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Abstract

This paper de�nes a class of spaces which

are easy for genetic algorithms and hard

for stochastic hill{climbers. These spaces

require genetic recombination for successful

search and are partially deceptive. Prob-

lems where tradeo�s need to be made sub-

sume spaces with these properties. Prelim-

inary results comparing a genetic algorithm

without crossover against one with two{point

crossover support these claims. Further we

show how a genetic algorithm using pareto

optimality for selection, outperforms both.

These results provide insight into the kind

of spaces where recombination is necessary

suggesting further study of properties of such

spaces, and what it means to be GA{easy and

hill{climbing hard.

1 INTRODUCTION

Recombination plays a central role in genetic algo-

rithms(GAs) and constitutes one of the major di�er-

ences between GAs and other blind search algorithms.
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The answer to the question of whether a search space

is particularly suited to a genetic algorithm therefore

hinges on the power of recombination in generating

an appropriate search bias. We de�ne one class of

spaces that requires genetic recombination for success-

ful search. This class includes problems where a partic-

ular kind of tradeo� exists and is exempli�ed by many

design problems in engineering and architecture.

Recent work on GA{easy and \royal{road" func-

tions suggests that it is not easy to �nd spaces

where GAs emerge a clear winner when com-

pared with a stochastic hill{climber or a popula-

tion of stochastic hill{climbers(SHC) [Wilson, 1991,

Mitchell and Forrest, 1993]. The work suggests that
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A good de�nition and introduction to blind search al-

gorithms can be found in [Rawlins, 1991].

it is not enough that optimal lower order schemas

combine to form optimal higher order schemas. Hill{

climbers often solve such problems in a fewer number

of function evaluations than a genetic algorithm. In-

stead we look to work on deception to provide insight

into the kind of spaces that are deceptive for SHCs

or a population of SHCs and that are relatively easy

for genetic algorithms [Goldberg, 1989a]. Identifying

properties of such spaces should provide insight into

the inner workings of a GA and aid in the practical

selection of optimization methods.

The next section de�nes the model of a genetic algo-

rithm and a stochastic hill{climber used in this pa-

per. We then design a problem that is partially decep-

tive and needs recombination to overcome deception.

Spaces with structure similar to the problem de�ned

in section three may be found in multicriteria opti-

mization, thus Pareto optimality is de�ned in section

four and used in selecting candidates for recombination

in a genetic algorithm. Empirical evidence in section

�ve compares performance on the problem de�ned in

section three. Finally, the last section summarizes and

discusses the results pointing out directions for further

work.

2 GAs, HILL{CLIMBERS AND

RECOMBINATION

A genetic algorithm works with a population and en-

codes a problem's parameters in a binary string. The

initial population is formed by a randomly generated

set of strings. Our introductory model of a classical

genetic algorithm assumes proportional selection, 2{

point crossover and a mutation operator that comple-

ments a bit at a randomly selected position. For ex-

perimental purposes our population of stochastic hill{

climbers is a genetic algorithm without crossover. In

this paper hill{climber and stochastic hill{climber are

used interchangeably and problems are cast as maxi-

mization problems in Hamming space, eliding the issue

of encoding.



A genetic algorithm without crossover and only

mutation can be likened to an Evolution Strategy

[B�ack et al., 1991], albeit a simple one with a nonvary-

ing mutation rate and random bias. It is a stochastic

hill-climber and depending on the rate of mutation,

can make jumps of varying sizes through the search

space. Being population based and stochastic it makes

fewer assumptions about the search space and as such

is more robust and harder to deceive than the bit-

setting optimizable and steepest-ascent optimal algo-

rithms de�ned in Wilson's paper [Wilson, 1991].

Although there is debate in natural genetics as to the

evolutionary viability of recombination, for our pur-

poses it su�ces to note that it exists. In genetic al-

gorithms, Holland's schema theorem emphasizes the

importance of recombination and provides insight into

the mechanics of a GA [Holland, 1975]. With the ge-

netic algorithm and hill{climbers as de�ned above, re-

combination is the key di�erence between the two. It

allows large, structured jumps in the search space. In

other words, it facilitates combination of low order

building blocks to form higher order building blocks,

if they exist. The type of combinations facilitated,

depends on the crossover operator and population dis-

tribution. In a random population of strings (encoded

points) large jumps in the search space are akin to

jumps that are possible with a high temperature in

simulated annealing. However the size of the jumps

due to recombination in a GA depends on the ham-

ming average or the degree of convergence of the popu-

lation. As the population converges, the usual and cor-

responding decrease in hamming average of the pop-

ulation leads to a decrease in maximum jump size

and exploration of a correspondingly smaller neigh-

borhood. But this kind of neighborhood exploration

can be carried out by a GA with mutation only; a

stochastic hill{climber.

During the early stages of GA processing, large jumps,

combinations of building blocks that are hamming dis-

similar, are more probable since the hamming dis-

tance between possible mates is higher. The GA

should search e�ectively in spaces where such com-

binations of building blocks lead toward higher order

optimal schemas. But at this early stage, not only

is the variance in estimated �tnesses of schemas high,

but there may be enough diversity in a population of

hill{climbers to stumble on the correct higher order

schema. Both the order of early building blocks and

diversity of the population need to be considered in

analyzing recombination.

The discussion above implies that for recombination to

be e�ective and hill{climbing ine�ective, a GA needs

to be able to make large, useful, structured jumps

through recombination even after partial convergence;

low probability jumps for a hill{climber at this stage.

3 A HILL{CLIMBING DECEPTIVE

PROBLEM

Consider the function shown in �gure 1. For this
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Figure 1: A hill{climbing deceptive function that

should be easy for GAs

four{bit function, the global optimum is at 1111, but

there are two hill{climbing deceptive optima at 0011

and 1100, the global optimum is 2 bits away from the

suboptima. For an l length string, the function can

be stated as follows: Let x

1

be the number of ones on

the right half of the string (l=2 bits) and let x

2

be the

number of ones on the left half of the string then,

f(string 6= 1111 : : :) = j 2� x

1

� x

2

j + j 2� x

2

� x

1

j

f(1111 : : :) = x

1

� x

2

(1)

Intuitively, counting from one side (left or right), �t-

ness increases as the number of 1's increases until the

halfway point of the string, after this point the �tness

decreases as the number of 1's increases. Figure 2

gives an alternate view of the same function.

For su�ciently large l this type of function is deceptive

for a SHC or PSHC since for a string of length l, once

a stochastic hill{climber reaches a deceptive optima,

it will have to simultaneously set all the remaining l=2

bits to 1 to attain the global optima. Setting fewer

than l=2 bits decreases �tness. The probability of si-

multaneously setting l=2 bits to 1 decreases exponen-

tially with l, thus making it hard on a SHC or PSHC

for su�ciently large l. Using our model of a stochastic

hill{climber with mutation probability p

m

, after reach-

ing the suboptima, the probability of setting l=2 bits

is: the probability that l=2 incorrect bits are ipped,
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Figure 2: An alternate view of a hill{climbing decep-

tive function that should be easy for GAs (10 bits)

multiplied by the probability that the correctly set bits

are not ipped
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Now consider the power of recombination. Once a ge-

netic algorithm reaches the hill{climbing deceptive op-

tima, crossover can produce the global optima in one

operation, assuming that the population contains rep-

resentatives of both suboptima. Niching operators can

be used to provide representatives at the suboptima as

long as these operators don't entail mating restrictions

which may then not allow the algorithm to �nd the

global optimum.

Next, consider whether this type of space may be

found in normal application domains. In many ar-

eas of engineering a problem is usually stated in terms

of multiobjective (or multicriteria) optimization, and

the function above can be easily and naturally stated

as a two{objective optimization problem. We suggest

that multicriteria optimization problems may provide

fertile ground for �nding search spaces in which ge-

netic algorithms do better than other blind search al-

gorithms. However, as with niching, multicriteria opti-

mization raises a point. The issue for our algorithms is

that, in general, it is di�cult to combine multiple mea-

sures into a single �tness in a reasonable way without

making assumptions about the relationships among

the criteria. Unfortunately, a single �tness measure

is the usual feedback for genetic algorithms and for

the niching methods in [Deb and Goldberg, 1989]. For

example consider a beam section problem, where the

objectives are to maximize the moment of inertia and

minimize the perimeter. Minimizing the perimeter

usually decreases the moment of inertia and maximiz-

ing the moment of inertia increases the perimeter; a

tradeo�. Combining the two criteria into a single mea-

sure makes no sense
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unless the relationship between

the two is already known. Fortunately, the concept of

pareto optimality allows us to do this reasonably and,

as will be seen, provides a ready-made niching mecha-

nism, killing two birds with one stone.

4 PARETO OPTIMALITY AND

SELECTION

Pareto optimality operates on the principle of non-

dominance of solutions. An n criteria solution s

1
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Considering the maximal value along each criteria to

be one of our hill{climbing deceptive optima, we have a

correspondence between the function de�ned in section

2 and multicriteria optimization problems. If a cen-

tral peak (global optimum) exists as in �gure 2 then

recombination should �nd it, if both suboptima are

represented in the population. Incorporating pareto

optimality into the selection mechanism of a genetic

algorithm facilitates the maintenance of stable sub-

populations representing the suboptima.

To incorporate pareto optimality in the genetic algo-

rithm, we use a variant of binary tournament selection.

The algorithm selects two individuals at random from

the current population, mates them, and produces the

pareto optimal set of the parents and o�spring. Two

random individuals from this pareto optimal set form

part of the next population. The procedure repeats

until the new population �lls up, thus becoming the

subsequent current population. This method with a

tournament size of 2 is computationally inexpensive

since only 4 solutions compete at a time.

The pareto optimal genetic algorithm is used to attack

the problem in section 2. First, the problem is split

into two, corresponding to the two additive terms in

equation 1. Cast as a 2 criteria optimization problem,

the �rst criterion is

c

1

(string 6= 1111 : : :) = j 2� x

1

� x

2

j

c

1
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1

� x
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where x

1

stands for the number of 1's in one half of

the string and x

2

the number of 1's in the other half

of the string. The second criterion c

2

then becomes

c

2

(string 6= 1111 : : :) = j 2� x

2

� x

1

j

c

2
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Comparing apples to oranges



5 RESULTS

I compare the number of times the optimum is found

by a GA without crossover, a classical GA with two{

point crossover (CGA) and a pareto optimal GA with

two{point crossover. The population size in all ex-

periments was 30 and the results were averaged over

11 runs of the algorithm with di�erent random seeds.

The GA with mutation ran with mutation probability

from 0:01 to 0:10 in increments of 0:01 and the best

results used. The probability of crossover was 0:8 and

the mutation rate 0:02 for the other two algorithms.

To make the function a little easier for all algorithms,

it was modi�ed slightly and the peak in �gure 2 broad-

ened at the base. If the length of the string is l, x

1

is

the number of ones in one half of the string and x

2

the

number of ones in the second half of the string, the

modi�ed function for the pareto GA can be stated as

if

(x

1

+ x

2

) � (l � p)

then

c

1

(string) = x

1

� x

2

else

c

1

(string) = j 2� x

1

� x

2

j

(2)

for c

1

, the �rst criterion. Here p is a parameter de-

noting the width of the base of the peak in �gure 2.

Similarly for c

2

if

(x

1

+ x

2

) � (l � p)

then

c

2

(string) = x

1

� x

2

else

c

2
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2

� x
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(3)

For the GA with two{point crossover and the GA with-

out crossover, the function becomes

if

(x

1

+ x

2

) � (l � p)

then

�tness(string) = (x

1

� x

2

)

2

else

�tness(string) = j 2� x

2

� x

1

j + j 2� x

1

� x

2

j

The squaring of the values near the peak tries to en-

sure that once found by a classical genetic algorithm,

the peak will not be lost easily. The pareto GA is

not a�ected by di�erences in magnitude but only the

relative ordering.

Figures 3 and 4 compare the maximum �tness over

time for the three algorithms. The algorithms ran

for 200 generations or 6000 function evaluations. The

string length was 30, the parameter p in the de�nition

of the function was set to 2 to produce �gure 3 and

to 4 to produce �gure 4. The signi�cant di�erence in

performance of the pareto optimal GA provides strong

support for the importance of recombination and the

niching e�ect of pareto optimal selection. In addition,

as expected, the width of the peak signi�cantly ef-

fects performance with wider peaks allowing the GA

with two{point crossover to perform signi�cantly bet-

ter than the stochastic hill{climber. The plot for the

pareto optimal GA shows the average �tness for only

one of the two criteria, hence the low (about 1=2 the

value of the other two plots) initial values.
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Figure 3: Performance comparison for string length

30. The peak width is 2.
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Figure 4: Performance comparison for string length 30

but with peak width 4.

Table 1 compares the percentage of times the algo-

rithms found the optima for strings of length 20, 30,



Table 1: Comparing the number of times the optimum

was found in 200 generations for narrow peaks.

Length Width PGA CGA PSHC

20 1 100 % 55 % 45 %

30 2 100 % 27 % 18 %

40 3 73 % 0 % 0 %

50 4 45 % 0% 0%

Table 2: Comparing the number of times the optimum

was found in 200 generations for broader peaks.

Length Width PGA CGA PSHC

20 2 100 % 91 % 100 %

30 4 100 % 82 % 55 %

40 6 100 % 64 % 0 %

50 8 82 % 0% 0%

40 and 50 for peaks of size 1, 2, 3 and 4. In the ta-

ble, peak size is given in column 2, PGA is the pareto

GA while CGA is the GA with two{point crossover

and PSHC is the GA with no crossover { a population

of stochastic hill{climbers. Table 2 depicts the same

information but for wider peaks.

These results strongly indicate that a pareto GA is

more likely to �nd the optimum on problems of this

type, followed by a GA with crossover. The stochas-

tic hill{climber is least likely to �nd the optimum and

in this case had less then a 50% chance, even on the

smaller 20 length problem when the peak was narrow.

Wider peaks help the hill{climber far small problems

(length 20, peak width 2) but as the problem size in-

creases the hill{climber's performance deteriorates to

become worse than even a simple GA. In all cases the

Pareto GA does as well or better than the other two

algorithms.

6 DISCUSSION, CONCLUSIONS

AND FUTURE WORK

Design problems are often formulated as multiobjec-

tive or multicriteria optimization problems. In many

cases such problems involve tradeo�s among possibly

conicting criteria. Spaces where recombination of two

or more single criterion optima leads toward a global

optimum, with a deceptive basin in between to trap

hill-climbers, seem well suited for genetic algorithms

especially when using use pareto optimality in their

selection process. Pareto optimal selection appears to

provide the necessary niches until recombination pro-

duces the global optimum. We de�ned a problem in

hamming space with these properties and empirically

compared the performance of a classical GA with two{

point crossover to that of a stochastic hill{climber (A

GA without crossover), and a GA with pareto opti-

mal selection. The GA with pareto optimal selection

always found the optimum more often than the oth-

ers, while the classical GA usually did better than the

stochastic hill{climber. Although preliminary, the ev-

idence suggests a closer look at the spaces de�ned in

this paper for function encoding combinations that are

relatively easy for genetic algorithms and hard for hill{

climbings methods.

Pareto optimal selection also eliminates the need to

combine disparate criteria into a single �tness as is

usual in genetic algorithms. The method described in

this paper is distributable and computationally less ex-

pensive compared to other suggested methods for in-

corporating pareto optimality[Goldberg, 1989b]. Ex-

ploring niche forming with pareto optimality selection

remains an interesting area for further research.

Ongoing work seeks a more rigorous analysis of the

properties of the spaces described in this paper. Us-

ing a simple function that counts the number of ones

makes preliminary work easier but may hide more sub-

tle complexities that underly and complicate search in

such domains. Finally, this paper only considers two

criteria optimization; as the number of criteria rises,

the number of possible combinations rises combinato-

rially. How GAs work on such problems remains to be

analyzed and their relative e�ectiveness in these spaces

determined.
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