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Abstract—This paper compares genetic algorithms against bit- rock-paper-scissors games and for every possible goddgyra
setting hill-climbers for generating competitive plans to beat there is a counter strategy that can beat it. This meanstthat i
an opponent in the initial stages of real-time strategy gam® g not trivial to compare two strategies because stratgy

Specifically, we search for build orders that generate the ght - . . .
mix of entities and attack orders and compare the algorithms beating 5, does not imply thatS; is better thanS, since

performance against optimal plans from exhaustive searciSince 51 could be beaten bys; which could be beatable by,
multiple possible global optima exist, three hand-coded gmonents as shown by Figure 1. Furthermorg; could beat a larger
that follow different strategies serve to provide a baselie for plan  number of strategies and thus be more robust $harfo deal
comparisons. Our results show that while our hill-climber @akes i these issue, we created three very different hand coded
three hours to produce optimal plans against our three hard- ) .

coded baselines, it only finds these plans six percent of tharte. S'Frate_gles and ComPare how strategies g_enerated by GAs and
On the other hand, genetic algorithms routinely find the best hill-climbers do against these three baselines.

plans against our baselines but take significantly longer. fiis

work helps game Al designers evaluate the strengths of these

types of heuristic search algorithms and serves to inform ou

research on improving evolutionary approaches to RTS game

player design.

I. INTRODUCTION

Finding effective strategies in Real-Time Strategy (RTS
games presents a challenging problem. RTS game play
must compete for resources, build up an economy that is a
to support their military force, expand their control ovhaet
map, and eventually destroy their opponents base. These 52
military themed games and any advances in developing R
game players will impact planning and execution in commat
and control for military assets and, more immediately, in
pact military training simulations through the developineh
smart, realistic opponents. Fig. 1. Three strategies that defeat each other.
Several problems make finding effective strategies compli-
cated. Many types of units are available, each with their ownOnce we recognize and overcome the difficulties in com-
costs and dependencies. For example, in StarCraft, bgildiparing strategies, we want to see how good our two algorithms
a marinerequires50 minerals and take85 seconds to build. do in searching strategy spaces. Do they find good strategies
However, before you can start buildingarinesyou must build  strategies that beat one or more of our three baselines? How
at least ondarracks which required 50 minerals and take®) long does it take? How often are good strategies found (are
seconds to build. Choosing which units to build and the ord&As more robust than hill-climbers?). In order to make such
in which to build them leads to a combinatorially explosiveomparisons more meaningful, we also need to look at the
number of possible strategies. An exhaustive search thouggiace of all possible strategies, that is, we need to exkalyst
strategy space is generally not feasible and in this paper, list all possible strategies and evaluate their performaanc
apply and compare genetic algorithms (GAs) and a bit-gettinagainst our three baselines. We therefore restrict ourckear
hill-climber for finding effective strategies. space enough to make it tractable to exhaustively list and
Our overall goal is to create competent RTS game playaergaluate all strategies on our 400 core cluster. We can then
and this paper compares Genetic Algorithms (GAs) with Bitompare GAs and hill-climbers with the results of exhawstiv
Setting Hill-Climbers (HCs) - two approaches to searchhmg t search to answer questions of solution quality, robustreess
space of possible strategies for good game playing stetegsearch time complexity.
However, several issues make such comparisons difficu#tt, Fi  This paper answers the questions posed in the previous
there is no optimal strategy. RTS games are designed ligaragraph with respect to our baselines. In addition, we als




describe and qualitatively analyze the properties of effies RTS game play, we focus solely on creating build-orders. A
found by the two search algorithms. Our results show thhatild-order is simply a sequence of commands that results in
hill-climbing is capable of producing effective strateg@fter a particular set of units and buildings (the build). Ordgris
three hours, but only finds effective solutiod® of the time important because of pre-requisite relationships betvwueéts
out of thirty-two runs. Our GA took twenty hours to run, buand buildings.
the entire population of individuals converged to threequei ~ Case-based reasoning has also been applied to build-prders
optimal solutions100% of the time out of ten runs. Given as opposed to a complete game [8]. A depth first branch and
enough time, GAs thus appear to be better than our particutenund algorithm was used by Buro to adapt a build-order in
hill-climber in generating high quality strategies. Howevif real time [9]. Tong used a GA to tune an artificial neural
we are more interested in finding a quick solution, we mayetwork (ANN) for determining what units the ANN should
opt for a hill-climber. These trade-offs inform currenteasch use to counter the opponents attack force [10]. Sandberg
in developing a full game Al for WaterCraft, our open-sourcesed a similar approach, but used the GA to tune potential
RTS clone of StarCraft. field parameters for small-scale combat [11]. Others work
The next section describes related work in generatiig developing some aspect of game Al for RTS games can
build-orders, a sequence of commands, in RTS games defound in [12], [13], [14], [15], [16]. In addition to the
RTS simulation environments. In Section Il we describe owariety of RTS game computational and artificial intelligen
representation and the details of our hill-climber and GApproaches, there are also a variety of RTS environments in
implementations. Section IV presents preliminary resattd which game computational and artificial intelligence can be
shows a comparison of solutions produced by our methodveloped [17], [18], [19], [20], [21].
Finally, the last section provides conclusions and disesiss We developed WaterCraft for researching evolutionary al-
possible future work. gorithms in RTS games and wrote Watercraft primarily in
Python with some C/C++ to speed up physics. WaterCraft uses
Il. RELATED WORK the popular Python-OGRE graphics engine for the GUI and
Much work has been done in computational and artificigiraphics display [22]. We modeled the game play in Water-
intelligence approaches to designing RTS game players. Guiaft around the popular commercial game, StarCraft [23].
approach uses case based planning, taking a database df eXjgbile Watercraft lacks some features provided in commercia
demonstrations and modifying them as similar problems agames, we have implemented some of the core features of
encountered. Ontafidon created one example of such a sys&dinRTS games. Players can build several types of buildings
which was used to quickly produce a good game player (gamed units, with the objective of destroying their opponents
Al) that wins often [1]. However, such a system not onlpase. WaterCraft's graphical user interface (GUI) resesbl
requires recording the actions of an expert that played taed functions similar to the player GUI in other RTS games.
game, but also having the expert “explain” to the system whahe player also has the option of playing against the Al or
goal was being accomplished with each action taken. Caseother player over the network.
injected GAs [2] are similar to case-based planning. Miled a
Louis used a case-injected GA to evolve a RTS player. Unlil
case-based planning, a case-injected GA does not requir
case-base from the start, because the GA will learn n¢
cases as the GA works on the problem. Using case-injecti
increased the rate at which the GA learned new strategies
Avery and Louis also did work on co-evolving team tacticf
using influence maps, allowing a group of entities to adapt [
opponent moves [4]. Tsapanos used a zeroth-level classif{
which involved a GA and reinforcement learning. The GA i _ :
this case found new rules that helped reinforcement legrni Y
algorithms find solutions [5]. Spronck used a method call 1 é
dynamic scripting to create game Al for a non-RTS gam
Dynamic scripting involves selecting rules from a knowledg
base with a certain probability for each individual unit tthe
the game spawns. The probability of a rule being selectii
during this process was set using reinforcement learning as
well. Initially, Spronck populated the knowledge base with Fig. 2. An "SCV” building a barracks in WaterCraft.
hand coded rules [6]. However, Spronck et. al. later used a
GA to generate rules for the dynamic scripting knowledge Other similar projects have been used in the past for
base, which further improved their results [7]. research in RTS games. The Brood-War API (BWAPI) allows
While these previous studies focused on the developmeleivelopers to retrieve information about the game state and
of complete RTS game players that manage all aspectsimeract with units in StarCraft, one of the most popular
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. . TABLE |
commercial RTS games [17]. Stratagus provides a free, UNIT ENCODINGS

cross-platform RTS engine that has been used directly iré. . —
. it Sequence Action Prerequisites
several research projects [18]. WARGUS uses Stratagus—as . .
. 000-001 Build SCV (Gather Minerals) None
the back-end for game play, but uses the entity data from . :
. . 010 Build Marine Barracks
the commercial game WarCraft 1l [19]. The same thing has o— .
. . . 011-100 Build Firebat Barracks, Refinery, Academ
been done with STARGUS, which uses the entity data from . .
. . 101 Build Vulture Barracks, Refinery, Factory
StarCraft [20]. ORTS, another RTS engine, provides a total _ .
p . . e 110 Build SCV (Gather Gas) Refinery
programming environment for computational and artificigd 1 ook A

intelligence research, including a graphical client [24hile
other projects do not target a specific method, we designed

Watercraft specifically for evolutionary computing apprbes.

In the next section, we describe how we configured Watercrégn Marines instead of five. While much slower than the first

for our research as well as our search methods. strategy, the second baseline builds a much harder force to
overcome if left uninterrupted. The third baseline build® t
1. METHODOLOGY SCVs for gathering minerals, three SCVs for gathering gas,

We made several changes to the default Watercraft cdive Vultures, then attacks. This build-order also takesraglo
figuration. Since we evaluate the fitness of an individual Bime to complete, but focuses on building fewer units that ar
decoding the individual into a build order and simulatingndividually stronger.
the result in Watercraft, we need to run Watercraft for every Players typically determine how well they played by using
evaluation. With thousands of evaluations necessary, medu the score at the end of a game. In the context of our search
off the graphics display and GUI during evaluation to sirfypli methods, the score also acts as a strategy'’s fitness. Owgsfitne
our simulations and reduce the amount of wall clock time Galculation encourages players to find ways to destroy enemy
game takes to run. By disabling the OGRE graphics engibgits and structures, as shown in Equation 1. WHgyes the
we greatly reduced the amount of processing time requirithess of individual against individualj, SR; is the amount
to run a simulation. The ability to easily turn off the gragshi of resources spent by individual UD; is the set of units
makes WaterCraft especially suited for evolutionary cotimgu owned by individualj that were destroyed/Cy is the cost to
approaches. build unitk, BD; is the set of buildings owned by individual

In this preliminary research we worked with only four typeg that were destroyed, anBC}, is the cost to build building
of units and the buildings needed for their production. Mesi .
can be built quickly and cheaply, with barracks being the Fij=SR; +2 Z UCk +3 Z BCy (1)
only infrastructure required beforehand, but with low offve kEUD; keBD;

capabilities. Firebats are stronger than Marines, butirequ e represented a build order as a sequence of commands.
more infrastructure and cost more to produce. Vultures aggnce GAs prefer a binary encoding, both the GA and the Hill-
the strongest unit, but cost the most and take the longestdf@mber worked with the same binary encoded sequence of
produce. SCVs are used for gathering resources and buildgimands - using GA terminology, this is our chromosome.
new structures, but have little offensive or defensive ®aluywe encoded the chromosome asl@length binary string.
When building a structure, the SCV must move to the buildyery three bits of the binary string encodes a unit, as shown
location of the structure, and becomes unavailable unél thy Taple 1. When WaterCraft receives a chromosome, the game
structure is complete. When gathering resources, the SE¥mponent that deals with the artificial player (Game Al st ju
must move to the source of the resource, gather a smgjl sequentially decodes the binary string and insertsitl bu
portion, and deliver the resource to a Command Center. Onggjon for each encoded unit into a queue. While decoding the
the SCV delivers the resource to the Command Center, §@ary string, the game Al verifies that all the prerequisite
resource is added to a bank that players use to pay f®{own in Table I for the next encoded unit were previously
additional units and structures. When we initialize a gamgserted into the queue. If a prerequisite was not inserte i
each player starts with five SCVs and a Command Centg{e queue already, the decoder will insert a build actiorttfer
We place these units near sources of additional resourcegfgrequisite immediately before the encoded unit. Our game
decrease the amount of time spent gathering and deliverig;ll attempt to issue build orders from the queue as qujickl
resources. as possible. When the Al fail to execute the current action
We created three hand-tuned “baseline” build-orders fcause of a lack of resources or pending prerequisite being

compare against potential solutions generated by the GA agdit, the Al waits a short duration and reattempt to execute
HC. We designed the first baseline to attack quickly with @e action until the action succeeds.

small force. The baseline builds three additional SCVs for )

gathering minerals, followed by constructing five Marined\- Exhaustive Search

then attacking the player. This strategy challenges thgepla Exhaustive search evaluates al°® possible build-orders
by quickly building enough units to attack before the playeagainst all three of our baselines. We limited ourselvessto
builds much. The second baseline does the same, but bubitssolutions since that was the maximum build-order length



we could exhaustively search in a reasonable amount alfows us to identify chromosomes that not only win, but
time. Exhaustive search enables us to rank all possibleit perform significantly better in the game. We calculated fitne
solutions, and compare the effectiveness of solutionsddyyn sharing as shown in Equation 3. Whefige< is the shared
GAs, HCs, as well as other search methods in the future. fithess of chromosomé D; is the set of teach set members
o chromosome defeated; a teach set member iR, j; is the

B. Hill-climber number of times; lost against all chromosomes, aid; is

We use the bit-setting optimization hill-climber shown inhe fitness of chromosomeagainst teach set membgr
Algorithm 1, which attempts to find an effective solution 1
by sequentially flipping each bit and keeping the value with shared _ Z —Fy (3)
Jl

the highest fithess. We determine the fithess by playing a jeD;

41 is the total number of individuals that baselifidost to

in the current population. We calculaje using Equation 4,
where P is the set of all chromosomes in a population, @and

is an element ofP. GameResult is a function that returns 1

if baselinej lost against individual, and returns 0 if baseline

j won against individual, as show by Equation 5. Since
Equation 3 only takes the sum of baselines that were defeated
41 can never bd), since if a baseling was never defeateg
would not be in sedD;.

Algorithm 1 Bit Setting Optimization Hill-climber

chromosome = initialize()
select first bit
evaluate(chromosome)
while not end of chromosoméo

flip current bit

evaluate(chromosome)

if fitness decreasetthien

flip current bit back

end if g1 = Z GameResult(j,1) (4)
select next bit icP
end while
LN O, Fji >= Fij
GameResult(j,i) = { I, F,<F, } (5)

chromosome against all three baselines and taking the sum . ]

of the differences in scores, as shown in Equation 2. Wheféhen all population members have a shared fitness, we use
f; is the fitness of chromosome j is a baseline in the set linear fitness scaling with a factor of5. At times there may be

of all baselinesB, F;; is the fitness chromosomereceived 2 population member who's shared fitness dwarfs all the other
against baseling, and Fj; is the fitness baseling received chromosome shared fitnesss, or where all population members

against chromosome have shared fitnesss that are very close. Fitness scalipg hel
even out selection pressure, making the children produced
fi=>Y Fj—Fj (2)  more diverse.
j€B For the basic GA operations and parameters, we used uni-

Hill-climber performance depends on the initial seed. W@rm crossover with &5% chance of crossover occurring and
initialize this hill-climber with thirty-two different seds: a bit-mutation with a1% chance of each individual bit changing

chromosome set to all’s, a chromosome set to all's, Value. The chromosomes are selected for crossover by using
and thirty randomly generated chromosomes. Using thef@ndard roulette wheel selection. Once we have created all
thirty-two different seeds enables us to obtain and report &€ children chromosomes, we evaluate them against the same

statistically significant results. teach set, then use CHC selection to select chromosomes for
_ ) the next population [25]. This prevents valuable informati
C. Genetic Algorithm from being lost if our GA produces many unfit children.

When evaluating an individual for genetic operations such
as selection, we used a teach set, scaled fitness, and fithess
sharing as described by Rosin and Belew [24]. For our GA Running 400 nodes in parallel allowed us to complete
we modified the concept of a teach set; instead of creatitige exhaustive search it6 hours. The vast majority of the
a new teach set each generation, we populate the teachaseilable strategies end up losing to all three baselines as
solely with our baseline strategies. Usually, only chroomss shown in Figure 3. This may not be very surprising since
that can defeat many teach set members have a high fithélss. baselines have the advantage of performing more than
However, shared fitness also gives chromosomes that offig five actions encodable in our chromosome representation
defeat a few teach set members few other chromosonidsspite this advantage, a substantial number of solutiowls fi
defeat, a high fitness. Chromosomes that defeat teach aed exploit a weakness in at least one of the baselines, as
members few others can, probably contain new and importafitown in Figure 4. There are a few (difficult to see in the
innovations for winning. Giving these unique chromosomesFkigure) that beat two baselines but there are none that beat a
higher fithess prevents diverse niches from going extinat téthree. Breaking down these results further, we can see from
quickly. We also multiply the shared fitness by the score thiee Figure, the difference in difficulty that each the baseli
chromosome received against each defeated opponent. Thivides against all possible builds.

IV. RESULTS



Exhaustive Search: Chromosome Win Frequency
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Fig. 3. The number of times exhaustive search finds coutrsiegies to
our baselines.

Exhaustive Search: Baseline Defeat Frequency
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Fig. 4. The number of times the baselines lose in exhaustaech.

Average Score Difference Against Each Baseline
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Fig. 5. The average difference in score between chromos@nédseach
baseline.

Exhaustive Search: Chromosomes Defeating Only One Baseline
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Fig. 6. The number of counter-strategies that defeat onéy lmaseline, and
the baselines they defeat.

Baselinel provides the easiest strategy to overcome, base-
line 2 is harder, and baselirferarely loses. The average scores
also reflect these difficulties, as shown by Figure 5.

Most of the baseline losses can be attributed to strategies
that are tuned solely for beating individual baselines hasve
by Figure 6. Though rare, the exhaustive search clearly

Exhaustive Search: Chromosomes Defeating Only Two Baseline
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Fig. 7. The number of counter-strategies that defeat ontyaselines, and
the baselines they defeat.

shows that there exist strategies within our space of plessib
strategies, that can also beat two opponents, shown ind-igur
7. There are nd5-bit strategies that beat all three baselines.
Breaking these results down further, we see once again that
baseline3 rarely loses. As we can see from these exhaustive
results, this problem provides a search space where sadutio
that beat multiple baselines are few and may be difficult to
find.

Our hill-climber took 3 hours to run32 different times
with different seeds in parallel &6 nodes. Out of thirty-two
different seeds, only two seeds lead to an optimal solution
that could beat both baselieand baseline. Fifteen more



seeds were able to find solutions within the ipsolutions as baselines upon which to make our comparisons. Finally,
for defeating only baselingé. The remaining seeds lead towe restricted our space of strategies2t® in order to be
solutions that lost against all baselines. However, thaallve able to exhaustively evaluate al'® strategies against our
average of the scores was still better (less negative) thidunee baselines and thus enable absolute comparison digene

exhaustive search, as shown in Figure 8. algorithm performance versus a much faster determinigtic b
setting hill-climber.
Average Score Difference Results show that the hill-climber quickly finds good

-1800

T T

counter-strategies (to our baselines), but is not very gatod
finding the best counter-strategies robustly. It finds thst be
only about6% of the time starting with different random seeds.
The genetic algorithm, on the other hand, robustl§o{s of
the time) finds the best possible strategies but can take much
] longer to find them.
These results help specify trade-offs to be made when
1 choosing between GA and HCs in the kind of strategy spaces
found in RTS games. The results also agree well with our
1 understanding of genetic algorithm and hill-climbing theo
Our results indicate that if you are interested in a quick
— satisficing solution but not overly worried about optimglit
Exhaustive Hillciimber Evolution a hill-climber will probably work best. On the other hand, if
Search Method you are interested in high quality counter-strategies ymukl
Fig. 8. The average difference in score from baseline sdoresach search probably use a genetic algorithm.
method. We are interested in quickly finding high quality adaptive
counter-strategies so that we can design human competitive
The GA used a population df0 for a maximum of100 RTS game players. This paper’s results indicate that spgedi
generations. Since one run of the GA took a total@hoursto  up the genetic algorithm, perhaps through case-injection,
run in parallel onl50 nodes, we ran the GA a total of only tengther method may help and will be the subject of our future
times with different random seeds. However the GA typicallyork. In addition, although the GA robustly finds high qugalit
found the best solutions after onfiyhours @0 generations). counter-strategies, these strategies themselves maynamky
Our results show that by playing against all three baselinggell against the three baselines that they were evaluated
the GA converges to three unique optimal solutions. Two @gainst. That is, the strategies found by the GA may them-
the unique solutions defeat a pair of baselines; baselineselves not be robust and able to beat many of the atter 3
and 2, and the baselineg and3. These strategies are alsastrategies in our strategy space. We are thus also consideri
the highest scoring strategies out of all strategies thétade Co-evo|utionary approaches to Strategy genera’[ion andumd
the same two baselines. The third solution found was tb\ﬂ)rk p|an on Combining Case-injected genetic a|gorithn‘tj;wi
optimal strategy that defeated only baselhdecause of our co-evolution to make progress in designing highly competen
fitness sharing, the best chromosome of each generatiomwogs game players. This will have significant applications

cycle between three strategies. As strategies that codéhtie for generating competent opposing forces in military firagn
baselinel and baseline3 start to take over the population,simulations and wargaming.

strategies that can defeat baselihestart to die out but are

given more weight. Ev_entually the shared fitngss crosses a ACKNOWLEDGMENT

threshold where strategies that only defeat baséliaee given
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strategies that defeat baselihstart to make a comeback in thel121.

population, the weight given to those strategies beconvesrlo
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