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ABSTRACT 
We present methods for inferring the cost of interrupting users 
based on multiple streams of events including information 
generated by interactions with computing devices, visual and 
acoustical analyses, and data drawn from online calendars. 
Following a review of prior work on techniques for deliberating 
about the cost of interruption associated with notifications, we 
introduce methods for learning models from data that can be used 
to compute the expected cost of interruption for a user. We 
describe the Interruption Workbench, a set of event-capture and 
modeling tools. Finally, we review experiments that characterize 
the accuracy of the models for predicting interruption cost and 
discuss research directions. 
 

Categories and Subject Descriptors 
I.2.10, J.4 [Artificial Intelligence, Social and Behavioral 
Sciences]: Perceptual Analysis, Economics   

General Terms 
Human Factors, Economics, Experimentation, Theory 

Keywords                                                                                       
Cognitive models, divided attention, interruption, notifications  

1. INTRODUCTION 
Interest has been growing over the last several years on methods 
for endowing computing systems with an understanding of users’ 
focus of attention, workload, and interruptability. The work builds 
on psychological research on interruption and divided attention, 
extending from classic studies in the early Twentieth Century 
[13,15]. Efforts have focused in parallel on user studies, the 
formulation of models of attention and cognitive load, the 
construction of real-time sensing and reasoning platforms, and the 
development of applications such as notification managers, 
communication agents, and dialog systems [7]. In user studies, 
researchers have elucidated the effects of interrupting people in 
various ways in different situations [2,3,10,11], and have probed 
the workload and availability of people in office settings [6,8,9].   

In this paper, we focus on efforts to build and use models of a 
user’s attentional focus and workload within the Attentional User 
Interface (AUI) project [5,7].  The models of attention play a 

central role in systems that perform ongoing cost-benefit analyses 
to mediate the flow of alerts and communications to users [5,6]. 
We have pursued models that can be employed to reason about a 
user’s workload from observed events and, more specifically, to 
infer in an automatic manner the cost of interruption to users 
associated with different kinds of alerts and communications. 
Such models of interruption fuse together information from 
multiple sensory channels, including desktop events, calendar 
information, and ambient visual and acoustical analyses. 

We shall present methods for building models that can be used to 
infer a user’s state of interruptability from multiple event sources, 
and, that can provide a well-characterized expected cost of 
interruption.    We first review work on the coupling of models of     
attention with event systems that provide streams of events, 
including desktop activity and sensory observations.  We describe 
in particular techniques for computing the expected cost of 
interruption, given a probability distribution over attention and a 
utility assessment that encodes preferences about the costs of 
interruption in different situations.  Then, we discuss the learning 
of models of attention and interruptability from data.  We review 
the learning paradigm and tools, describe the learned models, and 
discuss experiments that probe the classification accuracy of the 
models.  Then we present model ablation studies, including 
experiments with removing from consideration perceptual sensing 
and only including the discriminatory power of models that rely 
on events generated by interactions with a client computing 
system and information drawn from an online calendar.   

Figure 1. Dynamic Bayesian network for reasoning about a 
user’s attentional focus, capturing key variables and intra- and 
inter-temporal probabilistic dependencies (from [5]). 

2. INFERRING COST OF INTERRUPTION 
Initial versions of an alerting mediation system, named the 
Notification Platform employed handcrafted dynamic Bayesian 
network models [5].  Two adjacent states of such a temporal 
Bayesian model are displayed in Figure 1.  An important variable,  
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Figure 2. Control panel for Infoflow event system, showing 
event classes and graphical display of processing of acoustical 
and visual information. 

represented over time in the Bayesian network, is Attentional 
focus. The states of this variable are structured into approximately 
fifteen mutually exclusive states of attention, representing a 
spectrum of user situations, capturing different amounts of 
cognitive workload and tolerance of interruptions.  The states 
include such distinctions as high-focus solo activity, medium-
focus solo activity, low-focus solo activity, conversation in office, 
presentation, driving, private/personal time, and sleeping. 

2.1 Representing Preferences about Disruption 
Beyond reasoning about the attentional states of users, an 
important goal of models of attention is to infer the cost of 
different types of interruption, conditioned on users being in 
particular  states.  To perform this inference, we consider the 
utility, u(Di,Aj), representing the cost of a user in attentional state 
Aj being disrupted by a task or communication event Di.  We have 
found that users are comfortable with assessing this cost as the 
willingness to pay to avoid a disruption in dollars for each 
outcome tuple. Willingness to pay to avoid outcomes has been 
used in decision analyses in several fields, including medical 
decision analysis. Given a set of dollar values that users assert that 
they are willing to pay to avoid different kinds of disruptions, and 
a probability distribution being inferred over the attentional state 
of a user, we compute the expected cost of interruption (ECI) by 
summing over the utilities, weighted by the likelihood of each 
state of attention, conditioned on the stream of incoming sensory 
information.  That is, the ECI is 

                                                                                                   (1) 

 

where p(Aj|E) is the probability of the attentional state, 
conditioned on evidence stream E. 

2.2 Event Systems for Sensing User State 
Let us now explore additional details of a real-world 
implementation of a system that can compute the cost of 
interruption from a real-time stream of events, including 
interactions sensed by a computing device and perceptual 
information gathered from acoustical and visual sensors. 

In the Notification Platform, we monitor the activity of a user 
interacting with their different client devices with event sensing 
and abstraction systems that sense computer events from the 
operating systems and applications executed on the clients.  Given 
the availability of a microphone and camera, computing devices 
or appropriately equipped locations can also report visual pose 

with a Bayesian head tracking system [14] and the presence of 
nearby conversation with an audio signal processing analysis. 
Finally, we examine information from users’ online appointment 
information via an interface to the Microsoft Outlook application 
to see if a meeting is scheduled, and if so, we identify and 
consider as observational events several properties of the meeting.  

Figure 2 displays a control panel from an event monitoring 
subsystem used in Notification Platform that we refer to as 
Infoflow. The event system provides an abstraction tool for 
coalescing patterns of low-level system events into higher-level 
events. We consider in the models of attention both low- and 
high-level events. For example, we capture such low-level states 
as the specific application currently in focus, whether the user is 
typing, clicking and/or moving the mouse, as well as a set of 
higher-level events such as the pattern of switching among 
applications (e.g., single application focus versus switching 
among applications) and indications of task completion (e.g., a 
message being sent, a file being closed, an application being 
closed, etc.).  For the calendar events, we consider whether a 
meeting is in progress, the length of time until the meeting is over, 
and the location of the meeting as indicated by information from 
Outlook. For the acoustical and visual analysis, we note the 
presence of conversation or non-conversational sounds associated 
with user activity, and whether a user is present near a desktop 
system, and if so, if the user is gazing at or away from the 
computer.  Figure 3 displays the status of a volatile event store 
used by Infoflow, named the Event Whiteboard. The Event 
Whiteboard is used to capture and share out the state of low-level 
and higher-level events gathered by Infoflow with other 
applications. 

 

Figure 3. Event Whiteboard of Infoflow subsystem, displaying 
low-level and higher-level events considered by the 
probabilistic models of interruption. 
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As indicated in the figure, events include details about the birth 
and death of specific applications, the application currently in 
focus and being interacted with (Outlook), and events that capture 
usage patterns such as the desktop usage pattern, in this case, 
showing that a user is switching between different applications 
within a preset time horizon (15 seconds in this case). 

2.3 Real-Time Analysis of Interruption 
We shall now briefly examine the reasoning performed by the 
Notification Platform in mediating notifications. The Notification 
Platform considers the events described in Section 2.2, and 
employs a Bayesian network to infer a probability distribution 
over attentional states. Figure 4a displays the output of a model 
that considers eight states of attention, including High-Focus Solo 
Activity, Low-Focus Solo Activity, Conversation in Office, 
Presentation or Meeting, Driving, Private Personal Time, 
Sleeping, and Now Available.  The curves in the figure depict that 
the initial high likelihood of Conversation in Office has, at the 
most recent time, become dominated by High-Focus Solo.  Figure 
4b shows inferences about the expected cost of interruption over 
time for different disruptions Di.  In this case, we compute, from 
the inferred probability distribution over the user attentional 
states, the expected dollars a user would be willing to pay to avoid 
different communication events.   

The curves in Figure 4b represent, from top to bottom, the 
expected costs associated with six different interruptions, 
including a telephone call, a pager, a full visual alert with audio 
chime herald, a thumbnail display with audio chime, a full visual 
alert without the chime, and a thumbnail display without chime. 
Figure 5 displays samples of full visual alerts (for news, email, 
and instant messaging notifications) generated by Notification 
Platform, employing additional models that balance the cost of 
interruption and information value. Decision-analytic models are 
used to consider an inferred expected cost for different messaging 
actions and the expected value of different communications, as 
assessed in a separate analysis of the value of information.  We 
shall not review the details of this cost-benefit analysis in this 
paper. Rather, we shall focus on learning and reasoning about the 
expected cost of interruption from data about users’ behavior and 
context. 

 

         

Figure 4. (a) Inference about the attentional state of the user 
over time. At the latest time, the dominant states, in order of 
likelihood are high-focus solo activity, conversation in office, 
and then low-focus solo. (b) Expected cost of interruption over 
time. Interruptions, sorted in descending order by expected 
cost, include (from the top) telephone call, pager, and full 
desktop herald with audio chime. 

          

    

 

 

 

 

 

 

Figure 5. Sample visual alerts from Notification Platform, 
including news, financial alerts, email, instant messages, and 
output from services, such as a scheduling agent, background 
querying, and new document tracking  The service weighs the 
expected cost of interruption and the value of information in 
decisions about alerting and display modalities.  

3. LEARNING PREDICTIVE MODELS 
FOR COST OF INTERRUPTION  
Over the last several years, we have explored the construction of 
models of attention and interruption via manual knowledge 
acquisition, via machine learning from data, and combinations of 
direct assessment and learning.  We shall focus here on the 
construction of personalized models via collection of streams of 
information, coupled with a process of tagging, machine learning, 
and evaluation. Our research in this realm has included the 
construction of models of attention with explicit temporal 
structure, including HMMs as well as more general dynamic 
Bayesian models, and models that represent temporal information 
intrinsically in the definition of variables.   

We dwell in this paper on learning models that predict the state of 
interruptability of users in office settings. Such models are 
designed for making inferences in situations where a user has 
current or recent access to a computing system. Complementary 
work [6] on learning models of the cost of interruption based on a 
detailed consideration of distinctions about appointments drawn 
from an online calendar and time since a user has interacted with 
different applications or devices are reviewed in Section 6.  

We shall consider the learning of models that predict the state of 
interruptability of users, where the detailed description of a user’s 
attentional focus or workload remains implicit. That is, we bypass 
explicit, detailed representation about the state of a user, and 
pursue instead models that characterize the user’s interruptability. 
We then map such inferences to a cost of interruption. 

3.1 Interruption Workbench  
We have developed a tool named the Interruption Workbench 
(IW) which provides facilities for event capture, annotation of 
segments of time, and building and testing statistical models of 
interruptability. A screenshot of the tagging tool being used 
during an annotation session is displayed in Figure 6. 

3.1.1 Phases of analysis 

The first phase of model building is event and context capture. 
During this phase, IW records streams of desktop, calendar, and 
available perceptual events. A video camera is employed to record  



 

 

 

 

 

 

 

 

 

 

 

Figure 6. Screen from the Interruption Workbench.  The tool 
captures and synchronizes sensed perceptual and client events 
with a video log of a user’s activities.  Subjects can tag periods 
of time with cost of interruption for different types of 
interruptions. Foreground shows cost-assessment palette. 

a subject’s activities and overall office context.  The videotape 
with audio track is shot over the shoulder of subjects, revealing 
the content displayed on the user’s screen in addition to a portion 
of the user’s office environment.   

The second phase of building models of interruptability is tagging 
and assessment. IW displays the video and synchronizes the video 
with events that were captured during the training session, 
enabling users to label segments of time by the state of their 
interruptability and to associate them with the constellation of 
sensed events. The labeling effort is minimized by allowing users 
to specify transitions among states of interruptability, rather than 
requiring users to label each small segment of time.  

The tool provides a means for specifying the way that the 
variables representing the cost of interruptability are discretized 
and how cost is represented.  Subjects can encode their 
assessments about their interruptability at different times in two 
ways, depending on their comfort. With the first method, subjects 
tag periods of time viewed on the video as high, medium, and low 
cost of interruption. As displayed in the foreground of Figure 6, 
users can separately map dollar values to each of the high-level 
states, for different kinds of interruptions (e.g., real-time 
telephone call, visual alert, audiovisual alert), reflecting the 
willingness to pay to avoid an interruption of each type during the 
states labeled as high, medium, and low cost of interruption.  In a 
second approach to labeling time segments of a training session, 
subjects can define a scale and use a slider to tag periods of time 
with costs of interruption. These yield models that provide 
inferences about the probability distribution over real-valued 
values, representing the costs of interruption.  

Finally, in the generation and testing phase, we construct and test 
a Bayesian network from the tagged library of cases generated in 
the first two steps.  The task of tagging one or more sessions of 
office activity creates a database of two-second periods of time 
tagged with an interruptability label and containing a vector of 
logged event states.  Given a set of tagged cases, the system can 
be instructed to build a classifier. We shall review the 
construction of Bayesian dependency models. These models 

reveal the dependencies among key observations and variables. 
The Bayesian learning procedure employs graph structure search 
[1], and outputs a Bayesian network for the cost of interruption. 
The model can be used to make real-time predictions about the 
expected cost of interrupting users in different ways, given a live 
stream of sensed events obtained from the Event Whiteboard.   

At run time, the probability distribution over the states of 
interruptability inferred by the model is used to compute the 
expected costs of interruption of different classes of interruption.  
For each disruption under consideration, we compute an expected 
cost of interruptability by invoking an expectation similar to the 
expected value calculation defined in Equation 1, substituting the 
likelihood of different states of interruptability, p(Ii|E), for the 
explicit states of attention, 

                                                                                                 (2) 

3.1.2 Beyond the Present Moment: Inferences about 
Future Cost of Interruption 

In addition to reasoning about the current state of interruptability, 
we also generate several variables representing attentional 
forecasts about future state of interruptability. These include 
variables that capture inferences about the probability 
distributions over times until a low, medium, or high state of 
interruptability will be reached, and more specialized variables 
representing the times until states of interruptability will be 
achieved that will persist for different amounts of time.  As an 
example, a variable in this family represents the time until a user 
will remain in a state of low cost of interruption for at least five 
minutes.  Such predictions are important for deliberating about if, 
when, and how to mediate communications. 

4. BUILDING AND TESTING MODELS 
For learning models from data, IW provides tools for selecting a 
portion of training data for constructing a model and for testing 
the model on data held out for evaluating.  Training data can be 
selected temporally as an initial segment of data or sampled 
randomly from the complete training set.  

4.1 Sample Model 
Figure 7 shows a Bayesian network model, output by the 
workbench. The model was built from a log of a subject’s (S1) 
activities tagged by cost of interruptability.  For this model, the 
database of cases represents activities in the subject’s office, 
including the subject’s interactions with a personal computer, for 
five hours collected in one-hour sessions at different times.  The 
database includes 9,384 two-second cases, representing 202 state 
transitions among interruptability levels. 85 percent of these cases 
were drawn randomly from the case library and used to build the 
model. The remaining cases were used for testing.  To avoid 
overfitting, we first tuned a parameter, used in the Bayesian score 
for penalizing complexity, by splitting the training set into sub-
training and holdout data sets to identify an optimal value of the 
parameter at a soft peak in the Bayesian score. This value was 
used to build the Bayesian network from the full training set. 

We then test the abilities of the learned model to predict the 
outcomes in the test data set. We compute the classification 
accuracy for the learned and marginal models to characterize the 
power of these models.    The classification accuracy is the likeli- 
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Figure 7. Bayesian network model learned from tagged data 
for training session. Model infers probability distribution over 
interruptability (COI), as well as predictions of time until 
reaching different future states of cost of interruption, and 
future states of interruption persisting for different times. 

hood that the model will correctly identify the state of 
interruptability of the user. The variable in the Bayesian model 
representing the current state of interruptability (with states Low, 
Medium, and High cost) is labeled COI.  Other variables include 
forecasts Time Until Next Low, Time Until Next Medium, Time 
Until Next High, and variants of these variables, representing the 
time until periods of low, medium, and high costs of interruption 
will be reached and persist for at least 5 and 10 minutes. In this 
case, the states of the forecasting variables are discretized into five 
time states, including Less than one minute, 1-5 minutes, 5-10 
minutes, 10-15 minutes, and Greater than 15 minutes.  

Figure 8 displays a decision graph representing a compact 
encoding of the probability distribution underlying the COI 
variable of the Bayesian network.  The bar graphs at the leaves of 
the tree represent probability distributions over high, medium, and 
low costs of interruptability (ordered, top to bottom, from high to 
low) for sets of observations represented by the paths leading to 
the leaves.  The paths to the leaves identify important 
combinations of events for decomposing the probability 
distribution over COI and other variables into sub-distributions. 
The paths branch on key observations drawn from the user’s 
calendar and from the real-time activity event stream, including 
patterns of presence, application usage, and perceptual events.  
Similarly detailed trees, encoding variable state paths and 
associated probability distributions at the leaves, are produced for 
the attentional forecasting variables. 

4.2 Evaluation of Learned Models 
We have integrated tools into IW for testing the performance of 
sample models and for probing the discriminatory power of 
different features.   

4.2.1 Accuracy of marginal and inferential models 

Tables 1 summarizes the classification accuracies for COI, and for 
several of the attentional forecasting variables for the model for 
S1 displayed in Figure 7, and for a second model, built from data 
from another subject (S2). The data set for subject S2, also 
collected in 5 one-hour segments, is comprised of 8048 two-
second cases, representing 926 transitions among states of cost of 
interruption.  As in the procedure for S1, the model was 

constructed by splitting the data 85/15 into training and test cases. 
The classification accuracies of the marginal models for each 
subject are listed under the variable names.  The classification 
accuracies of marginal models are obtained by assuming the most 
likely states of the variable when testing predictions on the held-
out data set.  We found that the marginal models may provide 
good classification accuracy in some cases.  In such situations, 
there may be little or only small lift in classification accuracy with 
the use of the inferential model. However, in most cases, the 
inferential model provides a discriminatory boost over the 
marginal model.  For example, the inferential model, based on a 
consideration of all monitored events (column 1 of Table 1), 
yields a 0.73 accuracy for predicting COI for S1, while the 
marginal model provides a base classification accuracy of 0.53.  
For S2, the inferential model shows a 0.64 accuracy for predicting 
COI for S1, a boost over the marginal model’s classification 
accuracy of 0.37.   

Figure 8. Portion of decision graph (for branch: No Meeting, 
Not Outlook.exe as Top Applications) encoding probability 
distribution for the COI variable of the Bayesian network in 
Figure 7. Bar graphs at leaves represents, from top to bottom, 
likelihood of high, medium, and low cost of interruption. 

4.2.2 Probing information value with model ablation 

Beyond testing the performance of models built from a 
consideration of all available observed events, we performed 
model-ablation studies, focusing on the sensitivity of 
classification accuracy to the loss of specific features and classes 
of features.  We have been particularly interested in the sensitivity 
of the performance of the models with the removal of perceptual 
features from learning and inference.  As many computers in use 
may not have acoustical and visual sensing capabilities, we have 
sought to better understand the base discriminatory power of 
events associated with rich patterns of desktop activity and from 
calendars.  For the ablation studies, we constructed models in the 
same manner as the procedure described in Section 4.1 from the 
data from subjects S1 and S2. However, rather than using all 
observations, we omitted specific sets of features from the 
learning process.  



Table 1. Classification accuracies for marginal and inferential 
models for current and future states of subjects’ COI, showing 
contributions and synergies for system events, and acoustical 
(aud.), visual (vis.), and calendar (cal.) observations. 

Attentional  
state 

All events 
Marg. 
model 

Sys. 
only 

Sys. + 
aud + vis. 

Sys. + 
cal. 

Current 
state of COI 

S1:   .73 
S2:   .64 

.53 

.37 
.64 
.60 

.69 

.63 
.69 
.63 

Time until 
low 

S1:   .61  
S2:   .69 

.35 

.65 
.51 
.65 

.58 

.66 
.58 
.67 

Time until 
med 

S1:   .68 
S2:   .82 

.49 

.76 
.59 
.76 

.64 

.81 
.67 
.76 

Time until 
high 

S1:   .72 
S2:   .83 

.66 

.69 
.67 
.72 

.70 

.79 
.71 
.77 

 

Table 2. Focus on classification accuracies for subsets of 
observations in the absence of the system event stream.  

Attentional  
state 

Cal. 
only 

Aud. 
only  

Vis. 
only 

Vis. + 
aud.  

Aud. + 
vis. + 
cal. 

Current 
state of COI 

S1:   .53 
S2:   .44 

.53 

.54 
.53 
.46 

.55 

.54 
.57 
.58 

Time until 
low 

S1:   .37  
S2:   .65 

.35 

.65 
.35 
.65 

.38 

.65 
.42 
.67 

Time until 
med 

S1:   .58 
S2:   .76 

.49 

.76 
.54 
.76 

.54 

.76 
.63 
.78 

Time until 
high 

S1:   .66 
S2:   .69 

.66 

.70 
.66 
.69 

.65 

.72 
.67 
.74 

 

Table 1 shows the classification accuracies for models built from 
all events, system events only, system events and perceptual 
observations, and system events and calendar information. We 
found varying sensitivities of classification accuracy for different 
variables under consideration and different kinds of ablations. 
Such sensitivities also differed for the models for subjects S1 and 
for S2. Table 2 reviews the accuracy of models relying solely on 
calendar, acoustical, visual, and on acoustical, visual, and 
calendar events together.  Although, lifts are not as high as 
provided by models that include system events, synergistic 
contributions among calendar, acoustical, and visual information 
sources is apparent. Overall, for the majority of cases where 
inferential models provided boosts over the marginal models, we 
found that classification accuracy of a base model, employing 
only system events, is dominated by models that also include 
either perceptual observations or calendar information. Adding a 
consideration of both classes of observations to the base model 
led to the most accurate predictions.  

Beyond studies of classification accuracy, we can investigate the 
structural influences on predictive models of adding and removing 
different classes of observations. We can examine changes in 
variables and dependencies of the overall Bayesian network, or 
can explore the sensitivity of the structure of the decision graphs 
encoding the probability distributions for COI and COI 
forecasting variables.  As an example, Figure 9 displays a 
refinement of a branch of the tree encoding the probability 
distribution for COI for S1 that was particularly sensitive to the 
introduction of audio and visual sensory information, given a base 
model of system events and calendar information.   

     

Figure 9. Sensitivity of a branch of decision graph for COI to 
gaining access to visual and acoustical sensory streams. 

Introducing gaze and acoustical information enables the 
distribution at the former leaf in the tree (ending in the 
identification that Internet Explorer is not in focus at the moment) 
to be specialized into subdistributions that hinge on the status of 
visual and acoustical observations.  Beyond such modular 
refinements, we noted situations where the removal of classes of 
features led to larger-scale changes in structure. For example, the 
loss of perceptual features may lead to shifts in the specific 
desktop activities being considered at key branches in the trees 
(e.g., removing vision and acoustics may lead to the introduction 
of Outlook  vs. Not Outlook in Focus as a central consideration). 

The decision graph in Figure 10, composed from data from S1 for 
system events and perceptual information, provides some insight 
about the use of visual pose information in predicting the time 
until the start of the next low cost of interruption period. The tree 
highlights how observations from a head tracking system about 
presence and pose can influence the probability distribution over 
the time until next low cost of interruption.  Figure 11 shows the 
tree for the same prediction for the case where we have removed 
consideration of visual and acoustical information.  The system is 
forced to rely on desktop activity and presence for making the 
forecast of time until low cost of interruption. 

5. MODEL TRANSFER AND REUSE 
In addition to developing and evaluating tools for generating 
personalized models that predict the cost of interruption, we are 
interested in the prospect for developing models and methods that 
can provide useful inferences to users with little or no effort. One 
goal of efforts on machine learning in this vein is the 
identification of important variables for determining the cost of 
interruption.  Although we found that the detailed parameters and 
structure of predictive models shifts significantly from user to 
user, we found that specific sets of variables appear important 
across users. For example, information about the application that 
is currently active and in focus, and patterns of activity and 
quiescence are often important, early branches in decision graphs 
for COI. Machine learning can assist designers with formulating 
predicates, languages,  and user controls that could enable people 



Figure 10.  Decision graph for predicting the time until a user 
will next be in a low cost of interruption state, based on system 
events and perceptual sensing. 

       

Figure 11. Decision graph for predicting time until a user will 
next be in a state of low cost of interruption, when perceptual 
events are removed from consideration. 

to specify, in an efficient manner, policies that define the cost of 
interruption as a function of such variables.  

In another approach to reducing the need for special training, we 
have been investigating prospects for applying models trained on 
one or more users to other users. We found that applying a 
personalized model from one user to predict the outcomes of 
another user may yield poor performance.  As an example, Table 
3 demonstrates the results of applying the predictive model 
developed for subject S1 to the test cases for subject S2 and vice 
versa.  The performance is poor for the case of using all events 
and selected subsets of events, where inferential models can show 
poorer classification accuracy than the marginal models.  

We found better performance with the construction of composite 
models from the training data of multiple individuals. Table 4 
shows the performance of such a generalized model, constructed 
from the training data of subjects S1, S2, and a third subject, S3 
who also provided 5 hours of data.  Although the model does not 
perform as well as the users’ own personalized models, we see 
significant boosts in classification accuracy, when compared with 
the simple substitution of models among users.   

Table 3. Performance for cross-user classification of COI. 

Attentional  
state 

All events 
Sys. 
only 

Aud. + 
vis. + 
cal. 

Aud.  
only 

Vis. 
only 

Cal. 
only 

Current 
state of COI 
 

S1→S2:   .28 
S2→S1:   .32 

.39 

.35 
.30 
.25 

.37 

.34 
.37 
.38 

.37 

.31 

 

Table 4. Performance of a composite model constructed from 
data from multiple subjects. 

Attentional  
state 

All events 
Sys. 
only 

Aud. + 
vis. + 
cal. 

Aud.  
only 

Vis. 
only 

Cal. 
only 

Current 
state of COI 
 

All→S1:   .55 
All→S2:   .66 

.38 

.60 
.42 
 .54 

.34 
  .54 

.33 

.34 
.34 
.31 

 

As highlighted by the classification accuracies displayed in Table 
4, multiple classes of observations work in a synergistic manner to 
boost the performance of the composite models.  In contrast, 
combining multiple classes of features for the model substitution 
situation tends to diminish the classification accuracy, as captured 
by the results in Table 3.  

6. RELATED RESEARCH 
We have been exploring related challenges and opportunities via 
other ongoing projects.  On the Coordinate project [6], we have 
explored the construction of models of the cost of interruption 
based on detailed appointment information.  The Coordinate 
effort centers on the use of machine learning about presence and 
availability based on such events as the time of day, the user’s 
current or recent presence on devices, a user’s last sensed 
location, and details about meeting information drawn from a 
user’s online calendar. The Coordinate server performs real-time 
machine learning and inference in response to ongoing, heartbeat 
queries or in response to special queries by a trusted colleague or 
communications agent. The system computes the cost of 
interruption now and in the future, considering multiple properties 
of a meeting drawn from the online calendar (number of 
attendees, organizer, location, duration, subject, etc.). In contrast 
to the work described here, Coordinate was initially developed to 
reason about forecasts about a user’s location and availability 
when the user is out and about, rather than the detailed case of 
models of attention in an office setting, where we have access to 
the rich stream of data from a desktop system and perceptual 
sensing. Nonetheless, we have been working to unify the detailed 
office analysis with the detailed analysis of meetings and location 
provided by Coordinate.  Beyond integration of the two kinds of 
models and modeling methodologies, there is opportunity for 
integrating the detailed meeting distinctions into the inferences 
about attention in an office setting.  In contrast to the Coordinate 
work, the modeling efforts described in this paper employ only a 
few high-level distinctions about the likelihood and duration of a 
meeting in the office, and rely more centrally on system 
interactions and perceptual information. 

Other relevant work includes the Seer effort on distinguishing 
among different office situations, such as identifying from 
perceptual information whether a user is on the telephone or in a 
conversation with other people in their office [12].  There is an 



opportunity for integrating the inferences provided by systems 
like Seer into the Interruption Workbench tool set. 

In other related work, a team at Carnegie Mellon has recently 
performed a Wizard of Oz study in an attempt to understand the 
value of different features in predicting the interruptability of 
several subjects [9]. In the study, the users’ interruptability was 
probed with a “beeper study” methodology, intermittently seeking 
feedback from users about their interruptability.  Features were 
coded by researchers and classifiers were constructed from the 
coded data in an attempt to identify the value of different 
observations.  The researchers identified such features as whether 
the user is speaking, writing, sitting, or interacting with objects 
such as a keyboard or phone, the presence and activities of 
occupants, and whether the user’s office door is open or closed. A 
list of top features was identified, including different kinds of 
talking, positions and configurations of people, and interaction 
with a keyboard. The work complements our ongoing research on 
modeling interruptions; features identified by the Wizard of Oz 
effort may provide valuable guidance as the tools are refined. 

7. SUMMARY 
We have described effort to build models that can predict the cost 
of interrupting users. We presented research on harnessing 
machine learning to generate statistical models for inferring the 
state of interruptability of users.  We focused on a methodology 
and tools for logging and tagging a database of cases and 
discussed our attempts to probe the sensitivity of the classification 
accuracy and structure of the learned models in response to 
overlooking classes of observations.  Finally, we touched on our 
investigation of the potential for building transferable models of 
interruptability and assessment tools, in pursuit of systems that 
could provide users with valuable attention-sensitive services 
without requiring costly training procedures. Beyond focusing 
solely on the opportunity for integrating statistical models in 
fielded systems, we discussed the potential value of leveraging 
insights from machine learning to identify important features that 
might be manipulated directly by users in crafting statements 
about their interruptability in different settings. 

In ongoing research, we are continuing to investigate the 
discriminatory value of considering additional observational 
features about the environment and activities of users, drawn from 
computing devices and perceptual apparatus. Beyond exploring 
new system events, appointment information, and enriched 
acoustical and visual features, we are investigating the 
discriminatory power of other sensors such as accelerometers, 
proximity, and motion detectors [4]. We are also continuing to 
gather data from multiple subjects in pursuit of answers to several 
questions about the power and generality of the models we can 
build from the data.  We are particularly interested in studying the 
accuracy of predictions of the cost of interruptability in settings 
where we build models with data from multiple users and use 
these models to predict the interruptability of new users. 
Characterizing the accuracy of such composite models promises 
to provide insights about the possibility for minimizing the need 
for custom-tailored training. 
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