
Copyright @ 2002, 2003 All Rights Reserved

Simulation of a Vehicle Traffic Control Network

Using a Fuzzy Classifier System

John R. Clymer
California State University Fullerton

Jclymer@fullerton.edu

Abstract

A Complex Adaptive System (CAS) is a network of

communicating, intelligent agents where each agent
adapts its behavior in order to collaborate with other
agents to achieve overall system goals. Further, the
overall system often exhibits emergent behavior that
cannot be achieved by any proper subset of agents alone.
A graphical simulation library called Operational
Evaluation Modeling for Context-Sensitive Systems
(OpEMCSS) has been developed to simulate complex
systems, including CAS. This simulation library includes
a Classifier Event Action block that is a forward chaining,
expert system controller. The Classifier Event Action
block can implement both crisp and fuzzy rules. A network
of traffic light controller agents, one at each intersection,
is simulated for a city traffic grid. Each traffic controller
agent uses a fuzzy classifier block to make decisions
about traffic light timing in order to minimize local
vehicle wait time. Out of the co-evolutionary interaction
of these agents, emerges the global minimization of
vehicle wait time in the network.

1. Introduction

A Complex Adaptive System (CAS) is a network of
communicating, intelligent agents where each agent
adapts its behavior in order to collaborate with other
agents to achieve overall system goals. Further, the
overall system often exhibits emergent behavior that
cannot be achieved by any proper subset of agents alone.
CAS includes satellite communications networks, vehicle
traffic control networks, multi-national corporations, the
global economic system, ecological systems, flexible
manufacturing systems, and military command and
control C4ISR networks [1].

A graphical simulation library called Operational
Evaluation Modeling for Context-Sensitive Systems
(OpEMCSS) has been developed to simulate CAS [5-9].
OpEMCSS works with EXTEND, a powerful yet
relatively inexpensive simulation tool. OpEMCSS
implements the Operational Evaluation Modeling
(OpEM) graphical Discrete Event Simulation (DES)
language. The OpEM DES language, based on interacting

concurrent processes, includes primitives for process flow
and concurrent process interactions such as resource
contention, process synchronization, and process
communication and adaptation [2,5,7,9].

An agent is a CAS component capable of perceiving
and acting on its own behalf, and it decides for itself what
needs to be done to satisfy its own design objectives [12].
Agent operation is modeled using the OpEM language as
a collection of communicating process instances that
perform all agent functions. Each agent decision-making
function is implemented using a classifier system block.

Holland [10] has promoted the idea of a classifier
system for many years. In this paper, the OpEMCSS
Classifier Event Action block, that can use fuzzy rules to
make decisions, is applied. This block is comparable to
Holland’s classifier system [8].

A distributed, vehicle traffic control network located in
a large city is discussed in this paper. Each major
intersection has a vehicle traffic light control agent that
incorporates a fuzzy classifier system to determine traffic
light timing. In this system, each traffic light agent uses
its perceptions about incoming traffic flow to optimize
light timing, minimizing local vehicle waiting time. The
result of each traffic light agent adapting light timing to
accommodate local traffic flow coming from other
intersections is to minimize the average waiting time in
the entire network. Global minimization of traffic waiting
time results as a consequence of the emergent behavior of
this system, which is the self-synchronization of light
timing by each traffic control agent.

2. Fuzzy Classifier Event Action Block

The Classifier Event Action block contains a forward

chaining, inference engine that uses condition-action rules
to transform condition attributes into action attributes.
The condition attributes are obtained from a process
instance item passing through the block [9]. After
inference is complete, action attributes are added to the
process instance item passing through the block before the
item is sent to the output connector. When the classifier
system block is used as a fuzzy controller, several rules
may be eligible in a decision context. A weighted average

Copyright @ 2002, 2003 All Rights Reserved

1

mailto:Jclymer@fullerton.edu

Copyright @ 2002, 2003 All Rights Reserved

is calculated over all eligible rules to produce action
attribute values used to control traffic light timing.

Process attributes of the form "AttributeName =
RealValue," that represent state variables in EXTEND,
must be transformed into a symbolic form
"AttributeName = ValueName" suitable for the inference
engine. Low and High values are specified by a command
in the rule file that defines the range of numerical values
allowed for each symbolic value name. The result of each
transformation is a set of one or more facts of the form
"AttributeName=ValueName" that can be used during the
inference process.

Copyright @ 2002, 20

A similar command must be placed at the beginning of
the rule file to accomplish the required reverse
transformation when a rule fires. The Low and High
values for action attributes define the range of numerical
values allowed for each symbolic value name. The result
of each transformation is one or more process attributes of
the form "AttributeName = RealValue" added to the
process instance item passing through the block.

For fuzzy rules, the inference engine requires a
Confidence Factor (CF) for each condition in order to
compute the rule support that is needed to calculate the
weighted average for the action attribute real value. The
format of the ConditionFuzzySet command is:

ConditionFuzzySet(AttributeName) =

ValueName(A, B, C)

Figure 1. Fuzzy set membership function format.

The fuzzy set function defined by A, B, and C has a

trapezoidal shape shown in figure 1. The top of the
trapezoid (length [B-A]) is smaller than or equal to the

base (length [[B-A]+2C]). At the top of the trapezoid,
03 All Rights Reserved
2

the CF is 100. The A and B values define where the
function begins a linear descent to zero. The C value
defines the slope, ABS(100/C), of the descent. Thus, if C
is zero, the trapezoid becomes a rectangle. If A equals B
and C is not zero, the function has a triangular shape.

Figure 2. Weighted average calculations.

Fuzzy sets can be defined for action facts as well as

condition facts. The fuzzy set function takes an action fact
confidence factor (CF) and transforms it into an output,
real attribute value “AttributeName = RealValue” that is
added to the process instance item passing through the
block. The real attribute value is computed as the
weighted average over all occurrences of each
AttributeName, obtained from the set of eligible rules,
using the fuzzy set definition. The ActionFuzzySet
command that defines the conversion of Cfs into output
real attribute values is as follows:

 ActionFuzzySet(AttributeName) =

ValueName(A, B, C)

The value X shown in figure 2 is obtained for a rule

condition fact. The condition fuzzy set definition for the
fact is used to obtain the degree of fuzzy set membership
CF as discussed above. If several fuzzy conditions are
combined by an AND operation, the minimum CF for
each fact is used for value X, and it is then used to obtain
values Z1 and Z2 as shown in figure 2. The average value
Z=(Z1+ Z2)/2 is computed as shown. A weighted average
Z’ is computed for all eligible rules that have the same
action name but different value names. This calculation is
done for each action name specified by the eligible rules.
Therefore, a rule that has several different fuzzy action
attributes, has a fuzzy output value computed for each
fuzzy action attribute. Each fuzzy action attribute,
specified for the selected rule, is added to the process
instance item passing through the block using the fuzzy
action real value calculated for it.

An example rule is as follows:

RuleName:IF
 ConditionName1 = ValueName1 AND
 ConditionName1 = ValueName2 AND
 ConditionName2 = ValueName3,
THEN
 ActionName1=ValueName4 AND
 ActionName2=ValueName5, CF=100.0%

3. Distributed, Vehicle Traffic Control
Network

Copyright @ 2002, 2003 All Rights Reserved

3.1 Traffic Control Agent A distributed, vehicle traffic control network located in

a large city is considered next. Each major intersection
has a vehicle traffic light control agent to determine traffic
light timing. In this system, each traffic light agent uses
its perceptions about incoming traffic flow to optimize
light timing, minimizing local vehicle waiting time. The
result of each traffic light agent adapting light timing to
accommodate local traffic flow coming from other
intersections is to minimize the average waiting time in
the entire network. Global minimization of traffic waiting
time results as a consequence of the emergent behavior of
this system, which is the self-synchronization of light
timing by each traffic control agent.

Figure 3. Traffic control agent context diagram.

As light timing control in the overall traffic grid
evolves in the way discussed above, a complex but
definite pattern in network operation, north-south red to
green transition times, emerges out of an initial random
light pattern [4]. The emergent behavior of the traffic grid
cannot be explained through an understanding of the
behavior of each agent alone. Understanding only comes
when we study the interactions of the traffic control
agents as they adapt their behaviors in response to
perceived information about incoming traffic flow,
achieving self-synchronization of all traffic light timing in
the network.

Figure 4. Perception of traffic flow through sensors.

Each traffic control agent in the network has a context

diagram as shown in figure 3. Traffic flows in four
directions: north to south (NS), south to north (SN), east
to west (EW), and west to east (WE). A traffic control
agent perceives the nature of the flow in each direction
and translates these perceptions into condition attributes
that characterize the flow relative to the goals of the
agent.

The desired emergent behavior for the traffic control
system was achieved by experimenting with the control
system rules and gains that change the light timing of an
agent in relation to his neighbors, reducing local wait
time. With no control, the traffic light agents operate
independently and average vehicle waiting time is high.
With very strong control, the traffic control network
operation appears chaotic (no self synchronization occurs)
and the average vehicle waiting time is high. When the
control is just right, the emergent behavior discussed
above is observed and the average vehicle waiting time in
the network is minimized. It is also interesting to note
that the overall system never reaches steady state
operation; indeed, the system seems to be in a constant
state of flux as observed by the random appearance of the
light timing control signals, even when the average
vehicle waiting time is being minimized. Operating far
from equilibrium seems to be a common feature of CAS
[1,9,10].

Each direction of traffic flow through an intersection
has a sensor that emits a signal when a vehicle passes
over it. In figure 4, when the traffic light signal goes
from red to green, the vehicles begin to move into the
intersection. The pattern of signals that indicates that
vehicles were waiting for the light to change is called a
“Stream.” One can see that a stream consists of a
sequence of evenly spaced signals that are close together
and follow immediately after a light change. The pattern
of signals that indicate that vehicles moved through the
intersection without waiting is called a “Flow.” A flow
consists of signals that are not part of a stream.

The Goal of a traffic control agent is to minimize the
number of vehicles waiting for the light to change. The
degree of goal satisfaction is directly proportional to the
number of vehicles in the flow minus the number of
vehicles in the stream for each direction of traffic flow
through the intersection. A hierarchical block “Stream”
Copyright @ 2002, 2003 A
3

lo
s
s
c

ll Rights Reserved

cated in the vehicle motion process of the traffic grid
imulation diagram, shown in figure 7, computes the
tream and flow condition attributes used for fuzzy
ontrol. For the NS direction these attributes are:

StrmCntNS,
StrmCntDiffNS,
FlwCntNS, and

Copyright @ 2002, 2003 All Rights Reserved

FlwCntDiffNS.
Figure 5. Condition and action fuzzy sets.

All 12 such attributes are placed in a global memory
location indexed by intersection number, and the traffic
agent uses them to make light timing decisions each cycle.
Global memory is only one way that components of the
traffic controller agent can share information. An agent
component can also send messages to the other
components using an OpEMCSS block.

A sum of the average NS plus SN directions is used for

one rule condition and a sum of the average EW plus WE
directions is used for the other rule condition. The fuzzy
sets defined for the N/S control condition and the E/W
control condition are shown in figure 5.

Figure 6. Fuzzy control rules used to compute offset. There are three aspects of intersection light timing that

can be controlled by a traffic control agent. These are
cycle, split, and offset. The cycle time is a complete
green-red period for the NS and SN directions of traffic
flow, and it is also a complete red-green period for the
EW and WE directions of traffic flow. A cycle begins
when the traffic light goes from red to green for the NS
and SN directions of traffic flow. The split is the percent
of NS/SN green time during a cycle. The offset is the
difference-in-begin-cycle times between one intersection
and any other intersection in the network. The offset
between intersections 1 and 4 in the traffic grid simulation
is shown in figure 4.

The fuzzy control rules used to compute offset are

shown in figure 6. Suppose that N/S control condition
attribute has a value of 1.5 and the E/W control condition

attribute has the same value. Given these values, fuzzy
condition sets Zero and Medium have equal confidence,
and four fuzzy rules are eligible. These rules are: zero &
zero => zero, medium & zero => low, zero & medium =>
low, and medium & medium => low.

3.2 Fuzzy Control

The strategy used to reduce vehicle-waiting time for a
direction of traffic flow is to decrease the cycle time by
the amount of the offset in that direction. As shown in
figure 4, if the stream is large during the current cycle
then a reduction of the cycle time during next cycle will
cause more vehicles to enter the flow. This is because the
start of the cycle is moved back in time, allowing more
vehicles to go through the intersection without waiting.

For each direction of traffic flow, the following
calculation is performed, using the NS direction as an
example:

 AvgStrmCntNS = (StrmCntNS + StrmCntDiffNS) / 2 Each of these four eligible rules implies a separate

offset value; therefore, in order to produce a single value,
these values are combined using a weighted average as
discussed above. In summary, the fuzzy control
transforms continuous condition attributes into a
continuous action attribute (offset) using discrete rules.

It is common knowledge among control engineers that

using differentials in a control equation makes the system
more responsive. The StrmCntDiffNS is the first
difference, based on StrmCntNS, that provides some
information about the rate of change of StrmCntNS.
Indeed, the reduction of wait time responds faster to
control signals when the first difference is present.

3.3 Simulation of a Vehicle Traffic Control
Network

Copyright @ 2002, 2003 Al

l Rights Reserved
4

Copyright @ 2002, 2003 All Rights Reserved

The vehicle traffic control network scenario consists of
nine intersections, each intersection having a traffic
control agent as discussed above. There are twelve streets
where vehicles enter and leave the network system.
Vehicles that enter the network via one of these streets
have an exponentially distributed inter-arrival time.
Therefore, changing the offset to reduce vehicle-waiting
time for vehicles that enter the network has no effect.
Thus, feature facts describing traffic flows from outside
of the system are excluded from the fuzzy rule conditions.

 The OpEM directed graph model shown in figure 7

consists of three concurrent, sub-processes. The top sub-
process is a generator process that models vehicles
arriving from outside the system, and there is one vehicle
arrival process instance for each of the 12 streets
discussed above. The middle sub-process models the
motion of vehicles through the network, and there is one
vehicle motion process instance for each vehicle moving
through the network. The bottom sub-process models the
light timing of the nine intersections, and there is one
intersection timing process instance for each of the nine
intersections in the network.

In the vehicle arrival sub-process and vehicle motion
sub-process there are two Input Event Action blocks that
define the path that each vehicle takes through network.
When a simulation run is begun, this block inputs
“Network.txt” that is a text file that contains path
information for vehicles traversing each of the 12 streets.

As a vehicle moves through the network, it must
determine the red or green state of the traffic light that it

is approaching. A Context-Sensitive Event Action block
uses attribute “IntNumber,” that specifies the next
intersection in the path, to obtain attribute “Light” from
the appropriate intersection timing process instance. This
block is used in the vehicle arrival sub-process to obtain
the light timing state of the first intersection and in the
vehicle motion sub-process to determine the light timing
state for subsequent intersections along the vehicle path.

When an intersection traffic light changes state, a

Message Event Action block sends the attribute “Light” to

Figure 7. Directed graph model o

Copyright @ 2002, 20

f vehicle traffic network operation.
any vehicle approaching the intersection. There are two of
these blocks, one for each light change. Only red and
green light timing states are modeled to simplify the
simulation. This simulation does not require detailed
vehicle motion in order to study the emergent behavior of
the traffic control network.

The intersection timing sub-process includes two
hierarchical blocks that contain detailed models. The
“Payoff” hierarchical block computes the flow count
minus the stream count for each direction of traffic flow
and adds these up to produce a single measure of
performance or measure of fitness [1] for an intersection.
This block also calculates an average computed over all
intersections, and this average is reset every 10 minutes of
simulated time. The “Feature” hierarchical block
computes the NS and EW control condition attributes as
discussed above. The Classifier Event Action block uses
these condition attributes in fuzzy rules to compute offset.

03 All Rights Reserved
5

Copyright @ 2002, 2003 All Rights Reserved

 The Memory Event Action block in the intersection
timing sub-process obtains the traffic flow feature facts
for an intersection. Global memory is used for the agent
sensor component to communicate with the light timing
control component.

Figure 9. Plot of several simulation output attributes
as a function of simulated time, control gain is two.

Figure 9 shows a plot of the simulation output

attributes as a function of simulated time. The control
gain was set to two. There are now two random looking
traces. The smaller random trace trace is the offset for
each intersection when a cycle begins. The average
intersection performance (light trace in center) starts at

3.4 Results of Simulation Runs

around plus 6, after about ten minutes of adjustment time,
and slowly increases to plus 7.5 at the end of the run. The
light trace in figure 8 is flat for no control, but in figure 9
the light trace shows that many more vehicles are flowing
through the intersection without waiting.

Figure 8. Plot of several simulation output attributes
as a function of simulated time, control gain is zero.

Figure 8 shows a plot of several simulation output

attributes as a function of simulated time. The control
gain was set to zero so that offset was always zero. The
top trace that slowly converges is the average vehicle
waiting time that is computed by the Wait Until Event
block located in the vehicle motion sub-process. The
random looking trace is the output of the Payoff
hierarchical block, and it shows the uncontrolled variation
in the performance of the traffic control agents to reduce
vehicle-waiting time. The light trace in the center is the
average intersection performance reset every 10 minutes
of simulated time. The spikes in average performance,
that equal zero, show where each reset occurs. When the
intersections are operating independently, the average
intersection performance stays around minus 6 as shown
in figure 8

F
a

is
in
th
p
tw
a
in
f

4

m
th
S
in
H
in
e
n

h
c

Copyright @ 2002, 2003 A

6

igure 10. Plot of several simulation output attributes
s a function of simulated time, control gain is four.

For a gain of four, shown in figure 10, the offset trace
 near the limit of 30 much of the time. The average
tersection performance varies around one indicating that
e controller is still working but degraded from the

erformance achieved when the control gain was equal to
o. In general, the range of the payoff trace is decreased

nd the light trace of the average intersection performance
creases when the gain is two. This indicates that the

uzzy controller is having a positive affect on the system.

. Summary

Each intersection controls the offset in order to bring

ore vehicles into the flow. Changing the offset changes
e intersection cycle in relation to all other intersections.
uch operation ought to create a conflict with neighboring
tersections by changing when vehicles arrive there.
owever, as seen in figure 9, after about 10 minutes the
tersections self-synchronize and begin to cooperate with

ach other, reducing the overall waiting time in the
etwork.

There are no communications links in this system so
ow do the agents communicate? An intersection
hanging its light timing cycle is perceived in the traffic

ll Rights Reserved

Copyright @ 2002, 2003 All Rights Reserved

Copyright @ 2002, 2003 All Rights Reserved

7

flow patterns of another agent. The second agent adjusts
its offset, and a third agent perceives this. It seems that
perturbing the environment is transmitting information.
There are no communication links among the agents yet
they communicate and adapt. Each agent perceives
intersection traffic flow patterns and adapts its light
timing to reduce local vehicle waiting time.

 The next step in this research is to have the fuzzy
controller learn the best control rules. In this paper the
rules were discovered manually, but are these the best
rules? The classifier block currently has the ability to
learn crisp rules based on graded-learning where each rule
decision receives a payoff based on the effectiveness of
the decision. In supervisory learning, used by most neural
networks, the correct decision is used to train the network.
Graded learning is a much more difficult rule-learning
problem.

5. References

[1] Casti, J. Would-Be Worlds; Wiley: New York, 1997.
[2] Clymer, J. R., Systems Analysis Using Simulation and
Markov Models, Englewood Cliffs, NJ: Prentice-Hall Inc,
1990.
[3] Clymer, J. R., Corey, P. D., and J. Gardner, "Discrete
Event Fuzzy Airport Control”, IN IEEE Transactions on
Systems, Man, and Cybernetics, Volume 22, Number 2,
March-April 1992, pages 343-351.
[4] Clymer, J. R., "Expansionist/Context-Sensitive
Methodology: Engineering of Complex Adaptive
Systems”, IN IEEE Transactions on Aerospace and
Electronic Systems, April 1997 issue, Volume 33,
Number 2, pages 686-695.
[5] Clymer, J.R., "Simulation-Based Engineering of
Complex Adaptive Systems," In Simulation, Journal of
the Society of Computer Simulation, San Diego, CA,
Volume 72, Number 4, April 1999 issue, pages 250-260.
[6] Clymer, J.R., "Optimization of Simulated Systems
Effectiveness using Evolutionary Algorithms," IN
Simulation, Journal of the Society of Computer
Simulation, San Diego, CA, Volume 73, Number 6,
December 1999, pages 334-340.
[7] Clymer, J.R., “Optimizing Production Work Flow
Using OpEMCSS,” IN Proceedings of the 2000 Winter
Simulation Conference, J.A. Joines, R.R. Barton, K.
Kang, and P.A. Fishwich, Editors, Orlando, FL,
December 10-13, 2000, pages 1305-1314.
[8] Clymer, J.R., and D.J. Cheng, “Simulation-Based
Engineering of Complex Adaptive Systems Using a
Classifier Block,” The 34th Annual Simulation
Symposium, Seattle, WA, April 22-26, 2001, pages 243-
250.
[9] Clymer, J.R., Simulation-Based Engineering of
Complex Systems, John R. Clymer & Associates:
Placentia, CA, 2001.

[10] Holland, J.H., Hidden Order, Addison-Wesley, 1995.
[11] Solow, D., “On the Challenge of Developing a
Formal Mathematical Theory for Establishing Emergence
in Complex Systems,” In Complexity, New York, NY:
John Wiley & Sons, Inc., Volume 6, Number 1,
September-October 2000, Pages 49-52.
[12] Weiss, G., editor, MultiAgent Systems: A Modern
Approach to Distributed Artificial Intelligence,
Cambridge, MA : The MIT Press, 1999.

	Simulation of a Vehicle Traffic Control Network
	Using a Fuzzy Classifier System

