
Comparing Coevolution, Genetic Algorithms, and
Hill-Climbers for Finding Real-Time Strategy Game Plans

Christopher Ballinger
University of Nevada, Reno

Reno, Nevada 89503
caballinger@cse.unr.edu

Sushil Louis
University of Nevada, Reno

Reno, Nevada 89503
sushil@cse.unr.edu

ABSTRACT
This paper evaluates a co-evolutionary genetic algorithm’s
performance at generating competitive strategies in the ini-
tial stages of real-time strategy games. Specifically, we eval-
uate co-evolution’s performance against an exhaustive search
of all possible build orders. Three hand coded strategies out-
side this exhaustive list provide a quantitative baseline for
comparison with other strategy search algorithms. Earlier
work had shown that a bit-setting hill-climber only finds
the best strategies six percent of the time but takes signifi-
cantly less time compared to a genetic algorithm that rou-
tinely finds the best strategies. Our results here show that
co-evolved strategies win or tie against hill-climber and ge-
netic algorithm strategies eighty percent of the time but rou-
tinely lose to the three hand coded baselines. This work in-
forms our research on improving coevolutionary approaches
to real-time strategy game player design.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Evolutionary Computation;
I.2.1 [Applications and Expert Systems]: Games

General Terms
Algorithms

Keywords
Coevolution, Real-Time Strategy Games, Build-orders

1. INTRODUCTION
Finding effective and robust strategies in Real-Time Strat-

egy (RTS) games presents a challenging problem. RTS game
players must compete for resources, build up an economy
that is able to support their military force, expand their
control over the map, and eventually destroy their oppo-
nent’s base. Any advances in developing RTS game players
will impact planning and execution in competitive industrial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM TBA ...$15.00.

settings through the development of smart, realistic oppo-
nents.

Several problems make finding effective strategies compli-
cated. Many types of units are available, each with their own
costs and dependencies. For example, in StarCraft, build-
ing a marine requires 50 minerals and takes 25 seconds to
build. However, before you can start building marines you
must build at least one barracks, which requires 150 min-
erals and takes 80 seconds to build. Choosing which units
to build and the order in which to build them leads to a
combinatorially explosive number of possible strategies. An
exhaustive search through the strategy space is generally not
feasible and in this paper, we compare coevolutionary algo-
rithm (CA) generate strategies aginst hand-coded baselines
and solutions produced by a genetic algorithm (GA) and
hill-climber (HC) from prior work [4].

Our overall goal is to create competent RTS game players
and this paper compare CAs to GAs and HCs. However,
several issues make such comparisons difficult. First, there
is no single optimal strategy. RTS games are designed like
rock-paper-scissors games and for every possible good strat-
egy there is a counter strategy that can beat it. This means
that it is not trivial to compare two strategies because strat-
egy S1 beating S2 does not imply that S1 is better than S2

since S1 could be beaten by S3 which could be beatable by
S2, as shown by Figure 1. Furthermore, S2 could beat a
larger number of strategies and thus be more robust than
S1.

Figure 1: Three strategies that defeat each other.

Once we recognize and overcome the difficulties in com-
paring strategies, we want to see how well co-evolution does
compared to HCs and GAs in searching strategy spaces.
Does CA find good strategies, strategies that beat one or
more of our three baselines? The GA and HC search to find
strategies that beat our three hand-coded baselines. How

do the CA found strategies perform against GA and HC
generated strategies? Are CAs more robust than GAs or
HCs? In order to make such comparisons more meaningful,
we also need to look at the space of all possible strategies,
that is, we need to exhaustively list all possible strategies
and evaluate their performance against our three baselines.
We therefore (as in our prior work) restrict our search space
enough to make it tractable to exhaustively list and evaluate
all strategies on our 400 core cluster. We can then compare
CAs against GAs, HCs, and with the results of exhaustive
search to answer questions of solution quality, robustness,
and search time complexity.
This paper answers the questions posed in the previous

paragraph with respect genetic algorithms and a bit setting
hill-climber. In addition, we also describe and qualitatively
analyze the properties of strategies found by the CA. Our
results show that the CA teach set solutions beat GA gen-
erated and HC generated solutions 80% of the the time but
fare much worse against the three hand code baselines. Since
the GA generated solutions do relatively well against the
baselines, the CA is tending to find solutions that beat the
GA but not the baselines and forms one of the corners of the
triangle in Figure 1 above with the GA and baselines making
up the other two corners. These results inform our current
research in developing a full game AI for WaterCraft, our
open-source RTS clone of StarCraft.
The next section describes related work in generating game

players with coevolutionary techniques and RTS simulation
environments. In Section 3 we describe our representation
and the details of our CA implementation. Section 4 presents
preliminary results and shows a comparison of solutions pro-
duced by our methods. Finally, the last section provides
conclusions and discusses possible future work.

2. RELATED WORK
Much work has been done in coevolutionary approaches to

designing players for various games, particularly for board
games. Chellapilla and Fogel used coevolution to tune the
weights of an artificial neural network (ANN) to play Check-
ers [7]. The best resulting ANN competed against human
players and was able to win most games, including a player
who was 27 points away from the “Master” level and ranked
as 98th out of over 80,0000 registered users on a Checkers
website. Cowling used coevolution to tun an ANN to play
“The Virus Game”, which were able to win against oppo-
nent never seen during training [8]. Davis and Kendall co-
evolved the weights of an evaluation function for the game
“Awari” [9]. Using a population of 20 chromosomes over
250 generations, Davis and Kendall coevolved a player that
could win three out of the four difficultly settings in the
commercial Awari game “Awale”. Nitschke used competi-
tive coevolution in a pursuit-evasion game to evolve pursuer-
entities that cooperated with each other to capture one of
the evader-entities [14].
In addition to board games, computer games without dis-

crete game-states have recently become to target of coevo-
lution research. Cardamone used cooperative coevolution
to optimize the parameters of a race car for a specific AI
in the racing simulator TORCS [6]. Coevolution increased
the cars performance more than a GA, and the final result
placed 4th in the 2009 TORCS Endurance World Champi-
onship, against AIs and car configurations that were turned
with human expertise. Avery and Louis also did work on co-

evolving team tactics using influence maps, allowing a group
of entities to adapt to opponent moves [3]. Keaveney and
Riordan used an abstract RTS game to coevolve spatial tac-
tical coordination [12]. They coevolved two populations,
a population that only played on one map and a popula-
tion that played on multiple maps. While the population
that only played was not overly specialized to win on that
one map, the population that played on multiple maps per-
formed much better.

Our prior work in this domain investigated GAs and HCs
for finding robust strategies for RTS games [4]. In that
study, we used the same three hand-coded baseline strate-
gies to evaluate the fitness of individuals found by a GA
and HC, and used exhaustive search to rank how good the
strategies were overall. We will go over these results briefly
in Section 4.

We developed WaterCraft for researching evolutionary al-
gorithms in RTS games and wrote Watercraft primarily in
Python with some C/C++ to speed up physics. Water-
Craft uses the popular Python-OGRE graphics engine for
the GUI and graphics display [13]. We modeled the game
play in WaterCraft around the popular commercial game,
StarCraft [10]. While Watercraft lacks some features pro-
vided in commercial games, we have implemented some of
the core features of all RTS games. Players can build several
types of buildings and units, with the objective of destroying
their opponent’s base. WaterCraft’s graphical user interface
(GUI) resembles and functions similar to the player GUI in
other RTS games. The player also has the option of playing
against the AI or another player over the network.

Figure 2: Several SCVs gathering additional re-

sources.

Other similar projects have been used in the past for re-
search in RTS games. The Brood-War API (BWAPI) allows
developers to retrieve information about the game state and
interact with units in StarCraft [1]. Stratagus provides a
free, cross-platform RTS engine that has been used directly
in several research projects [15]. WARGUS uses Strata-
gus as the back-end for game play, but uses the entity data
from the commercial game WarCraft II [17]. The same thing
has been done with STARGUS, which uses the entity data
from StarCraft [2]. ORTS, another RTS engine, provides a
total programming environment for computational and ar-

tificial intelligence research, including a graphical client [5].
While other projects do not target a specific method, we
designed Watercraft specifically for evolutionary computing
approaches. In the next section, we describe how we con-
figured Watercraft for our research as well as our search
methods.

3. METHODOLOGY
We made several changes to the default Watercraft con-

figuration. Since we evaluate the fitness of an individual by
decoding the individual into a build-order and simulating
the result in Watercraft, we need to run Watercraft for ev-
ery evaluation. With thousands of evaluations necessary, we
turned off the graphics display and GUI during evaluation
to simplify our simulations and reduce the amount of wall
clock time a game takes to run. By disabling the OGRE
graphics engine we greatly reduced the amount of process-
ing time required to run a simulation. The ability to easily
turn off the graphics makes WaterCraft especially suited for
evolutionary computing approaches.
In this preliminary research we worked with only four

types of units and the buildings needed for their produc-
tion. Marines can be built quickly and cheaply, with bar-
racks being the only infrastructure required beforehand, but
with low offensive capabilities. Firebats are stronger than
Marines, but require more infrastructure and cost more to
produce. Vultures are the strongest unit, but cost the most
and take the longest to produce. SCVs are used for gath-
ering resources and building new structures, but have little
offensive or defensive value. When building a structure, the
SCV must move to the build location of the structure, and
becomes unavailable until the structure is complete. When
gathering resources, the SCV must move to the source of the
resource, gather a small portion, and deliver the resource to
a Command Center. Once the SCV delivers the resource to
the Command Center, the resource is added to a bank that
players use to pay for additional units and structures. When
we initialize a game, each player starts with five SCVs and
a Command Center. We place these units near sources of
additional resources to decrease the amount of time spent
gathering and delivering resources.
We created three hand-tuned “baseline” build-orders to

compare against potential solutions generated by the CA,
GA and HC. These baselines take 30 bits to encode, com-
pared to the 15 bit solutions we develop in covolution. This
allows the baselines to present a challenging opponent that
coevolution will have never encountered before, in contrast
to the 15 bit solutions produced by the GA and HC, which
the CA may still independently discover. We designed the
first baseline to attack quickly with a small force. The base-
line builds three additional SCVs for gathering minerals,
followed by constructing five Marines, then attacking the
player. This strategy challenges the player by quickly build-
ing enough units to attack before the player builds much.
The second baseline does the same, but builds ten Marines
instead of five. While much slower than the first strategy,
the second baseline builds a much harder force to overcome
if left uninterrupted. The third baseline builds two SCVs
for gathering minerals, three SCVs for gathering gas, five
Vultures, then attacks. This build-order also takes a long
time to complete, but focuses on building fewer units that
are individually stronger.
In our earlier work we found that the strategies found

Table 1: Unit Encodings

Bit Sequence Action Prerequisites
000-001 Build SCV None

(Gather Minerals)
010 Build Marine Barracks

011-100 Build Firebat Barracks, Refinery,
Academy

101 Build Vulture Barracks, Refinery,
Factory

110 Build SCV Refinery
(Gather Gas)

111 Attack N/A

by the GA and HC were focused entirely on defense. This
trend was due to being evaluated against the above base-
lines, which were too overwhelmingly powerful for any attack
to succeed. Instead, the strategies produced by the GA and
HC build the most powerful and expensive units possible be-
fore the baseline units arrive to attack the base. Against the
baselines that attack quickly, the solutions tended to build a
one or two SCVs, followed by Marines and Firebats. Against
the slower baselines, solutions tended to build Firebats and
a few Vultures, with no extra SCVs to help get resources
quicker. Building the Firebats and Vultures takes longer,
but provides a better defense and maximizes the amount of
resources spent.

Players typically determine how well they played by using
the score at the end of a game. In the context of our search
methods, the score also acts as a strategy’s fitness. Our
fitness calculation encourages players to find ways to destroy
enemy units and structures, as shown in Equation 1. Where
Fij is the fitness of individual i against individual j, SRi is
the amount of resources spent by individual i, UDj is the
set of units owned by individual j that were destroyed, UCk

is the cost to build unit k, BDj is the set of buildings owned
by individual j that were destroyed, and BCk is the cost to
build building k.

Fij = SRi + 2
∑

k∈UDj

UCk + 3
∑

k∈BDj

BCk (1)

We represented a build-order as a sequence of commands.
Since GAs prefer a binary encoding, the CA, GA and the HC
all worked with the same binary encoded sequence of com-
mands - using GA terminology, this is our chromosome. We
encoded the chromosome as a 15-length binary string. Every
three bits of the binary string encodes an action, as shown
in Table 1. When WaterCraft receives a chromosome, the
game component that deals with the artificial player (Game
AI or just AI), sequentially decodes the binary string and in-
serts a request for each encoded action into a queue. While
decoding the binary string, the game AI verifies that all the
prerequisites shown in Table 1 for the next encoded action
were previously inserted into the queue. If a prerequisite was
not inserted into the queue already, the decoder will insert a
request for the prerequisite immediately before the encoded
action. Our game AI will attempt to issue actions from the
queue as quickly as possible. When the AI fails to execute
the current action because of a lack of resources or pending
prerequisite being built, the AI waits a short duration and
reattempts to execute the action until the action succeeds.

3.1 Coevolution
When evaluating an individual for genetic operations such

as selection, we used a teach set, scaled fitness, hall of fame,
shared sampling, and fitness sharing as described by Rosin
and Belew [16]. Usually, only chromosomes that can de-
feat many teach set members have a high fitness. However,
shared fitness also gives chromosomes that only defeat a few
teach set members few other chromosomes defeat, a high fit-
ness. Chromosomes that defeat teach set members few oth-
ers can, probably contain new and important innovations for
winning. Giving these unique chromosomes a higher fitness
prevents diverse niches from going extinct too quickly. We
also multiply the shared fitness by the score the chromosome
received against each defeated opponent. This allows us to
identify chromosomes that not only win, but perform signif-
icantly better in the game. We calculated fitness sharing as
shown in Equation 2. Where fshared

i is the shared fitness
of chromosome i, Di is the set of teach set members chro-
mosome i defeated, j a teach set member in Di, jl is the
number of times j lost against all chromosomes, and Fij is
the fitness of chromosome i against teach set member j.

f
shared
i =

∑

j∈Di

1

jl
Fij (2)

jl is the total number of individuals that baseline j lost to
in the current population. We calculate jl using Equation
3, where P is the set of all chromosomes in a population,
and i is an element of P . GameResult is a function that
returns 1 if baseline j lost against individual i, and returns
0 if baseline j won against individual i, as show by Equation
4. Since Equation 2 only takes the sum of baselines that
were defeated jl can never be 0, since if a baseline j was
never defeated j would not be in set Di.

jl =
∑

i∈P

GameResult(j, i) (3)

GameResult(j, i) =

{

0, Fji >= Fij

1, Fji < Fij

}

(4)

When all population members have a shared fitness, we use
linear fitness scaling with a factor of 1.5. At times there may
be a population member who’s shared fitness dwarfs all the
other chromosome shared fitnessâĂŹs, or where all popula-
tion members have shared fitnessâĂŹs that are very close.
Fitness scaling helps even out selection pressure, making the
children produced more diverse.
The teach set that every chromosome plays against con-

tains eight chromosomes selected from two sources: four
chromosomes from the hall of fame and four chromosomes
from shared sampling. We limited our teach set size to eight,
so that with our population size of 50, our entire cluster of
400 nodes would be full. The hall of fame is simply a list of
chromosomes that have performed well in the past. At the
end of each generation, the chromosome with the highest
shared fitness is added to the hall of fame. Adding chro-
mosomes from the hall of fame to the teach set prevents
solutions in the current population from forgetting how to
beat opponents from previous generations that may have
gone extinct.
Shared sampling is a method that selects a opponents that

offer diverse challenges. Shared sampling works by selecting
chromosomes that beat the most teach set members, but

giving less weight to teach set members already defeated
by chromosomes previously selected by shared sampling, as
shown in Algorithm 1. The shared fitness is given by Equa-
tion 5 where si is the sample fitness, Di is the set of teach set
members chromosome i defeated, jb is the number of time j

has been defeated by chromosomes selected by shared sam-
pling, and Fji is the fitness of teach set member j against
chromosome i. Shared fitness is recalculated each time a
chromosome is sampled, so that chromosomes that defeat
teach set members not defeated by the currently sampled
chromosomes are given higher preference. This allows us to
maintain a diverse teach set, while keeping the number of
opponents needed to a minimum.

Algorithm 1 Shared Sampling

unsampled = current population
sampled = empty list
while size(sampled) < samples wanted do

for all s ∈ unsampled do

calculate si
end for

best = s ∈ unsampled with highest si
unsampled.remove(best)
sampled.append(best)
for all j ∈ best.defeated do

jb+ = 1
end for

end while

si =
∑

j∈Di

1

1 + jb
Fji (5)

For the basic CA operations and parameters, we used uni-
form crossover with a 95% chance of crossover occurring and
bit-mutation with a .1% chance of each individual bit chang-
ing value. The chromosomes are selected for crossover by us-
ing standard roulette wheel selection. Once we have created
all the children chromosomes, we evaluate them against the
same teach set, then use CHC selection to select chromo-
somes for the next population [11]. This prevents valuable
information from being lost if our CA produces many unfit
children.

3.2 Genetic Algorithm
Our GA implementation was simple. We modified the

concept of the teach set we used for coevolution; instead of
creating a new teach set each generation, we populate the
teach set solely with our baseline strategies. Other than the
change to the teach set, we used all the same parameters
and methods that we used for coevolution.

3.3 Hill-climber
We use the bit-setting optimization HC shown in Algo-

rithm 2, which attempts to find an effective solution by se-
quentially flipping each bit and keeping the value with the
highest fitness.

We determine the fitness by playing a chromosome against
all three baselines and taking the sum of the differences in
scores, as shown in Equation 6 [18]. Where fi is the fitness
of chromosome i, j is a baseline in the set of all baselines B,
Fij is the fitness chromosome i received against baseline j,
and Fji is the fitness baseline j received against chromosome

Algorithm 2 Bit Setting Optimization Hill-climber

chromosome = initialize()
select first bit
evaluate(chromosome)
while not end of chromosome do

flip current bit
evaluate(chromosome)
if fitness decreased then

flip current bit back
end if

select next bit
end while

i.

fi =
∑

j∈B

Fij − Fji (6)

HC performance depends on the initial seed. We initialize
this HC with thirty-two different seeds: a chromosome set
to all 0’s, a chromosome set to all 1’s, and thirty randomly
generated chromosomes.

3.4 Exhaustive Search
Exhaustive search evaluates all 215 possible build-orders

against all three of our baselines. We limited ourselves to
15-bit solutions since that was the maximum build-order
length we could exhaustively search in a reasonable amount
of time. Exhaustive search enables us to rank all possible
15-bit solutions, and compare the effectiveness of solutions
against the baselines found by CAs, GAs, HCs, as well as
other search methods in the future.
In our previous work, we used a GA and HC to produce

solutions that could beat our baselines. The baselines we
used posed varying levels of difficultly and majority of pos-
sible 15 bit solution lose to all three baselines. These prior
results showed that GA’s always found the best strategies
that could defeat two baselines (no strategies in the solution
space could defeat all three, as shown in Figure 3), while the
HC did note perform as well, as shown in Figure 4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 and 2 1 and 3 2 and 3

N
um

be
r

of
 C

hr
om

os
om

es
 th

at
 W

on

Baseline IDs

Figure 3: The number of strategies from exhaus-

tive search that defeat only two baselines, and the

baselines they defeat.

-1800

-1600

-1400

-1200

-1000

-800

-600

Exhaustive Hillclimber Evolution

D
iff

er
en

ce
 B

et
w

ee
n

C
hr

om
os

om
e

S
co

re
 a

nd
 B

as
el

in
e

S
co

re

Search Method

Figure 4: The average difference in score against the

baselines our previous search methods.

4. RESULTS
We ran coevolution with a population size of 50 on our 400

node cluster for 98 generations, in order to match the num-
ber of generations performed by our GA. We measured the
progress coevolution makes by playing all members of the
population and teach set at each generation against three
sets of opponents, taken from our previous study: three of
the best solutions produced by the GA, 32 solutions pro-
duced by the HC, and the three baselines used to evaluate
the GA and HC solutions.

-2500

-2000

-1500

-1000

-500

 0

 500

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
A

 P
op

ul
at

io
n

S
co

re
 D

iff
er

en
ce

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 5: Average Score Difference of Coevolution-

ary Population.

Figure 5 shows that coevolution very quickly moves to in-
crease the average score of the population, but not by very
much. However, this slight increase in average score has a
huge affect on the number of wins the solutions achieve, as
shown by Figure 6. During the first ten generations, the in-
crease in score leads to an increased number of wins against
the GA and HC, but a decreased number of wins against
the baselines. In later generations, an increase in score cor-
relates to an increase in wins for the GA and baselines, but a
decrease in wins for the HC. This pattern also holds true for

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
A

 P
op

ul
at

io
n

W
in

 F
ra

ct
io

n

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 6: Average Number of Wins of Coevolution-

ary Population.

the number of ties, as shown in Figure 7. All of these figures
show that a cyclic pattern emerges around generation 40.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
A

 P
op

ul
at

io
n

T
ie

 F
ra

ct
io

n

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 7: Average Number of Ties of Coevolution-

ary Population.

While Figure 5 and Figure 6 shows that our coevolved
solutions are not as good against the baselines as the GA re-
sults, all three figures seem to indicate that an increase/decrease
in performance against the GA and HC solutions correlates
to an increase/decrease in performance against the baselines.
The CA teachset average show progress similar to the

CA population average when compared to the same three
sets. However, the cyclic pattern and correlation between
the increasing/decrease scores, wins, and ties are no longer
as pronounced, as shown in Figure 8, Figure 9, and Fig-
ure 10 respectively. These features are most likely muted,
due to half the teachset being constructed from the hall of
fame. Chromosomes injected from the hall of fame may be
very old solutions that were not very effective in the long
run, and heavily influences our averages.
Finally, Figure 11 shows how well on average the CA, GA,

HC, and exhaustive search performed against the all three
baselines. While the CA was usually able to do better than
the average of exhaustive search, the CA does not perform

-2500

-2000

-1500

-1000

-500

 0

 500

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
A

 T
ea

ch
se

t S
co

re
 D

iff
er

en
ce

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 8: Average Score Difference of Coevolution-

ary Teachset.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
A

 T
ea

ch
se

t W
in

 F
ra

ct
io

n

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 9: Average Number of Wins of Coevolution-

ary Teachset.

as well as the GA or HC solutions, which were tuned using
the baselines.

Analysis of the populations at generations with high av-
erage scores showed that the favored strategy was to build
mostly Vultures followed by a one or two Firebats. One of
the solutions found by the GA was the opposite of this, pre-
ferring to build mostly Firebats followed by the Vultures.
This two strategies cost the same to construct, however the
strategy found by coevolution provides a stronger defense in
exchange for taking longer to complete.

Populations at generations with low average scores had
similar strategies, but issued an attack command as the fi-
nal action. Attacking with multiple Vultures and Firebats
can inflict heavy losses, before the attacking units are de-
stroyed by the defending units. However, against opponents
that are faster to attack or build up an equally strong de-
fense, such as with our baselines, GA produced solutions
and HC produced solutions, the attacking force is wiped out
to quickly to benefit.

5. CONCLUSION AND FUTURE WORK
This paper compares co-evolutinary genetic algorithsm

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 C
A

 P
op

ul
at

io
n

T
ie

 F
ra

ct
io

n

Generation

vs 3 Best GA
vs 32 BSO

vs 3 Baselines

Figure 10: Average Number of Ties of Coevolution-

ary Teachset.

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 S
co

re
 D

iff
er

en
ce

 A
ga

in
st

 B
as

el
in

e

Generation

Exhaustive
BSO

GA
CA Population

CA Teachset

Figure 11: Average Score Difference Against Base-

lines.

aith with genetic algorithms and hill-climbers to generate
strategies for beating opponents in RTS games. We used
our three hand-coded baselines and solutions produced by
a GA and HC from a previous study upon which to make
our comparisons. The strategies produced by the GA and
HC were tuned specifically to defeat the three hand-coded
baselines. Since the baselines are encoded with a longer
bitstring than the chromsomes used in coevolution, we can
be assured that coevolution will not have encountered the
baselines before.
Our results show that coevolution can find strategies that

defeat or tie the GA and HC solutions approximately 80%
of the time, showing that the coevolutionary strategies can
defeat solutions previously shown to be robust and capable
of defeating challenging baselines. When compared directly
against those same baselines, our coevolutionary strategies
increased their performance over time, and defeated or tied
the baselines only 20% of the time without being trained
against the baselines beforehand. Clearly, our game exhibits
the rock-paper-scissors balance. While our results show co-
evolved solutions can beat challenging 15 bit opponents, we
do not yet know how well these solutions would rank in an

exhaustive list of all 215 strategies played against all 215

strategies.
These results help specify the trade-offs between injecting

human expertise into our evolutionary algorithms. Using a
GA against a set of hand-tuned opponents produces strate-
gies that are robust against those opponents. However, our
CA uses a different method to produce a teach set without
human expertise. Solutions found by the CA could beat the
GA solutions, but as is the case with Rock-Scissors-Paper,
this advantage did not translate to defeating the same op-
ponents that the GA solutions could defeat.

We are interested in finding human competitive RTS game
players that are robust, specifically that they are successful
against many different opponents. This paper’s results in-
dicate that while progress towards previously unseen oppo-
nents is possible, there is much room to improve the overall
performance. Given the similarity of our GA and CA, inject-
ing our hand-tuned baselines into the teachset occasionally
may be one method of improving the robustness of our solu-
tions. In our future work, we will focus on finding methods
that help increase coevolution’s capability of finding robust
strategies.

6. ACKNOWLEDGMENTS
This research is supported by ONR grant N00014-09-1-

1121.

7. REFERENCES
[1] Bwapi: An api for interacting with starcraft:

Broodwar.

[2] Stargus, 2009.

[3] P. Avery and S. Louis. Coevolving influence maps for
spatial team tactics in a rts game. In Proceedings of
the 12th annual conference on Genetic and
evolutionary computation, GECCO ’10, pages
783–790, New York, NY, USA, 2010. ACM.

[4] C. Ballinger and S. Louis. Comparing heuristic search
methods for finding effective real-time strategy game
plans. In 2013 IEEE Symposium Series on
Computational Intelligence, April 2013.

[5] M. Buro. Orts - a free software rts game engine, 2005.

[6] L. Cardamone, D. Loiacono, and P. Lanzi. Applying
cooperative coevolution to compete in the 2009 torcs
endurance world championship. In Evolutionary
Computation (CEC), 2010 IEEE Congress on, pages 1
–8, july 2010.

[7] K. Chellapilla and D. Fogel. Evolving an expert
checkers playing program without using human
expertise. Evolutionary Computation, IEEE
Transactions on, 5(4):422 –428, aug 2001.

[8] P. Cowling, M. Naveed, and M. Hossain. A
coevolutionary model for the virus game. In
Computational Intelligence and Games, 2006 IEEE
Symposium on, pages 45 –51, may 2006.

[9] J. Davis and G. Kendall. An investigation, using
co-evolution, to evolve an awari player. In
Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on, volume 2, pages
1408 –1413, 2002.

[10] B. Entertainment. Starcraft, March 1998.

[11] L. J. Eshelman. The chc adaptive search algorithm :
How to have safe search when engaging in

nontraditional genetic recombination. Foundations of
Genetic Algorithms, pages 265–283, 1991.

[12] D. Keaveney and C. O’Riordan. Evolving robust
strategies for an abstract real-time strategy game. In
Computational Intelligence and Games, 2009. CIG
2009. IEEE Symposium on, pages 371 –378, sept.
2009.

[13] T. K. S. Ltd. Ogre ı̈£¡ open source 3d graphics engine,
February 2005.

[14] G. Nitschke. Co-evolution of cooperation in a pursuit
evasion game. In Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, volume 2, pages 2037 –
2042 vol.2, oct. 2003.

[15] M. J. V. Ponsen, S. Lee-urban, H. Müı£¡oz-avila,
D. W. Aha, and M. Molineaux. Stratagus: An
open-source game engine for research in real-time
strategy games. Technical report, Naval Research
Laboratory, Navy Center for, 2005.

[16] C. D. Rosin and R. K. Belew. New methods for
competitive coevolution. Evol. Comput., 5(1):1–29,
Mar. 1997.

[17] T. W. Team. Wargus, 2011.

[18] S. W. Wilson, S. W. W. Ga-easy, and S. W. W.
Ga-easy. Ga-easy doe not imply steepest-ascent
optimizable, 1991.

