
An Empirical Analysis of Collaboration Methods in Cooperative
Coevolutionary Algorithms

R. Paul Wiegand
George Mason University

Computer Science Department
Fairfax, VA 22030
paul@tesseract.org

William C. Liles
�

Central Intelligence Agency
Washington, DC 20505

wliles@gmu.edu

Kenneth A. De Jong
George Mason University

Computer Science Department
Fairfax, VA 22030
kdejong@gmu.edu

Abstract

Although a variety of coevolutionary methods
have been explored over the years, it has only
been recently that a general architecture for co-
operative coevolution has been proposed. Since
that time, the flexibility and success of this co-
operative coevolutionary architecture (CCA) has
been shown in an array of different kinds of prob-
lems. However, many questions about the dy-
namics of this model, as well as the efficacy
of various CCA-specific choices remain unan-
swered. One such choice surrounds the issue of
how the algorithm selects collaborators for eval-
uation. This paper offers an empirical analysis of
various types of collaboration mechanisms and
presents some basic advice about how to choose
a mechanism which is appropriate for a particular
problem.

1 Introduction

In recent years there has been a growing interest in coevo-
lutionary algorithms as interesting and useful extensions
to the more traditional Evolutionary Algorithms (EAs).
The important difference in moving to coevolutionary al-
gorithms is that the fitness of an individual is a function of
the other individuals in the population. Two basic classes
of coevolutionary algorithms have been developed: com-
petitive coevolution in which the fitness of an individual
is determined by a series of competitions with other indi-
viduals (see, for example, Rosin and Belew (1996)), and
cooperative coevolution in which the fitness of an individ-
ual is determined by a series of collaborations with other

�
This material has been reviewed by the CIA. That review

neither constitutes CIA authentication or information nor implies
CIA endorsement of the author’s views.�

From Proceedings of the Genetic and Evolutionary Compu-
tation Conference, 2001. c

�
Morgan Kaufmann Publishers

individuals (see, for example, Potter and De Jong (2000)).
Both types of coevolution have been shown to be useful for
solving a variety of problems.

In this paper our focus is on cooperative coevolutionary al-
gorithms (CCAs). A standard approach to applying CCAs
to a problem is to identify a natural decomposition of the
problem into subcomponents. Each component is assigned
to a subpopulation, such that individuals in a given subpop-
ulation represent potential components to the greater prob-
lem. Then each component is evolved simultaneously, but
in isolation to one another. In order to evaluate the fitness
of an individual from a given subpopulation, collaborators
are selected from the other subpopulations in order to form
a complete solution.

While the CCA has shown definite promise on various
problems, there is still a lot that we do not know about how
the model works. One major question is still the issue of
how collaborators are chosen. It is clear from early work
that problem characteristics are connected with this choice.
For instance, problem landscapes with strong inter-activity
between components seem to require less greedy methods
for selection of collaborators.

In this paper we examine this choice by looking at three
main aspects of collaboration: collaborator selection pres-
sure, the number of collaborators for a given evaluation,
and credit assignment of fitness in evaluation when using
multiple collaborators. These attributes are examined by a
series of experimental studies on a variety of different func-
tion optimization problems.

In the next section we will discuss some background about
coevolutionary approaches. The third section will describe
the architecture in more detail, as well as illustrating the
various choices surrounding collaboration. Then we will
describe the experiments that were run and the results ob-
tained. Finally, we will discuss our conclusions and try to
offer some practical advice about how to do collaboration
in the CCA in light of particular problems.

2 Background

Although evolutionary algorithms (EAs) have been with us
for half a century, significant research into the use of co-
evolutionary systems did not really begin until the early
1990’s. From the start early research focused on applica-
tions of complex tasks, such as competitive approaches us-
ing a parasite-host relationship as a model to coevolve sort-
ing networks and problem sets (Hillis, 1991), and cooper-
ative approaches for coevolving job-shop schedules (Hus-
bands and Mill, 1991).

However, although both cooperative and competitive ap-
proaches were explored from the beginning, most research
since that time has dealt with applications of competitive
approaches. Most popularly competitive coevolution has
been applied to game playing strategies (Rosin and Belew,
1995, 1996; Rosin, 1997; Pollack and Blair, 1998). Addi-
tionally Angeline and Pollack (1993) demonstrate the ef-
fectiveness of competition for evolving better solutions by
developing a concept of competitive fitness to provide a
more robust training environment than independent fitness
functions. Competition was also successfully harnessed
by Schlierkamp-Voosen and Mühlenbein (1994) to facili-
tate strategy adaptation in breeder genetic algorithms.

More recently a variety of coevolutionary methods have
been applied to machine learning problems. There has been
particular attention to neural network coevolution (Pare-
dis, 1994; Juillé and Pollak, 1996; Mayer, 1999; Potter and
De Jong, 2000). Additionally, some work in using coevolu-
tionary algorithms for concept learning has been done (Pot-
ter and De Jong, 1999).

Moreover, there have been recent attempts to lay out gen-
eral frameworks for coevolutionary models (Potter and
De Jong, 1994; Paredis, 1996). However, attempts to un-
derstand the dynamics of these frameworks have been few
and far between. Some basic empirical work is laid out
by Potter and De Jong (1994) and Potter (1997), indicating
that there is a possible link between variable inter-activity
and collaboration selection. Even more recently, some ba-
sic theoretical work has been done to take ideas from sim-
ple genetic algorithm theory provided by Vose (1999), and
apply it to coevolution (Ficici and Pollack, 2000). This
work explores the mechanics of a simple competitive co-
evolutionary algorithm from a game theoretic viewpoint.

These questions of coevolutionary dynamics are not aca-
demic. The question of selecting collaborators for eval-
uation, for instance, has not only been an issue for our
application activities, but has also cropped up with other
researchers who are applying the techniques to problems
such as inventory control optimization Eriksson and Olsson
(1997). Indeed, since this is a key element of the success of
applying this cooperative coevolution architecture (CCA),

we believe it merits particular attention in order to improve
our ability to apply CCAs in the future.

3 Coevolution and Collaboration

When applying a CCA to a particular problem, a standard
approach is to decompose the problem into subcomponents
and assign each subcomponent to a subpopulation. These
subpopulations may or may not be homogeneous with re-
spect to the representation used or the EA being used to
evolve a particular subcomponent.

Evolution proceeds independently, except for evaluation.
Since any given individual from a subpopulation represents
only a subcomponent of the problem, collaborators will
need to be selected from the other subpopulations in order
to assess fitness. Each generation, all individuals belonging
to a particular subpopulation have their fitness evaluated by
selecting some set of collaborators from other subpopula-
tions to form complete solutions. Afterward, the CCA pro-
ceeds to the next subpopulation, which will in turn draw
collaborators from each of the other subpopulations. A
simple algorithm of this process is outlined below in fig-
ure 1.

���������
for each species 	 do
������� ��������� initialized population

evaluate(

������� �������)

while not terminated do���������
for each species 	 do
������� ��������� select(

������� �����������)
recombine(

����� � �������)
evaluate(

�����!� �������)
survive(

��� � � �������)

Figure 1: The structure of a Cooperative Coevolutionary
Algorithm (CCA).

Computing the fitness of individuals in a coevolutionary
system can be done in a variety of ways. Some compet-
itive coevolutionary algorithms perform bipartite evalua-
tions, applying each individual in one population to each in
the other (Hillis, 1991). Additionally, it is not uncommon
for single population competitive fitness models to perform
exhaustive pair-wise evaluations (Axelrod, 1989). Such
approaches can be computationally expensive in multi–
population models, since the number of objective function
evaluations used for each assessment of fitness grows ex-
ponentially by the number of species. Less expensive ap-
proaches, such as single elimination tournaments have also
been addressed (Angeline and Pollack, 1993).

Alternatively, early work in the CCA model suggests two
methods for selecting collaborators for the purpose of fit-
ness evaluation:

CCA-1 Choose the best individuals from alternative sub-
populations, as defined by fitness obtained from the
last evaluation process of that group.

CCA-2 Select two individuals: the best and a random indi-
vidual. Evaluate both with the current individual and
use the higher objective function value for the current
individual’s fitness score.

We could of course imagine many more such meth-
ods. Rather than speculate about potential collaboration
choices, however, it is more useful to define some basic at-
tributes of this choice. In our opinion, there are three such
attributes:

� The degree of greediness of choosing a collaborator
(collaborator selection pressure).

� The number of collaborators per subpopulation to use
for a given fitness evaluation (collaboration pool size).

� The method of assigning a fitness value given multiple
collaboration-driven objective function results (col-
laboration credit assignment).

We will attempt to address all three of these attributes in
our research.

3.1 A Clearer Picture of Collaboration

Since an individual represents only a subcomponent of a
problem solution, collaborator subcomponents from each
of the other subpopulations must be assembled to form a
complete solution. We call the process of choosing these
collaborator subcomponents collaborator selection. To do
this, we can use the last evaluated fitness scores of the
individuals in the alternative subpopulations to bias how
we choose these collaborators. The degree of bias in this
choice is what we are calling collaborator selection pres-
sure.

This newly assembled complete candidate solution (a col-
laboration) can now be plugged into the objective function
and assigned a collaboration score. If only one collabora-
tor from each subpopulation is selected, there will only be
a single collaboration score, and this score may be used as
the fitness value.

However, we may choose to try different combinations of
collaborators from the other subpopulations. In which case
evaluation of an individual will consist of multiple collab-
orations. The number of collaborators selected from each

subpopulation is what we call the collaboration pool size.
Since each of these collaborations will have their own col-
laboration score from the objective function, these multi-
ple scores must be in some way resolved to a single fitness
value (collaboration credit assignment).

4 Experiment Methods

4.1 Fitness Landscapes

For our initial experimental studies on collaboration meth-
ods we elected to study simple function optimization prob-
lems. These types of problems are nice for the CCA, since
a natural decomposition of the problem is very straightfor-
ward. Each subpopulation represents a particular variable
of the function. In all cases, we chose to examine only
two variable landscapes, since increasing the dimension-
ality creates a combinatorial problem and raises questions
about how multiple collaborators are applied. Future work
on this matter is needed.

We use three fitness functions: Rosenbrock, Rastrigin, and
a quadratic which is not directly aligned with the axes. The
first two were chosen to be consistent with the Potter and
De Jong (1994) study. They represent two difficult prob-
lems, one of which is not linearly separable (Rosenbrock)
and the other which is linearly separable (Rastrigin). The
third function was chosen because, although it is a simple
problem conceptually, the lack of axis alignment has been
shown to introduce problems for certain kinds of evolution-
ary algorithms (Salomon, 1996). A table summarizing the
functions used, as well as the constraints of those functions
is show in table 1. In all cases the functions were to be
minimized.

4.2 EA Characteristics

As previously stated, subpopulations of the CCA are ho-
mogeneous in our study. Again, where possible EA char-
acteristics remain similar to previous studies. In all cases,
the details of the evolutionary mechanisms are as follows:

representation: binary
(16 bits per function variable)

selection: fitness proportionate
with linear scaling

genetic operators: two-point crossover &
bit-flip mutation

mutation probability: 1 / chromosome length
crossover probability: 0.6
(sub)population size: 100
termination criteria: 100,000 function evaluations

Table 1: Function Test Suite

Function Bounds Name

��� ��� ��� ��� ��� ��� � �	� � � � �
� � � � � � � � � � � ���� ������� ��� ���� ����� Rosenbrock� � �	� � � � � � ��� ��� ������ � �� �! " ��# � 	 � ��$ � � � ��%� �&�'� � � ��%� �&� Rastrigin�)(��� � � � � � � � � � � �	� � � � � � � �*��%� %� ��'� � � �+��%�,%� �� Off-axis quadratic

5 Experimental Results

We used the experimental setup described above to run a
large number of experiments in order to see if there were
clear patterns indicating how best to design a CCA col-
laboration method. Recall that designing a collaboration
method involves three decisions: how to assign fitness
when there are multiple collaborations, how to choose col-
laborators, and how many collaborators to choose. Each of
these issues is explored in the following subsections.

5.1 Collaboration Credit Assignment

We explored three methods for assigning an eventual fit-
ness score to individuals who have had multiple collabora-
tive function evaluations. These methods are as follows:

Optimistic: The more traditional method of assigning an
individual a fitness score equal to the value of its best
collaboration.

Hedge: Assign an individual a fitness score equal to the
average value of its collaborations as is generally done
in competitive coevolution.

Pessimistic: Assigning an individual a fitness score equal
to the value of its worst collaboration.

The intuition for the latter option is that perhaps it might be
best to use a “safe” credit assignment that rewards an indi-
vidual only as well as its weakest collaboration. However,
in all of our experiments this never turned out to be the
case. In fact both the pessimistic and hedge strategies con-
sistently resulted in significantly poorer performance in our
studies, generally by several orders of magnitude. Some
typical examples of these results can be seen in Table 2,
involving minimizing a two variable Rosenbrock function
when selecting two and three collaborators.

As a consequence of this consistent pattern, the remainder
of the experiments discussed in this paper will only use the
optimistic approach for credit assignment.

5.2 Collaboration Selection Pressure

The next attribute for deciding collaboration mechanics
is the degree of greediness of choosing a collaborator.

Table 2: Example collaboration credit assignment results
for the Rosenbrock minimization problem. The number
represent averages across 50 trials. Collaborators are cho-
sen at random.

Collaborator
Poolsize

Credit
Assignment

Result

2 Optimistic �� � �%
2 Hedge ��� � � �- � �
2 Pessimistic . � ���� " ���

3 Optimistic ��%� ���
3 Hedge . � � � . �
3 Pessimistic ��� � ���� �,%

CCA-1 uses a very greedy method, selecting the best in-
dividual from the previous generation. CCA-2, however,
weakens this pressure somewhat by using a two collabora-
tor mechanism in which the second collaborator is chosen
at random. It is still quite greedy however, since the best
individual is still used. We can imagine weakening this
pressure even more by allowing for different combinations
of selection mechanisms aside from selecting the best. Ta-
bles 3, 4, and 5 show results for all three functions using
various combinations of collaborator pool size two, as well
as three selection mechanisms: best, random, and worst.

Notice that no improvements are obtained on the Rosen-
brock function regardless of whether the best individual is
included as one of two collaborators. This finding is con-
sistent with ANOVA at 95% confidence. In the Rastrigin
function and the quadratic functions however, there is a
clear significant advantage to using the best individual as
one of the collaborators. We will return to this later in the
paper.

We can weaken selection even further, as well as provide
ourselves with a way of controlling the degree of collabo-
rator selection pressure by using previous generation eval-
uation results to bias a non-deterministic choice of current
collaborations. We use a method similar to tournament se-

lection, varying tournament sizes from 1 (random selec-
tion) to 4, which is a fairly strong bias. More extreme sizes
were used, but are not presented in detail in this paper.

Table 3: Rosenbrock minimization results using various
combinations of selection choices for each of two collab-
orators: best, worst, and random. These show averages of
50 trials, as well as 95% confidence intervals.

Rosenbrock Random Best

Worst 56.51
������� ���

57.67
���	�
� �	�

Random 37.82
������� ��

68.28
�����
� �	�

Table 4: Rastrigin minimization results using various com-
binations of selection choices for each of two collaborators:
best, worst, and random. These show averages of 50 trials,
as well as 95% confidence intervals.

Rastrigin Random Best

Worst 6.43
����� ��

0.54
����� ��

Random 3.46
����� ��

0.54
����� ���

Table 5: Off-Axis quadratic minimization results using var-
ious combinations of selection choices for each of two col-
laborators: best, worst, and random. These show averages
of 50 trials, as well as 95% confidence intervals.

Quadratic Random Best

Worst 295.07
�������
�����

2.85
���
� �	�

Random 136.63
���	�
� ��

1.21
����� ��

This method should not be confused with that of selecting
multiple collaborators. In the case where the collaboration
pool size is only one, we can still have large tournament
sizes without affecting the fact that only a single objec-
tive function application is required to evaluate an individ-
ual. This tournament-style collaborator selection method
is used merely to leverage previous generation fitness val-
ues as a way to bias our search for a collaborator for the
current evaluation. Of course the method is still reasonable
for larger collaboration pool sizes, and again the size of the
tournament will not impact the number of collaborations
that are ultimately formed.

Figure 2 shows the results for the minimization experi-
ments of the Rosenbrock function. The

�
-axis represents

fitness scores. The points on the plot are averages of 50
trials for each experimental group. The whiskers show the
95% confidence intervals of these groups. Results for the

basic GA, CCA-1, and CCA-2 groups are shown at the top
for baseline comparison. The remaining four panels show
the results for groups which were run using increasing col-
laboration selection pressure.

Notice that varying the pressure with this tournament-like
collaborator selection method makes very little difference
in the overall performance of the CCA. The

� �
,
� �

, and
��(

graphs show a similar story in this respect. Although the
graphs in this paper show results for conservative ranges of
this parameter, a range of extreme values (such as tourna-
ment sizes limiting toward the population sizes, and tourna-
ment selection of collaborators with the worst fitness score,
etc.) were also run. These trends bear out even at extreme
values.

More interesting perhaps is the fact that with the non-linear
case, collaborator selection method neither helps, nor cre-
ates a performance degradation unless the selection bias is
so strong that it effectively reduces the number of collabo-
rators used (for extreme tournament sizes). Indeed, recall
from Table 3 that using one best and one random (or worst)
individual as collaborators in a two-way collaboration re-
sulted in no significant performance difference.

Clearly it is not entirely the case that collaboration selec-
tion pressure is unimportant, however, since CCA-1 and
CCA-2 do quite well against the linearly separable Rastri-
gin and the off-axis quadratic function compared to those
CCA algorithms employing random selection.

One hypothesis is that the CCA-1 and CCA-2 algorithms’
use of the most extreme collaboration selection pressure
creates a search which is similar in behavior to a line-
search. Therefore Rosenbrock non-linearities create a
problem for which this bias gives us little or no advan-
tage. In the case of the other two functions, this simple
line-search type of behavior provides a strong bias which
is well suited to solving these problems.

5.3 Collaboration Pool Size

The most dramatic effect on the success of the CCA was
clearly the number of collaborators one uses. To some
extent, computationally speaking this is an unfortunate,
though not surprising, result since increasing the number
of collaborators can significantly increase overall computa-
tion time—a problem which is combinatorial with the num-
ber of subpopulations.

Again look at figures 2, 3, and 4. In almost all cases in-
creasing the number of collaborators used assisted the per-
formance of the algorithm. In fact, although the relaxation
of the greedy collaboration method hinders the CCA with
respect to the GA on the Rastrigin function, increasing the
collaborative pool size to 5 with random collaborator selec-

Figure 2: Results for Rosenbrock (
� �

) minimization exper-
iments. The

�
-axis represents the final reported result from

the EA after 100,000 function evaluations. The points plot-
ted are averages of 50 trials, and the whiskers show the 95%
confidence intervals.

Figure 3: Results for Rastrigin (
� �

) minimization experi-
ments. The

�
-axis represents the final reported result form

the EA after 100,000 function evaluations. The points plot-
ted are averages of 50 trials, and the whiskers show the 95%
confidence intervals.

Figure 4: Results for the off-axis quadratic (
��(

) minimiza-
tion experiments. The

�
-axis represents the final reported

result from the EA after 100,000 function evaluations. The
points plotted are averages of 50 trials, and the whiskers
show the 95% confidence intervals.

Figure 5: The contributions of collaborators were tracked
using three different collaboration mechanisms for each
function (best, worst, and random; best and worst; and best
and random). The number of times each collaborator is re-
sponsible for yielding the better fitness score is illustrated
as ratios in the above chart. Averages across 50 trials were
used.

tion returns CCA performance to at least an insignificant
difference from that of the GA.

While our research does not address the issue of how large
the collaboration pool size should be for a given problem, it
does suggest that a relatively conservative adjustment from
one to two collaborators will frequently yield substantial
benefit. Indeed, in all three functions this change is statis-
tically significant for the data shown in our figures.

Of course even such a “conservative” adjustment from one
to two collaborators is disappointing news in terms of com-
putational complexity. Whether some sampling technique
can be used to reduce the combinatorial problem remains
to be seen.

6 Further Analysis

In order to look more closely at what kind of use the CCA
is making of its collaborators, we decided to setup some
multi-collaborator runs and track the frequency with which
the CCA makes use of any particular collaborator for fit-
ness assessment. We did this by setting up three groups for
each function, one requiring three collaborators, and two
requiring just two. In the first group the best, worst, and
random collaborators were selected and the function was
evaluated with each. The second group selects the best and
worst collaborator and the third selects best and random.
Since we are using an optimistic strategy for credit assign-
ment, we kept track of the number of times each collab-
orator produces the best resulting fitness score. Figure 5
on page 6 shows these ratios for these groups for all three
functions.

The Rastrigin function always uses the best collaborator.
Given the premise that using the best individual for collab-
oration gives us something like a simple line-search, it is
not surprising that the best collaborator is always the one
used by the algorithm during evolution. Even the off-axis
quadratic makes predominant use of the best individual, al-
though it seems evident that its own alignment properties
create a need for small use of other collaborators.

What is more interesting is that not only does the Rosen-
brock make use of all three, but it doesn’t seem to matter
whether we use a random collaborator or the worst individ-
ual as a collaborator. Curiously, use of the worst individual
seems to overshadow use of the random individual in the
three collaborator case. We believe this is an artifact of the
properties of this particular landscape, though clearly more
investigation is needed to fully explain this.

7 Conclusions and Future Work

There are several clear lessons to take home from this re-
search. First and foremost it is evident that using an op-
timistic approach is generally the best mechanism for col-
laboration credit assignment. This may not always be true
for every type of problem, but it seems that it is a very safe
first guess for static objective functions.

The next question a practitioner should ask is how much
non-linear interaction there is likely to be among the sub-
components with respect to fitness. If this can be reason-
ably assessed, it is the key to making the next decisions
about collaboration. Clearly if the problem is a simple
problem that is linearly separable, a greedy approach to col-
laborator selection is warranted. Additionally, it may well
be that the number of collaborators may be limited (perhaps
even to just 1).

For more complicated problems with large degrees of vari-
able interactivity, the selection pressure of collaboration is
far less important than the number of collaborators. More-
over, if computationally feasible, increasing the number of
collaborators seems to benefit CCA performance in gen-
eral.

However, it is also clear that there is no magic bullet, of
course. The simple off-axis quadratic still perplexes the
non-greedy CCA. Combining random (or worst, or arbi-
trary) collaborators with best collaborators against these
problems resulted in no significant degradation of solution
quality over the greedy CCA-1. So combining these meth-
ods (as in CCA-2 by Potter and De Jong (1994)) may be
a good first stab at solving a problem when the degree of
variable interactivity is unknown.

The fact that in the non-linear case collaborator selection
pressure seems to be unimportant may be a clue for some
resolution to the multi–collaborator combinatorial prob-
lem. It suggests that how you sample the collaboration
space is not very important. This encourages the possibility
that some simple sampling methods can give us some relief
to this problem. As state earlier, more work here is needed.

Although we feel this is a good first step toward under-
standing how collaboration works in the CCA, much work
remains. Ideally it would be nice to have some theory that
allows us to find the minimal number of collaborators nec-
essary to solve a given problem, for instance.

Even without such a theory though many questions are
raised by this research which deserve attention. First of
all, if the CCA makes even use of different collaborators
in non-linear problems like Rosenbrock as it seems to,
what kind of run-time behavior does this usage have? Is
there some sort of periodicity, as one collaborator selec-
tion method dominates the other for some time, then trends

reverse? Or is there some punctuation of equilibrium that
occurs to cause the method to re-balance? Or perhaps the
usage is random and unpredictable. Exploring this question
is one of our foremost questions.

Additionally, while increasing from two to three collabo-
rators in the Rosenbrock problem is clearly superior, CCA
runs do not seem to make even distributed use of these col-
laborators. Our observations show that two selection meth-
ods can overshadow the third, even though the addition of
a third method improves performance. We would like to
answer this question in the future, as well.

References

P. Angeline and J. Pollack. Competitive environments
evolve better solutions for complex tasks. In S. Forrest,
editor, Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 264–270, San Mateo, CA,
1993. Morgan Kaufmann.

R. Axelrod. Evolution of strategies in the iterated prisoner’s
dilemma. In L. Davis, editor, Genetic Algorithms and
Simulated Annealing. Morgan Kaufman, 1989.

R. Eriksson and B. Olsson. Cooperative coevolution in in-
ventory control optimisation. In G. Smith, N. Steele,
and R. Albrecht, editors, Proceedings of the Third Inter-
national Conference on Artificial Neural Networks and
Genetic Algorithms, University of East Anglia, Norwich,
UK, 1997. Springer.

S. Ficici and J. Pollack. A game-theoretic approach to the
simple coevolutionary algorithm. In Proceedings from
the Sixth Parallel Problem Solving from Nature, pages
467–476. Springer-Verlag, 2000.

D. Hillis. Co-evolving parasites improve simulated evo-
lution as an optimization procedure. Artificial Life II,
SFI Studies in the Sciences of Complexity, 10:313–324,
1991.

P. Husbands and F. Mill. Simulated coevolution as the
mechanism for emergent planning and scheduling. In
R. Belew and L. Booker, editors, Proceedings of the
Fourch International Conference on Genetic Algorithms,
pages 264–270. Morgan Kaufmann, 1991.

H. Juillé and J. Pollak. Co-evolving interwined spirals. In
L. Fogel, P. Angeline, and T. Bäck, editors, Proceedings
of the Fifth Annual Conference on Evolutionary Pro-
gramming, pages 461–468. MIT Press, 1996.

H. Mayer. Symbiotic coevolution of artificial neural net-
works and training data sets. In Proceedings from the
Fifth Parallel Problem Solving from Nature, pages 511–
520. Springer-Verlag, 1999.

J. Paredis. Steps towards co-evolutionary classification net-
works. In R. A. Brooks and P. Maes, editors, Artificial

Life IV, Proceedings of the fourth International Work-
shop on the Synthesis and Simulation of Living Systems.,
pages 359–365. MIT Press, 1994.

J. Paredis. Coevolutionary computation. Artificial Life
Journal, 2(3), 1996.

J. Pollack and A. Blair. Coevolution in the successful learn-
ing of backgammon strategy. Machine Learning, 32(3):
225–240, 1998.

M. Potter. The Design and Analysis of a Computational
Model of Cooperative CoEvolution. PhD thesis, George
Mason University, Fairfax, Virginia, 1997.

M. Potter and K. De Jong. A cooperative coevolutionary
approach to function optimization. In Proceedings from
the Third Parallel Problem Solving from Nature, pages
249–257. Springer-Verlag, 1994.

M. Potter and K. De Jong. The coevolution of antibod-
ies for concept learning. In Proceedings from the Fifth
Parallel Problem Solving from Nature, pages 530–539.
Springer-Verlag, 1999.

M. Potter and K. De Jong. Cooperative coevolution: An ar-
chitecture for evolving coadapted subcomponents. Evo-
lutionary Computation, 8(1):1–29, 2000.

C. Rosin. Coevolutionary Search Among Adversaries. PhD
thesis, University of California, San Diego, 1997.

C. Rosin and R. Belew. Methods for comptetitive co-
evolution: Finding opponents worth beating. In L. Es-
helman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference, pages 373–380. Morgan
Kaufmann, 1995.

C. Rosin and R. Belew. New methods for competetive co-
evolution. Evolutionary Computation, 5(1):1–29, 1996.

R. Salomon. Performance degradation of genetic algo-
rithms under coordinate rotation. In L. Fogel, P. Ange-
line, and T. Bäck, editors, Proceedings of the Fifth An-
nual Conference on Evolutionary Programming V, pages
153–161. MIT Press, 1996.

D. Schlierkamp-Voosen and H. Mühlenbein. Strategy
adaptation by competing subpopulations. In Proceed-
ings from the Third Parallel Problem Solving from Na-
ture, pages 199–108. Springer-Verlag, 1994.

M. Vose. The Simple Genetic Algorithm. MIT Press, 1999.

