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Abstract 
 
A Complex Adaptive System (CAS) is a network of 

communicating, intelligent agents where each agent 
adapts its behavior in order to collaborate with other 
agents to achieve overall system goals. Further, the 
overall system often exhibits emergent behavior that 
cannot be achieved by any proper subset of agents alone. 
A graphical simulation library called Operational 
Evaluation Modeling for Context-Sensitive Systems 
(OpEMCSS) has been developed to simulate complex 
systems, including CAS. This simulation library includes 
a Classifier Event Action block that is a forward chaining, 
expert system controller. The Classifier Event Action 
block can implement both crisp and fuzzy rules. A network 
of traffic light controller agents, one at each intersection, 
is simulated for a city traffic grid. Each traffic controller 
agent uses a fuzzy classifier block to make decisions 
about traffic light timing in order to minimize local 
vehicle wait time. Out of the co-evolutionary interaction 
of these agents, emerges the global minimization of 
vehicle wait time in the network.  

  
1. Introduction 
 

A Complex Adaptive System (CAS) is a network of 
communicating, intelligent agents where each agent 
adapts its behavior in order to collaborate with other 
agents to achieve overall system goals. Further, the 
overall system often exhibits emergent behavior that 
cannot be achieved by any proper subset of agents alone. 
CAS includes satellite communications networks, vehicle 
traffic control networks, multi-national corporations, the 
global economic system, ecological systems, flexible 
manufacturing systems, and military command and 
control C4ISR networks [1].  

A graphical simulation library called Operational 
Evaluation Modeling for Context-Sensitive Systems 
(OpEMCSS) has been developed to simulate CAS [5-9]. 
OpEMCSS works with EXTEND, a powerful yet 
relatively inexpensive simulation tool. OpEMCSS 
implements the Operational Evaluation Modeling 
(OpEM) graphical Discrete Event Simulation (DES) 
language. The OpEM DES language, based on interacting 

concurrent processes, includes primitives for process flow 
and concurrent process interactions such as resource 
contention, process synchronization, and process 
communication and adaptation [2,5,7,9].  

An agent is a CAS component capable of perceiving 
and acting on its own behalf, and it decides for itself what 
needs to be done to satisfy its own design objectives [12]. 
Agent operation is modeled using the OpEM language as 
a collection of communicating process instances that 
perform all agent functions. Each agent decision-making 
function is implemented using a classifier system block.  

Holland [10] has promoted the idea of a classifier 
system for many years. In this paper, the OpEMCSS 
Classifier Event Action block, that can use fuzzy rules to 
make decisions, is applied. This block is comparable to 
Holland’s classifier system [8].  

A distributed, vehicle traffic control network located in 
a large city is discussed in this paper. Each major 
intersection has a vehicle traffic light control agent that 
incorporates a fuzzy classifier system to determine traffic 
light timing. In this system, each traffic light agent uses 
its perceptions about incoming traffic flow to optimize 
light timing, minimizing local vehicle waiting time. The 
result of each traffic light agent adapting light timing to 
accommodate local traffic flow coming from other 
intersections is to minimize the average waiting time in 
the entire network. Global minimization of traffic waiting 
time results as a consequence of the emergent behavior of 
this system, which is the self-synchronization of light 
timing by each traffic control agent.  

 
2. Fuzzy Classifier Event Action Block 

 
The Classifier Event Action block contains a forward 

chaining, inference engine that uses condition-action rules 
to transform condition attributes into action attributes. 
The condition attributes are obtained from a process 
instance item passing through the block [9].  After 
inference is complete, action attributes are added to the 
process instance item passing through the block before the 
item is sent to the output connector.  When the classifier 
system block is used as a fuzzy controller, several rules 
may be eligible in a decision context. A weighted average 
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is calculated over all eligible rules to produce action 
attribute values used to control traffic light timing.  

Process attributes of the form "AttributeName = 
RealValue," that represent state variables in EXTEND, 
must be transformed into a symbolic form 
"AttributeName = ValueName" suitable for the inference 
engine. Low and High values are specified by a command 
in the rule file that defines the range of numerical values 
allowed for each symbolic value name. The result of each 
transformation is a set of one or more facts of the form 
"AttributeName=ValueName" that can be used during the 
inference process. 
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A similar command must be placed at the beginning of 
the rule file to accomplish the required reverse 
transformation when a rule fires. The Low and High 
values for action attributes define the range of numerical 
values allowed for each symbolic value name. The result 
of each transformation is one or more process attributes of 
the form "AttributeName = RealValue" added to the 
process instance item passing through the block. 

For fuzzy rules, the inference engine requires a 
Confidence Factor (CF) for each condition in order to 
compute the rule support that is needed to calculate the 
weighted average for the action attribute real value. The 
format of the ConditionFuzzySet command is: 

 
ConditionFuzzySet(AttributeName) = 

ValueName(A, B, C)  
 
 

 
Figure 1.  Fuzzy set membership function format. 
 
The fuzzy set function defined by A, B, and C has a 

trapezoidal shape shown in figure 1. The top of the 
trapezoid ( length [B-A] ) is smaller than or equal to the 

base ( length [[B-A]+2C] ). At the top of the trapezoid, 
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the CF is 100.  The A and B values define where the 
function begins a linear descent to zero.  The C value 
defines the slope, ABS(100/C), of the descent.  Thus, if C 
is zero, the trapezoid becomes a rectangle.  If A equals B 
and C is not zero, the function has a triangular shape. 

 
 

Figure 2.  Weighted average calculations. 
 
Fuzzy sets can be defined for action facts as well as 

condition facts. The fuzzy set function takes an action fact 
confidence factor (CF) and transforms it into an output, 
real attribute value “AttributeName = RealValue” that is 
added to the process instance item passing through the 
block. The real attribute value is computed as the 
weighted average over all occurrences of each 
AttributeName, obtained from the set of eligible rules, 
using the fuzzy set definition. The ActionFuzzySet 
command that defines the conversion of Cfs into output 
real attribute values is as follows: 

 
        ActionFuzzySet(AttributeName) = 

ValueName(A, B, C)        
  
The value X shown in figure 2 is obtained for a rule 

condition fact. The condition fuzzy set definition for the 
fact is used to obtain the degree of fuzzy set membership 
CF as discussed above. If several fuzzy conditions are 
combined by an AND operation, the minimum CF for 
each fact is used for value X, and it is then used to obtain 
values Z1 and Z2 as shown in figure 2. The average value 
Z=(Z1+ Z2)/2 is computed as shown. A weighted average 
Z’ is computed for all eligible rules that have the same 
action name but different value names. This calculation is 
done for each action name specified by the eligible rules. 
Therefore, a rule that has several different fuzzy action 
attributes, has a fuzzy output value computed for each 
fuzzy action attribute. Each fuzzy action attribute, 
specified for the selected rule, is added to the process 
instance item passing through the block using the fuzzy 
action real value calculated for it.  

An example rule is as follows: 
 

RuleName:IF 
   ConditionName1 = ValueName1 AND 
   ConditionName1 = ValueName2 AND 
   ConditionName2 = ValueName3, 
THEN 
   ActionName1=ValueName4 AND 
   ActionName2=ValueName5, CF=100.0%                 

 
3. Distributed, Vehicle Traffic Control 
Network 
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3.1 Traffic Control Agent A distributed, vehicle traffic control network located in 

a large city is considered next. Each major intersection 
has a vehicle traffic light control agent to determine traffic 
light timing. In this system, each traffic light agent uses 
its perceptions about incoming traffic flow to optimize 
light timing, minimizing local vehicle waiting time. The 
result of each traffic light agent adapting light timing to 
accommodate local traffic flow coming from other 
intersections is to minimize the average waiting time in 
the entire network. Global minimization of traffic waiting 
time results as a consequence of the emergent behavior of 
this system, which is the self-synchronization of light 
timing by each traffic control agent.  

 
Figure 3.  Traffic control agent context diagram. 

As light timing control in the overall traffic grid 
evolves in the way discussed above, a complex but 
definite pattern in network operation, north-south red to 
green transition times, emerges out of an initial random 
light pattern [4]. The emergent behavior of the traffic grid 
cannot be explained through an understanding of the 
behavior of each agent alone. Understanding only comes 
when we study the interactions of the traffic control 
agents as they adapt their behaviors in response to 
perceived information about incoming traffic flow, 
achieving self-synchronization of all traffic light timing in 
the network. 

 
Figure 4.  Perception of traffic flow through sensors. 

 
Each traffic control agent in the network has a context 

diagram as shown in figure 3. Traffic flows in four 
directions: north to south (NS), south to north (SN), east 
to west (EW), and west to east (WE). A traffic control 
agent perceives the nature of the flow in each direction 
and translates these perceptions into condition attributes 
that characterize the flow relative to the goals of the 
agent.    

The desired emergent behavior for the traffic control 
system was achieved by experimenting with the control 
system rules and gains that change the light timing of an 
agent in relation to his neighbors, reducing local wait 
time. With no control, the traffic light agents operate 
independently and average vehicle waiting time is high. 
With very strong control, the traffic control network 
operation appears chaotic (no self synchronization occurs) 
and the average vehicle waiting time is high. When the 
control is just right, the emergent behavior discussed 
above is observed and the average vehicle waiting time in 
the network is minimized.  It is also interesting to note 
that the overall system never reaches steady state 
operation; indeed, the system seems to be in a constant 
state of flux as observed by the random appearance of the 
light timing control signals, even when the average 
vehicle waiting time is being minimized.  Operating far 
from equilibrium seems to be a common feature of CAS 
[1,9,10]. 

Each direction of traffic flow through an intersection 
has a sensor that emits a signal when a vehicle passes 
over it.  In figure 4, when the traffic light signal goes 
from red to green, the vehicles begin to move into the 
intersection. The pattern of signals that indicates that 
vehicles were waiting for the light to change is called a 
“Stream.” One can see that a stream consists of a 
sequence of evenly spaced signals that are close together 
and follow immediately after a light change.  The pattern 
of signals that indicate that vehicles moved through the 
intersection without waiting is called a “Flow.”  A flow 
consists of signals that are not part of a stream.  

The Goal of a traffic control agent is to minimize the 
number of vehicles waiting for the light to change.  The 
degree of goal satisfaction is directly proportional to the 
number of vehicles in the flow minus the number of 
vehicles in the stream for each direction of traffic flow 
through the intersection. A hierarchical block “Stream” 
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cated in the vehicle motion process of the traffic grid 
imulation diagram, shown in figure 7, computes the 
tream and flow condition attributes used for fuzzy 
ontrol.  For the NS direction these attributes are: 

  
StrmCntNS,  
StrmCntDiffNS,  
FlwCntNS, and 
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FlwCntDiffNS.  
Figure 5. Condition and action fuzzy sets.  

All 12 such attributes are placed in a global memory 
location indexed by intersection number, and the traffic 
agent uses them to make light timing decisions each cycle.  
Global memory is only one way that components of the 
traffic controller agent can share information.  An agent 
component can also send messages to the other 
components using an OpEMCSS block. 

 
A sum of the average NS plus SN directions is used for 

one rule condition and a sum of the average EW plus WE 
directions is used for the other rule condition. The fuzzy 
sets defined for the N/S control condition and the E/W 
control condition are shown in figure 5.   

 
Figure 6. Fuzzy control rules used to compute offset. There are three aspects of intersection light timing that 

can be controlled by a traffic control agent. These are 
cycle, split, and offset.  The cycle time is a complete 
green-red period for the NS and SN directions of traffic 
flow, and it is also a complete red-green period for the 
EW and WE directions of traffic flow.  A cycle begins 
when the traffic light goes from red to green for the NS 
and SN directions of traffic flow.  The split is the percent 
of NS/SN green time during a cycle.  The offset is the 
difference-in-begin-cycle times between one intersection 
and any other intersection in the network. The offset 
between intersections 1 and 4 in the traffic grid simulation 
is shown in figure 4. 

 
The fuzzy control rules used to compute offset are 

shown in figure 6.  Suppose that N/S control condition 
attribute has a value of 1.5 and the E/W control condition 

attribute has the same value. Given these values, fuzzy 
condition sets Zero and Medium have equal confidence, 
and four fuzzy rules are eligible.  These rules are: zero & 
zero => zero, medium & zero => low, zero & medium => 
low, and medium & medium => low.  

 
3.2 Fuzzy Control 
 

The strategy used to reduce vehicle-waiting time for a 
direction of traffic flow is to decrease the cycle time by 
the amount of the offset in that direction. As shown in 
figure 4, if the stream is large during the current cycle 
then a reduction of the cycle time during next cycle will 
cause more vehicles to enter the flow. This is because the 
start of the cycle is moved back in time, allowing more 
vehicles to go through the intersection without waiting. 

For each direction of traffic flow, the following 
calculation is performed, using the NS direction as an 
example: 

 
   AvgStrmCntNS = (StrmCntNS + StrmCntDiffNS) / 2          Each of these four eligible rules implies a separate 

offset value; therefore, in order to produce a single value, 
these values are combined using a weighted average as 
discussed above. In summary, the fuzzy control 
transforms continuous condition attributes into a 
continuous action attribute (offset) using discrete rules.  

             
It is common knowledge among control engineers that 

using differentials in a control equation makes the system 
more responsive. The StrmCntDiffNS is the first 
difference, based on StrmCntNS, that provides some 
information about the rate of change of StrmCntNS.  
Indeed, the reduction of wait time responds faster to 
control signals when the first difference is present. 

 
3.3 Simulation of a Vehicle Traffic Control 
Network 
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The vehicle traffic control network scenario consists of 
nine intersections, each intersection having a traffic 
control agent as discussed above. There are twelve streets 
where vehicles enter and leave the network system. 
Vehicles that enter the network via one of these streets 
have an exponentially distributed inter-arrival time. 
Therefore, changing the offset to reduce vehicle-waiting 
time for vehicles that enter the network has no effect. 
Thus, feature facts describing traffic flows from outside 
of the system are excluded from the fuzzy rule conditions. 

  The OpEM directed graph model shown in figure 7 

consists of three concurrent, sub-processes. The top sub-
process is a generator process that models vehicles 
arriving from outside the system, and there is one vehicle 
arrival process instance for each of the 12 streets 
discussed above. The middle sub-process models the 
motion of vehicles through the network, and there is one  
vehicle motion process instance for each vehicle moving 
through the network. The bottom sub-process models the 
light timing of the nine intersections, and there is one 
intersection timing process instance for each of the nine 
intersections in the network. 

In the vehicle arrival sub-process and vehicle motion 
sub-process there are two Input Event Action blocks that 
define the path that each vehicle takes through network. 
When a simulation run is begun, this block inputs 
“Network.txt” that is a text file that contains path 
information for vehicles traversing each of the 12 streets.  

As a vehicle moves through the network, it must 
determine the red or green state of the traffic light that it 

is approaching. A Context-Sensitive Event Action block 
uses attribute “IntNumber,” that specifies the next 
intersection in the path, to obtain attribute “Light” from 
the appropriate intersection timing process instance. This 
block is used in the vehicle arrival sub-process to obtain 
the light timing state of the first intersection and in the 
vehicle motion sub-process to determine the light timing 
state for subsequent intersections along the vehicle path. 

  
When an intersection traffic light changes state, a 

Message Event Action block sends the attribute “Light” to 

Figure 7. Directed graph model o  
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f vehicle traffic network operation.
any vehicle approaching the intersection. There are two of 
these blocks, one for each light change. Only red and 
green light timing states are modeled to simplify the 
simulation.  This simulation does not require detailed 
vehicle motion in order to study the emergent behavior of 
the traffic control network.  

The intersection timing sub-process includes two 
hierarchical blocks that contain detailed models. The 
“Payoff” hierarchical block computes the flow count 
minus the stream count for each direction of traffic flow 
and adds these up to produce a single measure of 
performance or measure of fitness [1] for an intersection. 
This block also calculates an average computed over all 
intersections, and this average is reset every 10 minutes of 
simulated time. The “Feature” hierarchical block 
computes the NS and EW control condition attributes as 
discussed above.  The Classifier Event Action block uses 
these condition attributes in fuzzy rules to compute offset. 
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 The Memory Event Action block in the intersection 
timing sub-process obtains the traffic flow feature facts 
for an intersection. Global memory is used for the agent 
sensor component to communicate with the light timing 
control component.  

Figure 9. Plot of several simulation output attributes 
as a function of simulated time, control gain is two. 
 
Figure 9 shows a plot of the simulation output 

attributes as a function of simulated time.  The control 
gain was set to two.  There are now two random looking 
traces.  The smaller random trace trace is the offset for 
each intersection when a cycle begins. The average 
intersection performance (light trace in center) starts at 

 
3.4  Results of Simulation Runs 
 

around plus 6, after about ten minutes of adjustment time, 
and slowly increases to plus 7.5 at the end of the run.  The 
light trace in figure 8 is flat for no control, but in figure 9 
the light trace shows that many more vehicles are flowing 
through the intersection without waiting. 

 

 

Figure 8. Plot of several simulation output attributes 
as a function of simulated time, control gain is zero. 

 
Figure 8 shows a plot of several simulation output 

attributes as a function of simulated time.  The control 
gain was set to zero so that offset was always zero. The 
top trace that slowly converges is the average vehicle 
waiting time that is computed by the Wait Until Event 
block located in the vehicle motion sub-process.  The 
random looking trace is the output of the Payoff 
hierarchical block, and it shows the uncontrolled variation 
in the performance of the traffic control agents to reduce 
vehicle-waiting time.  The light trace in the center is the 
average intersection performance reset every 10 minutes 
of simulated time. The spikes in average performance, 
that equal zero, show where each reset occurs. When the 
intersections are operating independently, the average 
intersection performance stays around minus 6 as shown 
in figure 8   

F
a

is
in
th
p
tw
a
in
f
 
4

  

m
th
S
in
H
in
e
n

h
c

 
Copyright @ 2002, 2003 A

6

igure 10. Plot of several simulation output attributes 
s a function of simulated time, control gain is four. 

For a gain of four, shown in figure 10, the offset trace 
 near the limit of 30 much of the time.  The average 
tersection performance varies around one indicating that 
e controller is still working but degraded from the 

erformance achieved when the control gain was equal to 
o.  In general, the range of the payoff trace is decreased 

nd the light trace of the average intersection performance 
creases when the gain is two. This indicates that the 

uzzy controller is having a positive affect on the system.     

. Summary  
 
Each intersection controls the offset in order to bring 

ore vehicles into the flow. Changing the offset changes 
e intersection cycle in relation to all other intersections. 
uch operation ought to create a conflict with neighboring 
tersections by changing when vehicles arrive there.  
owever, as seen in figure 9, after about 10 minutes the 
tersections self-synchronize and begin to cooperate with 

ach other, reducing the overall waiting time in the 
etwork. 

There are no communications links in this system so 
ow do the agents communicate? An intersection 
hanging its light timing cycle is perceived in the traffic 

ll Rights Reserved 
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flow patterns of another agent. The second agent adjusts 
its offset, and a third agent perceives this. It seems that 
perturbing the environment is transmitting information.  
There are no communication links among the agents yet 
they communicate and adapt. Each agent perceives 
intersection traffic flow patterns and adapts its light 
timing to reduce local vehicle waiting time.   

 The next step in this research is to have the fuzzy 
controller learn the best control rules.  In this paper the 
rules were discovered manually, but are these the best 
rules?  The classifier block currently has the ability to 
learn crisp rules based on graded-learning where each rule 
decision receives a payoff based on the effectiveness of 
the decision. In supervisory learning, used by most neural 
networks, the correct decision is used to train the network.  
Graded learning is a much more difficult rule-learning 
problem.    
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