
Towards the Co-Evolution of Influence Map Tree Based Strategy

Game Players

Chris Miles
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

miles@cse.unr.edu

Sushil J. Louis
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

sushil@cse.unr.edu

Abstract— We investigate the use of genetic algorithms to play
real-time computer strategy games. To overcome the knowledge
acquisition bottleneck found in using traditional expert systems,
scripts, or decision trees we use genetic algorithms to evolve
game players. The spatial decision makers in our game players
use influence maps as a basic building block from which they
construct and evolve trees containing complex game playing
strategies. Information from influence map trees is combined
with that from an A* pathfinder, and used by another genetic
algorithm to solve the allocation problems present within many
game decisions. As a first step towards evolving strategic players
we develop this system in the context of a tactical game. Results
show the co-evolution of coordinated attacking and defending
strategies superior to their hand-coded counterparts.

Fig. 1. Earth 2160 - Reality Pump Studios

I. INTRODUCTION

Gaming and entertainment drive research in graphics, mod-
eling and many other computer fields. Although AI research
has in the past been interested in games like checkers and
chess, popular computer games like Starcraft and Counter-
Strike are very different and have not received much attention
from researchers [1], [2], [3], [4], [5]. These games are
situated in a virtual world, involve both long-term and reactive

planning, and provide an immersive, fun experience. At the
same time, we can pose many training, planning, and scientific
problems as games where player decisions determine the final
solution.

Developers of computer players (game AI) for these games
tend to utilize finite state machines, rule-based systems, or
other such knowledge intensive approaches. To develop truly
competitive opponents these computer players often cheat,
changing the nature of the game in their favor, in order to
defeat their human opponents [6]. These approaches work
well - at least until a human player learns their habits and
weaknesses - but require significant player and developer
resources to create and tune to play competently. Development
of game AI therefore suffers from the knowledge acquisition
bottleneck well known to AI researchers.

By using evolutionary techniques to create game players
we aim to overcome these bottlenecks and produce players
that can learn and adapt. The games we are interested in are
Real Time Strategy (RTS) games. These are games such as
Starcraft, Dawn of War, Supreme Ruler, Earth 2160 (Figure 1),
or Age of Empires [7], [8], [9], [10], [11]. Players are given
cities, armies, buildings, and abstract resources - money, gold,
saltpeter. They play by both allocating these resources, to
produce more units and buildings, and by assigning objectives
and commands to their units. Units carry out player orders
automatically, and the game is usually resolved with the
destruction of other players’ assets.

Games are fundamentally about making decisions and ex-
ercising skills. In contrast to some game genres, RTS games
concentrate player involvement primarily around making de-
cisions, the alternative being a game such as a racing games
which requires a high degree of skill. While varying greatly
in content and play, RTS games share common foundational
decisions. Most of these decisions can be categorized as
either resource allocation problems: how much money to
invest on improving my economy, which troops to field, or
what technological enhancements to research; or as spatial
reasoning problems: which parts of the world should I try
to control, how should I assault this defensive installation, or
how do I outmaneuver my opponent in this battle.

”A good game is a series of interesting decisions.
The decisions must be both frequent and meaning-
ful.” - Sid Meier



Our goal is to evolve systems to play RTS games, making
both resource allocation and spatial reasoning decisions Previ-
ous work has used genetic algorithms to make allocation deci-
sions within RTS games, and has evolved influence map trees
to make spatial reasoning decisions within RTS games [12],
[13]. Our players combine these two systems, using genetic
algorithms for allocation decisions and influence map trees for
spatial reasoning. The spatial decision making system looks at
the game world and decides to build a base here, to put a wall
up there, and to send a feigning attack over there. An A*
pathfinder looks at the feasibility of reaching those objectives,
noting that putting up a wall there would be great if there
wasn’t an enemy army in the way [14]. The allocation system
allocates available resources to objectives, deciding that this
unit group has the weaponry and is in position to lay siege to
the city. These systems combine into a game player, which is
capable of carrying out coordinated strategies.

RTS games have, by design, a non-linear search space of po-
tential strategies, with players making interesting and complex
decisions which often have difficult to predict consequences
later in the game. Using genetic algorithms we aim to explore
this unknown and non-linear search space.

We represent our game playing strategies within the individ-
uals of a genetic algorithms’ population. The game theoretic
meaning for strategy is used here - a system which can
choose an action in response to any situation [15]. We then
develop a fitness function which evaluates these decision
makers based upon their in-game performance. A genetic
algorithm then evolves increasingly effective players against
whatever opponents are available. Due to the number of games
and evaluations required to reach competent players we first
use hand-coded automated opponents for this phase of the
research. Co-evolution is the natural extension of playing
against hand-coded opponents, whereby we evolve players
against each other, with the goal of increasing game playing
competence and strategic complexity.

In this paper we develop and test our architecture within
the context of a 3D computer RTS game. Our architecture
ties together a spatial reasoning system based on influence
map trees, with a genetic algorithm performing allocations.
Encoded as individuals of a genetic algorithms population,
these players are evolved to improve their game-playing
abilities. Results show this is effective, with players showing
coordinated game-playing strategies. We describe the spatial
decision making system, and how it ties into the path-finding
and genetic algorithm allocation systems. We then detail the
game within which we test the system, evolving players first
against static hand-coded opponents and later against another
population of co-evolving players. Results present an analysis
of the system’s performance, including the behaviors produced
by evolution. Finally we discuss directions for the continuation
of this research.

II. REPRESENTATION - GAME PLAYER

Each individual in the population represents a game-playing
strategy. RTS games are primarily about making spatial rea-

soning and resource allocation decisions. We first use a com-
bination of influence maps to do spatial reasoning, and later
use genetic algorithms to solve the allocation problems. An
objective zoner converts the influence maps into objectives for
player units to carry out. Each objective is a task to be carried
out at some point in space: attack here, defend this, or move
here. Meta-data is attached to each objective, describing what
kinds of units to allocatd to them. For example a ”siege enemy
city” objective requests long range artillery, while a feigning
attack objective requests fast and disposable troops. A genetic
algorithm then allocates unit groups to these objectives, using
the information available to solve the underlying allocation
problems. An A* pathfinder is used to determines the spatial
costs involved in these allocations: objectives that are far away
are more costly, as are objectives which require traversing
dangerous territory. This final allocation takes into account
how beneficial each objective is perceived to be, how well
the unit composition of the groups match the units requested
by the objective, and how readily those unit groups can reach
those objectives. The overall architecture is shown in Figure 2.
Our game players represent their spatial reasoning strategy
within influence maps, we describe these influence maps in
the next section.

Fig. 2. Game Player Architecture

A. Influence Maps

An influence map (IM) is a grid placed over the world,
which has values assigned to each square based on some func-
tion which represents a spatial feature or concept. Influence
maps evolved out of work done on spatial reasoning within
the game of Go and have been used sporadically since then
in games such as Age of Empires [16], [11]. Influence maps
combine together to form spatial decision making strategies.
The IM function could be a summation of the natural resources
present in that square, the distance to the closest enemy, or
the number of friendly units in the vicinity. Figure 3 is a
visualization of an influence map, with the triangles in the
game world increasing the values of squares within some
radius of their location.

We create and combine Several IM’s to form our spatial de-
cision making system. For example create two influence maps,
the first using an IM function which produces high values
near vulnerable enemies, the second IM function producing



Fig. 3. An Influence Map

high negative values near powerful enemies. Then combine
those two influence maps via a weighted sum. High valued
points in the IM resulting from the summation, are good places
to attack - places where you can strike vulnerable enemies
while avoiding powerful ones. The next step is to analyze
the resultant IM and translate it into orders which can be
assigned to units. We are looking for multiple points to assign
to multiple unit groups, so we use the system described in
Section V.

The set of IM functions and their parameters be applied to
produce answers for any situation, so they can encapsulate a
decision making strategy. Each IM conveys simple concepts:
near, away, hide, attack; which combine together to form
complicated behavior - hide near neutral units until your
enemy is nearby then attack. In our work we encode the
IM functions and their parameters within the individuals of a
genetic algorithm, which we then evolve with standard genetic
operators. Previous work evolved a neural network which
took every square from every IM as an input, and produced
the squares of the final IM as output[17] . Our system has
the flexibility to evolve both the influence maps and their
final combination, and since the combination operators are
simple arithmetic operators, the system is more transparent
and therefor easier to analyze.

B. Influence Map Combinations

We combine IM’s within a tree structure instead of the
traditional list [16]. Each tree represents a complete decision
making strategy, and is encoded within an individual in a
genetic algorithm. Leaf nodes in the tree are regular IM’s,
they use functions to generate their values based on the game-
state as before. Branch nodes perform operations upon their
children’s values in order to create their own values. The
kinds of processing performed by the branch node include
standard arithmetic operators, such as a weighted sum, or

multiplication, as well as more complex processing such as
smoothing or normalization functions.

Influence map trees are a generalization of the traditional
method of using a weighted sum on a list of influence
maps [16]. They also allow for the variety of specialized pro-
cessing done on influence maps in many commercial games.
For example, Age of Empires uses multi-pass smoothing on
influence maps to determine where to construct buildings.
IMTrees were designed to contain all the important informa-
tion about influence maps within one structure. The IMTree
structure can then be encoded as an individual in a population,
including 1) the structure of the tree, 2) which IM functions
to apply at each node, 3) which parameters to use in those
functions, and 4) any processing to be done. With crossover
and mutation operators we can then evolve towards more
effective spatial decision making strategies. This is in many
ways similar to genetic programming, but taken in the context
of spatial reasoning. Next, we explore the effectiveness of this
system in the context of a naval combat game - Lagoon.

III. THE GAME - LAGOON

We developed Lagoon, a Real-Time 3D naval combat sim-
ulation game. Figure 4 shows a screen-shot from the bridge of
one destroyer which is about to collide with another destroyer.
The world is accurately modeled, and the game can be played
from either the helm of a single boat or as a real-time
strategy game with players commanding fleets of boats. The
complexities of the physics model are particularly demanding
on the players, as the largest boats take several minutes to
come to a stop. To deal with these and other complexities,
Lagoon has a hierarchical AI system which distributes the
work. At the top level sits the strategic planning system being
developed by our group, this system allocates resources and
assigns objectives to the various groups of boats. Behavior
networks then carry out those orders for each individual
boat, following proper naval procedure within the complexities
and constraints of the physics model. They then relay their
desired speeds and headings to a helmsman controller, which
manipulates the various actuators and effectors on the boats -
rudders and rpm settings to the engines.

A. The Mission

To test our players we created the mission shown in Fig-
ure 5. Two small cigarette boats - triangles at top, attempt to
attack an oil platform - pentagon, which is being guarded by
a destroyer - hexagon. The cigarette boats are fast, maneuver-
able, and equipped with rocket propelled grenade launchers.
Their primary advantage over the defending destroyer is that
there are two of them and that they can quickly accelerate,
decelerate and turn. The destroyer on the other hand is also
quite fast, with a higher top speed than the attacking cigarette
boats, but it takes a significant period of time to change speeds
or turn. The six-inch gun on the destroyer has been disabled
for this mission, requiring it to rely upon machine gun banks
mounted on its sides. While the cigarette boats have slightly
more range, the destroyer has far more firepower.



Fig. 4. Lagoon

This mission was chosen as it was relatively simple, and
it required the players to understand the effectiveness of their
units, with the possibility of evolving coordinated attacks. We
also chose this mission because we could develop hand-coded
players for both sides easily. In many ways this is more of a
tactical than a strategic mission in that there are few boats on
each side, and no ”complex long term” decisions to make such
as where to place a base. We think of this mission as an initial
test of our ability to evolve effective spatial decision making
strategies. Future work would be tested on missions involving
large numbers of boats and more complex interactions.

Fig. 5. Mission

IV. PLAYER IMPLEMENTATION

Both sides of the game have a player controlling them, with
each player having its own influence map tree and allocation
GA. The players do continuous processing throughout the
game, calculating a small amount of an influence map, or
running another evaluation in the allocation GA at each slice
of time. In this way the players do complex calculations
without consuming too much processing power. Currently it
takes between 10-20 seconds for each player to complete a
processing cycle, at which point new objectives are assigned
to player units. We next describe our implementation of the
various player components, starting with the influence maps
and their combination into a tree.

A. Influence Map Tree Implementation

The IM’s calculate the value of their squares with IM
functions based on which units are near those squares as
shown in Figure 3. Units in the world add various circles
of influence to each IM - increasing the values assigned to
all squares around those units. The IM function must first
determine which units it considers relevant, this is based on
a parameter which we encode in the GA. It can be either
friendly units, neutral units, or enemy units. The next issue,
and GA parameter, is how large of a circle to use, with the
IM either using the weapons radius of the unit the circle is
around, or a large fixed radius. Next, the IM determines how
much to increment values within the circle. Each unit has an
abstract power or strength rating associated with it, which
gives a general idea how powerful that unit is in combat.
The IM can either use this strength rating, or it can use the
value of that unit. The next issue is how to distribute values
within the circle. In Figure 3 we increased the value of each
square within a circle by one, regardless of its distance to the
unit the circle is centered around. The IM function can also
distribute values with a bias towards the center, so points near
the center get the maximum value and as you move towards
the perimeter you get less and less points. There is an also an
inverse distribution, giving maximum points at the perimeter
and zero points in the center. All of these options to the IM
function are parameterized, and encoded within individuals
in the genetic algorithm. To allow fine tuning of each IM,
two coefficient parameters are also encoded. The first directly
scales the radius of the circle used for each unit - this is bound
within (0,4]. The second directly scales the values given to
squares within the circle - bound within [-10,10].

Branch nodes in the IMTree can be any of the four basic
operators - addition, subtraction, multiplication, and division.
There is also an ”OR” branch node which takes the largest
values from its children at each point. The OR node generally
functions as the root of the tree, choosing between the various
courses of actions contained within its children. With these
nodes we then constructed players for both sides, tuning and
testing them over a few games.



V. OBJECTIVE ZONER

Processing the influence map produced by the influence
map tree into objectives is the job of the objective zoner. An
objective is a task for a unit group to carry out at some point
in space. The objective zoner should reduce the influence map
to a set of objectives representing its most important points,
including all the distinct peaks in the landscape without being
redundant. In Figure 2 the IMTree produces as output the
objective IM, from which the objectives are parsed. The zoner
in response picks three key points, the two peaks on the left,
and one of the points from the plateau on the right. The zoner
determines the first two points correspond to attack actions,
because the influence map which produced them was linked
to that behavior, while the third point and its corresponding
IM was linked to a move behavior. This gives three objectives,
attack those two points, or move to this point and distract the
enemy.

Our objective zoner uses a simple algorithm to create the
objectives. It finds the highest point in the influence map that
is not to close to an already chosen objective, and takes it
as an objective. It then repeats the process, until no eligible
points are left. Points are ineligible if their value is less then
some ratio of the highest point, 1/2 in this case. They are
also ineligible if they are too close to a previously assigned
objective. Currently all objectives carry a generic attack-move
behavior, where they move directly to the target point firing
at enemies that come within range.

VI. A* PATHFINDER

Once the objectives have been calculated, an A* router
determines how accessible they are. This is done by looking
at the unit groups available to the player, and searching for
how easily they can reach those objectives. This information
is used by the allocation genetic algorithm to keep units from
being allocated to objectives they cannot reach, and prioritizes
more accessible objectives.

We used a traditional A* pathfinder to do path-finding,
A* is shown to always produce the optimal path through a
graph so long as it has a proper underestimate, which we
have. Our pathfinder searches through squares in an influence
map to find the optimal path from one point to another.
The A* influence map is separate from the players influence
map tree, with each square representing how preferable it is
to route through. It has high negative values near powerful
enemies, and more positive numbers in open water. Because
the A* router uses an influence map, the search space could
be arbitrarily complicated, routing units so that they try to stay
close to neutral units, or as far from land as possible.

VII. ALLOCATION GA

AllocGA, a genetic algorithm, allocates units to objectives.
AllocGA is a non-generational GA which uses single point
crossover, bitwise mutation and roulette wheel selection. It
determines its resources currently available, and maps them
to appropriate objectives taking into account the information
provided by the other systems. Each individual in AllocGA’s

population encodes an allocation table, listing which objective
each unit is assigned too. The fitness for each individual is a
summation of the benefit expected from allocating each unit
group to its objective. The benefit for allocating a group to an
objective is given by: 1) the expected benefit from the objective
2) how well that groups units match the units requested for the
objective 3) how easily the unit group can reach that objective.
The expected benefit for an objective is the value from its point
in the influence map. How well units match those requested
is based upon the composition of the group, and the meta-
data assigned to those objectives as discussed in SectionVII-.1.
The penalties for risk incurred, and travel distance is the total
cost associated with the route from unit to objective found
by the A* pathfinder. Attacking an enemy city might yield
tremendous benefit, but not for a group of units without the
appropriate weaponry, or for units occupied on the far side of
the map.

1) Objective Meta-Data: To determine which units to al-
locate to which objectives we attach meta-data describing
what kind of units would be useful to each objective. We
use three coefficients, representing the power, speed, and
value of the units allocated. To each unit we associate three
abstract values, a power rating summarizing how effective
it is in combat, a speed rating summarizing how fast and
maneuverable it is, and a value rating representing its cost.
Each is an abstract hand set value summarizing the complex
workings of the entity, the destroyer’s has a high power, the
cigarette boats have high speed ratings, and the oil-platform
has a high value rating. AllocGA calculates benefit based
how the units allocated to an objective match up with the
coefficients attached to the objective. If an objective has a
high power coefficient, then allocating powerful units increases
the fitness of that allocation. Conversely if an objective has
a negative value coefficient, then allocating expensive units
reduces the fitness. Each units attributes are multiplied by the
corresponding coefficient, and the summation is applied to the
fitness of that allocation. By changing these values an influence
map can be suited for fast cheap units, powerful expensive
ones, or weak valuable units (maybe a hide in the rear IM).
Each objective can also have a unit cap, beyond which no
benefit is received for adding units, so that distracting with 10
units is not more beneficial than using 1.

VIII. HAND-CODED PLAYERS

To test this system we first develop hand-coded players for
both sides, tuning their behavior over a few games to test how
well the players work. Our hand-coded attacker work by using
an OR node on two child subtrees. The first subtree represents
an attack behavior which takes the weighted sum of two nodes.
The first node has high values near vulnerable enemies, the
second has large negative values near powerful enemies. This
gives points near vulnerable enemies, but away from powerful
ones The second subtree represents a distract behavior where
the cigarette boat tries to stay just out of range of the destroyer,
baiting it into following it and in the process abandoning the
oil platform. The distract child has two children of its own, the



first representing a ring of points just outside the destroyers
range, and the second with high values away from the oil
platform To generate the ring of points outside the destroyers
range it sums two influence maps - one with radius equal to
the destroyers weapon range but with negative points and one
with a slightly larger radius and positive points. This gives
a ring of positive points just outside of weapons range. The
second child of the distract behavior represents points away
from the oil platform, and by multiplying this with the ring
outside of weapons range we get points just outside of the
destroyers weapons range that are away from the oil-platform.

The defender counters this with a similar tree, once again
using an OR node on two subtrees. The first behavior puts
the destroyer in-between any attackers and the oil platform, it
works by multiplying high values near valuable friendly units
with high values near powerful enemies. The second behavior
keeps the destroyer near the oil platform in the direction facing
the attackers if it has nothing else to do, it is a multiplication
of high values in close proximity to the oil platform, with
high values in a very large are around the attacker. Both of
these hand-coded IM trees worked reasonably well, with the
attackers trying to out-maneuver the defender as it patrols
around the oil-platform.

We found our hand-coded attackers showed a reasonable
level of coordination, with one boat distracting while the
other attacked. The defender was effective, staying near the
oil platform until the cigarette boats approached. If they
approached it would try to chase them off, firing if they got too
close. There behavior was quirky however, and not particularly
well rounded. If the defender did not take the bait it could
often catch the other boat by supervise, also the attackers
were not efficient with their firepower, as the later evolved
behaviors showed that by switching places the attackers could
do much more damage. They also had a hard time getting
from one side of the destroyer, often entering its field of fire
and being destroyed. The defender was very often fooled by
the attackers as well, lured away from the oil-platform it was
trying to protect. To improve upon both of these behaviors we
turned to evolutionary techniques, allowing the GA to evolve
IMTrees for controlling units in our game.

IX. EVOLVING PLAYERS

We evolved our players with a non-generational genetic
algorithm (PlayerGA) with roulette wheel selection, one point
crossover and bitwise mutation. The influence map trees used
by the players are encoded within individuals of PlayerGA.
Crossover took place with 75% probability, and the bitwise
mutation probability was chosen to give on average 2 bit
mutations per child. At this initial phase we were not evolving
the structure of the tree, purely the parameters and coefficients
for each IM. PlayerGA uses the same structure as our hand-
coded attackers and defenders. More complicated missions and
strategies would likely require a more complex tree, but we
found this structure to be sufficient for our desired behavior.

A. Encoding

The GA packs all the parameters for each IM in the IMTree
into a bit-string, with fixed point binary integer encoding for
the enumerations and fixed point binary fraction encoding for
the real valued parameters and coefficients.

B. Evaluation and Fitness

To evaluate each individual we play them against an oppo-
nent and examine the results of the match. Fitness is calculated
as fitness = damagedone− damagereceived at the end of
the game, which makes it a zero-sum two player game.

X. RESULTS

Our hand-coded attacker had a basic attack-distract behav-
ior, with one cigarette boat trying to distract and occupy the
destroyer while the other went for the oil-platform. Our basic
defender spent most of its effort chasing after the attackers,
hoping to cut them off and broadside them with its machine
guns. Our hand-coded attackers were reasonably effective -
winning most of the missions, but often making mistakes. The
attackers would easily occupy the destroyer while it chased
them, but if it switched who it was chasing they would often
try to cut across its field of fire. To improve this we first
evolved an attacker against our hand-coded defender. This
gave better behavior, with the evolved attackers being more
flexible and reliable. We then evolved the defender, with
the defender becoming a bit more robust in how it would
deal with two attackers, not getting lured as easily away
from the oil platform. Finally we evolve the two populations
simultaneously, seeing more types of behaviors from both
players, before ultimately producing two well rounded players.

A. Results: Evolving the Attacker

The GA first evolved our attacker, evaluating 1000 indi-
viduals against our hand-coded defender. While we ran the
system multiple times, we will discuss a single representative
run which illustrates the results we consistently achieved. The
attackers eventually discover a reasonably good attack-avoid
strategy, staying well away from the destroyer while trying to
get close to the oil platform. Over the following evaluations
this evolves into an attack-distract strategy, where the attacks
split their time occupying the destroyer and attacking the
oil-platform. Unlike our hand-coded attacker they were not
reluctant to switch roles, with one boat distracting for several
seconds then going back to the oil platform. This allows
them to attack the platform, and spend their long reloading
time distracting the destroyer, limiting the amount of shots
they fired on the destroyer - who is more heavily armored.
They were also much more cautious about approaching the
destroyer, going well out of their way to avoid it. This avoiding
the problem of our hand-coded attacker, whereby it would
occasionally skim the destroyers firing range, taking heavy
fire. The evolved attacker proved frustrating to play against
as an opponent, as it was very chaotic in its actions. While
psychologically effective it did make mistakes, but overall it
represented a significant improvement from our hand-coded
attacker.



Fig. 6. Behavior Exhibited by Evolved Attacker

B. Results: Evolving the Defender

The evolved attackers were effective against the hand-coded
defender, coordinating an effective attack-distract strategy. We
next re-ran the genetic algorithm to evolve the defender to
see if it could find a counter to the attackers strategy. The
attack distract behavior capitalizes well on the advantage
given to the attackers, making it difficult for the destroyer
to effectively defend. The defenders evolved did surpass the
quality of our own hand-coded defenders however, learning
how to trick the attackers into making mistakes. Figure 7
shows an exceptional defense, where the defender pushes
both attackers back by manipulating their constant switches in
roles. While the evolved attacker and evolved defender were
effective, particularly against each other, they made obvious
mistakes against human opponents. To improve our players
further we utilized co-evolution, aiming to generate ever more
robust players.

Fig. 7. Behavior Exhibited by Evolved Defender

C. Co-Evolution

Co-evolution occurs when the evaluation of an individ-
ual is dependent upon other individuals. We implemented
co-evolution with a traditional two population model, with
one population containing attacking strategies, and the other
containing defending strategies. We evaluated individuals by
playing them against un-evaluated individuals in the other
population, with fitness calculated as before. The goal being
an ”arms race” whereby each side is constantly innovating new
strategies in order to better their opponent.

D. Results: Co-evolving Attackers and Defenders

To implement co-evolution we run two genetic algorithms
- one evolving attackers, and one evolving defenders. We
play unevaluated members from each population against each
other, and calculate fitness as before. As before we allowed
each GA to evaluate 1000 candidate strategies. Figure 8
shows the minimum, maximum, and average fitness in the two
populations over time. At first there is chaos, with both players
using random strategies. Effective attackers and defenders start
to emerge however, with the attacker learning to go for the oil
platform and the defender learning to go for the attackers.
The attackers suffer for a few hundred generations, trying to
learn an attack-distract or an attack-avoid behavior. Eventually
those start to emerge, and their fitness rises dramatically. This
leads to improvements in the defenders AI, learning not to
be lured away from the oil platform, and to keep its speed
up. Ultimately they develop the behaviors shown in Figure 9
- the attacker develops a well rounded attack-distract-avoid
behavior, and the defender develops a diligent defensive be-
havior. The attackers spends less time distracting then before,
preferring to stay on the opposite side of the oil-platform and
fight. One boat will occasionally lure the defender away, and
then return while the defender turns around. The attackers
also tend to stay far away, generally opposite sides as shown
in Figure 9, which makes them much more flexible than if
they bunch up. The defenders behavior was very protective,
generally staying very close to the oil-platform. It was difficult
to lure off, and did a good job of overcoming its slow turning
rate by staying in good positions.. Both attacker and defender
learned generalized behaviors, similar to those we had tried to
develop in our hand-coded behaviors. The co-evolved players
were superior to the hand-coded players, with the attackers
clearly out-maneuvering the destroyer, and the defender doing
its best to defend the oil-platform. Co-evolution gave them the
robustness necessary to play against human opponents.

XI. CONCLUSIONS AND FUTURE WORK

Co-evolved influence map trees were capable of produc-
ing competent behavior inside our RTS game. While our
mission was relatively simple, and the IMTrees were used
more as operational controllers than as strategic planners,
the IMTrees functioned adequately. By combining influence
maps with genetic algorithms we produced behavior that
was much more coordinated than in either of the previous
systems. The attackers learned how to effectively work as a



Fig. 8. Min/Max/Avg Fitness’s of Attacker / Defender Co-evolving

Fig. 9. Final Co-Evolved Players

team, taking advantage of their unit’s abilities to overcome
a more powerful defender. This is in contrast to previous
work, where the attackers functioned independently and were
defeated by the defender [12]. The final behaviors were robust
and effective, both against other evolved players and against
human opponents. Our results indicate that co-evolving IM
Trees is a promising technique, with the potential to evolve
strategic players who learn to use complex strategies to win
long-term games.

The other avenue of future work is that of increasing the
complexity present in the mission and the game. An element
of stealth has been added to the game, where attackers can
hide behind neutral boats in order to approach and hide

undetected. Neutral traffic is also being used, requiring the
destroyer to maneuver around, and not fire upon, neutral
boats while trying to defend a moving ally. Combined with
stealth this greatly complicates the games for both players.
Evolution of the structure of the tree is also a major step
under development, allowing strategies to evolve increasing
levels of complexity over time, without a steep initial learning
curve. Future work would expand our implementation of co-
evolution, utilizing a hall-of-fame system or a maintaining a
sub-sampled population of opponents to test against. Fitness
sharing, or some other form of speciation would also be good,
protecting and encouraging more complicated strategies to
develop. These techniques were developed for improving the
performance of co-evolution, and would likely lead to faster
more consistent improvement [18]. Pareto co-evolution would
also provide similar improvements, helping to develop and
maintain different attacking and defending strategies within
the population [19].

XII. ACKNOWLEDGMENTS

This material is based upon work supported by the Office
of Naval Research under contract number N00014-03-1-0104.

REFERENCES

[1] P. J. Angeline and J. B. Pollack, “Competitive environments evolve better
solutions for complex tasks,” in Proceedings of the 5th International
Conference on Genetic Algorithms (GA-93), 1993, pp. 264–270.
[Online]. Available: citeseer.ist.psu.edu/angeline93competitive.html

[2] D. B. Fogel, Blondie24: Playing at the Edge of AI. Morgan Kauffman,
2001.

[3] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, pp. 210–
229, 1959.

[4] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a backgammon
player,” in Artificial Life V: Proc. of the Fifth Int. Workshop on
the Synthesis and Simulation of Living Systems, C. G. Langton and
K. Shimohara, Eds. Cambridge, MA: The MIT Press, 1997, pp. 92–98.

[5] G. Tesauro, “Temporal difference learning and td-gammon,” Communi-
cations of the ACM, vol. 38, no. 3, 1995.

[6] J. E. Laird and M. van Lent, “Human-level ai’s killer
application: Interactive computer games,” 2000. [Online]. Available:
http://ai.eecs.umich.edu/people/laird/papers/AAAI-00.pdf

[7] R. E. Inc., “Dawn of war,” 2005, http://www.dawnofwargame.com.
[8] B. Studios., “Supreme ruler 2010,” 2005.
[9] R. Pump., “Earth 2160,” 2005.

[10] Blizzard, “Starcraft,” 1998, www.blizzard.com/starcraft. [Online].
Available: www.blizzard.com/starcraft

[11] E. Studios, “Age of empires 3,” 2005, www.ageofempires3.com.
[Online]. Available: www.ageofempires3.com

[12] C. Miles and S. J. Louis, “Co-evolving real-time strategy game playing
influence map trees with genetic algorithms,” in Proceedings of the
International Congress on Evolutionary Computation, Portland, Oregon.
IEEE Press, 2006, pp. 0–999 999 999 999.

[13] S. J. Louis, C. Miles, N. Cole, and J. McDonnell, “Learning to play
like a human: Case injected genetic algorithms for strategic computer
gaming,” in Proceedings of the second Workshop on Military and
Security Applications of Evolutionary Computation, 2005, pp. 6–12.

[14] B. Stout, “The basics of a* for path planning,” in Game Programming
Gems. Charles River media, 2000, pp. 254–262.

[15] R. Gibbons, Game Theory for Applied Economists. Princeton University
Press, 1992.

[16] A. L. Zobrist, “A model of visual organization for the game of go,” in
AFIPS Conf. Proc., 1969, pp. 34, 103–112.

[17] P. Sweetser, “Strategic decision-making with neural networks and influ-
ence maps,” AI Game Programming Wisdom 2, pp. 439–446, 2001.



[18] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution:
Finding opponents worth beating,” in Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms, L. Eshelman, Ed. San
Francisco, CA: Morgan Kaufmann, 1995, pp. 373–380.

[19] A. Bucci and J. Pollack, “A mathematical framework for the study of
coevolution,” in Foundations of Genetic Algorithms 7. Proceedings of
FOGA VII, 2002.


