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Abstract

"To successfully apply evolutionary algorithms to the solution of increasingly complex prob-
lems, we must develop effective techniques for evolving solutions in the form of interacting
coadapted subcomponents. One of the major difficulties is finding computational ex-
tensions to our current evolutionary paradigms that will enable such subcomponents to
“emerge” rather than being hand designed. In this paper, we describe an architecture for
evolving such subcomponents as a collection of cooperating species. Given a simple string-
matching task, we show that evolutionary pressure to increase the overall fitness of the
ecosystem can provide the needed stimulus for the emergence of an appropriate number of
interdependent subcomponents that cover multiple niches, evolve to an appropriate level
of generality, and adapt as the number and roles of their fellow subcomponents change
over time. We then explore these issues within the context of a more complicated domain
through a case study involving the evolution of artificial neural networks.
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1 Introduction

The basic hypothesis underlying the work described in this paper is that to apply evolu-
tionary algorithms (EAs) effectively to increasingly complex problems, explicit notions of
modularity must be introduced to provide reasonable opportunities for solutions to evolve
in the form of interacting coadapted subcomponents. A good example of such problems
is behavior learning tasks, such as those one would encounter in the domain of robotics,
where complex behavior can be decomposed into simpler subbehaviors. What makes find-
ing solutions to problems of this sort especially difficult is that a natural decomposition
often leads to interacting subcomponents that are highly dependent on one another. This
makes coadaptation a critical requirement for their evolution.

There are two primary reasons traditional EAs are not entirely adequate for solving
these types of problems. First, the population of individuals evolved by these algorithms has
astrong tendency to converge in response to an increasing number of trials being allocated to
observed regions of the solution space with above average fitness. This strong convergence
property precludes the long-term preservation of diverse subcomponents, because any
but the strongest individual will ultimately be eliminated. Second, individuals evolved
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by traditional EAs typically represent complete solutions and are evaluated in isolation.
Since interactions between population members are not modeled, there is no evolutionary
pressure for coadaptation to occur. To complicate matters further, we may neither know #
priori how many subcomponents there should be nor what roles the subcomponents should
assume. The difficulty then comes in finding computational extensions to our current
evolutionary paradigms in which reasonable subcomponents “emerge” rather than being
designed by hand. Atissue is how to identify and represent such subcomponents, provide an
environment in which they can interact and coadapt, and apportion credit to them for their
contributions to the problem-solving activity such that their evolution proceeds without
human involvement.

"This paper is organized as follows. Section 2 begins with a discussion of some important
issues related to evolving coadapted subcomponents and describes some previous approaches
to extending the basic evolutionary model for this purpose. This is followed in Section 3
by a description of our architecture for evolving coadapted subcomponents as a collection
of cooperating species. Section 4 investigates whether reasonable subcomponents will
automatically arise through the use of such systems by attempting to show that evolutionary
pressure to increase the overall fitness of the ecosystem can provide the needed stimulus
for the emergence of an appropriate number of interdependent subcomponents that cover
multiple niches, are evolved to an appropriate level of generality, and adapt as the number
and roles of their fellow subcomponents change over time. Section 5 further explores the
emergence of coadapted subcomponents through a case study in neural network evolution.
Section 6 summarizes the main contributions of this paper and discusses directions for
future research.

2 Evolving Coadapted Subcomponents

If we are to extend the basic computational model of evolution to provide reasonable
opportunities for the emergence of coadapted subcomponents, we must address the issues
of problem decomposition, interdependencies between subcomponents, credit assignment,
and the maintenance of diversity.

Problem decomposition consists of determining an appropriate number of subcompo-
nents and the role each will play. For some problems, an appropriate decomposition may be
known a priori. Consider the problem of optimizing a function of K independent variables.
It may be reasonable to decompose the problem into K subtasks, with each assigned to the
optimization of a single variable. However, there are many problems for which we have
little or no information pertaining to the number or roles of subcomponents that, ideally,
should be in the decomposition. For example, if the task is to learn classification rules for
a multimodal concept from preclassified examples, we probably will not know beforehand
how many rules will be required to cover the examples or which modality of the concept
each rule should respond to. Given that an appropriate decomposition is not always ob-
vious, it is extremely important that the EA addresses the decomposition task either as an
explicit component of the algorithm or as an emergent property.

The second issue concerns the evolution of interdependent subcomponents. If a prob-
lem can be decomposed into subcomponents without interdependencies, clearly each can
be evolved without regard to the others. Graphically, one can imagine each subcomponent
evolving to achieve a higher position on its own fitness landscape, disjoint from the fitness
landscapes of the other subcomponents. Unfortunately, many problems can only be decom-
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posed into subcomponents exhibiting complex interdependencies. The effect of changing
one of these interdependent subcomponents is sometimes described as a “deforming” or
“warping” of the fitness landscapes associated with each of the other interdependent sub-
components (Kauffman and Johnsen, 1991). Given that EAs are adaptive, it would seem
that they would be well suited to the dynamics of these coupled landscapes. However,
natural selection will only result in coadaptation in such an environment if the interaction
between subcomponents is modeled.

The third issue is the determination of the contribution each subcomponent is making
to the solution as a whole. This is called the Credit Assignment Problem, and it can be traced
back to early attempts by Arthur Samuel (1959) to apply machine learning to the game of
checkers. For example, if we are given a set of rules for playing a two-player game, such as
checkers, we can evaluate the fitness of the rule set as a whole by letting it play actual games
against alternative rule sets or human opponents while keeping track of how often it wins.
However, it is far from obvious how much credit a single rule within the rule set should
receive given a win, or how much blame the rule should accept given a loss.

The fourth issue is the maintenance of diversity in the ecosystem. If one is using an
EA to find a single individual representing a complete solution to a problem, diversity only
needs to be preserved in the population long enough to perform a reasonable exploration
of the search space. Typically, once a good solution is found, the EA terminates, and
all but the best individual is discarded. Contrast this to evolving a solution consisting of
coadapted subcomponents. In the coevolutionary paradigm, although some subcomponents
may be stronger than others with respect to their contribution to the solution as a whole,
all subcomponents are required to be present in the final solution.

2.1 Previous Approaches

One of the earliest extensions to the basic evolutionary model for the support of coadapted
subcomponents is the classifier system (Holland and Reitman, 1978; Holland, 1986). A
classifier system is a rule-based system in which a population of stimulus-response rules
is evolved using a genetic algorithm (GA). The individual rules in the population work
together to forma complete solution to a target problem. A micro-economy model, in which
rules place bids for the privilege of activation, is used to handle the interactions between
population members, enabling them to be highly interdependent. Credit assignment is
accomplished using an algorithm called the bucket brigade, which passes value back to the
rules along the activation chain when the system is doing well. The complex dynamics of this
micro-economy model results in emergent problem decomposition and the preservation of

diversity.

A more task specific approach to evolving a population of coadapted rules was taken by
Giordanaetal. (1994) in their REGAL system. REGAL learns classification rules consisting
of conjunctive descriptions in first order logic from preclassified training examples. Problem
decomposition is handled by a selection operator called universal suffrage, which clusters
individuals based on their coverage of a randomly chosen subset £ of the positive examples.
A complete solution is formed by selecting the best rule from each cluster, which provides
the necessary interaction among subcomponents. A seeding operator maintains diversity in
the ecosystem by creating appropriate individuals when none with the necessary properties
to cover a particular element of £ exist in the current population. The fitness of the
individuals within each cluster is a function of their consistency with respect to the set of
negative examples and their simplicity. This fitness evaluation procedure effectively solves
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the credit assignment problem but is highly specific to the task of concept learning from
preclassified examples.

More recently, the performance of REGAL was improved through the use of semi-
isolated population islands (Giordana and Neri, 1996). Each REGAL island consists of a
population of conjunctive descriptions that evolve to classify a subset of the preclassified
training examples. The universal suffrage operator is applied within each island population,
and the REGAL seeding operator ensures that all examples assigned to an island are covered.
Migration of individuals between islands occurs at the end of each generation. A supervisor
process determines which examples are assigned to the islands and, occasionally, reassigns
them so that each island will ultimately produce a single conjunctive description that will
correctly classify all the training examples when disjunctively combined with a description
from each of the other islands. As hypothesized by population geneticist Sewall Wright
(1932), population islands enable the system to maintain more diversity and reach higher
fitness peaks than possible with a single freely interbreeding population.

Multiple-species models, that is, those incorporating genetically isolated populations,
have also been used to evolve coadapted subcomponents. Early work includes the appli-
cation of a model of hosts and parasites to the evolution of sorting networks using a GA
(Hillis, 1991). One species (the hosts) represents sorting networks, and the other species
(the parasites) represents test cases in the form of sequences of numbers to be sorted. The
interaction between the two species takes the form of complementary fitness functions.
Specifically, a sorting network is evaluated on how well it sorts test cases, while the test
cases are evaluated on how poorly they are sorted. Because the host and parasite species are
genetically isolated and only interact through their fitness functions, they are full-fledged
species in a biological sense. A two-species model has also been used to solve a number of
game learning problems, including tic-tac-toe, nim, and go, by having the species repre-
sent competing players (Rosin and Belew, 1995). These competitive-species models have
demonstrated that this form of interaction helps to preserve genetic diversity and results
in better final solutions when compared with non-coevolutionary approaches. In addition,
the credit-assignment problem is trivially solved through the use of complementary fitness
functions. A limitation of these approaches, however, is their narrow range of applicabil-
ity due to the requirement that the problem be hand-decomposed into two antagonistic
subcomponents.

Other researchers have explored the use of cooperative-species models. Besides our
approach, which will be discussed in detail throughout the rest of this paper, the coevolution
of multiple cooperative species has been applied to job-shop scheduling (Husbands and Mill,
1991), and a two-species cooperative model was applied to Goldberg’s three-bit deceptive
function (Paredis, 1995). The decomposition used by the job-shop scheduling system was
to have each species but one evolve plans for manufacturing a different component. The
single remaining species evolved an arbitrator for resolving conflicts when two or more
plans required the same piece of shop equipment at the same time. The two-species
system for solving Goldberg’s three-bit deceptive problem assigned one species to the
task of evolving an effective representation in the form of a mapping between genes and
subproblems and the other species to the task of evolving subproblem solutions. These
two species had a symbiotic relationship in that the second species used the representations
coevolved by the first species. While both of these cooperative-species models involved
a hand-decomposition of the problem, our approach has emphasized emergent problem
decomposition.
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The application of EAs to the construction of artificial neural networks has also mo-
tivated extensions to the basic evolutionary model for the support of coadapted subcom-
ponents. For example, in the SANE system (Moriarty, 1997; Moriarty and Miikkulainen,
1997), each individual in the population represents a single neuron by specifying which
input and output units it connects to and the weights on each of its connections. A collec-
tion of neurons selected from the population constitutes a specification for constructing a
complete neural network. A genetically isolated population of network blueprints evolves
records of neurons that work well together. The neural-evaluation phase of SANE performs
many cycles of selecting neurons from the population based on a blueprint, connecting the
neurons into a functional network, evaluating the network, and passing the resulting fitness
back to the blueprint. The fitness of a neuron is computed as the average fitness of the
five best networks it participates in, which is effectively a measure of how well the neu-
ron collaborates with other neurons in the population to solve the target problem. The
relationship between the blueprint population and the neuron population is also collabo-
rative. Rewarding individuals based on how well they collaborate results in the long term
maintenance of population diversity and a form of emergent decomposition.

A more macroscopic approach has been taken by de Garis (1990) to evolve artificial
neural networks for controlling simulated creatures. Rather than evolving a single large
neural network to control a creature, de Garis first hand-decomposes the problem into a set
of component behaviors and control inputs. A GA is then used to evolve small specialized
neural networks that exhibit the appropriate subbehaviors. This is similar to the chaining
technique pioneered by Skinner (1938) and used by the Reinforcement Learning community
to train robots (Singh, 1992; Lin, 1993). Clearly, the human is very much in the loop when
taking this approach.

Another biological model that has inspired the evolution of coadapted subcomponents
is the vertebrate immune system (Forrest and Perelson, 1990; Smith et al., 1993; Forrest
et al., 1993). Forrest et al. introduced a technique called emergent fitness sharing that
preserves diversity in a single population and results in emergent problem decomposition
by modeling some of the interactions that occur between antibodies and antigens. Emergent
fitness sharing computes the fitness of each generation of antibodies by performing many
iterations of a three-step process. First, a single antigen is randomly chosen from a fixed
collection; second, a set of antibodies is randomly chosen from the evolving population;
and third, a tournament is held to determine which of the selected antibodies matches the
antigen most closely. The winner of each tournament receives a fitness increment based on
the quality of the match. This model is similar in some ways to SANE, but the relationship
between individuals is competitive rather than cooperative.

Finally, there has been work on extending the basic single-population evolutionary
model to allow coadapted subcomponents specific to the construction of computer pro-
grams. Koza (1993), for example, has reported on the beneficial hand-decomposition of
problems into a main program and a number of subroutines. Others have taken a more
emergent approach through the exploration of techniques for automatically identifying
blocks of useful code, generalizing them, and adapting them for use as subroutines in future
generations (Rosca and Ballard, 1994, 1996).
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Figure 1: Coevolutionary model of three species shown from the perspective of each in
turn.

3 Cooperative Coevolution Architecture

We now describe a generalized architecture for evolving interacting coadapted subcompo-
nents. The architecture, which we call cooperative coevolution, models an ecosystem consisting
of two or more species. As in nature, the species are genetically isolated—individuals only
mate with other members of their species. Mating restrictions are enforced simply by
evolving the species in separate populations. The species interact with one another within
a shared domain model and have a cooperative relationship.

The basic coevolutionary model is shown in Figure 1. Although this particular illus-
tration shows three species, the actual number in the ecosystem may be more or less. Each
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species is evolved in its own population and adapts to the environment through the repeated
application of an EA. Although, in principle, any EA appropriate to the task at hand can
be used, we only have firsthand experience constructing coevolutionary versions of genetic
algorithms and evolution strategies. The figure shows the fitness evaluation phase of the EA
from the perspective of each of the three species. Although most of our implementations of
this model have utilized a sequential pattern of evaluation, where the complete population
of each species is evaluated in turn, the species could also be evaluated in parallel. To
evaluate individuals from one species, collaborations are formed with representatives from
each of the other species.

There are many possible methods for choosing representatives with which to collabo-
rate. In some cases itis appropriate to simply let the current best individual from each species
be the representative. In other cases this is too greedy and alternative strategies are prefer-
able. For example, a sample of individuals from each species could be chosen randomly, or a
more ecological approach in which representatives are chosen non-deterministically based
on their fitness could be used. Alternatively, a topology could be introduced and individuals
who share a neighborhood allowed to collaborate.

3.1 Examples

Some simple examples may help illustrate the architecture. One of our first uses of co-
operative coevolution was to maximize a function f(#) of n independent variables (Potter
and De Jong, 1994). The problem was hand-decomposed into n species and each assigned
to one of the independent variables. Each species consisted of a population of alternative
values for its assigned variable. To evaluate an individual from one of the species, we first
selected the current best individual from every one of the other species and combined them,
along with the individual being evaluated, into a vector of variable values. This vector
was then applied to the target function. An individual was rewarded based on how well it
maximized the function within the context of the variable values selected from the other
species.

As a second example, cooperative coevolution was used to develop a rule-based control
system for a simulated autonomous robot (Potter et al., 1995). There were two species,
each consisting of a population of rule sets for a class of behaviors. We wanted one species
to evolve behaviors appropriate for beating a hand-coded robot to food pellets randomly
placed in the environment and the other to evolve behaviors appropriate for the time spent
waiting for food to appear. The species were seeded with some initial knowledge in their
assigned area of expertise to encourage evolution to proceed along the desired trajectory.
"To evaluate an individual from one of the species, we selected the current best rule set from
the other species, merged this rule set with the one being evaluated, and used the resulting
superset to control the robot. An individual was rewarded based on how well its rule set
complemented the rule set selected from the other species.

3.2 Problem Decomposition

In the previous two examples, it was known how many species were required for the task
at hand and what role each should play. We took advantage of this knowledge to produce
human-engineered decompositions of the problems. In other situations, it is quite possible
that we may have little or no prior knowledge to help us make this determination. Ideally,
we would like both the number of species in the ecosystem and the roles the species assume
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to be an emergent property of cooperative coevolution.

One possible algorithm for achieving this is based on the premise that if evolution
stagnates, it may be that there are too few species in the ecosystem from which to construct
a good solution. Therefore, when stagnation is detected, a new species is added to the
ecosystem. We initialize the species randomly and evaluate its individuals based only on
the overall fitness of the ecosystem. Since we do not bias these new individuals, the initial
evolutionary cycles of the species will be spent searching for an appropriate niche in which
it can make a useful contribution—that is, the role of each new species will be emergent.
Once a species finds a niche where it can make a contribution, it will tend to exploit this
area. The better adapted a species becomes, the less likely it will be that some other species
will evolve individuals that perform the same function because they will receive no reward
for doing so. Conversely, if a species is unproductive, determined by the contribution its
individuals make to the collaborations they participate in, the species will be destroyed.
Stagnation can be detected by monitoring the quality of the collaborations through the
application of the inequality

fA)—flt-L)<G Q)

where f(t) is the fitness of the best collaboration at time ¢, G is a constant specifying the
fitness gain considered to be a significant improvement, and L is a constant specifying the
length of an evolutionary window in which significant improvement must be made.

3.3 Other Characteristics of the Architecture

Evolving genetically isolated species in separate populations is a simple solution to the
problem of maintaining sufficient diversity to support coadapted subcomponents. While
there is evolutionary pressure for a species population to converge once it finds a useful
niche, no such pressure exists for the various species to converge to the same niche. Rather,
rewarding individuals based on how well they collaborate with representatives from the
other species provides evolutionary pressure for them to make a unique contribution to the
problem-solving effort. This ensures that the ecosystem will consist of a diverse collection
of species.

Evolving species in separate populations also eliminates destructive cross-species mat-
ing. When individuals become highly specialized, mixing their genetic material through
cross-species mating will usually produce non-viable offspring. Asis demonstrated in nature,
the genetic distance between two species is highly correlated with mating discrimination
and the likelihood that if interspecies mating does occur the offspring will either not survive
or be sterile (Smith, 1989).

Of course, the existence of separate breeding populations does not preclude interaction
between species. The architecture handles interdependencies between subcomponents by
evolving the species in parallel and evaluating them within the context of each other. This
requires that individuals from different species be merged within a shared domain model to
form a composite solution to the target problem.

Credit assignment occurs at two levels of abstraction. When evaluating the individuals
within a species, the representatives from the other species remain fixed. Therefore, the
fitness differential that is used in making reproduction decisions is strictly a function of the
individual’s relative contribution to the problem-solving effort within the context of the
other species. The fitness is assigned only to the individual being evaluated, not shared with
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the representatives from the other species. This greatly simplifies the credit assignment
problem because there is no need to determine which species contributed what. On the
other hand, we do need to occasionally estimate the level of contribution a species makes
to determine whether it should be allowed to survive. This can often be accomplished by
computing the fitness differential of a solution with and without the participation of the
species in question.

Each species is evolved by its own EA. Communication between species is limited to
an occasional broadcast of representatives, and the only global control is that required to
create new species and eliminate unproductive ones. This makes parallel implementations,
in which species are assigned to separate processors, trivial.

Finally, heterogeneous representations are supported. This will become increasingly
important as we apply evolutionary computation to larger problems. For example, in
developing a control system for an autonomous robot, some components may best be
implemented as artificial neural networks, others as collections of symbolic rules, and still
others as parameter vectors. The cooperative coevolution architecture enables each of these
components to be represented appropriately and evolved with a suitable class of EA.

4 Analysis of Decomposition Capability

In the following empirical analysis we explore whether the algorithm outlined in Section 3.2
is capable of producing good problem decompositions purely as a result of evolutionary
pressure to increase the overall fitness of the ecosystem. We will describe four studies—each
designed to answer one of the following questions concerning the ability of this algorithm
to decompose problems:

Will species locate and cover multiple environmental niches?

Will species evolve to an appropriate level of generality?

Will adaptation occur as the number and role of species change?

Will an appropriate number of species emerge?

This is, of course, an inductive argument. Although positive answers to these questions may
not guarantee that good problem decompositions will emerge, we would certainly expect
positive answers if this capability does, in fact, exist.

4.1 Coevolving String Covers

In these studies we use binary string covering as a target problem, in part because the task
provides a relatively simple environment in which the emergent decomposition properties
of cooperative coevolution can be explored, and because it has been used by others in related
studies (Forrest et al., 1993). The problem consists of finding a set of NV binary vectors that
match as strongly as possible another set of K binary vectors, where K is typically much
larger than N. We call these sets the mutch set and target set respectively. Given that K
is larger than NV, the match set must contain patterns shared by multiple target strings to
cover the target set optimally, that is, the match set must generalize. The match strength
S between two binary vectors Z and § of length L is determined simply by summing the
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number of bits in the same position with the same value as follows:

L
N 1 if Ty = Yi
5(@,9) = 21{ 0 otherwise @)
i=
To compute the strength of a match set M, we apply it to the target set and average the
maximum computed match strengths with respect to each target set element as follows:

S(M) =— Zmax(sml,ti), o, S, £)) 3)

where 17i and £ are elements of the match set and target set respectively.

The string covering problem can be easily mapped to the model of cooperative co-
evolution. Recall from Figure 1 that to evaluate an individual from one species it must
collaborate with representatives from each of the other species in the ecosystem. Here,
individuals represent match strings, and each species will contribute one string to the match
set. Representatives are chosen as the current best string from each of the other species. In
other words, a match set of size N will consist of a string being evaluated from one species
and the current best string from each of the other N — 1 species. During the initial few
generations, a species may participate in collaborations before its population has ever been
evaluated. In this case a random representative is chosen. The fitness of the match set will
be computed from Equation 3 and assigned to the string being evaluated.

Problem decomposition, in this context, consists of determining the size of the match
set and the coverage of each match set element with respect to the target strings. In the first
three studies the size of the match set is predetermined. However, given that the species
are randomly initialized, the coverage of each will be an emergent property of the system
in all four studies.

The particular EA used in these studies is a GA. In all cases we initialize the population
of each of the species randomly, use a population size of 50, two-point crossover at a rate
of 0.6, bit-flipping mutation at a rate set to the reciprocal of the chromosome length, and
proportionate selection based on scaled fitness.

4.2 Experimental Results
4.2.1 Locating and Covering Multiple Environmental Niches

One of the most fundamental questions concerning emergent problem decomposition is
whether the method can locate and cover multiple environmental niches. In string covering,
the niches we are interested in are schemata common among the target strings. By schemata
we are referring to string templates consisting of a fixed binary part and a variable part
designated by the symbol “#”. In a previous study by Forrest et al. (1993), an experiment
was performed demonstrating the ability of a traditional single-population GA to detect
common schemata in a large collection of target strings. To compute the match strength
between two strings, they used a linear function similar to Equation 2. Their schema
detection experiment is duplicated here, with cooperative coevolution substituted for their
traditional single-population GA.

The experiment consists of evolving match sets for three separate target sets, each
consisting of 200 64-bit strings. The strings in the first target set will be generated in equal
proportion from the following two half-length schemata:
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11111111113111113111111111 11 111 1T # SRR HHHHA RSB RHH AR AR BB HHHHRES
it RS E SRS FFFFFFFFFSSFSBHH$11111111111111222912912121711111111

"The variable half of each of the strings will consist of random patterns of ones and zeros.
Similarly, the strings in the second target set will be generated in equal proportion from the
following quarter-length schemata:

1111111111111 1 L I SRR R R R R R R AR R R R R H R H R BB B R B R BB R AR
HERRRHHFHARRBFHAA 11111111111 11T L LSS HHHH AR BB R H AR R RBHHH R AR R BB HHHH
iSRS EFEFFF RS FF RS FFRBRRH111111111 111111 ISR HHHH R R R R RS
HERSRBHHH AR RHHA AR BB HA AR BB HHH AR BHFHHASBRHHHAAH1111111111112221

and the strings in the third target set will be generated in equal proportion from the
following eighth-length schemata:

11111111 ##H AR HHHH AR B HHH AR R BB HHHEA AR RBHFH AR BB H R AR RSB B HHHHRES
HEHHHHFHLLL11111H##H#HHFRFHF BB R B R BB BEREREERER SRR R BR SR H R H R BB B3 S
HEARRBHHHARRFHAALLLLL LI IR HHHH AR BB HHHH AR BB R H AR R AR BHHH R BB RHHHS
it HEFEFFFHFFFFFFFHLLLLLLLIB B R BB ERRRR SRR R R SR H R H R BB R3S
HERRRBHHHARBFHAAR R HAAARBBHFHAERLLLL LI L IR B HHH AR RRHHH R AR BB R HHHHS
it RS RS FF RS FF RS RS RS FF B BB BB BEBBERER 111111118 HHH R SR H R H BB R B3 S
HERRRBHHHARBHHAAR BB HARA BB HHHA BB BFHHHARRRRHAAEA L1111 LIS BB B H RS
it HEFE SRS FF RS RS RS RS RS BB R BB BB BERERERRRR SRR H#H#11111110

The niches in the target set generated from the eighth-length schemata should be signifi-
cantly harder to find than those generated from the half-length or quarter-length schemata
because the fixed regions that define the eighth-length niches are smaller with respect to
the variable region of the strings.

We know « priori how many niches exist and are only interested in whether we can
locate and cover them, so we simply evolve an equal number of species as niches. For
example, since we know that the first target set was generated from two schemata and,
therefore, will contain two niches, we evolve two species to cover these niches. Similarly,
four species are evolved to cover the second target set, and eight species are evolved to cover
the third target set.

50 T T T

3 45} |
°
g ]
= g
g praai = * £
5 40 ok .
) [~
(= i
o
: 35
< half-length ——
quarter-length -----
eighth-length -
30 1 . )

0 50 100 150 200
Generations

Figure 2: Finding half-length, quarter-length, and eighth-length schemata.

The average number of bits matched per target string using a match set consisting
of the best individual from each species is shown in Figure 2. Each curve in the figure
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was computed from the average of five runs of 200 generations using the indicated target
set. Overlaid on the curves at increments of 40 generations are 95-percent confidence
intervals. The horizontal lines in the graph represent the expected match values produced
from the best possible single-string generalist. Given the half-length, quarter-length, and
eight-length schemata shown, this generalist will consist entirely of ones, and its average
match scores for the three target sets will be 48, 40, and 36 respectively. The Forrest study
demonstrated that a traditional single-population GA consistently evolves this best possible
single-string generalist. Our study shows that when multiple species collaborate, they are
able to cover the target set better than any single individual evolved with a traditional GA.
Furthermore, when more species are employed, as in the eighth-length schema experiment,
the amount of improvement over the traditional GA increases.

Half-length

Species 1: [T IadIdE10100110001000111111100010110111
Species 2: 00100000010011101101000010001000 iiiiiiiiiiliidiliiia i

Quarter-length

Species 1: [T 0001100110010100 I IIII#TH0111111111110111
Species 2: 111111111101111111111110101111 11 I iI######141000010100010000
Species 3: 010101010110110111111101111111010000101000101 110 I
Species 4: 1001101110011000 i I#######10110100010100011010101101101111

Eighth-length

Species 1: 110010001111111000101111010000001100101 1 #######0011010011110010
Species 2: 1011111001010001 @ ###i##0010101110010000101101111110111011010010
Species 3: 1010111100000111111101111001000011100110011110111101111100000111
Species 4: 00001110 1011100101111010 i #d###010001101100010111111101
Species 5: 110110010010001011000011110010211######1001010110010001 Tl
Species 6: 000101101111101101101000 0011001111111 10 ###00110000
Species 7: 11110010111111101000001010110101001001001001000101110001 ST
Species 8: [{ll#d1000110111100000 i #d###01011010110111101100001111101010

Figure 3: Final species representatives from schemata experiments.

The reason for this improvement can be seen in Figure 3. This figure shows the
best individual from each of the species at the end of the final generation of the first of
five runs from the half-length, quarter-length, and eighth-length schemata experiments.
Substrings perfectly matching the fixed regions of the schemata are highlighted. A couple
of observations can be made from this figure. First, clearly, each species focuses on one
or two niches and relies on the other species to cover the remaining ones. This enables
the species to cover their respective target strings better than if they had to generalize over
the entire target set. Stated another way, each species locates one or two niches where
it can make a useful contribution to the collaborations that are formed. This is strong
evidence that the species have a cooperative relationship with one another. Second, two
or more species may occasionally occupy a common niche. See, for example, the fourth
and fifth species from the eighth-length schemata experiment. Although our model of
cooperative coevolution does not exclude this possibility, each species must make some
unique contribution to be considered viable. Third, some of the species, for example, the
third species from the eighth-length schemata experiment, make no obvious contribution.
It may be that this species has found a pattern that repeatedly occurs in the random region
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of some of the target strings, and its contribution is simply not readily visible to us. Another
possibility is that this particular species is genuinely making no useful contribution and
should be eliminated.

4.2.2 Evolving to an Appropriate Level of Generality

"To determine whether species will evolve to an appropriate level of generality, we generate
a target set from three 32-bit test patterns and vary the number of species from one to four.
Given three patterns and three or more species, each species should be able to specialize
on one pattern. However, given fewer species than patterns, each must generalize to cover
the patterns as best as possible. As with the previous study, this study was inspired by
experiments done on emergent fitness sharing by Forrest et al. (1993).

Our test patterns are shortened complements of the ones used by Forrest as follows:

11111111111111111111111111111111
11111111110000000000000000000000
00000000000000000000001111111111

The optimal single-string cover of these patterns is the following string:

11111111110000000000001111111111

which produces an average match score of (20+22+22)/3 = 21.33. The optimal two-string
cover of the three patterns is a string consisting of all ones and a string whose 12-bit middle
segment is all zeros. A cover composed of these two strings will produce an average match
score of 25.33. For example, the following two strings:

11111111111111111111111111111111
10010110110000000000001111110101

are scored as follows: (32 + 20 + 24)/3 = 25.33. The makeup of the extreme left and right
10-bit segments of the second string is unimportant. The optimal three-string cover of the
patterns is obviously the patterns themselves.

"To build on Section 4.2.1, we hid the three 32-bit test patterns by embedding them in
the following three schemata of length 64:

I##1### IH## 1111 I#H IS 11 LI RIS I##H I8 111 I## 1111 1 IH#1H 11 1R 11 HEH#HS
1##1IHA# 1HHH 1111 1HB1E##1000#0##0#H#H#0#0000##000000##0#00#0#00H# ## ###
O##O##H#O###00000##0##0000#0# #O###O#0000# #0011 1 1## 1# 11 H IR L1 HHHHHH

A target set composed of 30 strings was then generated in equal proportion from the
schemata.

Four sets of five runs were performed. In the first set we evolved a cover for the target
set using a single species, which is equivalent to using a traditional single-population GA.
The remaining three sets of runs include evolving two, three, and four species respectively.
The plots in Figure 4 show the number of target bits matched by the best individual from
each species. They were generated from the first run of each set rather than the average of
the five runs so that the instability that occurs during the early generations was not masked.
However, we verified that all five runs of each set produced similar results. Although the
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Figure 4: Covering three hidden niches with one, two, three, and four species.

figure shows just the number of bits matching the 32-bit target patterns, the fitness of
individuals was based on how well all 64 bits of each target string were matched.

In the single species plot, we see that after an initial period of instability the species
stabilizes at the appropriate level of generality. Specifically, 20 bits of the first pattern
are matched, and 22 bits of the second and third patterns are matched. This result is
consistent with the optimal single-string generalist described previously. When we increase
the number of species to two, the first pattern is matched perfectly and the other two
patterns are matched at the level of 26 and 18 bits respectively—consistent with the optimal
two-string generalization. When three species are evolved, all three patterns are matched
perfectly, indicating that each species has specialized on a different test pattern. In the four
species plot, we see that when the number of species is increased beyond the number of
niches, perfect matches are also achieved; however, more fitness evaluations are required to
achieve this level of performance.

Figure 5 shows the best individual from each of the species at the end of the final
generation. After removing all the bits corresponding to the variable regions of the target
strings, the patterns that remain are the optimal one, two, and three element covers described
earlier, which is conclusive evidence that the species have evolved to appropriate levels of
generality. One can also see from this figure that the third and fourth species have focused on
the same 32-bit target pattern. However, the bits from these two individuals corresponding
to the variable regions of the target strings are quite different. What is occurring is that the
two species are adapting to different repeating patterns in the variable regions of the target
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One-species experiment
Species 1: 1001010100011111001001000101101010100001100111101111101011100110

Noise removed
11111111110000000000001111111111

Two-species experiment

Species 1: 1011000100011111001001111111111011011111111111101111101111110110
Species 2: 0100110000000110000010000101101010100000000100101111010011000110

Noise removed

11111111111111111111111111111111
00000110000000000000001001110011

Three-species experiment

Species 1: 1001000100011111001001111111111111111111111111111111101111111100
Species 2: 0100010000000000000010000001001110100000100111101101101011000010
Species 3: 1001100100011111011001000101101000100000100000001010010100110010

Noise removed
111111111111111111121111111111111
00000000000000000000001111111111
11111111110000000000000000000000

Four-species experiment

Species 1: 1001000100011111001001111111111111111111111111111111101111111100
Species 2: 0100010000000000000010000001001110100000100111101101101011000010
Species 3: 1101011101111111101001000101101000100001100000001000000100101100
Species 4: 1011000101011111011101000101000000000001000000000010000100011000

Noise removed
111111111111111211111111111111111
00000000000000000000001111111111
11111111110000000000000000000000
11111111110000000000000000000000

Figure 5: Final representatives from one through four species experiments before and after
the removal bits corresponding to variable target regions.

strings. This enabled the ecosystem with four species to achieve a slightly higher match
score on the full 64-bit target strings than the ecosystem with three species. To determine
whether this difference is significant, an additional 95 runs were performed using the three-
and four-species ecosystems to bring the total to 100 runs apiece. The arithmetic means
from the two sets of runs were 51.037 and 51.258 respectively, and a #-test verified that this
difference is unlikely to have occurred by chance.

4.2.3 Adaptation as the Number and Role of Species Change

If we do not know # priori how many species are required and must dynamically create them
as evolution progresses, existing species must be able to adapt to these new species. One of
the forces driving this adaptation is the freedom of older species to become more specialized
as new species begin making useful contributions.

Specializing in this manner is similar to the notion of character displacement that occurs
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Figure 6: Shifting from generalists to specialists as new species are added to the ecosystem
on a fixed schedule.

in natural ecosystems (Brown and Wilson, 1956). For example, a study of finches in the
Galdpagos by Lack (1947) determined that on the eight islands occupied by both Geospiza
fortis and Geospiza fuliginosa, the average depth of the G. fortis beak was approximately 12 mm
while the average depth of the G. fuliginosa beak was approximately 8 mm. However, on the
islands Daphne, occupied only by G. fortis, and Crossman, occupied only by G. fuliginosa,
the average beak depth of both species was approximately 10 mm. The interpretation of this
observation is that when both finch species compete for food within the same ecosystem,
their beaks evolve to become specialized to either a larger or smaller variety of seeds.
However, when only one of these two species occupies an ecosystem, the species evolves a
more general purpose beak suitable for consuming a wider variety of seeds.

"To determine whether the species in our model of cooperative coevolution will mimic
this process and become more specialized as new species are introduced into their ecosystem,
we begin this experiment with a single species, add a second species at generation 100, and
add a third species at generation 200. A 30-element target set was generated from the same
three schemata used in Section 4.2.2.

The number of target bits from the fixed region of the schemata matched by the best
individual from each species is shown in Figure 6. As before, although only the performance
on the 32-bit fixed region is shown, the fitness of individuals was based on how well the
entire 64 bits of each string was covered. Each dashed, vertical line marks the creation of
a new species. A period of instability just after each species is introduced is evidence of
a few quick role changes as the species “decide” which niche they will occupy. However,
the roles of the species stabilize after they evolve for a few generations. It is clear from
the figure that when the second species is introduced, one of the species specializes on the
strings containing the first target pattern, while the other species generalizes to the strings
containing the other two target patterns. Similarly, when the third species is introduced, all
three species are able to become specialists. Furthermore, by comparing Figure 6 with the
plots in Figure 4, we see that this adaptation results in the same levels of generalization and
specialization that are achieved when the species are evolved together from the beginning.

4.2.4 Evolving an Appropriate Number of Species

Itisimportant not to evolve too many species because each requires computational resources
to support 1) the increasing number of fitness evaluations that need to be performed, 2) the
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need for applying operators such as crossover and mutation to more individuals, and 3) the
conversion between genotypic and higher-level representations that may be required. On
the other hand, if we evolve too few species they will be forced to be very general—resulting
in mediocre covers as we saw in the previous few studies.

An algorithm for evolving an appropriate number of species was introduced in Sec-
tion 3.2. To test the effectiveness of this algorithm, we use the same target set as in the
previous two studies and begin by evolving a single species. At each ecosystem generation®
we check for evolutionary stagnation, and if we are not making sufficient improvement,
we add a new randomly initialized species and destroy those that are not making a signifi-
cant contribution. Precisely what constitutes stagnation is application dependent, but here
we determined through experimentation that if the current-best fitness as computed from
Equation 3 does not improve by at least 0.5 over five generations, further significant im-
provement without the addition of a new species is unlikely. Regarding species destruction,
we consider that a species contributes to the fitness of a collaboration when its representative
matches at least one of the target strings better than any other member of the collaboration,
with ties being won by the older species. We refer to the amount of contribution that a
species must make to be considered viable as its extinction threshold. We set the extinction
threshold here to 5.0 to eliminate species that gain an advantage by matching spurious
shared patterns in the random regions of the target strings. If we had been interested
in these less significant patterns, we could have set the extinction threshold to a smaller
value—perhaps just slightly above zero—and the species matching these patterns would be
preserved.

T T ‘
S0fF
4 P Do
‘ collaboration fitness ----
§ 30 | species contribution — |
£ :
i :
20 |
10
I I P B T i SR IR S

0 50 100 150 200 250 300
Generations

Figure 7: Changing contributions as species are dynamically created and eliminated from
the ecosystem.

The fitness of the best collaboration and the amount of fitness contributed by each
species in the ecosystem over 300 generations is plotted in Figure 7. The vertical, dashed
lines represent stagnation events in which unproductive species are eliminated, and a new
species is created. For the first 21 generations, the ecosystem consists of only one species;
therefore, its contribution during this period is equal to the collaboration fitness. At
generation 22 stagnation is detected, and a second species is added to the ecosystem.
Although the contribution of the first species now drops from 37.9 to 29.1, the contribution
of the new species causes the collaboration fitness to increase from 37.9 to 39.2. At
generation 63 the evolution of these two species has stagnated, and we add a third species that

LBy ecosystem generation we mean that all species are evolved for a generation.
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focuses on some of the strings being matched by the first species—causing the contribution
of the first species to drop to 16.8. However, the third species contributes 11.1, and the
fitness of the collaboration jumps from 42.3 to 43.5. At generation 138 evolution has
stagnated with three species in the ecosystem, the collaboration fitness is 49.7, and the
species are contributing 17.1, 16.8, and 15.8 respectively. We know from the previous few
studies that this is the optimal number of species for this particular problem; however, the
system does not possess this knowledge and creates a new species. This species is only
able to contribute 1.6 to the fitness of the collaboration, which is less than the extinction
threshold, and, therefore, it is eliminated at generation 176. At this point another species
is created, but it does not begin making a contribution until generation 192. Since the
most this new species contributes is 1.5, it is eliminated at generation 197, and another new
species is created. From this point until the end of the run, none of the new species ever
makes a non-zero contribution, and each is eliminated in turn when stagnation is detected.

The first observation that can be made from this experiment is that an appropriate
number of species emerges. Specifically, the ecosystem stabilizes in a state in which there
are three species making significant contributions and a fourth exploratory species providing
insurance against the contingency of a significant change in the environment. Our simple
string covering application has a stationary objective function, so this insurance is not really
necessary, but this would often not be the case in “real-world” problems. The second
observation is that although the fourth and fifth species were eventually eliminated, they
were able to make small contributions by matching patterns in the random regions of a
few targets rather than generalizing over a large number of them. If we were interested in
maintaining these specialists in the ecosystem we could lower the extinction threshold, and
they would survive.

5 Case Study in Emergent Problem Decomposition

Moving beyond the simple studies of the previous section, we now describe a more complex
case study in which cooperative coevolution is applied to the construction of an artificial
neural network. Our task will be to construct a multilayered feed-forward artificial neural
network that when presented with an input pattern, will produce some desired output
signal. We are given the basic topology of the network, but we know neither the number
of neural units required to adequately produce the desired output nor the role each unit
should play—the determination of which constitutes our decomposition task. The primary
focus of this case study is to directly compare and contrast the decompositions produced by
cooperative coevolution to those produced by a non-evolutionary approach that is specific
to the construction of artificial neural networks.

5.1 Evolving Cascade Networks

The topology evolved in this case study is a cascade network. In cascade networks, all input
units have direct connections to all hidden units and to all output units, the hidden units
are ordered, and each hidden unit sends its output to all downstream hidden units and to
all output units. Cascade networks were originally used in conjunction with the cascade-
correlation learning architecture (Fahlman and Lebiere, 1990).

Cascade network evolution can be easily mapped to the cooperative coevolution archi-
tecture by assigning one species to evolve the weights on the connections leading into the
output units and assigning each of the other species to evolve the connection weights for one
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Figure 8: Mapping between cascade network and species.

of the hidden units.? For example, the species to network mapping for a cascade network
having two inputs, a bias signal of 1.0, two hidden units, and one outputis shown in Figure 8.
Each of the small black, gray, and white boxes in the figure represents a connection weight
being evolved. To add a new hidden unit to the network we simply create a new species
for that unit and add a new randomly initialized weight to each of the individuals of the
species assigned to the output unit. The fitness of an individual is determined by combining
it with the current best individual from each of the other species to produce a connection
weight specification for the entire network. The sum-squared error is then computed as
preclassified training patterns are fed forward through the network. Individuals producing
networks with lower sum-squared errors are considered more highly fit.

The network shown in Figure 8 is constructed incrementally as follows. When the
evolution of the network begins, there is only one species in the ecosystem, and its individuals
represent alternatives for the output connection weights denoted by the three black boxes.
Later in the network’s evolution, the first hidden unitis added, and a second species is created
to represent the new unit’s input connection weights. In addition, a new connection weight
is added to each individual of the first species. All of these new weights are denoted by gray
boxes in the figure. The species creation event is triggered by evolutionary stagnation as
described earlier. Later still, evolution again stagnates and the second hidden unitis added, a
third species is created to represent the unit’s connection weights, and the individuals of the
first species are further lengthened. These connection weights are denoted by white boxes.
This cycle continues until a network is created that produces a sufficiently low sum-squared
error. Using this scheme, a cascade network with & hidden units will be constructed from
k + 1 species. Alternatively, we could have started with a liberal estimation of the number
of hidden units required and let the destruction of species pare the network down to an

2Although we have not done so, other network topologies could also be easily mapped to the cooperative
coevolution architecture.
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appropriate size, but this option was not explored.

Due to the complexity of the neural network search space, when adding a new species,
we found it helpful to temporarily focus computational resources on enabling it to find a
niche in which it could make a contribution. This is accomplished simply by evolving just
the new species and the species representing the weights on the connections to the output
unit until progress again approaches an asymptote. At this point, we eliminate the new
species if it is not making a significant contribution and create another one to replace it, or
we continue with the evolution of #// of the species in the ecosystem.

The EA used in this case study is a (i, A) evolution strategy (ES) as described by
Schwefel (1995), with ¢ = 10 and A = 100. We previously applied a GA to this task (Potter
and De Jong, 1995) but achieved better results with the ES. Each individual consists of two
real-valued vectors: a vector of connection weights and a vector of standard deviations used
by the mutation operator. We require the standard deviations to always be greater than
0.01 and they are adapted as follows:

0_:t+1 — EteGauss(O,a') (4)
where ¢ denotes time expressed discretely in generations. The rate of convergence of the
ES is sensitive to the choices of ¢’ and the initial setting of the standard-deviation vectors
7. We follow Schwefel’s recommendation and set o’ using the equation

o= 5)

i

where C depends on p and A. Given the (10, 100) ES used here, C is set to 1.0. Schwefel
also recommends initializing & using the equation

Ry,

V131

where the constant Rj is the maximum uncertainty range of the corresponding vari-
able. Given that our randomly initialized connection weights are limited to the range
(—10.0,10.0), each Ry, is correspondingly set to 20.0. Mutation is the only evolutionary
operator used.

fork =1,2,...,|d] ©6)

O =

5.2 The Cascade-Correlation Approach to Decomposition

In the context of a cascade network, problem decomposition consists of determining the
number of hidden units and their roles. We will be comparing and contrasting the de-
compositions produced by cooperative coevolution to those produced by a second-order
gradient-descent technique for constructing cascade networks called the cascade-correlation
learning architecture (Fahlman and Lebiere, 1990).

Prior to the development of the cascade-correlation learning architecture, feed-forward
networks were constructed by using rules-of-thumb to determine the number of hidden
layers, units, and their connectivity. The roles of the hidden units were allowed to emerge
through the application of the backpropagation algorithm—a first-order gradient-descent
technique (Rumelhart etal., 1986). A source ofinefficiency in this process is the considerable
time it takes for the emergence of roles to stabilize (Fahlman and Lebiere, 1990).
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Cascade-correlation was specifically designed to eliminate this inefficiency by con-
structing the network one hidden unit at a time and freezing the roles of the hidden units
once established. Rather than simply allowing these roles to emerge, each hidden unit is
trained to respond either positively or negatively to the largest portion of remaining error
signal using gradient-descent to adjust its input connection weights®. The gradient is with
respect to the magnitude of the correlation between the output from the hidden unit and
the sum-squared error as training patterns are fed forward through the network. After
training, the hidden unit will only fire when the most problematic patterns from the train-
ing set are presented to the network—forcing the hidden unit to focus on a specific region
of the input space. Once the input connection weights of a hidden unit are trained and
frozen, all output connection weights are trained by descending the sum-squared network
error gradient. The addition of a new hidden unit is triggered when the reduction of the
sum-squared network error approaches an asymptote. This cycle of adding a new hidden
unit, training and freezing its input connection weights, and training all output connection
weights continues until a sufficiently low sum-squared error is produced.

5.3 Two-Spirals Problem

We will construct cascade networks to solve the two-spirals problem originally proposed in
a post to the connectionists mailing list by Alexis Wieland. This problem is a classification task
that consists of deciding in which of two interlocking spiral-shaped regions a given (z,y)
coordinate lies. The interlocking spiral shapes were chosen for this problem because they
are not linearly separable. Finding a neural network solution to the two-spirals problem
has proven to be very difficult when using a traditional gradient-descent learning method
such as backpropagation, and, therefore, it has been used in a number of studies to test new
learning methods (Lang and Witbrock, 1988; Fahlman and Lebiere, 1990; Whitley and
Karunanithi, 1991; Suewatanakul and Himmelblau, 1992; Potter, 1992; Karunanithi et al.,
1992).
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Figure 9: Training set for the two-spirals problem.

"To learn to solve this task, we are given a training set consisting of 194 preclassified

3More accurately, a small number of candidate units are created and trained in parallel; however, for the sake of
clarity, we ignore that detail in this description.
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coordinates as shown in Figure 9. Half of the coordinates are located in one spiral-shaped
region and marked with black circles, and half are in the other spiral-shaped region and
marked with white circles. The coordinates of the 97 black circles are generated using the
following equations:

_6.5(104— 1)
"o 104 @)
T
x = rsinf ©)
= rcosf (10)
where ¢ = 0,1,...,96. The coordinates of the white circles are generated simply by

negating the coordinates of the black circles.

When performing a correct classification, the neural network takes two inputs corre-
sponding to an (x,y) coordinate and produces a positive signal if the point falls within the
black spiral and a negative signal if the point falls within the white spiral.

5.4 Experimental Results

Ten runs were performed using cascade-correlation, and ten runs were performed using
cooperative coevolution. Runs were terminated when either all 194 training patterns were
classified correctly, or it was subjectively determined that learning was stuck at a local
optimum. Cascade-correlation generated networks capable of correctly classifying all the
training patterns in all ten runs, while cooperative coevolution was successful in seven out
of ten runs. We will address the three unsuccessful runs at the end of this section.

"Table 1: Required number of hidden units.

Method Hidden units
Mean Max Min

Cascade-correlation 16.80+1.16 19 14
Cooperative coevolution | 13.71+2.18 18 12

Table 1 shows the average number of hidden units produced by each method, along with
95-percent confidence intervals on the mean, and the maximum and minimum number of
hidden nodes generated. Cascade-correlation networks required an average of 16.8 hidden
units, which is consistent with results reported by Fahlman and Lebiere (1990). In contrast,
in its seven successful runs, cooperative coevolution networks required an average of only
13.7 hidden units to perform the task. This represents a statistically significant difference
in the number of hidden units required to solve the problem. The p-value produced from
a r-test of the means was 0.015.

We begin our characterization of the roles played by the hidden units produced by
the two methods by describing the reduction in misclassification and sum-squared error
attributable to each unit. Table 2 was generated by starting with the final networks pro-
duced by the first runs of the two methods and eliminating one hidden unit at a time
while measuring the number of training-set misclassifications and the sum-squared error.
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Table 2: Effect of adding hidden units on training set classification.

Hidden units Misclassifications Sum-squared error
CasCorr  CoopCoev | CasCorr  CoopCoev
0 96 99 84.96 68.26
1 94 97 83.41 64.96
2 76 84 64.61 61.34
3 74 70 64.68 67.24
4 64 80 62.21 68.36
5 64 72 61.45 54.57
6 58 70 50.65 62.53
7 54 67 37.98 54.76
8 58 44 46.24 35.38
9 52 61 35.04 46.84
10 36 27 30.27 20.78
11 34 27 25.38 17.18
12 26 0 21.52 6.63
13 22 14.49
14 16 8.87
15 0 1.67

The first run was chosen for this comparison arbitrarily; however, it appears to provide a
reasonably fair comparison. Overall, we find the sequences from the two methods to be
quite similar. One similarity is that neither the misclassification nor the sum-squared error
sequences monotonically decrease; that is, both methods have created hidden units that,
when looked at in isolation, make matters worse. These units presumably play more com-
plex roles—perhaps working in conjunction with other hidden units. Another similarity is
that the misclassification sequences of both methods are more erratic than the sum-squared
error sequences; however, this is no surprise because neither method used misclassification
information for training. The major difference between the methods is that the cooperative
coevolution sequences tend to make bigger steps with higher variance and contain fewer
elements.

As in Fahlman and Lebiere (1990), we gain further insight into the roles played by
the hidden units by studying a series of field-response diagrams generated from the same
networks summarized in Table 2. The field-response diagrams shown in Figure 10 were pro-
duced from the cascade-correlation network, and those shown in Figure 11 were produced
from the network evolved with cooperative coevolution. The diagrams were generated
by feeding the elements of a 256x256 grid of coordinates forward through the network
and measuring the output signal produced both by individual hidden units and the entire
network. Positive signals are displayed as black pixels, and negative signals are displayed
as white pixels. For example, in Figure 10 the top-right pair of field response diagrams is
generated from a cascade-correlation network in which all but the first two hidden units
have been eliminated. The left diagram of that particular pair shows the output from the
second hidden unit, and the right diagram of the pair shows the corresponding output from
the network.
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Figure 10: Field response diagrams generated from a neural network constructed using
cascade correlation, showing the incremental effect of adding hidden units to the network.

We make a number of observations from a comparison of these two sets of figures.
First, both the cascade-correlation decompositions and those produced by cooperative
coevolution clearly exploit the symmetry inherent in the two-spirals problem. A second
similarity is that the early hidden units focus on recognition in the center region of the
field. This shows that both methods are exploiting the greater central concentration of
training set elements, as one can see from Figure 9. A third similarity is that as hidden units
are added to the network, their response patterns tend to become increasingly complex;
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Figure 11: Field response diagrams generated from a neural network constructed using
cooperative coevolution, showing the incremental effect of adding hidden units to the
network.

although, this is less true with cooperative coevolution than with cascade-correlation. The
increase in complexity may simply be a result of the network topology—the later hidden
units have more inputs than the early hidden units as shown in Figure 8.

There are also a couple of noticeable differences between the two sets of figures. The
cascade-correlation field-response diagrams tend to consist of angular-shaped regions, while
the shapes in the diagrams produced by the network evolved with cooperative coevolution
are more rounded. In addition, the cascade-correlation diagrams are visually more complex
than the ones from cooperative coevolution. We hypothesize that these differences between
the decompositions, as highlighted by the field-response diagrams, are due to the task-
specific nature of the cascade-correlation decomposition technique. Recall that cascade-
correlation uses the correlation between the output of a hidden unit and the network error
signal to train the weights on the connections leading into the unit. This enables the hidden
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unit to respond precisely to the training patterns that are responsible for most of the error
signal while ignoring the other training patterns. This is manifested in the field-response
diagrams as complex angular regions. Since this particular instantiation of the cooperative
coevolution architecture does not use task-specific statistical information as a focusing tool,
it tends to paint with broader brush strokes.

Painting with broad brush strokes may be advantageous with respect to the ability to
generalize, but it can be a disadvantage as well. In all three unsuccessful runs, after all but
a few of the training patterns were correctly classified, the last species created was unable
to find a niche in which it could contribute. Further investigation of the unsuccessful runs
revealed that the sum-squared error generated by the few remaining misclassifications was
being masked by the residual sum-squared error generated by all the other training patterns.
Therefore, variation among individuals produced no selective advantage, and, hence, no
further evolutionary progress occurred. This could probably be addressed by utilizing the
correlation statistic in the fitness function of the species representing hidden units.

In summary, our approach to letting decompositions emerge purely as a result of
evolutionary pressure to increase the overall fitness of the ecosystem works well in simple
domains, and it even has the potential of producing good decompositions in domains as
complex as the one described here. However, as our domains become increasingly complex
we may need to bestow the fitness functions with a more specialized ability to steer the
species towards niches in which they can make useful contributions.

6 Conclusions and Future Work

We believe that to apply evolutionary algorithms to the solution of increasingly complex
problems, explicit notions of modularity must be introduced to provide reasonable oppor-
tunities for solutions to evolve in the form of interacting coadapted subcomponents. The
difficulty comes in finding computational extensions to our current evolutionary paradigms
in which such subcomponents “emerge” rather than being hand designed. In this paper we
have described an architecture for evolving such subcomponents as a collection of cooper-
ating species. We showed that evolutionary pressure to increase the overall fitness of the
ecosystem can provide the needed stimulus for the emergence of an appropriate number of
interdependent subcomponents that cover multiple niches, evolve to an appropriate level
of generality, and adapt as the number and roles of their fellow subcomponents change
over time. Finally, we explored the emergence of coadapted subcomponents in more de-
tail through a case study involving neural network evolution, which suggested that, as our
domains become increasingly complex, the evolution of species may need to be driven by
more than the overall fitness of the ecosystem to produce good decompositions.

The results are quite positive in a number of ways. First, the architecture has demon-
strated the ability to evolve useful decompositions expressed computationally as the emer-
gence of cooperating species. Second, the cooperative coevolutionary architecture has been
shown to be a general extension for any of the standard EC paradigms and not tightly
coupled to a specific approach such as GAs. Finally, this architecture is allowing us to
scale up to much more complex problems than possible with our standard EAs. As an
example, we are currently using this approach to evolve complex behaviors for robots in
multi-agent environments. In this regard, the architecture is suitable both for coevolving
various modalities of behavior within a single robot, and for coevolving the behavior of a
group of cooperating robots.
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At the same time there are a number of improvements to the current system that we
are exploring. At present, the mechanism for evaluating the collaborative potential of coe-
volving components has been deliberately kept as simple as possible. There are several ways
in which such evaluations could be made to be more effective. Similarly, the mechanism
for the creation and destruction of species is currently quite simplistic and provides oppor-
tunities for significant improvements. Finally, our current coevolutionary architecture is
implemented serially even though parallel implementations are quite natural. Of particular
interest as we scale up to more complex domains are implementations of the architecture
in which species are assigned to separate processors and coevolved asynchronously.
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