
A Behavior-Based Architecture

for Realistic Autonomous Ship Control

Adam Olenderski and Monica Nicolescu
Robotics Research Laboratory

Dept. of Computer Science and Engineering
University of Nevada, Reno

olenders,monica@cse.unr.edu

Sushil J. Louis
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

sushil@cse.unr.edu

Abstract— Game environments provide a good domain for
serious simulations such as those used in training Navy conning
officers. Currently, a typical training scenario requires multiple
personnel to play each of the boats and thus is expensive. We
propose an approach to addressing this issue by developing
intelligent, autonomous controllers for each boat. Significant
challenges toward achieving these goals are the realism of
behavior exhibited by the automated boats and their real-
time response to change. In this paper we describe a control
architecture that enables the real-time response of boats and
the repertoire of realistic behaviors we developed for this
application. We demonstrate the capabilities of our system with
experimental results.

Keywords: Training Games

I. INTRODUCTION

Virtual/game environments provide a good application area
both for entertainment and for serious simulations such
as those used in training. In this paper we focus on an
application for training conning officers and we describe
our approach to creating a robust and effective training
system. The goal for such systems is to teach conning
officers to drive big ships in the context of high-traffic,
potentially dangerous situations. Developing such a system
poses significant challenges and in this paper we will present
an integrated solution to three of the major requirements for
a successful training simulator.

A first challenge is the efficiency of the training system, in
terms of the personnel required for running the system, and
thus its cost. Currently, a typical training scenario requires
multiple personnel to play the part of each of the traffic
boats and is thus expensive and difficult to coordinate. In this
paper we propose an approach to reducing the time and effort
required for this training by automating the behavior of the
boats in the simulation (other than the ship driven by the stu-
dent officer). Taking inspiration from the field of autonomous
robotics and we developed an authoring tool that enables
the development of intelligent, autonomous controllers that
drive the behavior of a large number of boats. We assume
that a set of primitive behaviors (e.g., avoidance, maintain
station, etc.) are available as basic navigation capabilities,
and the authoring tool allows the construction of controllers
for complex tasks from these underlying behaviors. With this,
our system eliminates the necessity of having large number
of personnel for a single student’s training, significantly
reducing the costs involved.

A second challenge is the readiness of response of the
automated boats when facing changing situations as a result
of a trainee’s or other boats’ actions. This requires that the
controllers be able to act in real-time, while continuing the
execution of the assigned tasks. To achieve this goal we
will use Behavior-Based Control (BBC) [1], a paradigm
that has been successfully used in robotics. BBC is an
effective approach to robot and autonomous agent control
due to its modularity and robust real-time properties. While
BBC constitutes an excellent basis for our chosen domain,
developing behavior-based systems requires significant effort
on the part of the designer. Thus, automating the process of
controller design, as our authoring mechanism will allow,
becomes of key importance. In our work, the instructor uses
the authoring tool to create challenging scenarios for the
student conning officers, allowing for a fast and efficient
transfer of knowledge from the expert to our automated
system.

The third challenge is the realism of the behavior exhibited
by the autonomous boats involved in the simulation, due to
the fact that any behavior that departs from standard boat
navigation techniques would have a detrimental impact on the
students’ training experience. Thus, this requirement imposes
new constraints on how the boats’ underlying behaviors are
implemented, in contrast with typical behavior-based systems
in which almost any behavior that achieves the desired goals
is good. To implement these realistic capabilities we acquired
expert knowledge of ship navigation [2] and we encoded this
information within a behavior-based framework.

The implementation of the game engine and the graphics
display are also main components of the entire system, but
they are outside the scope of this paper. The work presented
here, a part of a larger scale project, focuses on the aspects
related to autonomous boat control, as previously described.

The remainder of the paper is structured as follows:
Section II describes related approaches to our work and
Section III describes our simulation environment. Section IV
presents our behavior and controller representation and Sec-
tion V presents our behavior repertoire. Sections VI and VII
describe the details of our authoring tool. We present our
experimental results in Section VIII and conclude with a
summary of the proposed approach in Section IX.

II. RELATED WORK

Simulation systems for training have received significant
interest in recent years. Representative examples include
flight simulators [3] and battlefield simulators [4]. In con-
trast with the above approaches, the system we propose
in this paper provides an authoring mechanism to facilitate
the development of autonomous controllers for the agents
involved in the simulation. Our approach is inspired by the
programming by demonstration paradigm, which has been
employed in a wide range of domains, from intelligent
software systems [5] , to agent-based architectures [6], to
robotics [7]

In the mobile robotics domain, which is the inspiration for
our system, successful approaches that rely on this method-
ology have demonstrated learning of reactive policies [8],
trajectories [9], or high-level representations of sequential
tasks [10]. These approaches employ a teacher following
strategy, in which the robot learner follows a human or a
robot teacher. Our work is similar to that of [11] , who per-
form the demonstration in a simulated, virtual environment.
Furthermore, our work relates to teleoperation, a very direct
approach for teaching a robot by demonstration. Teleoper-
ation can be performed using data gloves [12] or multiple
DOFs trackballs [13]. These techniques enable robots to
learn motion trajectories [14] or manipulation tasks (e.g.,
[15]). Using such “lead-through” teaching approaches [16]
requires that the demonstration be performed by a skilled
teacher, as the performance of the teacher in demonstrating
the task has a great influence on the learned capabilities.
Another difficulty that may arise is that the teleoperation
may be performed through instruments that are different
than what the human operator would use in accomplishing
the task. Also, the actual manipulation of the robot may
influence the accuracy of the demonstration. In contrast with
these approaches, our work uses an interface, which allows
the transfer of expert knowledge through standard computer
input devices.

III. SIMULATION ENVIRONMENT

We use a 3D simulation environment, called Lagoon (Fig-
ure 1), that was developed by a larger team at the University
of Nevada, Reno. This environment allows for simulating a
wide range of boats, from small cigarette boats to medium
ships, such as sailboats, to large ships, such as destroyers
and aircraft carriers. All boats have realistic physics, which
the controllers take into account when autonomously driving
the ships.

Within this architecture, each boat can be controlled via
the Authoring panel (Figure 1, right side of screen). When an
entity is selected the panel and its associated behaviors refer
to that entity. Whenever a new entity is selected, the behavior
information for that new entity is displayed. There are 7
primitive behaviors, as described in Section V: approach,
maintain station, ram, move to, avoid entity, avoid land and
fire. The top level of the Authoring panel displays information
about the selected entity: name, current speed and course,

Fig. 1. Lagoon Simulation Environment

desired speed and course, and position. The lower section
displays information about the target ship (when applicable
- Section V): name, speed, heading, position, range and
bearing to target. The bottom section of the Authoring panel
provides manual controls for actuating the selected entity, as
an alternative to behaviors.

IV. BEHAVIOR-BASED CONTROL ARCHITECTURE

Behavior-based control (BBC) [1] has become one of
the most popular approaches to embedded system control
both in research and in practical applications. Behavior-
based systems (BBS) employ a collection of concurrently
executing processes, which take input from the sensors or
other behaviors, and send commands to the actuators. The
inputs determine the activation level of a process: whether
it is on or not, and in some systems by how much. These
processes, called behaviors, represent time-extended actions
that aim to achieve or maintain certain goals, and are the key
building blocks for intelligent, more complex behavior.

In this paper we use a schema-based representation of
behaviors, similar to that described in [17]. This choice is
essential for the purpose of our work, since it provides a
continuous encoding of behavioral responses and a uniform
output in the form of vectors generated using a potential
fields approach.

For the controller representation we use an extension of
the standard Behavior-Based Systems we developed, which
provides a simple and natural way of representing complex
tasks and sequences of behaviors in the form of networks
of abstract behaviors. In a behavior network, the links
between behaviors represent precondition-postcondition de-
pendencies, which can have three different types: permanent,
enabling and ordering. Thus, the activation of a behavior
is dependent not only on its own preconditions (particular
environmental states), but also on the postconditions of
its relevant predecessors (sequential preconditions). More
details on this architecture can be found in [18].

The abstract behaviors embed representations of a behav-
ior’s goals in the form of abstracted environmental states,
which are continuously computed from the sensory data. This
is a key feature of our architecture, and a critical aspect for
learning from experience. In order to learn a task the robot
has to create a link between perception (observations) and
the robot’s behaviors that would achieve the same observed
effects.

In our system, a controller could potentially have mul-
tiple concurrently running behaviors. For such situations,
our system uses the following action selection mechanism.
Each behavior, including the avoid entity and avoid land
behaviors, computes a speed and a heading for the actuators.
If more than one non-avoidance behavior is active at one
time, the speed and heading returned by each active behavior,
represented as a vectors, are added by vector addition. The
resulting speed and heading are passed to the actuators. How-
ever, if one of the avoidance behaviors is active along with
other non-avoidance behaviors, the vector from the avoidance
behavior is not fused with the other behaviors’ output. In
such a case, the other behaviors’ vectors are summed and sent
to the avoidance behavior as a “suggestion”. If the avoidance
behavior finds that the suggested heading and speed do not
create a risk of collision, then the behavior will simply pass
the suggested values directly to the actuators. If, on the
other hand, the avoidance behavior finds that the suggested
heading and speed will cause a collision, the avoid behavior
will find an alternative heading and speed that is as close to
the suggested values as possible without causing a collision.
These alternative values will then be passed directly to the
actuators.

If both avoidance behaviors are active at the same time
as other behaviors, then each avoidance behavior (land and
entities) will find an appropriate set of alternative values
based on the same set of suggested values from the other
behaviors. However, instead of passing these values directly
to the actuators, the outputs of the two avoid behaviors will
be fused as described above. The result will then be passed
to the actuators.

V. BEHAVIOR REPERTOIRE

A. Description

The most important skill necessary for our behavior reper-
toire relates to vessel navigation, particularly where realistic
navigation is concerned. In the agents/robotics domain, what
is most important is to design behaviors or skills that achieve
certain desired goals for the task, irrespective of how those
goals are reached. However, ship handling and navigation
have to obey the “rules of the road”’ [2], thus imposing
significant constraints on how the ship’s basic capabilities
need to be designed. An additional constraint is that the
level of granularity for these skills has to be appropriate to
allow for the types of tasks that the boats would perform.
As a result of these requirements, the main behaviors that
we identified as necessary are the following:

Fig. 2. Behavior Panels: Approach, Maintain Station, Move To, Ram

• Maintain Station: The goal of this behavior is to make
a maneuvering ship (such as a destroyer) maintain a certain
station (distance and bearing) with respect to a reference ship
(such as an aircraft carrier). There are five main parameters to
this behavior: 1) the reference ship, 2) the way in which the
maneuver is to be performed: constant speed, constant course
or in a given amount of time; 3) the value for the maneuver
(i.e., speed, course or time), 4) the new stationing position in
terms of distance and bearing, and 5) the type of station, i.e.,
if the location is relative or absolute. When executing this
behavior, the maneuvering ship gets into station, after which
it continues to track the reference ship’s course and speed.
If the reference ship changes course or speed, the behavior
re-computes the necessary actions for the maneuvering ship,
in order to maintain the desired station.
• Approach: The goal of this behavior is to get a maneu-

vering ship to reach a certain station (distance and bearing)
with respect to a reference ship. This is similar to the
Maintain Station behavior and has the same input parameters,
the only difference being that in approach the maneuvering
ship will not maintain the station after reaching it.
• Move To: The goal of this behavior is to get a maneu-

vering ship to a specific location, in (X, Y) coordinates, in
the world. This behavior takes three main parameters: 1)
the way in which the maneuver is to be performed: with
a constant speed or in a given amount of time; 2) the value
for the maneuver (i.e., speed or time), and 3) the new (X,
Y) position.
• Ram: The goal of this behavior is to have a maneuvering

ship hit a target ship. This behavior takes three main param-
eters: 1) the target ship, 2) the way in which the maneuver
is to be performed: constant speed, constant course or in a
given amount of time, and 3) the value for the maneuver
(i.e., speed, course or time).
• Fire: The goal of this behavior is to direct the weapon fire

from a maneuvering ship to a target ship. The sole parameter

of this behavior is the ship toward which to direct the fire.
• Avoid Entity: The goal of this behavior is to navigate a

boat such that all collisions with other boats are avoided, in
a manner consistent with the standard navigation rules.
• Avoid Land: The goal of this behavior is to avoid

collisions with land, in a manner consistent with the standard
navigation rules.

As previously mentioned, simply achieving the goals of
these behaviors is insufficient if the boats do not obey
the ship navigation rules. In addition, the large number of
rules in the navigation domain makes very challenging the
task of implementing them in a simple, modular manner.
The following subsections describe the approach we took to
implementing the main navigation rules into our behavior-
based system.

B. Navigation

In the ship navigation domain, the course and speed of a
ship is computed using a maneuvering board, or moboard.
This allows the crew to obtain the course and/or speed that
the ship should take to get into the desired position with
respect to another boat.

Fig. 3. Maneuvering Board

The maneuvering ship is placed at the center of the board,
and the location, course and speed of the reference ship are
plotted with respect to the center. With this diagram, the three
modes of maneuvering can be performed: 1) constant speed
(course and time to completion are computed), 2) constant
course (speed and time to completion are computed) and 3)
given time (course and speed are computed). The moboard is
very useful for manual computation, such as that performed
on the ship. For our purpose, we represent the problem as
the relative motion of two objects in Cartesian coordinates,
assuming that both ships maintain the same speed and course
during the maneuver, as shown in Figure 3, where:
• S0, S1 - position of the reference ship at the beginning

and end of the maneuver
• M0, M1 - position of the maneuvering ship at the

beginning and end of the maneuver
• R0, R1 - displacement between the two ships at the

beginning and end of the maneuver
• dr - displacement of the reference ship over the course

of the maneuver
• dm - displacement of the maneuvering ship over the

course of the maneuver
• im - unit vector representing the direction of the maneu-

vering ship

• vm - velocity vector of the maneuvering ship
• ir- unit vector representing the direction of the reference

ship
• vr - velocity vector of the reference ship
• t - time to complete the maneuver

The equation of motion for the maneuvering and reference
ships is:

ir ||vr|| t = D + im ||vm|| t (1)

where D is the relative motion vector (R0 − R1). From
Equation 1 we can find the solutions to the three types of
maneuvers, as follows:
1) Constant speed. Keeping ||vm|| constant, we compute
the course (im) and the time to completion (t), by solving
the system of two equations that results from projecting
Equation 1 onto the (X, Y) coordinates.
2) Constant course. Keeping the course (im) constant, we
compute the speed (||vm|| and the time to completion (t),
by solving the system of two equations that results from
projecting Equation 1 onto the (X, Y) coordinates.
3) Constant time. Keeping t constant, we compute the
course (im) and speed (||vm||), by solving the system of
two equations that results from projecting Equation 1 onto
the (X, Y) coordinates.

Due to the fact that the simulated ships have realistic
physics, we use a PD (proportional derivative) controller to
slow down the ships as they approach their goal destination.
The speed sent to the actuators is computed with the formula:

vrF inal = vr + KpDiffSpeed + Kd ∗ DiffAccel (2)

where vr is the speed computed from Equation 1, Kp and
Kd are proportional and respectively derivative constants and
DiffSpeed and DiffAccel are the difference in speed and
acceleration between the maneuvering ship and the reference
ship.

All four navigation behaviors, approach, maintain station,
move to and ram, use the above equations, parameterized to
fit their requirements.

C. Entity Avoidance

In typical robot/agent-based controllers, the role of the
obstacle avoidance behavior is simply to avoid all obstacles.
In most cases this is achieved by turning left when there is
an obstacle to the right or by turning right when there is
an obstacle to the left. To accurately mimic the actions of a
human driving a ship, several important constraints apply.

The most important navigation rule for avoidance is that a
human looks ahead in time to determine whether he will hit
an obstacle, which cannot be achieved by a purely reactive
controller. We implement such looking ahead capabilities into
our avoidance behavior, as explained next.

For the obstacle avoidance behavior, each ship in the world
(other than the avoiding ship) is represented by an ellipse that
is centered about that ship’s center of mass, rotated such
that the major axis of the ellipse is parallel to that ship’s

Fig. 4. Obstacle Avoidance

heading, and whose major and minor radii are proportional
to the length and width of the ship, respectively (Figure 4).
The avoiding ship is represented simply as a point. Since the
speed and heading of the avoidance ship as well as the speeds
and headings of all other ships are known (in real life, this
information can be obtained through passive sensing), we can
look forward in time to find the positions of the ships at some
point in the future, assuming that their speed or direction
does not change. Along with this information, we can also
obtain the equations of the ships’ corresponding ellipses. A
collision is predicted to occur when the point representing
the own ship falls onto the ellipse representing another ship,
or, to put it another way, when the (x,y) point representing
the own ship satisfies the equation of one of the avoidance
ellipses. Based on this information, the avoidance behavior
finds whether a collision is imminent, the time to collision,
and a revised speed or heading for the own ship that will
avoid collisions with other ships.

The (x, y) position of any ship in time can be expressed
as a pair of parametric equations, with time as a parameter.
An ellipse can be uniquely described by its center point, its
minor and major radii, and its orientation. For any given ship,
we can safely assume that the radii will remain constant, as
they are proportional to the dimensions of the ship, which
are constant. Furthermore, we assume that the orientation of
an avoidance ellipse will remain constant in the future, since
ships usually do not change heading without reason. If one
of these assumptions turns out to be false, such as when a
ship is turning, the avoidance ellipse is recalculated based
on the most recent values. The center point of the ellipse,
like the point representing the own ship, can be calculated
for some point in the future using the ship’s current heading,
position, and speed as in Equation 3:

h = vt ∗ t ∗ cosθt + x0t

k = vt ∗ t ∗ sinθt + y0t
(3)

where h is the x coordinate of the ellipse’s center, k is
the y coordinate of the ellipse’s center, vt is target ship’s
velocity, t is the amount of time to look into the future, θt

is the target’s heading, x0t is the x coordinate of the target’s
current position (x coordinate of current ellipse center), and
y0t is the y coordinate of the target’s current position (y
coordinate of current ellipse center).

The equation of a boat’s avoidance ellipse (centered at
(h, k) and rotated by θt) is given by equation 4 below:

((xm−h)∗cosθt+(ym−k)∗sinθt)
2

a2 +
((ym−k)∗cosθt−(xm−h)∗sinθt)

2

b2
= 1

(4)

where xm, ym, h, k, and θt are the same as above, a is

the major radius of the ellipse, and b is the minor radius of
the ellipse.

We can find out if a point will fall on an ellipse by setting
the xm and ym values representing the position of the points
on the ellipse to the equations for the (x, y) position of the
own ship and solving for time. The result is a quadratic
equation in t:

g(t, x0m, y0m, vm, vt, θt, h, k, a, b) = 0 (5)

Based on the two solutions of Equation 5, the following
cases occur:
1) If both solutions are imaginary (negative discriminant),
then there will be no intersection at any time between the
point and the ellipse, indicating no risk of collision.
2) If both solutions are equal (discriminant equal to 0),
then there is only one point of intersection with the ellipse,
meaning that the own ship is traveling tangentially to the
avoidance ellipse of the ship to be avoided. In this case,
there is no danger of the ships themselves colliding, as the
own ship never makes its way inside the avoidance ellipse
of the other ship.
3) If the discriminant is positive, there are three possible
cases: i) If both solutions are positive, the own ship will
intersect the avoidance ellipse twice: once to enter the ellipse
and once more to exit it (in this case, some evasive action
must be taken to avoid a collision); ii) if both solutions are
negative, there is no risk of a collision (intuitively, this would
mean that there was an intersection at some point in the past,
but there is no danger in the future); and iii) if one solution
is negative and one solution is positive, then the own ship
has intersected the avoidance ellipse once in the past, and
will intersect it once more in the future (this indicates that
the own ship is within the avoidance ellipse of the other ship,
and must take immediate and drastic evasive maneuvers to
avoid a collision and leave the avoidance ellipse.)

If evasive action must be taken, the following options are
considered. If the own ship is within the avoidance ellipse
of another ship, this is seen as an emergency situation and
the own ship will try to move behind and away from the
other ship as quickly as possible. If, however, the danger of
collision is sufficiently far away in the future, the obstacle
avoidance behavior can make smaller adjustments to the
heading or speed of the own ship to eliminate the danger
of colliding with the other ship. To achieve this, the obstacle
avoidance behavior computes a heading and/or speed that
results in a zero discriminant for Equation 5, (case 2 above).
Navigation rules favor a change speed rather than heading,
thus the behavior first attempts to find a new speed that
satisfies the constraint:

f(x0m, y0m, x0t, y0t, vm, vt, θt, a, b) = 0 (6)

This is a quadratic equation with respect to speed, with
two solutions. If both solutions are valid speeds (positive
and less than or equal to the maximum speed of the ship),
the behavior returns the highest speed. If only one solution is

a valid speed, that speed is used. If neither solution is valid,
then the heading must be changed to avoid a collision. To find
a valid heading, the behavior first finds whether the collision
would still be imminent if the own ship turned five degrees
to the left. If not, then the behavior continues to test potential
headings, in increments of five degrees, until it finds one that
avoids a collision, at which point it uses the same process
to find a corresponding heading to the right of the current
heading. This results in two headings (one to the right, and
one to the left) that avoid a collision. The heading closest to
the current heading is the one passed to the actuators.

The solution to avoid one ship could potentially generate
collisions with others. Our approach uses a mechanism to
deal with avoiding multiple ships, as follows: for every
ship on a collision course with the own ship, the avoidance
behavior puts in a list all the valid speeds and headings that
will avoid that ship. After all the ships have been analyzed
and the list is built, the behavior iterates through the list and
eliminates the routes that collide with other ships. The only
elements remaining in the list will be the speeds or headings
that avoid collisions with all the other ships in the simulation.
Since speed changes take priority over heading changes, if
there is at least one speed remaining in the list, that speed
will be passed to the actuator with the current heading. If
there is more than one potential speed in the list, the highest
speed is passed to the actuators. If no speed changes remain
in the list, then the potential heading that is closest to the
current heading is passed to the actuators along with the
current speed.

D. Land Avoidance

To determine whether or not a ship is in danger of
grounding itself, the avoid land behavior uses the speed of
the ship, as indicated in [2]. The behavior uses this speed to
determine the approximate distance that the ship can travel in
four minutes. Next, it checks if there is any land within that
distance, in all directions from the ship. If no land is present
in that area, there is no land to avoid. However, if there is land
in front of the own ship, the behavior computes a heading
that will take the ship away from land and a speed that makes
the nearest land be outside of the four minute range. To
achieve this, the behavior uses the distance and bearing to
the nearest land in the front 180-degree field of view. The
new speed is calculated to be that distance divided by four
minutes, to ensure that the nearest land will lie outside of
the four minute range. The new heading is calculated to be
that bearing plus or minus 90 degrees, whichever is closer to
the current heading. This ensures that instead of continuing
to head toward land, getting slower and slower until the
ship grounds itself, the ship will turn parallel to the land,
following its contour until there is no more land to avoid or
until the land avoidance behavior is turned off.

VI. TRIGGERS

Triggers are a mechanism that allows the user to indicate
important situations in the simulation, typically with the
purpose of changing a boat’s behavior when that situation

occurs. A trigger is created through the triggers panel of
our interface (Figure 5). We provide the following types of
triggers: distance between entities, entities within a certain
range, hull strength of a particular ship, or an arbitrary flag.
The panel allows the user to specify the parameters for each
trigger, such as, for example, the entities in the simulation
between which the distance is to be monitored. The name
and current value (updated every tick) of all created triggers
is displayed on the triggers panel main window. Triggers can
be created, monitored, or deleted at any time during either
authoring or execution.

Fig. 5. Trigger types and panel

The distance between entities trigger is included for conve-
nience, as it does not require user input during authoring and
many maritime maneuvers depend on the distances between
particular ships. However, for a more general event that
cannot be described in terms of the distance between two
entities or the damage taken by a particular ship, there are
arbitrary flag triggers as well. These work similarly to the
other triggers, in that they are user created and indicate when
a controller should change behavior. However, these triggers
are binary flags, meaning that they can only hold one of two
values: true or false. Also, these triggers require user input
not only during authoring, but also during execution. A flag
trigger usually represents an event that the user will have to
specify himself, such as the start of a scenario. For example,
to add a flag trigger to start a scenario, the user would create
a trigger named ”Start Scenario” before authoring. While
recording, when the user is ready to begin the scenario,
he would navigate to the triggers panel, click the check-
box next to the ”Start Scenario” trigger, click the Critical
Juncture button, and change the behavior of the ship he/she
is controlling. This informs the system that that behavior
should only be activated after the ”Start Scenario” flag has
been set. Then, when the controller is executed, it will wait
until the user explicitly activates that flag before continuing.
This is done by navigating to the triggers panel, clicking the
check-box next to the desired flag trigger, and clicking the
Critical Juncture button.

VII. AUTHORING

During authoring, the instructor starts or stops the relevant
behaviors using the Control Panel interface. While these
behaviors are executed, the authoring tool continuously mon-
itors the status of the behaviors’ postconditions. To build the
task representation (controller) we add to the network task
representation an instance of all behaviors whose postcondi-
tions have been detected as true during the demonstration,
in the order of their occurrence (on-line stage). At the end
of the teaching experience, the intervals of time when the
effects of each of the behaviors were true are known, and are
used to determine if these effects were active in overlapping
intervals or in sequence. Based on the above information,
the algorithm generates proper dependency links between
behaviors (i.e., permanent, enabling or ordering) (off-line
stage). This one-shot learning process is described in more
detail in [19]. The only difference in the work presented here
is that the construction of the task representations was done
off-line.

While authoring a controller, if triggers are needed, the
user first creates all the triggers to be used during that session.
While a scenario is being recorded, if the user wishes to
indicate changes in behavior based on some particular event
in the world, he/she navigates to the triggers panel, clicks
on the check-box next to the appropriate trigger to indicate
its relevance, clicks the Critical Juncture button, and then
changes to the desired behavior. During playback of the same
scenario, the system will monitor the state of this trigger.
When the state of the execution trigger approaches that of the
user-created trigger, the system switches the boat’s behavior
according to the demonstration.

VIII. EXPERIMENTAL RESULTS

In this section we describe the performance of our system
during behavior performance testing and during controller
authoring. This experimental validation demonstrates the
main capabilities of our system: autonomous control of mul-
tiple boats, compliance to navigation standards and authoring
of complex controllers.

A. Behavior Performance

The behaviors that involved the underlying navigation ca-
pability (approach, maintain station, ram, and move to have
been thoroughly tested throughout the experiments listed be-
low. Their performance correctly and faithfully demonstrated
compliance to the rules of ship navigation.

We successfully tested avoid entities in numerous situa-
tions, including the following: 1) moving own-ship from one
side of stationary/moving target ship to the other side, 2)
moving own-ship from one end of stationary/moving target
ship to other end, 3) moving own-ship from one side of two
stationary/moving ships whose ellipses overlap to the other
side and 4) moving own-ship from one side of a crowded
group of moving and stationary ships to the other side. These
represent the most probable situations to be encountered by
a boat in high-traffic areas.

Fig. 6. Behavior performance evaluation: Destroyer maintains station with
respect to aircraft carrier; V-formation avoids big ships while moving west.

We successfully tested the avoid land behavior in the
following representative situations: 1) moving own-ship from
point far away from land to point near land, 2) moving own-
ship from point near land to point farther away from land,
3) moving own-ship to a point within a land mass (triggered
avoidance and did not move onto land), 4) moving own-ship
to a point on the other side of a land mass.

By attaching Maintain station behaviors to several boats,
in a layout such as required by a formation, we enabled
autonomous group behavior, for large number of boats.
Currently, we can organize any number of boats (as allowed
by the computational power of the computer) in the following
formations: line, row, and V-formation. The boats involved in
a group maintain their assigned formation while performing
other tasks, such as moving to a new location, or approaching
a target. While performing these maneuvers, the group avoids
obstacles, keeping the formation together. Figure 6 shows
a group of 5 boats in V-formation, moving to the left of
a destroyer and aircraft carrier, while performing obstacle
avoidance. The bottom figure shows the formation regrouped
after avoidance. The boats can dynamically switch between
formations.

B. Controller Authoring

We have performed a large number of authoring experi-
ments (more than 10 different scenarios), with all scenarios
being learned correctly. Below we list a few examples, which
are most relevant for the training of conning officers.

1. ZigZag Attack: A small boat moves into position with
respect to a big ship, then approaches a group that maintains
distant station of that ship. The group moves in V-formation.
On a flag trigger the small boat approaches the big boat and
maintains station until a second trigger goes off. Next, the
small boat rejoins the boat group in the distance. When a
third flag trigger goes off, the small boat re-approaches the
big boat and maintains close station to it. When getting with
a given range (distance trigger), the small boat moves into
position behind the big ship and rams it.

2. Defend: A destroyer (escort) maintains station with respect
to an aircraft carrier to be defended. A small cigarette boat
approaches the destroyer. When the cigarette boat comes
within a buffer range of the aircraft carrier (e.g., 1000
yards) a distance trigger is activated, after which the escort’s
behavior changes from maintain station on carrier to ram
cigarette boat.

3. Attack-Distract Two boats take turns distracting so one
or both can ram a target. Boat A maintains a position in front
and slightly to the side of the Target at a long range, as if it
wants to be seen but not considered a threat. Boat B starts to
the side of the target and slowly begins to collide with the
Target. Once B is with in a certain range hopefully gaining
the attention of the Target, A starts a full-speed ram. Once
A starts the ram, B stops its approach and backs off.

IX. CONCLUSION

In this paper we presented an approach to efficient and
realistic design of serious game simulators, with application
to ship navigation. The goal of this system is to provide
the infrastructure needed to train conning officers to drive
big ships in the context of high-traffic, potentially dangerous
situations. Developing such a system poses significant chal-
lenges and in this paper we presented an integrated solution
to three of the major requirements for a successful training
simulator: 1) the efficiency of the training system, 2) the
readiness of response of the boats and 3) the realism of
the behavior of the automated boat controllers. To address
these challenges we developed an authoring tool that enables
the development of intelligent, autonomous controllers that
drive the behavior of a large number of boats.This eliminates
the necessity of having large number of personnel for a
single student’s training, significantly reducing the costs
involved. We developed a Behavior-Based Control architec-
ture that provides responsive automated controllers, and we
incorporated expert ship navigation knowledge to provide
realistic behavior for the automated boats. To demonstrate
our approach, we presented experimental results describing
the main capabilities of our system.

X. ACKNOWLEDGMENTS

The authors would like to acknowledge the significant
contribution of Sergiu Dascalu, Chris Miles, Ryan Leigh,
and Juan Quiroz, from the University of Nevada, Reno. This
work was supported by the Office of Naval Research under
grant number N00014-05-1-0709.

REFERENCES

[1] R. C. Arkin, Behavior-Based Robotics. CA: MIT Press, 1998.
[Online]. Available: http://www.usc.edu

[2] J. John V. Noel, Ed., Knight’s Modern Seamanship. John Wiley and
Sons, 1988.

[3] M. Tambe, L. W. Johnson, R. M. Jones, F. V. Koss, J. E. Laird,
P. S. Rosenbloom, and K. Schwamb, “Intelligent agents for interactive
simulation environments,” AI Magazine, vol. 16, no. 1, pp. 15–39,
1995.

[4] R. B. Calder, J. E. Smith, A. J. Courtemarche, J. M. F. Mar, and
A. Z. Ceranowicz, “Modsaf behavior simulation and control,” in
Proceedings of the Second Conference on Computer Generated Forces
and Behavioral Representation, July 1993.

[5] H. Lieberman, Human-Computer Interaction for the New Millenium.
ACM Press/Addison-Wesley, 2001, ch. Interfaces that Give and Take
Advice, pp. 475–485.

[6] R. H. Angros, “Learning what to instruct: Acquiring knowledge from
demonstrations and foccused experimentation,” Ph.D. dissertation,
University of Southern California, May 2000.

[7] S. Schaal, “Learning from demonstration,” in Advances in Neural In-
formation Processing Systems 9, M. Mozer, M. Jordan, and T. Petsche,
Eds. MIT Press, Cambridge, 1997, pp. 1040–1046.

[8] G. Hayes and J. Demiris, “A robot controller using learning by
imitation,” in Proc. of the Intl. Symp. on Intelligent Robotic Systems,
Grenoble, France, 1994, pp. 198–204.

[9] P. Gaussier, S. Moga, J. Banquet, and M. Quoy, “From perception-
action loops to imitation processes: A bottom-up approach of learning
by imitation,” Applied Artificial Intelligence Journal, vol. 12(78), pp.
701–729, 1998.

[10] M. N. Nicolescu and M. J. Matarić, “Natural methods for robot task
learning: Instructive demonstration, generalization and practice,” in
Proc., Second Intl. Joint Conf. on Autonomous Agents and Multi-Agent
Systems, Melbourne, Australia, July 2003.

[11] J. Aleotti, S. Caselli, and M. Reggiani, “Leveraging on a virtual
environment for robot programming by demonstration,” Robotics and
Autonomous Systems, vol. 47, pp. 153–161, 2004.

[12] R. Voyles and P. Khosla, “A multi-agent system for programming
robots by human demonstration,” Integrated Computer-Aided Engi-
neering, vol. 8, no. 1, pp. 59–67, 2001.

[13] M. Kaiser and R. Dillmann, “Building elementary robot skills from
human demonstration,” in Proc., IEEE Intl. Conf. on Robotics and
Automation, Minneapolis, Minnesota, apr 1996, pp. 2700–2705.

[14] N. Delson and H. West, “Robot programming by human demonstra-
tion: Adaptation and inconsistency in constrained motion,” in Proc.,
IEEE Intl. Conf. on Robotics and Automation, Minneapolis, MN, apr
1996, pp. 30–36.

[15] J. Yang, Y. Xu, and C. S. Chen, “Hidden markov model approach to
skill learning and its application in telerobotics,” in Proc., Intl. Conf.
on Intelligent Robots and Systems, Yokohama, Japan, 1993, pp. 396–
402.

[16] D. J. Todd, Fundamentals of Robot Technology. John Wiley and Sons,
1986.

[17] R. C. Arkin, “Motor schema based navigation for a mobile robot:
An approach to programming by behavior,” in IEEE Conference on
Robotics and Automation, 1987, 1987, pp. 264–271.

[18] M. N. Nicolescu and M. J. Matarić, “A hierarchical architecture for
behavior-based robots,” in Proc., First Intl. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy, July 2002, pp. 227–
233.

[19] ——, “Learning and interacting in human-robot domain,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part A: Systems and
Humans, Special Issue on Socially Intelligent Agents - The Human
in the Loop, vol. 31, no. 5, pp. 419–430, 2001.

