
General Dynamic Formations for Non-holonomic Systems
Along Planar Curvilinear Coordinates

Athanasios Krontiris Sushil Louis Kostas E. Bekris

Abstract—This paper describes a general geometric method
for planar formations of non-holonomic systems. The approach
directly provides the feasible controls that each individual
robot has to execute in order for the team to maintain the
formation based on the controls of a reference agent, either
a real leader-robot or a virtual one. In order to directly
satisfy the non-holonomic constraints, the geometric reasoning
takes place in curvilinear coordinates, defined by the curvature
of the reference trajectory, instead of the typical rectilinear
coordinates. The generality of the approach lies on the ability
to define dynamic formations so as to smoothly switch between
static ones, where the robots can change both of their relative
coordinates as they move, and the ability to acquire a desired
formation given an initial random configuration. Furthermore,
it is possible to correct errors in the achieved configuration of
the vehicles on the fly. Simulated experiments are presented to
verify the correctness of the provided derivations.

I. INTRODUCTION

Formations arise in robotic space exploration, where multi-
ple satellites and spacecraft can provide improved reliability,
and military applications, where formations were originally
developed and can be utilized by unmanned vehicles. They
can also provide reduction in induced drag to aircraft flying
in a vee formation, thus, extending the range of a squadron or
allowing solar powered airplanes to stay aloft longer. Beyond
robotics, formations can be useful in simulations and games
that mimic the behavior of real world agents. This paper
is especially motivated by training simulations for military
officers, which require the modeling of strategic maneuvers
for opposing and friendly vehicles, aircraft and boats. The
need to model and switch dynamically between formations
in a computationally efficient manner arises as a primary
requirement during the development of such simulations.
Moreover, formations can be used to address the compu-
tational complexity of planning for multiple robots. Instead
of planning for all the agents in a centralized manner, it is
possible to plan for the team as a single larger-size agent.
Formations also provide a way for multiple agents to act as
a coherent group.
If the robots are holonomic, maintaining a formation is

rather straightforward. The focus of this paper, however,
is on systems with first-order non-holonomic constrains,
which make the problem harder. Beyond maintaining a static
formation, it is desirable to allow the shape of the formation

This work is supported by the Office of Naval Research. Any opinions
and conclusions expressed in this paper are those of the authors and do not
necessarily reflect the views of the sponsor.
The authors are with the Computer Science and Engineering Department

of the University of Nevada, Reno, 1664 N. Virginia St., MS 171, Reno,
NV, 89557. Correspondence: bekris@cse.unr.edu

Fig. 1. Blue lines correspond to the trajectory of airplanes, while colored
circles point to the location of airplanes at different points in time.

to change over time. For instance, the formation might
have to adapt to static obstacles in the environment, to the
directions of a human operator, or a higher-level autonomous
unit that specifies the type of formation. Dynamic formations
can also be useful for assembling a static formation from
a random configuration, as shown in Fig. 1. This work
addresses the above challenges by extending approaches for
the geometric computation of feasible trajectories for first-
order non-holonomic systems [1]–[3]. It provides methods
for acquiring a general planar formation, maintaining a static
one and switching dynamically between different formations.

A. Background

Formation planning can be divided into three types:
(i) Behavior-based approaches design simple primitives for
each agent and combine them to generate complex patterns
through the interaction of several agents [4]–[6]. Some
behavior-based schemes have been shown to provably con-
verge [7]. (ii) Leader-follower approaches designate one or
more agents as leaders that guide the formation [2], [8], [9].
The remaining agents follow the leader(s) with a predefined
offset. (iii) Rigid-body formations [10] maintain a constant
distance between the agents’ configurations. The idea of
virtual leaders is a combination of the last two types [11].
Control theory has been used extensively to study forma-

tions with tools such as input-output feedback linearization
for leader-follower formations, where the coontroller’s sta-
bility is typically the issue [9]. Once a fixed formation is
defined, it is interesting to compute the smoothest trajectory
that minimizes energy, a problem cast as designing optimal
curves in the SE(3) group [12]. Control-theory is also in-
tegrated with graph theory to define controllers that allow
transitions between formations [8]. Graphical tools have also
been used to study whether there exist non-trivial trajectories

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-385-8/11/$26.00 ©2011 IEEE 4903

for specified formations given the agent’s kinematic con-
straints [13]. Formations have applications in the areas of
robotic sensor networks, where it is important to consider
limited in sensing and communication capabilities [14].
More recently, there have been methods for distributed task
assignment so that robots can achieve a desired formation
[15]. From a geometric point of view, a “formation-space”
abstraction, equivalent to the configuration space abstraction,
has been defined for permutation-invariant formations of
robots that translate in the plane [16].
This paper builds upon motion planning methods for

formations [1], [2], which are geometric and exact in nature.
This framework allows the robots to track the trajectory of
a reference agent that moves independently. Instead of a
rigid distance to the leader, the approach adapts the shape
during turns to satisfy non-holonomic constraints. When a
formation is turning, the method automatically plans for
followers on the “outside” to speed up and robots on the
“inside” to slow down, resulting in formations that respect
the constraints. Moreover, the framework supports almost
any arbitrary geometric formation, dynamic adaptation of
formations, and is homogeneous, since each robot can utilize
the same parametrized algorithm. A related work has focused
on optimizing the shape of the formation given the reference
agent’s trajectory by using a kinetic energy metric in SE(2)
[17]. Recently the authors of the current paper have shown
how to compute the curvature and velocity limits for the
reference agent on the fly so that the satisfaction of similar
limits for all the robots is guaranteed [3].

B. Contribution

The approach described here allows a staged process,
where planning takes place for a single reference agent and
then the team members move in response to maintain the
formation. The formation parameters are expressed as the
difference between the reference agent and each robot in
curvilinear coordinates, such as the coordinates (p, q) in
Fig. 2. The curvature of the curvilinear coordinate system
is the instantaneous curvature of the reference agent KL.
A static formation implies constant p and q. A dynamic
formation allows robots to smoothly switch between static
formations. Reasoning in this coordinate system allows the
direct computation of controls for the robots relative to the
controls of the reference agent while satisfying the non-
holonomic constraints. Beyond what has been shown before
[1]–[3], this paper contributes the following:
1. It provides a new derivation that allows robots to change
both their horizontal p and vertical curvilinear coordinate
q during a dynamic formation. The previous approach
allowed only changes in the vertical direction q.
2. The current paper shows how to address the case where
the follower has different initial orientation from the leader.
This allows to solve the problem of the robots getting into
a formation from a random configuration, which was not
addressed before. The solution to this problem can also be
utilized in providing robustness to errors in the execution
of the selected trajectories.

II. PROBLEM SETUP

The simple car is a model for non-holonomic robots:

ẋ = u · cos θ, ẏ = u · sin θ, θ̇ = u ·K, (1)

where x, y are Cartesian coordinates for the robot’s position
and θ is the system’s orientation. The controls correspond to
the velocity u and the curvature K, which is directly related
to the steering angle φ of the robot (K = tan (φ)). The
controls often have to respect certain limits:

|K| ≤ Kmax, 0 < umin ≤ u ≤ umax. (2)

Different non-holonomic systems can be casted to the above
formulation (e.g., differential-drive robots). The planar mo-
tion of aircraft and boats is often modeled as a simple car.
There is a reference agent, the leader L, which selects its

controls uL, KL independently. The leader can correspond
to one of the robots or to a virtual agent. L’s trajectory
could be either precomputed or computed on the fly. If
precomputed, then there is no constraint to the type of
formations considered here. If computed on the fly, then the
leader should be defined ahead of all the follower robots. If
the leader is a virtual agent, then every kind of formation is
allowed.
A static formation is defined relative to the leader in

curvilinear coordinates. Curvilinear coordinates are defined
for curved coordinate lines. The curvature KL becomes the
instantaneous curvature of the reference agent. For example,
if airplane L in Fig. 2 is the leader, then the middle blue line
corresponds to the “x” axis of the curvilinear system, and the
line perpendicular to the airplane is the “y” axis. To maintain
a static formation, each robot must maintain a constant p
distance along the leader’s curved trajectory and q distance
along the perpendicular direction, as in Fig.2. The variable
dL denotes the distance the reference agent has covered and
s = dL + p denotes the distance that the projection of the
follower has covered along the leader’s trajectory. Note that
if the robot is already in a static formation, then θ = θL(si),
i.e., the orientation of the robot and the (past) orientation of
the leader when it was at the projection is the same. Given the
above definitions, the following problems are considered:

Fig. 2. An illustration of the curvilinear coordinates (p,q) defined by the
reference agent moving with constant curvature KL.

4904

• What are the controls u, K that a follower should execute
in order to maintain a static configuration p, q, θ(= θL(s))
in curvilinear coordinates relative to the leader?

• What controls u, K should the follower execute in order
to switch from an initial configuration p0, q0, θ0(= θL(s0))
to a new one with parameters p1, q1, θ1(= θL(s1)) where
p0 �= p1 and q0 �= q1?

• If a robot is in a configuration where there is no p0 so
that θ0 = θL(s0) (i.e., the robot cannot be considered
in formation with the leader), what controls should the
follower execute so that it achieves a static configuration
p1, q1, θ1(= θL(s1)) relative to the leader?

III. DYNAMIC FORMATIONS

The following section provides equations for the controls
u, L of the follower given the leader’s controls uL, KL and
functions for p, q and their derivatives. If the functions for p
and q are constant, then the static case is addressed, otherwise
it is possible to define a switching maneuver that results in a
dynamic formation. Section III.B addresses the challenge of
acquiring a formation by considering the case θ0 �= θL(s0)
for all reasonable s0.

A. General Dynamic Formations

Consider a follower, which must retain distance p and q
from the leader along curvilinear coordinates. Then, given
Fig. 2 and trigonometry on angle sKL(s) at the pivot point,
which is common for the follower and the projection point,
the coordinates of the follower are:

x = (
1

KL(s)
− q) · sin(sKL(s)),

y =
1

KL(s)
− (

1

KL(s)
− q) · cos(sKL(s)).

(3)

To achieve dynamic formations, the approach allows the
coordinates [p, q] to be functions of time or distance along
the leader’s trajectory. Assume that the leader’s controls uL

and KL are piecewise constant. Then the first derivatives of
the Cartesian coordinates in Eq.3 are:

ẋ = −q̇sin(sKL) + ṡ(1− qKL(s)) · cos(sKL(s))

ẏ = q̇cos(sKL) + ṡ(1− qKL(s)) · sin(sKL(s))
(4)

Then, in order to compute the follower’s velocity it is
sufficient to compute u(s) =

√
ẋ2 + ẏ2, which will result

into the following expression:

u(s) = ḋQ = uL ·Q (5)

where

Q =

√(
∂q

∂d

)2

+

(
1 +

(
∂p

∂d

))2

·N2 (6)

and N = 1 − qKL. The result implies that the follower’s
velocity is split into two terms: (a) One direction along
the horizontal curvilinear coordinate p. This depends on the
change in p during the dynamic formation (i.e., ∂p

∂d) and is
also adapted according to the difference in curvature between
the follower and the leader (i.e., the term N). (b) The other

direction is along the perpendicular coordinate q and depends
upon the change in q (i.e., ∂q

∂d).
To compute the follower’s curvature, it is necessary to

compute the second order derivatives of the Cartesian coor-
dinates, since the typical expression for curvature is:

K =
ẋÿ − ẍẏ(√
ẋ2 + ẏ2

)3 (7)

The derivation results in the following expression:

K =

(
1 + ∂p

∂d

)

Q

⎛
⎜⎝KL +

KL

(
∂q
∂d

)2
+ N

(
∂2p

∂d2

)

Q2

⎞
⎟⎠ − N

Q3

∂2p

∂d2

∂q

∂d
(8)

The advantage of considering curvilinear coordinates is
that it is possible to exactly compute a follower’s controls
given Eqs. 5 and 8 as functions of the reference agent’s
controls. Note that the KL term in the above equations
corresponds to the leader’s curvature at the projection point:
KL(s). This means that the follower has to keep track of its
projection onto the leader’s trajectory. Furthermore, it has to
be that p < 0, which is the reason why the reference agent
is selected to be ahead of every other robot. Otherwise, a
follower requires the curvature of the reference agent into
the future, and if the leader’s trajectory is computed on the
fly, then this is not available. In contrast to the curvature, the
velocity uL is the current velocity of the leader uL(d).
The above equations require functions for dynamic p, q

and their derivatives over the arc length d. If p and q are
constant and their derivatives are 0, then the equations for
static formations can be acquired from Eqs. 5, 8:

u(s) = uL(d)(1− q ·KL(s))

K(s) =
KL(s)

1− q ·KL(s)

(9)

Alternatively, p and q can be defined so as to achieve
a switching maneuver between two static formations. One
such maneuver is a third order curve interpolating the
curvilinear coordinates of the follower in the initial static
formation (p0, q0) with those in the final formation (p1, q1).
For instance, the perpendicular curvilinear coordinate can be
defined as follows:

q(d) = q0 + (q1 − q0) · τ2 · (3− 2τ)

∂q

∂d
= 6 · q1 − q0

Δd
· τ · (1− τ)

∂2q

∂d2
= 6 · q1 − q0

(Δd)2
· (1− 2 · τ)

(10)

where Δd = d1−d0 and τ = d−d0

Δd . For the horizontal curvi-
linear coordinate it is sufficient to use a linear interpolation:

p(d) = (p1 − p0) · τ (11)

The above maneuver is defined for d0 ≤ d ≤ d1, where the
range (d0, d1) expresses the portion of the leader’s trajectory
during which the dynamic formation is taking place. Outside
this range, ∂q

∂d = ∂2q
∂d2 = 0. For d < d0, q(d) = q0 and for

d > d1, q(d) = q1.

4905

Fig. 3. An illustration of the general case where θ �= θL(s). Hermite
interpolation in curvilinear coordinates is utilized to define a curve (in red)
that will bring the follower to a desired static formation with the leader.

Once the robots are in formation while using Eq. 9,
they will maintain the formation regardless of the leader’s
trajectory. Moreover, if all the robots in the team execute a
static formation, there is a guarantee for collision avoidance
despite the formation not being rigid. During a dynamic
switch between formations using Eqs. 5, 8, it is important
for the leader to maintain constant curvature. Otherwise, at
the point where the curvature changes, the follower will
not have the same orientation as the projection state on the
leader’s trajectory (θ �= θL(s)). This breaks the assumptions
based on which Eqs. 5, 8 are derived and introduces errors.
Consequently, a locking mechanism has to be enforced.
When a follower switches between formations, the leader
cannot change curvature.

B. Acquiring a Formation

This section addresses the general case, illustrated in
Fig. 3, where the follower is not in formation with the leader.
The objective is to come up with the equations of motion that
will bring the follower into a desired static formation with
parameters p1, q1, θ1(= θL(s1)). The idea is to define the
curve the follower must follow by employing interpolation
in curvilinear coordinates between its current configuration
and a configuration that satisfies the formation parameters.
Such a process can be achieved with the Hermite curve
interpolation, which interpolates between two points P1 and
P4, while respecting the tangent vectors R1 and R4 at these
points respectively. Given these points and vectors as input
parameters, the interpolation curve is defined as follows:

H(τ) = (2τ
3 − 3τ

2
+ 1)P1 + (−2τ

3
+ 3τ

2
)P4

+ (τ
3 − 2τ

2
+ τ)R1 + (τ

3 − τ
2
)R4

(12)

For the problem at hand, P1 will be the position where
the dynamic formation will be initiated and P4 is the point
where the formation is achieved. R1 will be along the current
direction of the follower and R4 will be along the direction
specified by the formation at P4. The parameter τ is as
before: τ = d−d0

Δd . The parameter d0 is the position (arc
length) of the leader along its trajectory when the dynamic
formation is initiated and d1 is the leader’s position when the
formation is achieved. Thus, d0 ≤ d ≤ d1 and 0 ≤ τ ≤ 1.
In order to initiate the interpolation, it is necessary for the

follower to first locate an appropriate projection point along

the leader’s past trajectory. This will allow the definition of
curvilinear coordinates for its current position. A projection
point is collinear with the follower and the leader’s pivot
point. Fig. 3 demonstrates the situation, where the projection
point is denoted as g0. If no such point exists, the follower
can move towards the leader until one is found. If the
follower can reduce and increase its distance with the leader,
then the existence of such a projection point is guaranteed.
Once a projection point has been discovered, then it is

possible to express the input parameters P1, P4, R1 and R4 of
the interpolation procedure in curvilinear coordinates. Fig. 3
corresponds to the beginning of the dynamic formation.
The input parameters are computed relative to the leader’s
coordinates. This means that the leader will be in position
(0, 0) and it’s orientation is θ(d) = 0. Then if:
• q0 is the distance between the projection point and the
follower’s position,

• p0 is the distance along the leader’s trajectory between the
projection point and the leader’s current points and

• θ0 = θ− θL (i.e., the difference in orientation between the
follower and the leader)
the vectors P1 and R1 are defined as follows:

P1 =

⎡
⎣

((
1

KL
− q0

)
sin(p0KL)

)
/Δd(

1
KL

−
(

1
KL

− q0

)
cos(p0KL)

)
/Δd

⎤
⎦

R1 =

[
cos(θ0)
sin(θ0)

]

Given the curvilinear coordinates (p1, q1) that the follower
will have at the end of the dynamic formation, the remaining
input parameters are:

P4 =

⎡
⎣

((
1

KL
− q1

)
sin((Δd+ p1)KL)

)
/Δd(

1
KL

−
(

1
KL

− q1

)
cos((Δd+ p1)KL)

)
/Δd

⎤
⎦

R4 =

[
cos(θ1) = cos((Δd+ p1)KL)
sin(θ1) = sin((Δd+ p1)KL)

]

The orientation θ1 is computed as ((Δd+p1)KL) because
upon the completion of the curve, the follower robot will be
in formation and it will have the same orientation as the
projection at that point in time.
In order to compute the velocity and the curvature that

the followers should acquire in order to trace the desired
curve, it is first necessary to define the Cartesian coordinates
x and y as functions of the curvilinear parameters computed
through the Hermite curve interpolation. Note that the points
P1 and P4 are defined in a coordinate system where Δd =
1 (since their coordinates are divided by Δd). Thus, the
Cartesian position vector along the interpolated curve is
defined as: [x(τ) y(τ)]T = Δd · H(τ). Then the velocity
and the curvature of the leader can be computed, which
require to first derive the first and second derivatives of H(τ)
with respect to τ . The derivation results into the following
expressions:

4906

u(s) = uLM where

M =

√(
∂Hx(τ)

∂τ

)2

+

(
∂Hy(τ)

∂τ

)2

,
(13)

K =
∂(Hx(τ))

∂τ
∂2Hy(τ)

∂τ2 − ∂2Hx(τ)
∂τ2

∂(Hy(τ))
∂τ

Δd ·M3
(14)

The smoothness of the curve can be controlled by chang-
ing the magnitude of the control vectors R1 and R4. The
same vectors can be adapted so as to change the shape of the
curve for collision avoidance purposes with other followers
that might also be attempting to approach the leader.
The derivation in this section employed the assumption

that the leader maintains constant curvature throughout the
execution of the follower’s transition into a formation. Never-
theless, this is now a less restricting assumption compared to
the previous section, since the follower can always recompute
the desired point P4 and R4 where the static formation will
be achieved as soon as the leader changes curvature (more
precisely: when the projection point’s curvature changes).
For the new equations, there is no issue with the fact that
when the curvature changes the follower does not have the
same orientation as the leader at the projection point.

IV. EXPERIMENTAL VALIDATION

The above functions were tested in a simulation engine de-
veloped at the authors’ institute as a training and educational
tool. The engine is built over the Python-Ogre platform using
Python as the programming language. This engine provides
the opportunity to select different vehicles and direct them
to a desired goal. The modeled vehicles in the attached
experiments are visualized as aircraft but are moving in a
plane as simple cars according to Eq. 1, which is integrated
using the 4th order Runge-Kutta method. Each aircraft is
modeled as a different entity and has a specific amount of
time to complete its computations (1

60 sec).
For these experiments, the reference agent is set to be one

of the vehicles leading the formation (i.e., being ahead of
every other vehicle). Since the focus of this work is not on
the leader’s trajectory, the leading vehicle is implementing
a straightforward PID controller to compute its path on the
fly. The PID controller is provided a target either from a
human user or by loading a predefined sequence of target.
The controller changes the steering angle φL of the leader
(KL = tan(φL)) to minimize the difference between θL
and the direction to the goal. This typically has the effect
that the leader gradually turns towards its target and then
executes a straight-line path. The leader has high velocity
away from the target but as it approaches the target, the
vehicle reduces velocity and initiates a circular trajectory.
The circular trajectory depends on the maximum curvature
and the original position from which the controller was
initiated. The leader respects the control limits of Eq. 2.

Fig. 4. (top) The path the vehicles execute in static formation. (middle)
The errors the 5 followers had during the execution of their path. (bottom)
the difference in orientation between the followers and the leader. Each
color represents a different follower. The size of an aircraft in the top figure
corresponds to 17m and the distance between vehicles is 60m.

A. Errors in Formation Maintenance

Due to numerical integration, small errors will appear
over time, as well as because the equations derived assume
constant controls for the leader. To compute the ground truth
position for the follower robots a procedure was utilized that
computed the correct Cartesian coordinates for each follower
based on the desired curvilinear coordinates of the formation
given the leader’s position. The graphs in Fig. 4 show the
errors in distance and orientation that the followers have
during static formation. In order to maintain static formation
the followers have to be parallel to the leader’s path in
curvilinear coordinates.
The vehicles execute the path in Fig.5 using the functions

that are described in Section.III. Three different dynamic
formations are executed in this path. The images next to the
path represent the formation that the vehicles have at each
specific point on the path.

B. Success of Formation Acquisition

In this section, the accuracy of the followers getting into
a formation is tested. The error graphs are computed as soon
as the followers get into a formation (i.e., the procedure in
Section III.B is completed). The path is illustrated in Fig.1,
while the errors in distance are shown in Fig. 6.

V. DISCUSSION

This paper has outlined a framework for simulating dy-
namic formations along planar curvilinear coordinates for

4907

Fig. 5. (top) The path the vehicles execute while in dynamic formation.
(bottom) The errors from all the followers. The size of the vehicles is 17m
and the distance between vehicles is 60m.

Fig. 6. Errors for the path in Fig.1 where the followers are acquiring a
formation.

systems with non-holonomic constraints. In comparison to
the related literature [2], this paper provided a derivation
that allows changes in formations both along the horizontal
and the perpendicular curvilinear coordinate. Moreover, it
showed how to address the case where the vehicles coalesce
in order to acquire a formation.
An important issue is the satisfaction of the constraints

in Eq. 2. In previous work [3], the authors have shown that
it is possible to constrain the leader’s valid velocities and
trajectories on the fly in a way that allows the followers
to always respect the same constraints during a dynamic
formation. It is possible to extend this work so as to
guarantee the satisfaction of these constraints during the
initial achievement of a formation. If the satisfaction of the
constraints forces the follower to stop traversing the curve
computed by the Hermite curve interpolation, then a new
curve can be computed on the fly over a longer distance.
It is interesting to investigate how the formation algorithm

provided here can be integrated with motion planners so
as to achieve collision avoidance, both with static and
dynamic obstacles [18]. The planner has to automatically

select the type of formation the team must follow and plan for
transitions between static formations. Moreover, the current
work assumed that the agents have access to the controls
of the reference agent. An implementation on real robots
would require broadcasting this information or extracting
the controls by sensing the reference agent’s trajectory.
Beyond integrating the approach with motion planners, future
work will investigate decentralized methods for deciding the
reference agent’s trajectory and the type of formation that
the team should achieve. Other extensions, include work on
a 3D version, especially for modeling aircraft formations, as
well as an extension to higher-order aircraft so as to allow
continuous or smooth velocity and curvature.

REFERENCES

[1] T. D. Barfoot, C. M. Clark, S. M. Rock, and G. M. T. D. D’Eleuterio,
“Kinematic path planning for formations of mobile robots with a non-
holonomic constraints,” in IEEE/RSJ Intern. Conference on Intelligent
Robots and Systems, Lausanne, Switzerland, 2002.

[2] T. D. Barfoot and C. M. Clark, “Motion planning for formations of
mobile robots,” Robotics and Autonomous Systems, vol. 46, no. 2, pp.
65–78, February 2004.

[3] T. Krontiris, S. Louis, and K. E. Bekris, “Simulating planar formations
for non-holonomic systems along curvlinear coordinates,” in Third
International Conference on Motion in Games, Zeist, Netherlands,
November 2010.

[4] T. Balch and R. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 6, pp. 926–939, Dec 1998.

[5] J. Fredslund and M. J. Mataric, “A general, local algorithm for robot
formations,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 5, pp. 873–846, Oct 2002.

[6] L. E. Parker, B. Kannan, X. Fu, and T. Y., “Heterogeneous mobile sen-
sor net deployment using robot herding and line-of-sight formations,”
in Proc. of the IEEE/RSJ Intern. Conference on Intelligent Robots and
Systems (IROS), 2003.

[7] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of
mobile agents using nearest neighbor rules,” IEEE Trans. on Automatic
Control, vol. 8, no. 6, pp. 988–1001, 2003.

[8] J. Desai, J. Ostrowski, and V. J. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,” Transactions on Robotics
and Aut., vol. 17, no. 6, pp. 905–908, 2001.

[9] H. G. Tanner, G. J. Pappas, and V. J. Kumar, “Leader-to-formation
stability,” in IEEE Transactions on Robotics and Automation, 2004.

[10] M. Lewis and K.-H. Tan, “High-precision formation control of mobile
robotis using virtual structures,” Autonomous Robots, vol. 4, no. 4, pp.
387–403, Oct 1997.

[11] P. Ogren, E. Fiorelli, and N. E. Leonard, “Formations with a mission:
Stable coordination of vehicle group maneuvers,” in Proc. of Sympo-
sium on Mathematical Theory of Networks and Systems, August 2002.

[12] C. Belta and V. J. Kumar, “Motion generation for formation of robots:
a geometric approach,” in IEEE International Conference on Robotics
and Automation, Seoul, South Korea, May 21-26 2001.

[13] P. Tabuada, G. J. Pappas, and P. Lima, “Motion feasibility of multi-
agent formations,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.
387–392, 2005.

[14] M. Ji and M. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness,” IEEE Transactions
on Robotics, vol. 23, no. 4, pp. 693–703, Aug. 2007.

[15] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Distributed
multi-robot task assignment and formation control,” in ICRA, May
2008, pp. 128–133.

[16] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[17] R. M. Bhatt, C. P. Tang, and V. N. Krovi, “Formation optimization
for a fleet of wheeled movile robots: A geometric approach,” Robotics
and Autonomous Systems, vol. 57, no. 1, pp. 102–120, January 2009.

[18] P. Ogren and N. E. Leonard, “Obstacle avoidance in formation,” in
IEEE Intern. Conference on Robotics and Automation (IEEE), Taipei,
Taiwan, 2003.

4908

