
Comparing Heuristic Search Methods for Finding
Effective Real-Time Strategy Game Plans

Christopher Ballinger and Sushil Louis
University of Nevada, Reno

Reno, Nevada 89503
{caballinger, sushil}@cse.unr.edu

Abstract—This paper compares genetic algorithms against bit-
setting hill-climbers for generating competitive plans to beat
an opponent in the initial stages of real-time strategy games.
Specifically, we search for build orders that generate the right
mix of entities and attack orders and compare the algorithms’
performance against optimal plans from exhaustive search.Since
multiple possible global optima exist, three hand-coded opponents
that follow different strategies serve to provide a baseline for plan
comparisons. Our results show that while our hill-climber takes
three hours to produce optimal plans against our three hard-
coded baselines, it only finds these plans six percent of the time.
On the other hand, genetic algorithms routinely find the best
plans against our baselines but take significantly longer. This
work helps game AI designers evaluate the strengths of these
types of heuristic search algorithms and serves to inform our
research on improving evolutionary approaches to RTS game
player design.

I. I NTRODUCTION

Finding effective strategies in Real-Time Strategy (RTS)
games presents a challenging problem. RTS game players
must compete for resources, build up an economy that is able
to support their military force, expand their control over the
map, and eventually destroy their opponents base. These are
military themed games and any advances in developing RTS
game players will impact planning and execution in command
and control for military assets and, more immediately, im-
pact military training simulations through the development of
smart, realistic opponents.

Several problems make finding effective strategies compli-
cated. Many types of units are available, each with their own
costs and dependencies. For example, in StarCraft, building
a marine requires50 minerals and takes25 seconds to build.
However, before you can start buildingmarinesyou must build
at least onebarracks, which requires150 minerals and takes80
seconds to build. Choosing which units to build and the order
in which to build them leads to a combinatorially explosive
number of possible strategies. An exhaustive search though
strategy space is generally not feasible and in this paper, we
apply and compare genetic algorithms (GAs) and a bit-setting
hill-climber for finding effective strategies.

Our overall goal is to create competent RTS game players
and this paper compares Genetic Algorithms (GAs) with Bit-
Setting Hill-Climbers (HCs) - two approaches to searching the
space of possible strategies for good game playing strategies.
However, several issues make such comparisons difficult. First,
there is no optimal strategy. RTS games are designed like

rock-paper-scissors games and for every possible good strategy
there is a counter strategy that can beat it. This means that it
is not trivial to compare two strategies because strategyS1

beatingS2 does not imply thatS1 is better thanS2 since
S1 could be beaten byS3 which could be beatable byS2,
as shown by Figure 1. Furthermore,S2 could beat a larger
number of strategies and thus be more robust thanS1. To deal
with these issue, we created three very different hand coded
strategies and compare how strategies generated by GAs and
hill-climbers do against these three baselines.

S1

S2S3

Fig. 1. Three strategies that defeat each other.

Once we recognize and overcome the difficulties in com-
paring strategies, we want to see how good our two algorithms
do in searching strategy spaces. Do they find good strategies,
strategies that beat one or more of our three baselines? How
long does it take? How often are good strategies found (are
GAs more robust than hill-climbers?). In order to make such
comparisons more meaningful, we also need to look at the
space of all possible strategies, that is, we need to exhaustively
list all possible strategies and evaluate their performance
against our three baselines. We therefore restrict our search
space enough to make it tractable to exhaustively list and
evaluate all strategies on our 400 core cluster. We can then
compare GAs and hill-climbers with the results of exhaustive
search to answer questions of solution quality, robustness, and
search time complexity.

This paper answers the questions posed in the previous
paragraph with respect to our baselines. In addition, we also



describe and qualitatively analyze the properties of strategies
found by the two search algorithms. Our results show that
hill-climbing is capable of producing effective strategies after
three hours, but only finds effective solutions6% of the time
out of thirty-two runs. Our GA took twenty hours to run, but
the entire population of individuals converged to three unique
optimal solutions100% of the time out of ten runs. Given
enough time, GAs thus appear to be better than our particular
hill-climber in generating high quality strategies. However, if
we are more interested in finding a quick solution, we may
opt for a hill-climber. These trade-offs inform current research
in developing a full game AI for WaterCraft, our open-source
RTS clone of StarCraft.

The next section describes related work in generating
build-orders, a sequence of commands, in RTS games and
RTS simulation environments. In Section III we describe our
representation and the details of our hill-climber and GA
implementations. Section IV presents preliminary resultsand
shows a comparison of solutions produced by our methods.
Finally, the last section provides conclusions and discusses
possible future work.

II. RELATED WORK

Much work has been done in computational and artificial
intelligence approaches to designing RTS game players. One
approach uses case based planning, taking a database of expert
demonstrations and modifying them as similar problems are
encountered. Ontañón created one example of such a system
which was used to quickly produce a good game player (game
AI) that wins often [1]. However, such a system not only
requires recording the actions of an expert that played the
game, but also having the expert “explain” to the system what
goal was being accomplished with each action taken. Case-
injected GAs [2] are similar to case-based planning. Miles and
Louis used a case-injected GA to evolve a RTS player. Unlike
case-based planning, a case-injected GA does not require a
case-base from the start, because the GA will learn new
cases as the GA works on the problem. Using case-injection
increased the rate at which the GA learned new strategies [3].
Avery and Louis also did work on co-evolving team tactics
using influence maps, allowing a group of entities to adapt to
opponent moves [4]. Tsapanos used a zeroth-level classifier,
which involved a GA and reinforcement learning. The GA in
this case found new rules that helped reinforcement learning
algorithms find solutions [5]. Spronck used a method called
dynamic scripting to create game AI for a non-RTS game.
Dynamic scripting involves selecting rules from a knowledge
base with a certain probability for each individual unit that
the game spawns. The probability of a rule being selecting
during this process was set using reinforcement learning as
well. Initially, Spronck populated the knowledge base with
hand coded rules [6]. However, Spronck et. al. later used a
GA to generate rules for the dynamic scripting knowledge
base, which further improved their results [7].

While these previous studies focused on the development
of complete RTS game players that manage all aspects of

RTS game play, we focus solely on creating build-orders. A
build-order is simply a sequence of commands that results in
a particular set of units and buildings (the build). Ordering is
important because of pre-requisite relationships betweenunits
and buildings.

Case-based reasoning has also been applied to build-orders,
as opposed to a complete game [8]. A depth first branch and
bound algorithm was used by Buro to adapt a build-order in
real time [9]. Tong used a GA to tune an artificial neural
network (ANN) for determining what units the ANN should
use to counter the opponents attack force [10]. Sandberg
used a similar approach, but used the GA to tune potential
field parameters for small-scale combat [11]. Others work
in developing some aspect of game AI for RTS games can
be found in [12], [13], [14], [15], [16]. In addition to the
variety of RTS game computational and artificial intelligence
approaches, there are also a variety of RTS environments in
which game computational and artificial intelligence can be
developed [17], [18], [19], [20], [21].

We developed WaterCraft for researching evolutionary al-
gorithms in RTS games and wrote Watercraft primarily in
Python with some C/C++ to speed up physics. WaterCraft uses
the popular Python-OGRE graphics engine for the GUI and
graphics display [22]. We modeled the game play in Water-
Craft around the popular commercial game, StarCraft [23].
While Watercraft lacks some features provided in commercial
games, we have implemented some of the core features of
all RTS games. Players can build several types of buildings
and units, with the objective of destroying their opponents
base. WaterCraft’s graphical user interface (GUI) resembles
and functions similar to the player GUI in other RTS games.
The player also has the option of playing against the AI or
another player over the network.

Fig. 2. An ”SCV” building a barracks in WaterCraft.

Other similar projects have been used in the past for
research in RTS games. The Brood-War API (BWAPI) allows
developers to retrieve information about the game state and
interact with units in StarCraft, one of the most popular



commercial RTS games [17]. Stratagus provides a free,
cross-platform RTS engine that has been used directly in
several research projects [18]. WARGUS uses Stratagus as
the back-end for game play, but uses the entity data from
the commercial game WarCraft II [19]. The same thing has
been done with STARGUS, which uses the entity data from
StarCraft [20]. ORTS, another RTS engine, provides a total
programming environment for computational and artificial
intelligence research, including a graphical client [21].While
other projects do not target a specific method, we designed
Watercraft specifically for evolutionary computing approaches.
In the next section, we describe how we configured Watercraft
for our research as well as our search methods.

III. M ETHODOLOGY

We made several changes to the default Watercraft con-
figuration. Since we evaluate the fitness of an individual by
decoding the individual into a build order and simulating
the result in Watercraft, we need to run Watercraft for every
evaluation. With thousands of evaluations necessary, we turned
off the graphics display and GUI during evaluation to simplify
our simulations and reduce the amount of wall clock time a
game takes to run. By disabling the OGRE graphics engine
we greatly reduced the amount of processing time required
to run a simulation. The ability to easily turn off the graphics
makes WaterCraft especially suited for evolutionary computing
approaches.

In this preliminary research we worked with only four types
of units and the buildings needed for their production. Marines
can be built quickly and cheaply, with barracks being the
only infrastructure required beforehand, but with low offensive
capabilities. Firebats are stronger than Marines, but require
more infrastructure and cost more to produce. Vultures are
the strongest unit, but cost the most and take the longest to
produce. SCVs are used for gathering resources and building
new structures, but have little offensive or defensive value.
When building a structure, the SCV must move to the build
location of the structure, and becomes unavailable until the
structure is complete. When gathering resources, the SCV
must move to the source of the resource, gather a small
portion, and deliver the resource to a Command Center. Once
the SCV delivers the resource to the Command Center, the
resource is added to a bank that players use to pay for
additional units and structures. When we initialize a game,
each player starts with five SCVs and a Command Center.
We place these units near sources of additional resources to
decrease the amount of time spent gathering and delivering
resources.

We created three hand-tuned “baseline” build-orders to
compare against potential solutions generated by the GA and
HC. We designed the first baseline to attack quickly with a
small force. The baseline builds three additional SCVs for
gathering minerals, followed by constructing five Marines,
then attacking the player. This strategy challenges the player
by quickly building enough units to attack before the player
builds much. The second baseline does the same, but builds

TABLE I
UNIT ENCODINGS

Bit Sequence Action Prerequisites

000-001 Build SCV (Gather Minerals) None

010 Build Marine Barracks

011-100 Build Firebat Barracks, Refinery, Academy

101 Build Vulture Barracks, Refinery, Factory

110 Build SCV (Gather Gas) Refinery

111 Attack N/A

ten Marines instead of five. While much slower than the first
strategy, the second baseline builds a much harder force to
overcome if left uninterrupted. The third baseline builds two
SCVs for gathering minerals, three SCVs for gathering gas,
five Vultures, then attacks. This build-order also takes a long
time to complete, but focuses on building fewer units that are
individually stronger.

Players typically determine how well they played by using
the score at the end of a game. In the context of our search
methods, the score also acts as a strategy’s fitness. Our fitness
calculation encourages players to find ways to destroy enemy
units and structures, as shown in Equation 1. WhereFij is the
fitness of individuali against individualj, SRi is the amount
of resources spent by individuali, UDj is the set of units
owned by individualj that were destroyed,UCk is the cost to
build unit k, BDj is the set of buildings owned by individual
j that were destroyed, andBCk is the cost to build building
k.

Fij = SRi + 2
∑

k∈UDj

UCk + 3
∑

k∈BDj

BCk (1)

We represented a build order as a sequence of commands.
Since GAs prefer a binary encoding, both the GA and the Hill-
Climber worked with the same binary encoded sequence of
commands - using GA terminology, this is our chromosome.
We encoded the chromosome as a15-length binary string.
Every three bits of the binary string encodes a unit, as shown
in Table I. When WaterCraft receives a chromosome, the game
component that deals with the artificial player (Game AI or just
AI), sequentially decodes the binary string and inserts a build
action for each encoded unit into a queue. While decoding the
binary string, the game AI verifies that all the prerequisites
shown in Table I for the next encoded unit were previously
inserted into the queue. If a prerequisite was not inserted into
the queue already, the decoder will insert a build action forthe
prerequisite immediately before the encoded unit. Our game
AI will attempt to issue build orders from the queue as quickly
as possible. When the AI fail to execute the current action
because of a lack of resources or pending prerequisite being
built, the AI waits a short duration and reattempt to execute
the action until the action succeeds.

A. Exhaustive Search

Exhaustive search evaluates all215 possible build-orders
against all three of our baselines. We limited ourselves to15-
bit solutions since that was the maximum build-order length



we could exhaustively search in a reasonable amount of
time. Exhaustive search enables us to rank all possible15-bit
solutions, and compare the effectiveness of solutions found by
GAs, HCs, as well as other search methods in the future.

B. Hill-climber

We use the bit-setting optimization hill-climber shown in
Algorithm 1, which attempts to find an effective solution
by sequentially flipping each bit and keeping the value with
the highest fitness. We determine the fitness by playing a

Algorithm 1 Bit Setting Optimization Hill-climber
chromosome = initialize()
select first bit
evaluate(chromosome)
while not end of chromosomedo

flip current bit
evaluate(chromosome)
if fitness decreasedthen

flip current bit back
end if
select next bit

end while

chromosome against all three baselines and taking the sum
of the differences in scores, as shown in Equation 2. Where
fi is the fitness of chromosomei, j is a baseline in the set
of all baselinesB, Fij is the fitness chromosomei received
against baselinej, andFji is the fitness baselinej received
against chromosomei.

fi =
∑

j∈B

Fij − Fji (2)

Hill-climber performance depends on the initial seed. We
initialize this hill-climber with thirty-two different seeds: a
chromosome set to all0’s, a chromosome set to all1’s,
and thirty randomly generated chromosomes. Using these
thirty-two different seeds enables us to obtain and report on
statistically significant results.

C. Genetic Algorithm

When evaluating an individual for genetic operations such
as selection, we used a teach set, scaled fitness, and fitness
sharing as described by Rosin and Belew [24]. For our GA
we modified the concept of a teach set; instead of creating
a new teach set each generation, we populate the teach set
solely with our baseline strategies. Usually, only chromosomes
that can defeat many teach set members have a high fitness.
However, shared fitness also gives chromosomes that only
defeat a few teach set members few other chromosomes
defeat, a high fitness. Chromosomes that defeat teach set
members few others can, probably contain new and important
innovations for winning. Giving these unique chromosomes a
higher fitness prevents diverse niches from going extinct too
quickly. We also multiply the shared fitness by the score the
chromosome received against each defeated opponent. This

allows us to identify chromosomes that not only win, but
perform significantly better in the game. We calculated fitness
sharing as shown in Equation 3. Wheref shared

i is the shared
fitness of chromosomei, Di is the set of teach set members
chromosomei defeated,j a teach set member inDi, jl is the
number of timesj lost against all chromosomes, andFij is
the fitness of chromosomei against teach set memberj.

f shared
i =

∑

j∈Di

1

jl
Fij (3)

jl is the total number of individuals that baselinej lost to
in the current population. We calculatejl using Equation 4,
whereP is the set of all chromosomes in a population, andi

is an element ofP . GameResult is a function that returns 1
if baselinej lost against individuali, and returns 0 if baseline
j won against individuali, as show by Equation 5. Since
Equation 3 only takes the sum of baselines that were defeated
jl can never be0, since if a baselinej was never defeatedj
would not be in setDi.

jl =
∑

i∈P

GameResult(j, i) (4)

GameResult(j, i) =

{

0, Fji >= Fij

1, Fji < Fij

}

(5)

When all population members have a shared fitness, we use
linear fitness scaling with a factor of1.5. At times there may be
a population member who’s shared fitness dwarfs all the other
chromosome shared fitnesss, or where all population members
have shared fitnesss that are very close. Fitness scaling helps
even out selection pressure, making the children produced
more diverse.

For the basic GA operations and parameters, we used uni-
form crossover with a95% chance of crossover occurring and
bit-mutation with a.1% chance of each individual bit changing
value. The chromosomes are selected for crossover by using
standard roulette wheel selection. Once we have created all
the children chromosomes, we evaluate them against the same
teach set, then use CHC selection to select chromosomes for
the next population [25]. This prevents valuable information
from being lost if our GA produces many unfit children.

IV. RESULTS

Running 400 nodes in parallel allowed us to complete
the exhaustive search in16 hours. The vast majority of the
available strategies end up losing to all three baselines as
shown in Figure 3. This may not be very surprising since
the baselines have the advantage of performing more than
the five actions encodable in our chromosome representation.
Despite this advantage, a substantial number of solutions find
and exploit a weakness in at least one of the baselines, as
shown in Figure 4. There are a few (difficult to see in the
Figure) that beat two baselines but there are none that beat all
three. Breaking down these results further, we can see from
the Figure, the difference in difficulty that each the baseline
provides against all possible builds.



 0

 5000

 10000

 15000

 20000

 25000

0 1 2 3

N
um

be
r 

of
 C

hr
om

os
om

es

Number of Wins

Exhaustive Search: Chromosome Win Frequency

Fig. 3. The number of times exhaustive search finds counter-strategies to
our baselines.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3

N
um

be
r 

of
 D

ef
ea

ts

Baseline ID

Exhaustive Search: Baseline Defeat Frequency

Fig. 4. The number of times the baselines lose in exhaustive search.

-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

1 2 3

D
iff

er
en

ce
 B

et
w

ee
n 

C
hr

om
os

om
e 

S
co

re
 a

nd
 B

as
el

in
e 

S
co

re

Baseline ID

Average Score Difference Against Each Baseline

Fig. 5. The average difference in score between chromosomesand each
baseline.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3

N
um

be
r 

of
 C

hr
om

os
om

es
 th

at
 W

on

Baseline ID

Exhaustive Search: Chromosomes Defeating Only One Baseline

Fig. 6. The number of counter-strategies that defeat only one baseline, and
the baselines they defeat.

Baseline1 provides the easiest strategy to overcome, base-
line 2 is harder, and baseline3 rarely loses. The average scores
also reflect these difficulties, as shown by Figure 5.

Most of the baseline losses can be attributed to strategies
that are tuned solely for beating individual baselines, as shown
by Figure 6. Though rare, the exhaustive search clearly

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 and 2 1 and 3 2 and 3

N
um

be
r 

of
 C

hr
om

os
om

es
 th

at
 W

on

Baseline IDs

Exhaustive Search: Chromosomes Defeating Only Two Baseline

Fig. 7. The number of counter-strategies that defeat only two baselines, and
the baselines they defeat.

shows that there exist strategies within our space of possible
strategies, that can also beat two opponents, shown in Figure
7. There are no15-bit strategies that beat all three baselines.
Breaking these results down further, we see once again that
baseline3 rarely loses. As we can see from these exhaustive
results, this problem provides a search space where solutions
that beat multiple baselines are few and may be difficult to
find.

Our hill-climber took 3 hours to run32 different times
with different seeds in parallel on96 nodes. Out of thirty-two
different seeds, only two seeds lead to an optimal solution
that could beat both baseline2 and baseline3. Fifteen more



seeds were able to find solutions within the top20 solutions
for defeating only baseline1. The remaining seeds lead to
solutions that lost against all baselines. However, the overall
average of the scores was still better (less negative) than
exhaustive search, as shown in Figure 8.

-1800

-1600

-1400

-1200

-1000

-800

-600

Exhaustive Hillclimber Evolution

D
iff

er
en

ce
 B

et
w

ee
n 

C
hr

om
os

om
e 

S
co

re
 a

nd
 B

as
el

in
e 

S
co

re

Search Method

Average Score Difference

Fig. 8. The average difference in score from baseline scoresfor each search
method.

The GA used a population of50 for a maximum of100
generations. Since one run of the GA took a total of20 hours to
run in parallel on150 nodes, we ran the GA a total of only ten
times with different random seeds. However the GA typically
found the best solutions after only6 hours (20 generations).
Our results show that by playing against all three baselines,
the GA converges to three unique optimal solutions. Two of
the unique solutions defeat a pair of baselines; baselines1
and 2, and the baselines2 and3. These strategies are also
the highest scoring strategies out of all strategies that defeat
the same two baselines. The third solution found was the
optimal strategy that defeated only baseline2. Because of our
fitness sharing, the best chromosome of each generation would
cycle between three strategies. As strategies that could defeat
baseline1 and baseline3 start to take over the population,
strategies that can defeat baseline2 start to die out but are
given more weight. Eventually the shared fitness crosses a
threshold where strategies that only defeat baseline2 are given
so much weight they briefly have the highest shared fitness. As
strategies that defeat baseline2 start to make a comeback in the
population, the weight given to those strategies becomes lower.
Eventually the chromosomes with the highest shared fitness
becomes strategies that can defeat baseline1 and baseline2
(although the strategy scores less than a strategy that defeats
only baseline2). Then as these strategies start to take over
the population, the cycle restarts. By generation100, the
population consists entirely of these three strategies.

V. CONCLUSION AND FUTURE WORK

This paper compared genetic algorithms with bit-setting
hill-climbing to generate strategies for beating opponents in
RTS games. We used three very different hand-coded strategies

as baselines upon which to make our comparisons. Finally,
we restricted our space of strategies to215 in order to be
able to exhaustively evaluate all215 strategies against our
three baselines and thus enable absolute comparison of genetic
algorithm performance versus a much faster deterministic bit-
setting hill-climber.

Results show that the hill-climber quickly finds good
counter-strategies (to our baselines), but is not very goodat
finding the best counter-strategies robustly. It finds the best
only about6% of the time starting with different random seeds.
The genetic algorithm, on the other hand, robustly (100% of
the time) finds the best possible strategies but can take much
longer to find them.

These results help specify trade-offs to be made when
choosing between GA and HCs in the kind of strategy spaces
found in RTS games. The results also agree well with our
understanding of genetic algorithm and hill-climbing theory.
Our results indicate that if you are interested in a quick
satisficing solution but not overly worried about optimality,
a hill-climber will probably work best. On the other hand, if
you are interested in high quality counter-strategies you should
probably use a genetic algorithm.

We are interested in quickly finding high quality adaptive
counter-strategies so that we can design human competitive
RTS game players. This paper’s results indicate that speeding
up the genetic algorithm, perhaps through case-injection,or
other method may help and will be the subject of our future
work. In addition, although the GA robustly finds high quality
counter-strategies, these strategies themselves may onlywork
well against the three baselines that they were evaluated
against. That is, the strategies found by the GA may them-
selves not be robust and able to beat many of the other215−3
strategies in our strategy space. We are thus also considering
co-evolutionary approaches to strategy generation and in future
work plan on combining case-injected genetic algorithms with
co-evolution to make progress in designing highly competent
RTS game players. This will have significant applications
for generating competent opposing forces in military training
simulations and wargaming.

ACKNOWLEDGMENT

This research is supported by ONR grant N00014-09-1-
1121.

REFERENCES

[1] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning
and execution for real-time strategy games,” inProceedings of the
7th international conference on Case-Based Reasoning: Case-Based
Reasoning Research and Development, ser. ICCBR ’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 164–178. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74141-112

[2] S. Louis and J. McDonnell, “Learning with case-injectedgenetic algo-
rithms,” Evolutionary Computation, IEEE Transactions on, vol. 8, no. 4,
pp. 316 – 328, aug. 2004.

[3] S. Louis and C. Miles, “Playing to learn: case-injected genetic algo-
rithms for learning to play computer games,”Evolutionary Computation,
IEEE Transactions on, vol. 9, no. 6, pp. 669 – 681, dec. 2005.



[4] P. Avery and S. Louis, “Coevolving influence maps for spatial team
tactics in a rts game,” inProceedings of the 12th annual conference
on Genetic and evolutionary computation, ser. GECCO ’10. New
York, NY, USA: ACM, 2010, pp. 783–790. [Online]. Available:
http://doi.acm.org/10.1145/1830483.1830621

[5] M. T. Tsapanos, K. C. Chatzidimitriou, and P. A. Mitkas, “A zeroth-level
classifier system for real time strategy games,” inProceedings of the
2011 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology - Volume 02, ser. WI-IAT ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 244–247.
[Online]. Available: http://dx.doi.org/10.1109/WI-IAT.2011.177

[6] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma,
“Adaptive game ai with dynamic scripting,” Mach. Learn.,
vol. 63, no. 3, pp. 217–248, Jun. 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10994-006-6205-6

[7] M. Ponsen, H. Munoz-Avila, P. Spronck, and D. W. Aha,
“Automatically generating game tactics through evolutionary learning,”
AI Magazine, vol. 27, no. 3, pp. 75–84, 2006. [Online]. Available:
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1894

[8] B. G. Weber and M. Mateas, “Case-based reasoning for build order
in real-time strategy games,” inArtificial Intelligence and Interactive
Digital Entertainment (AIIDE 2009), 10/2009 2009.

[9] D. Churchill and M. Buro, “Build order optimization in starcraft,”
in Artificial Intelligence and Interactive Digital Entertainment (AIIDE
2011), 10/2011 2011.

[10] C. K. Tong, C. K. On, J. Teo, and A. M. J. Kiring, “Evolving
neural controllers using ga for warcraft 3-real time strategy game,” in
Proceedings of the 2011 Sixth International Conference on Bio-Inspired
Computing: Theories and Applications, ser. BIC-TA ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 15–20. [Online].
Available: http://dx.doi.org/10.1109/BIC-TA.2011.70

[11] T. W. Sandberg, “Evolutionary multi-agent potential field based ai
approach for ssc scenarios in rts games,” Master’s thesis, University
of Copenhagen, February 2011.

[12] J. McCoy and M. Mateas, “An integrated agent for
playing real-time strategy games,” inProceedings of the 23rd
national conference on Artificial intelligence - Volume 3, ser.
AAAI’08. AAAI Press, 2008, pp. 1313–1318. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1620270.1620278

[13] F. Safadi, R. Fonteneau, and D. Ernst, “Artificial intelligence design for
real-time strategy games,” inNIPS Workshop on Decision Making with
Multiple Imperfect Decision Makers, 2011.

[14] B. G. Weber, M. Mateas, and A. Jhala, “Building human-level ai for real-
time strategy games,” inProceedings of the AAAI Fall Symposium on
Advances in Cognitive Systems, AAAI Press. San Francisco, California:
AAAI Press, 2011.

[15] D. Livingstone, “Coevolution in hierarchical ai for strategy games,” in
CIG’05, 2005.

[16] S. Wintermute, J. Xu, and J. Laird, “Sorts: A human-level approach to
real-time strategy ai,”Ann Arbor, vol. 1001, pp. 48 109–2121, 2007.

[17] “Bwapi: An api for interacting with starcraft: Broodwar.” [Online].
Available: http://code.google.com/p/bwapi/

[18] M. J. V. Ponsen, S. Lee-urban, H. Muoz-avila, D. W. Aha, and
M. Molineaux, “Stratagus: An open-source game engine for research
in real-time strategy games,” Naval Research Laboratory, Navy Center
for, Tech. Rep., 2005.

[19] T. W. Team, “Wargus,” 2011. [Online]. Available:
http://wargus.sourceforge.net

[20] “Stargus,” 2009. [Online]. Available: http://stargus.sourceforge.net/
[21] M. Buro, “Orts - a free software rts game engine,” 2005. [Online].

Available: http://skatgame.net/mburo/orts/
[22] T. K. S. Ltd, “Ogre open source 3d graphics engine,” February 2005.

[Online]. Available: http://www.ogre3d.org/
[23] B. Entertainment, “Starcraft,” March 1998. [Online].Available:

http://us.blizzard.com/en-us/games/sc/
[24] C. D. Rosin and R. K. Belew, “New methods for competitive

coevolution,” Evol. Comput., vol. 5, no. 1, pp. 1–29, Mar. 1997.
[Online]. Available: http://dx.doi.org/10.1162/evco.1997.5.1.1

[25] L. J. Eshelman, “The chc adaptive search algorithm : Howto have
safe search when engaging in nontraditional genetic recombination,”
Foundations of Genetic Algorithms, pp. 265–283, 1991. [Online].
Available: http://ci.nii.ac.jp/naid/10000024547/en/


