponding to 369 subjects such that there are

three frontal images for each subject. The variety of the subset is such that for the first 200

subjects the third image is acquired at low illumination, while for the remaining 169 subjects

the face images are acquired during different photo sessions and the later acquired images are

referred to as duplicates. Fig. 4 shows some of the face images used in our experiments. Two

images of each subject are used for training with the remaining image for testing. In other words,

the training set includes 738 images while the test set 369 images. The images are cropped to

the size of
� � �
	 � and the eye coordinates are manually detected. The background is uniform

and the face images are not masked. The reasoning behind not masking the face images is that

“at least on some occasions, the processing performed by the visual system to judge identity is

better characterized as ‘head recognition’ rather than ‘face recognition’” [39]. Masking as it has

been usually implemented deletes the face outline, and the effect of such deletions on recognition

performance is discussed in our recent paper [29]. Shape-free face recognition methods avoid this

problem by using the shape of the outline encoded by a number of control points for subsequent
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alignment and normalization [8].

Fig. 4 goes here

We implemented the evolutionary pursuit (EP) algorithm and searched the spaces correspond-

ing to 8 8 �!� and 8 8 � � , respectively. Note that the PCA decomposition is generated using

the 738 training images, and PCA reduces the dimensionality of the original image space from

5 8 A � � � 	 � C to 8 . The first 30 principal components (PCs), shown in Fig. 5, form the basis

vectors used by the Eigenfaces method. Fisherfaces was implemented and experimented with as

well. Both the Eigenfaces and the Fisherfaces implementations use the Euclidean distance mea-

sure as suggested in [42] and [2]. Table 1 shows comparative training performance, while Table 2

and 3 give comparative testing performance. In Table 2 and 3, top 1 recognition rate means

the accuracy rate for the top response being correct, while top 3 recognition rate represents the

accuracy rate for the correct response being included among the first three ranked choices.

Starting from the 20 dimensional space ( 8 8 �!� ), the evolutionary pursuit method derives 18

vectors as the optimal face basis. Fig. 6 shows the corresponding 18 basis vectors, while Fig. 7

shows the non-orthogonality of these vectors. For each row (or column) the unit bar in Fig. 7

(along the diagonal position) represents the norm of a basis vector, and the other bars correspond

to the dot products of this vector and the remaining 17 basis vectors. Since some of the dot

products are non-zero, these basis vectors are not orthogonal. For comparison purposes, Fig. 8

shows the 26 basis vectors found by EP when it operates in a 30 dimensional space ( 8 8 � � ).

Note that while for PCA the basis vectors have a natural order this is not the case with the

basis derived by EP due to the rotations involved during the evolutionary procedure. The natural

order characteristic of eigenfaces reflects the representational aspect of PCA and its relationship

to spectral decomposition. The very first PCs encode global image characteristics in analogy

to low-frequency components. EP, on the other hand, is a procedure geared primarily towards

recognition and generalization, and from Fig. 6 and Fig. 8 one is inclined to conjecture that the
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outcome would be the derivation of features whose local contents are enhanced.

Fig.s 5, 6, 7 and 8 go here

Table 1 shows the comparative training performance of Eigenfaces, Fisherfaces, and evolu-

tionary pursuit with 18 and 26 basis vectors, respectively. The performance of Eigenfaces and

Fisherfaces using 20 and 30 basis vectors is also shown in the same table, and one can see that

the training performance for Fisherfaces is perfect (100% correct recognition rate). During test-

ing (see Table 2 and 3) and using 369 test images (not seen during training), the performance

displayed by Fisherfaces, however, deteriorates as it lacks a good generalization ability. Both

Eigenfaces and EP display better generalization when compared against Fisherfaces. In particu-

lar, Table 2 shows that when the 20 dimensional whitened PCA space is searched, EP derives 18

vectors as the optimal basis with top 1 recognition rate 87.80% compared to 81.57% for Eigen-

faces and 79.95% for Fisherfaces using the same number (18) of basis vectors. When Eigenfaces

and Fisherfaces use 20 basis vectors the recognition performance is 83.47% and 81.84%, respec-

tively, which is still lower than that of EP which uses only 18 vectors. For top 3 recognition rate,

the EP approach again comes first and yields 95.93%, compared to 94.58% for Eigenfaces and

87.80% for Fisherfaces using 18 features, and 94.58% for the former and 90.79% for the latter

using 30 features. EP comes out again first (see Table 3) when face recognition is carried out

starting with a 30 dimensional PCA space.

From Table 1, 2 and 3 it becomes apparent that Fisherfaces does not display good general-

ization abilities, while Eigenfaces and evolutionary pursuit do. The range of training data is

quite large as it consists of both original and duplicate images acquired at a later time. As a

consequence, during training, Fisherfaces performs better than both Eigenfaces and evolutionary

pursuit because it overfits to a larger extent its classifier to the data. Evolutionary pursuit yields,

however, improved performance over the other two methods during testing.
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method \axes 18 20 26 30

Eigenface 78.05% 79.40% 81.30% 80.76%

Fisherfaces 100% 100% 100% 100%

Evolutionary Pursuit 83.47% N/A 82.66% N/A
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method # axes top 1 recognition rate top 3 recognition rate

Eigenface 18 81.57% 94.58%

Eigenface 20 83.47% 94.58%

Fisherfaces 18 79.95% 89.16%

Fisherfaces 20 81.84% 90.79%

Evolutionary Pursuit 18 87.80% 95.93%

Table 4 shows the testing performance for EP when it operates in the 20 and 30 dimensional

non-whitened PCA spaces, respectively. Again EP derives 18 and 26 basis vectors corresponding

to the 20 and 30 dimensional PCA spaces. But the recognition rates shown in Table 4 are not as

good as those shown in Table 2 and 3, a reasonable expectation demonstrating the importance of

the whitening transformation to the EP method.

6 Conclusions

We introduced in this paper Evolutionary Pursuit (EP), a novel adaptive representation method,

and showed its feasibility for the face recognition problem. In analogy to pursuit methods, EP

seeks to learn an optimal basis for the dual purpose of data compression and pattern classifica-

tion. The challenge for EP is to increase the generalization ability of the learning machine as a
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method # axes top 1 recognition rate top 3 recognition rate

Eigenface 26 87.26% 95.66%

Eigenface 30 88.62% 95.93%

Fisherfaces 26 86.45% 93.77%

Fisherfaces 30 88.08% 95.39%

Evolutionary Pursuit 26 92.14% 97.02%
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method # axes top 1 recognition rate top 3 recognition rate

EP without whitening ( 8 8 �!� ) 18 81.03% 92.95%

EP without whitening ( 8 8 � � ) 26 87.26% 95.66%
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result of seeking the trade-off between minimizing the empirical risk encountered during train-

ing and narrowing the confidence interval for reducing the guaranteed risk for future testing on

unseen images. Towards that end, EP implements strategies characteristic of genetic algorithms

(GAs) for searching the space of possible solutions and determining an optimal basis. Within the

face recognition framework, EP seeks an optimal basis for face projections suitable for compact

and efficient face encoding in terms of both present and future recognition ability. Experimen-

tal results, using a large and varied subset from the FERET facial database, show that the EP

method compares favorably against two popular methods for face recognition — Eigenfaces and

Fisherfaces.

As 2nd order statistics provide only partial information on the statistics of both natural im-

ages and human faces it might become necessary to incorporate higher order statistics as well.

While PCA considers the 2nd order statistics only and it uncorrelates data, Independent Com-

ponent Analysis (ICA) considers also the higher order statistics and it identifies the independent

source components from their linear mixtures by minimizing the mutual information expressed

as a function of high order cumulants [7], [22], [20]. ICA thus provides a more powerful data

representation than PCA [22], [28]. EP is analogous to ICA in that both methods carry out the

whitening and pairwise axes rotation transformations to derive the projection basis [7]. While

ICA uses a criterion of independence or minimization of mutual information, EP is based on a

criterion addressing both the recognition performance and generalization ability.

The fitness function driving evolution considers both recognition rates (‘performance accu-

racy’), i.e., empirical risk, and the scatter index, i.e., predicted risk. The fitness function is similar

to the cost functional used by regularization theory for solving ill-posed problems in computer

vision and improving the generalization ability of RBF networks. As the empirical and predicted

risks place opposite pressures on the fitness function, it’s up to GAs to evolve a well-balanced

behavior displaying good performance during both training and future test trials. The prediction

risk, included as a penalty, is a measure of generalization ability and is driven by the scatter index

(‘class separation’). In analogy to statistical learning theory, the scatter index is conceptually

similar to the capacity of the classifier and its use is to prevent overfitting. One can consider
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the greedy search for an optimal basis leading to improved pattern separation as an attempt to

redefine the search space with respect to exemplar projection axes. Overall, EP provides a new

methodology for both functional approximation and pattern classification problems. A worth-

while direction for future research is to explore the role that EP can play to further support the

equivalence between sparse approximation and Support Vector Machines (SVM) using the reg-

ularization theory [16]. In particular, EP could play a constructive role in terms of its ability to

adaptively and efficiently search through large dictionary sets. Furthermore, one could expand

on the above and also explore the role that EP can play in searching dictionary sets on a local

basis. Towards that end, one should comparatively assess possible equivalence between the class

of sparse representation for functional approximation and SVM (Poggio and Girosi [35]), Local

Feature Analysis (LFA) (Penev and Atick [32]), Basis Pursuit (Chen and Donoho [6]), and EP as

described in this paper.
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