GENETIC ALGORITHMS AS A VIABLE
COMPUTATIONAL MODEL OF DESIGN

Sushil J. Louis

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science

Indiana University

August 1993

Accepted by the Graduate Faculty, Indiana University, in partial ful-
fillment of the requirements of the degree of Doctor of Philosophy.

Doctoral Gregory J. E. Rawlins, Ph.D.

Committee (Principal Advisor)

Christopher T. Haynes, Ph.D.

Douglas R. Hoffstadter, Ph.D.

August 6, 1993 Esther Thelen, Ph.D.

11

Copyright (¢) 1993
Sushil J. Louis
ALL RIGHTS RESERVED

111

Dedication

This thesis is dedicated to my wife and family.

v

Acknowledgements

A thesis like this is never possible without the help, encouragement, motivation
and infuence of a large number of people. Greg Rawlins, my advisor, taught me
many things, but most importantly, how to do research and how to write well. Greg
was an inexhaustible storehouse of knowledge, insight and help on just about any
subject. His influence pervades this thesis and [am deeply indebted to him for being

my advisor, teacher and friend. Thank you.

My thesis committee members influenced the direction of my work and the writ-
ing of my thesis in their own ways. Chris Haynes imbued in me an appreciation for
programming languages and operating systems. Douglas Hostadter has a unique per-
spective on many areas including computer science, artificial intelligence, geometry,
and creativity, to name a few. Design balances aesthetics with pragmatics, but the
need to strive for aesthetic satisfaction and an eye for detail are part of his influence.
Esther Thelen solidified my interest in non-linear systems and chaos theory during a
class in (perhaps surprisingly) the psychology department. My continuing interest in

genetic algorithm applications in biological and social systems owes much to her.

Other than my committee members I would like to thank John Gero at the Uni-
versity of Sydney, for inviting me to Sydney and introducing me to the architec-
tural, structural, and civil engineering view of design and genetic algorithms. Sourav
Kundu, also at Sydney, for many discussions on the subject. Closer to home, I thank
David Leake for interesting me in case-based reasoning. Special thanks to Gary Mc-
Graw and Rich Wyckoff for their input, work, comments and arguments. Thanks
to David Goldberg for encouraging and commenting on my ideas. Thanks to Phil
Bradford and Terry Jones for interesting discussions on genetic algorithms and com-

menting on papers. Jon Mills commented on an earlier draft of this disseration.

The adminitrative and systems staff in the computer science department went out

of their way to make life easy, thank you very much.

My family encouraged, supported and motivated me to continue during the ups
and downs leading to this thesis. Finally and most importantly, I would like to thank
my wife who listened patiently to all my ideas, read all my papers, gave me moral

support, love and motiviation.

vi

Abstract

Design is an ubiquitous activity embracing most of engineering and architecture.
Because design is so pervasive, any research that leads to improvements in design
processes or products can have great impact. Current efforts at capturing the design
process in a computational framework do not pay heed to the evolutionary aspect of
prototype creation and ongoing refinement. Further, in poorly-understood domains
where expert knowledge or previous experience is lacking, current systems do not

perform well.

Genetic algorithms are stochastic parallel search algorithms that model natural
selection, the process of evolution. Over time natural selection has produced a wide
range of robust structures (life forms) that efficiently perform a broad range of func-
tions. The success of natural selection on earth provides an existence proof of the

viability of an evolutionary process as a model for design.

This thesis uses genetic algorithms to provide a viable computational model of
a well-defined and important subset of design. It maps genetic algorithms onto the
design process; defines appropriate representation criteria to take advantage of the
nature of the problem; specifies methods of analyzing designs generated by genetic

algorithms; and places bounds on the time complexity of the task. Scalable examples

vii

from circuit design, floorplanning and function optimization are used to demonstrate,

illustrate and ground these results.

Viil

Contents

Acknowledgements
Abstract

1 Introduction

1.1 Design
1.2 Design and Search
1.2.1 Search

1.3 Genetic Algorithms and Search

1.3.1 Intuition
1.3.2 Formalism
1.4 Structure of this Thesis

2 Genetic Algorithms and Design

1X

vii

13

16

2.1 Natural Selection 16

2.2 Genetic Algorithm Theory 17
23 Modelsof Design 19
24 Innovation L 21
2.5 Representing Designs for GAs 22
2.6 Evaluating Designs for GAs 24
2.7 Example Problem: Floorplanning 25
2.8 Summary 30
Comparing Genetic and Other Search Algorithms 32
3.1 The Importance of Recombination. 33
3.2 GAs, Hill-climbers and Recombination 34
3.3 A Hill-climbing Deceptive Problem 36
3.4 Pareto Optimality and Selection 40
35 Results. 42
3.6 Discussion 47
3.7 Summary 49
Genetic Algorithm Encodings 51
4.1 Search Bias 51

4.1.1 Inversion v v i 52

4.1.2 Disruption and Crossover 53
4.2 CroSsOVET v v it e 55
4.3 Crossover Bias Modification 57
4.4 Masked Crossover 57

441 Masks 59

4.4.2 Rules for Mask Propagation 60
45 Results. 63
4.6 Summary e 75
Understanding Genetic Algorithm Solutions 76
5.1 Case-Based Reasoning 7
5.2 Genetic algorithmsand CBR. 78
5.3 The System 80
54 The Case-Base 82
5.5 An Example and Methodology 85

5.5.1 A Simple Example L. 86

5.5.2 Methodology 88
5.6 Results from Circuit Design 88

x1

5.7 Results on Function Optimization and Hypothesis Generation
5.7.1 Hypothesis Generation

5.8 Summary

6 Predicting time to convergence for GAs
6.1 A Measure of Variation oL
6.2 Genetic Algorithms and Hamming Distance
6.3 Crossover and Average Hamming Distance
6.4 Selection and Average Hamming Distance
6.5 Handling Premature Convergence
6.6 Predicting Time To Convergence
6.6.1 Convergence Analysis
6.6.2 Handling Mutation
6.7 Practical Prediction oo
6.8 Upper and Lower Bounds
6.8.1 Comparing Predictions
6.8.2 Predicting Average Fitness

6.9 Summary

7 Discussion and Conclusions

x11

90

92

94

97

98

99

100

102

105

108

109

115

118

121

122

126

129

131

7.1 Four Contributions 132

7.2 Where GAs are better oL 133
7.2.1 Limitations and Future Work 137

7.3 Mitigating Encoding Problems 137
7.3.1 Limitations and Future Work 139

7.4 Analyzing Genetic Algorithm Solutions 139
7.4.1 Limitations and Future Work 141

7.5 Computational Complexity 142
7.5.1 Limitations and Future Work 144

7.6 Conclusions 144
7.7 Further Directions 145
References 148
A Complete Mask Rules 153
B Data for the 5-Bit Parity Checker 162
B.1 Cluster Tree 162
B.2 Report for 5-bit Parity Checker 163
B.2.1 The Schema extracted from the Report 165

X111

B.3 Obtaining Clustering Code

x1v

List of Tables

3.1

3.2

3.3

5.1

6.1

6.2

6.3

6.4

Comparing the number of times the optimum was found in 200 gener-

ations for narrow peaks. L.

Comparing the number of times the optimum was found in 200 gener-

ations for broader peaks. 0L
Statistical Significance of differences in performance according to the
x? test of significance. Confidence levels are in parenthesis.

Test Problems.

Comparing actual and predicted hamming averages (no mutation) . .

Comparing actual and predicted hamming averages with the probabil-
ity of mutation set to 0.01, the *’s indicate that the negative values

predicted in some runs were discarded.
Comparing actual and predicted fitness averages (no mutation)
Comparing actual and predicted fitness averages with the probability

of mutation set to 0.01

XV

124

List of Figures

1.1

1.2

1.3

2.1

2.2

3.1

3.2

3.3

Evaluating individuals determines which is better.
Selection acts as a sieve, selecting better individuals to continue. . . .

Crossover of the two parents P1 and P2 produces the two children C1
and C2. Each child consists of parts from both parents which leads to

information exchange. oL

The one-to-one correspondence between the three phase model and the

genetic algorithm. oo o

Dimensionless floor plan of a three bedroom apartment

A hill-climbing deceptive function that should be easy for GAs

An alternate view of a hill-climbing deceptive function that should be

easy for GAs (10 bits)

A graphical representation of solution points on a two criteria opti-
mization problem. The points within the shaded area represent the

pareto optimal set of solutions.

xvi

37

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Performance comparison for string length 30. The peak width is 2. . .
Performance comparison for string length 30 but with peak width 4. .

The shape easier for GA and harder for hill-climbers, d denotes the

size of the deceptive basin.

The vertical axis indicates the probability of finding the global opti-

mum in terms of mutation rate (p,) and length of deceptive basin

Masked crossover. The bits that are exchanged depend on the masks.

This allows preservation of schemas of arbitrary defining length

Six ways of pairing children and their associated mask functions/rules

(ME). .+ o oo

Mask rule M Fg,: Example of mask propagation when both C1 and C2

are good L.

A mapping from a two-dimensional phenotypic structure (circuit) to

position in a one-dimensional genotype. L

A gate in a two-dimensional template, gets its second input from either

one of two gates in the previous column.

Performance comparison of maximum fitness per generation of a clas-

sical GA versus a DGA on a 2-bitadder.

Performance comparison of average fitness per generation of a classical

GA versusa DGAona2bitadder.

xVvil

44

58

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

A 2-bit adder designed by a designer genetic algorithm. 67
A 2-bit adder designed by a classical genetic algorithm. 68

The XOR gates that are close together (diagonally) in the two—dimensional

grid will be far apart when mapped to a one-dimensional genotype . 69

Performance comparison of maximum fitness per generation of a clas-

sical GA versus a DGA on a 4-bit parity checker. 70

Performance comparison of average fitness per generation of a classical

GA versus a DGA on a 4-bit parity checker. 70

Performance comparison of maximum fitness per generation of a clas-

sical GA versus a DGA on a 5-bit parity checker. 71

Performance comparison of average fitness per generation of a classical

GA versus a DGA on a 5-bit parity checker. 72

Performance comparison of maximum fitness per generation of a classi-

cal GA using traditional selection, a classical GA with elitist selection,

and a DGA on a 5-bit parity checker. 73

Performance comparison of average fitness per generation of a classical
GA using traditional selection, a classical GA with elitist selection, and

a DGA on a 5-bit parity checker. o0 73

A circuit designed by a designer genetic algorithm that solves the 4-bit
parity problem. T4

A circuit designed by a classical genetic algorithm that solves the 4-bit
parity problem. T4

5.1

5.2

5.3

5.4

9.5

6.1

6.2

6.3

7.1

7.2

Schematic diagram of the system 80

A small subsection of a typical binary tree created by the clustering
algorithm. Individuals are represented by the numbers at the leaves.

Internal nodes where abstract cases go are denoted with a “x”. The

binary tree provides an index for the case-base. 81
Tree structure of the cases. Nodes represent abstracted cases. 86
A closer look at the clustered cases reveals nested schemas. 96

Parity circuit indicated by H, and the correct instantiation of choices. 96

Average fitness over 100 generations of classical GA and GA with com-
plements. GAC (max) replaces the worst individual with the comple-
ment of the current best individual. GAC (random) replaces the worst

individual with the complement of a random individual in the population107

Number of times the optimum was found on Decl for a classical GA

compared with the same statistic for GAs with complements (GACs). 108

Number of times the optimum was found on Dec2 for a classical GA

compared with GAs with complements (GACs). 109

The type of spaces easy for a genetic algorithm and hard for a stochastic

hill-climber 136

Comparing convergence behavior of a simulated annealer and a genetic

algorithmo 136

X1X

Al

A2

A3

A4

A5

A6

AT

A8

B.1

Mask rule M Fgy,: Example of mask propagation when both C1 and C2

are good L.

Mask rule M Fy: Example of mask propagation when both C1 and C2

are bad.,

Mask rule M Fy,, Part 1: Example of mask propagation when C1 is
bad and C2 is average. (C1< P1<C2<P2)

Mask rule M Fy,, Part 2: Example of mask propagation when C1 is
bad and C2 is average. (C1 < P2<C2<Pl)

Mask rule M F,,, Example of mask propagation when both C1 and C2

are average. L L oo e e e e e e e e e e e e e e e e e e e

Mask rule M Fy,, Part 1: Example of Mask propagation when C1 is
average and C2 is good. (P1<C1<P2<C2)

Mask rule M Fy,, Part 2: Example of Mask propagation when C1 is
average and C2 is good. (P2<C1<P1<C2)

Mask rule M Fy: Example of Mask propagation when Cl is bad and
C2isgood

Tree structure of the cases for a 5-bit parity checker

XX

Introduction

Everyone designs who devises courses of action aimed at changing existing

situations into preferred ones.

—-H. A. Simon. The Sciences of the Artificial, MIT Press, 1969.

Design is a fundamental, purposeful, pervasive and ubiquitous activity. As Simon
pointed out, anyone who formulates programs of action to change an existing state
to a preferred one is solving design problems (Simon, 1969). Planning, scheduling,
circuit design, VLSI layout, architecture and most branches of engineering are, or
can be cast as, design problems. Even partial success in prescribing a computational
model of design would be widely applicable. Current models are based on a knowledge
intensive view of the design process. Techniques like expert systems and case—based
reasoning, apart from problems with the acquisition of knowledge, suffer from a basic
flaw: they fail on new and/or poorly—understood application domains, where there is

insufficient knowledge to proceed.

Genetic algorithms (GAs) are randomized parallel search algorithms that model

1. Introduction 2

natural selection, the process of evolution. Over time natural selection has produced
a wide range of robust structures (life forms) that efliciently perform a broad range
of functions. The success of natural selection on earth provides an existence proof of
the viability of an evolutionary process as a model for design. Like natural selection,
GAs are a robust search method requiring little information to search effectively in

large, poorly—understood spaces.

In this context, the central claim of the thesis is

Genetic algorithms provide a viable computational model of the design
problem: “Given a function and a target technology to work within, design

an artifact that performs the function subject to constraints.”

Although genetic algorithms have been used in engineering problems, there are
reasons why designers are reluctant to embrace GAs. Representation problems are one
reason familiar to artificial intelligence researchers. There wasn’t a bound on the time
to convergence until recently (Louis and Rawlins, 1993b). This thesis identifies and
overcomes four basic problems in establishing genetic algorithms as a computational

model of design.

The current chapter expands on the definition of design, the nature of design
problems, and casts design as search through a state space. After identifying the
questions addressed in this thesis, the chapter ends by providing an overview of the

structure of this dissertation.

1. Introduction 3

1.1 Design

Design’s pervasive nature makes it difficult to find a concise, comprehensive and
well-accepted definition. Attempts at defining design usually reflect the bias of the au-
thor and range from the mundane to the theoretical. Dasgupta’s book provides some
historical as well as modern attempts at such definitions (Dasgupta, 1991). More
recently, Chris Tong and Duvvuru Sriram advance a fairly comprehensive definition
and describe design as “the process of constructing a description of an artifact that
satisfies a (possibly informal) functional specification, meets certain performance cri-
teria and resource limitations, is realizable in a given target technology, and satisfies
criteria such as simplicity, testability, manufacturability, reusability, etc (Tong and

Sriram, 1992).”

The various definitions agree, however, that design is concerned with the mapping
of a specified function onto a structure or description of a structure.! Usually, the de-
signed structure also satisfies performance, resource, and other pragmatic constraints.
In addition, most design theorists agree that the goal of design is to purposefully initi-
ate change in some aspect of the world (Simon, 1969; Tong and Sriram, 1992). Unlike
theories of the natural sciences, design is concerned with construction of artifacts and

the purposeful effecting of change.

The main reason for the difficulty of design tasks lies in the complexity of the
mapping between function and structure. The specified function may be very com-
plex and/or it may have to be realized using complex arrangements of a large number

of interacting parts. Typically, the behavior of each component is well known, the

'In the rest of the thesis, structure and description of structure are taken as equivalent unless
otherwise stated.

1. Introduction 4

difficulty lies in predicting how an assemblage of such components will behave. Ad-
ditional non-functional criteria and constraints complicate the design problem even

further.

The type of structure synthesized can be used to distinguish design tasks (Tong
and Sriram, 1992). In structure synthesis, the design is constructed from the com-
position of primitive parts into a structure that performs a specified function. Con-
structing a parity checker circuit from logic gates is an example of this type of task.
This may not be optimization, but rather, as noted by Simon, it may be a satisfic-
ing task in that a designer searches for a circuit that checks parity, not an optimal

circuit (Simon, 1969).

In structure configuration tasks, the design is a configuration of parts of pre-
determined type and connectors of pre-determined type. For example, in floorplan-
ning, the problem is to design a configuration of rooms and doors to fit in a given

area, along with the values of room and door parameters.

Lastly, in parameter instantiation tasks, the problem is to find the values of pa-

rameters such that a particular design can be instantiated.

In all the cases above, optimization plays a role since there is usually a cost
associated with each design. Minimizing this cost can be part of the original design

task or it may be a separate task.

1.2 Design and Search

Cast as a search problem, a formulation with a well-established heritage in artifi-

cial intelligence research, a design process searches through a state space of possible

1. Introduction 5

structures for one or more structures that perform a specified function. Points in the
state space represent candidate designs and one or more of these points defines a goal

state representing a design that meets specifications.

In search there is a tradeoff between flezibility — applicability in different domains,
and speed — the number of candidate designs searched through before finding the
correct one. Current design systems tend to depend on domain specific knowledge
and favor speed over flexibility. Most are so brittle that they fail completely when
domain knowledge is scarce. Genetic algorithms on the other hand can make do
with little domain knowledge, make few assumptions about the search space, and use

domain independent operators for generating candidate points in a state space.

1.2.1 Search

If there is sufficient knowledge about a problem domain, there is no need to search
for a solution. However if there is insufficient knowledge about a domain to arrive
directly at a solution, then if there is at least enough information to delineate an area
within which a solution is expected to be found, a search method can be used to hunt

for a solution within the delineated area.

This thesis is concerned with design problems that do not lend themselves to a

direct solution but can be cast as search problems within a space of possible solutions.

Search algorithms typically have two components corresponding to the tradeoff
between speed and flexibility. They balance exploration of the search space with
exploitation of areas of the space. Exploration points out new areas to search in,
while exploitation concentrates search in a particular area. The need for a balance

arises because unchecked exploration leads to wasted time in unpromising areas, while

1. Introduction 6

severe exploitation may miss the correct solution by concentrating on too small an
area. That is, too much exploration means too much time and too much exploitation
means that the correct solution may not be found. On the other hand, if there is
not enough exploration the correct solution may not be generated while insufficient
exploitation may take too long. Striking a good balance between exploration and

exploitation is therefore critical for a search algorithm.

Wasting time in unpromising areas of the search space may seem a small price to
pay for finding the correct solution. Unfortunately, the size of the search spaces that
often arise in design domains is so large that a human lifetime is short compared to
the time needed by the fastest supercomputers to look at a significant fraction of the
space. This is why random and/or exhaustive search (RES) is infeasible, it explores
too much. On the other hand RES works equally well across all search spaces, since
it makes fewest assumptions about exploitable properties of the search space. It
assumes that a minimal amount of knowledge is available — enough to know when to
stop. Put another way, RES needs and uses minimal information about the search

space to work equally well across a variety of spaces.

At the other extreme are algorithms that do no exploration and have knowledge
available to solve the problem quickly and directly. These algorithms make strong
assumptions about the search space and sufficient exploitable information is available
to avoid searching. However, because these strong assumptions do not usually hold
across domains (search spaces) these algorithms work only on the particular space

they were designed for and do miserably on others.

In between these extremes of random and/or exhaustive search and no search, ev-
ery other search algorithm makes assumptions of varying kinds about search spaces.

These assumptions correspond to knowledge about the space and may be correct,

1. Introduction 7

incorrect or misleading, implicit or explicit, and known or unknown, when used for
searching a particular space. This knowledge is exploited to guide exploration, speed-

ing up search by generating a search bias manifested in the set of generated solutions.

Genetic algorithms are a member of a class of algorithms called blind search
algorithms which make the assumption that there is enough knowledge to compare
two solutions and tell which is better (Rawlins, 1991). Genetic algorithms are the

search method of choice for this dissertation.

1.3 Genetic Algorithms and Search

A Genetic Algorithm (GA) is a randomized parallel search method modeled on
evolution. GAs are being applied to a variety of problems and becoming an important
tool in machine learning and function optimization. They have already been used
in the preliminary design of aircraft engine turbines and, more recently, in protein
structure prediction (Powell et al., 1989; Le Grand and Merz Jr., 1993). Goldberg’s
book gives a list of application areas (Goldberg, 1989b).

1.3.1 Intuition

Intuitively, genetic algorithms can be understood in terms of differences with other
search methods that can be applied in the same situation. Consider the problem of
finding the correct combination for opening a thirty digit combination lock (designing
a key). One possible algorithm is random and/or exhaustive search. In this case the
only information used by the algorithm is whether or not the currently generated

combination is the correct one. With this algorithm the chances of success — finding

1. Introduction 8

the correct combination — are better than 1/2 only after generating 10%°/2 combi-
nations. This is a very large number! In fact when generating a combination every

nanosecond, it would take more than the age of the earth before success is more than

50% probable.

If in addition to whether the current combination is correct, more information is
available, a search algorithm could use this information to increase efficiency. Hill-
climbing or gradient—descent algorithms, when given information about which of two
generated combinations are “closer” to the correct combination, make use of this
additional, directional information to speed up the search. The hill-climbing analogy
considers the search space as a landscape through which a search algorithm moves
towards the highest point, where height corresponds to “closeness” to the optimum.
However, a hill-climber can be trapped on a hill which is not a global optimum, but
a local optimum. In other words, if the search landscape is rugged with a lot of hills
(local optima), the algorithm could climb the nearest hill and find that any further
movement decreases height and thus remain trapped on this hill, whereas the highest

point (global optimum) is actually on another taller hill.

A population of hill-climbers is more robust. Trapping a large number of hill-
climbers, working independently on the same problem, is less probable than trapping

just one hill-climber.

Genetic algorithms are more than a population of hill-climbers. In addition to
having a population of individuals that hill-climb, genetic algorithms allow the ex-
change of information among individual hill-climbers in generating combinations that
are ever closer to the correct one. Genetic algorithms exemplify the maxim: “Two
heads are better than one” and can be considered a population of information ex-

changing hill-climbers.

1. Introduction 9

1.3.2 Formalism

When used in design, a GA encodes a candidate design in a binary string?. A
randomly generated set of such strings forms the initial population from which the
GA starts it search. Three basic genetic operators: selection, crossover, and mutation
guide this search. The genetic search process is iterative: evaluating, selecting, and
recombining strings in the population during each iteration (generation) until reaching
some termination condition. The basic algorithm, where P(¢) is the population of

strings at generation ¢, is given below.

t=0
initialize P(t)
evaluate P(t)
while (termination condition not satisfied) do
begin
select P(t + 1) from P(t)
recombine P(t + 1)
evaluate P(t + 1)
t=t+1

end

Evaluation of each string is based on a fitness function that is problem dependent.
It determines which of two candidate solutions is better (figure 1.1). This corresponds
to the environmental determination of survivability in natural selection. Selection of

a string, which represents a point in the search space, depends on the string’s fitness

2For clarity this thesis only considers binary encodings. The same ideas can be extended to
higher cardinality alphabets or real numbers.

1. Introduction 10

Figure 1.1: Evaluating individuals determines which is better.

relative to that of other strings in the population. It probabilistically culls from the
population those points which have relatively low fitness (figure 1.2). Mutation and
crossover imitate sexual reproduction. Mutation, as in natural systems, is a very low
probability operator and just flips a specific bit. Crossover in contrast is applied with
high probability. It is a randomized yet structured operator that allows information
exchange between points. Simple crossover is implemented by choosing a random
point in the selected pair of strings and exchanging the substrings defined by that
point. Figure 1.3 shows how crossover mixes information from two parent strings,
producing offspring made up of parts from both parents. Note that this operator

which does no table lookups or backtracking, is very efficient because of its simplicity.

Selection probabilistically filters out designs that perform poorly, choosing high
performance designs to concentrate on or ezploit. Crossover and mutation, through

string operations, generate new designs for ezploration. Thus genetic algorithms only

1. Introduction

11

Figure 1.2: Selection acts as a sieve, selecting better individuals to continue.

/1

‘-
E A1
(5

P1

Crossover Point
/ \

Parents

Figure 1.3: Crossover of the two parents P1 and P2 produces the two children C1
and C2. Each child consists of parts from both parents which leads to information

exchange.

1. Introduction 12

require two elements: 1) an encoding of candidate structures (solutions), and 2) a
method of evaluation of the relative performance of candidate structures. Given an
initial population of elements, GAs use the feedback from the evaluation process
to select fitter designs, generating new designs through recombination of parts of
selected designs, eventually converging to a population of high performance designs.
Since GAs only require feedback on the relative performance of candidate designs to
guide search, they are applicable in any design task that can provide this information.
In other words, given a function to perform, a genetic algorithm only needs to know
which of a pair of candidate designs is “closer” to performing the function. And even
this information need not be perfect but can be subject to noise and misdirection to

some extent. This thesis is only concerned with such design problems.

However, there are unresolved problems in using genetic algorithms for design.
First, although genetic algorithms allow sharing information among hill-climbers,
are there search spaces where this sharing leads to better performance? Second,
since genetic algorithms work with an encoding of the problem, what kind of biases
can be expected to be introduced by the encoding and can the genetic algorithm
surmount unfavorable encoding biases? Third, genetic algorithms should be applied
in knowledge lean domains where the solutions that are found tend to be difficult to
understand. The question is, what kind of analysis is possible of genetic algorithm
designs? Finally, given a problem, how long should a designer run a genetic algorithm

on it?

The dissertation addresses each of these problems in turn, using design examples

from circuit design, floorplanning and function optimization.

1. Introduction 13

1.4 Structure of this Thesis

Chapter 2 introduces natural selection and genetic algorithm theory, fleshing out
the problems identified above. Although search is the model used in this thesis,
the chapter also illustrates the close mapping between genetic algorithms and the
well-established Analysis, Synthesis, Evaluation model of the design process. The
innovativeness of genetic algorithms and issues in evaluating and encoding problems
are discussed. The chapter ends by explaining how to represent a problem for a

genetic algorithm using an example from floorplanning in architectural design.

Chapter 3 compares genetic and other search algorithms. It defines a class of
search spaces which are easy for genetic algorithms and hard for stochastic hill-
climbers. Since recombination is the crucial difference between genetic and other
search algorithms, the results provide insight into the kind of spaces where recombi-
nation is necessary. This chapter helps answer the question of when to expect genetic
algorithms to outperform other algorithms and thus when to use them to greatest
effect. An earlier version of the work reported in this chapter has appeared in (Louis

and Rawlins, 1993a).

In chapter 4 the dissertation shows how problem encoding can bias genetic search.
This leads into the important issue of problem encoding for genetic algorithms in the
design domain. A bad encoding can cause a GA to flounder, to be misled, or both.
Modifying the classical genetic algorithm to mitigate these problems sheds light on
the nature of good encodings from the perspective of genetic algorithms and from
the differing perspective of design. This chapter uses examples from combinational
circuit design to illustrate the results. Parts of this chapter have appeared earlier in

(Louis and Rawlins, 1991).

1. Introduction 14

Chapter 5 is concerned with analyzing GA generated designs. The importance
of design analysis lies in being able to explain and subsequently modify designs in
principled ways. Since genetic algorithms are designed for working in poorly under-
stood spaces, knowledge about the space needs to be acquired, stored and processed
for useful analysis. This chapter shows how to apply case—based reasoning tools to
acquire knowledge about a design space to explain solutions generated by a GA. Much
of this information is implicit in the processing done by the genetic algorithm. The
case—based reasoning tools extract and process information supplied by the trajec-
tory of a genetic algorithm through the search space. This organized information in
the case—base can be used to explain how a solution evolved and to help identify its
building blocks. The resulting knowledge base can also be used to tune a genetic
algorithm for that specific domain. Examples from function optimization and circuit

design clarify the results. This work has appeared in (Louis et al., 1993).

Chapter 6 considers computational complexity, a crucial element in any compu-
tational model and in any design model where a designer must specify time limits
for a design task. Since evolution is driven by diversity or variation in a gene pool,
the average hamming® and distance is used as a diversity metric to derive bounds on
the time convergence of genetic algorithms. Analysis of a flat domain provides worst
case time complexity for static functions. Further, employing linearly computable
runtime information provides tighter bounds on the time beyond which progress is
unlikely on arbitrary static functions. As a by product, this analysis also gives qual-
itative bounds by predicting average fitness, the quality of an average solution at
convergence. Examples from the DeJong test suite of problems are used to provide
supporting empirical evidence. The part of this chapter on worst case time complexity

has appeared in (Louis and Rawlins, 1993b).

3This thesis uses a lowercase h in hamming since it is passing into common usage. In this thesis
alone it is used more than a hundred times.

1. Introduction 15

The last chapter draws together the threads of representation, analysis, and com-
plexity paving the way toward establishing genetic algorithms as a viable computa-
tional model of design. Questions and possible avenues of research brought to light

by this dissertation are addressed at the end.

2

Genetic Algorithms and Design

| have called this principle, by which each slight variation, if useful, is

preserved, by the term of Natural Selection.

—Charles Darwin. On the Origin of Species, 1859.

This chapter introduces natural selection, genetic algorithm theory and shows the
correspondence between genetic algorithms and a classical design model. This sets
the stage for describing the innovative powers of a genetic algorithm and elaborating

on encoding and evaluation of designs for genetic algorithms.

2.1 Natural Selection

In its most general form, natural selection means the differential survival of en-
tities (Dawkins, 1986). Some entities live and others die. For this to happen there

must be a population of entities capable of reproduction. Natural selection prunes

16

2. Genetic Algorithms and Design 17

this population according to the criterion of survivability (fitness). It acts as a sieve.
In sexually reproducing species the unit of natural selection is the gene. The values
of a gene are its alleles. However, sieving by itself is not capable of producing designs
like those of the life forms on this planet in any reasonable amount of time. Natural
selection needs reproducing entities to feed the results of one sieving process on to
the next, and so on. It is the continuing cycle of reproduction and selection (the
sieving process) that is responsible for the diversity of life on earth. The existence of
finite resources leads to competition for these resources and survival of those entities
that have a competitive advantage. A life form, or phenotype, is a survival machine
built by a set of genes (a genotype) to create a competitive advantage over other
forms. Although it is the phenotypes that are directly competing for survival, it is
the genotypes that get selected on the basis of this competition for further consid-
eration. Evolution can be thought of as a search process. It searches a very large
space of genotypes producing structures that are efficient at carrying out functions
desirable for survival in their environment. For example the search space for the

45490 and this is one of the smallest life forms!

¢X174 viral genotype is of the order of
This motivated John Holland to define a Genetic Algorithm, a search process based
on natural selection, as a tool for searching the large, poorly—understood spaces that

arise in many application areas of science and engineering (Holland, 1975).

2.2 Genetic Algorithm Theory

A genetic algorithm uses the mechanics of natural selection to guide search. It
seems natural to use a genetic algorithm to design artifacts, since the paradigm on
which they are based is so successful at it. However, as already indicated, there are

difficulties and it is helpful to understand the theory behind genetic algorithms before

2. Genetic Algorithms and Design 18

considering the difficulties in detail. The algorithm was introduced in chapter 1, this

chapter considers genetic algorithm theory.

Crossover causes genotypes to be cut and spliced. This means that instead of con-
sidering the fate of individual strings in analyzing a genetic algorithm, the substrings
created and manipulated by crossover must be considered. These substrings define
regions of the search space and are called schemas. More formally, a schema is a tem-
plate that identifies a subset of strings with similarities at certain string positions.
Holland’s schema theorem is fundamental to the theory of genetic algorithms. For
example consider binary strings of length 6. The schema 1**0*1 describes the set of
all strings of length 6 with 1s at positions 1 and 6 and a 0 at position 4. The “*”
denotes a “don’t care” symbol which means that positions 2, 3 and 5 can be either
a 1l or a 0. Although this thesis only considers a binary alphabet, the notation can
be easily extended to non-binary alphabets. The order of a schema is defined as the
number of fixed positions in the template, while the defining length is the distance
between the first and last fixed positions. The order of 1**0*1 is 3 and its defining
length is 5. The fitness of a schema is the average fitness of all strings matching the

schema.

A search algorithm balances the need for exploration — to avoid local optima, with
exploitation — to converge on the optima. Genetic algorithms dynamically balance
exploration versus exploitation through the recombination and selection operators
respectively. With the operators as defined above, the schema theorem proves that
relatively short, low-order, above average schema are expected to get an exponentially
increasing number of trials or copies in subsequent generations(Goldberg, 1989b).

Mathematically

m(b,OSR) [} p 80

h,t+1) > —
m(7+)— ft l—]_

— O(h) Py, (2.1)

2. Genetic Algorithms and Design 19

Here m(h,t) is the expected number of schemas h at generations ¢, f(h) is the fitness
of schema h and f, is the average fitness at generation ¢. The genotype length is

I, 6(h) is the defining length and O(h) the order of schema h. P. and P, are the

probabilities of crossover and mutation respectively.

The schema theorem leads to a hypothesis about the way genetic algorithms work,

the building block hypothesis (bbh)

A genetic algorithm seeks near-optimal performance through the juxta-
position of short, low-order, high performance schemas or building blocks

(Goldberg, 1989).

This means that genetic algorithms exploit syntactic similarities in the genotype as
long as the building blocks (short, high-performance schemas) lead to near-optima.
The emphasis on short schemas has important consequences for encoding a problem

for genetic search and is detailed in the next chapter.

2.3 Models of Design

Since the study of design is still in a pre—scientific stage, models provide a limited
but useful abstraction, less ambitious than theories. That is, a model provides an
abstraction of a subset of the phenomenon under consideration. Search is the over—
arching model used in this thesis and is well-established in both artificial intelligence
and design (Simon, 1969). More specifically genetic algorithms are used to model

the subset of design problems stated in Chapter 1; those that have an evaluation®

!The evaluation function is also called the fitness function from the analogy with biological fitness

2. Genetic Algorithms and Design 20

function and can be encoded to generate candidate designs. This section considers a

model of design and maps genetic algorithms onto an older well-established model.

One model that is widely accepted and agreed upon is the three phase model of
Asimow (Coyne et al., 1990). The three phases are analysis, synthesis and evalua-
tion and a designer cycles through these phases until reaching a satisfactory design.
Analysis prepares the problem, producing an explicit statement of goals. In GAs, this
corresponds to defining the problem dependant evaluation function and choosing an
encoding. Synthesis finds or generates plausible solutions as carried out by crossover
and mutation in genetic algorithms. Evaluation in the three phase model judges the
validity of candidate solutions and selects among them — selection in genetic algo-
rithms. The mapping is not an exact one but the linkage between the two serves to
provide a good starting point since the three phase model has already been mapped
to others (Coyne et al., 1990). Figure 2.1 shows the correspondence between genetic

algorithms and the three phase model.

The interesting part for modeling design is how new candidate designs are gen-
erated. In a genetic algorithm, the search bias is defined by the encoding and the
genetic operators of selection, crossover and mutation. These operators make no as-
sumptions about the continuity, differentiability or linearity of the space. Selection
highlights promising areas of the space, judging candidate designs on the basis of the
evaluation function. Mutation when combined with selection results in a stochastic
hill-climber or gradient—descent algorithm. Crossover mixes information from many
different areas of the search space and, when paired with selection, allows the com-
bining of good partial solutions into better complete solutions. Before describing the
role of the encoding and the evaluation function, this thesis establishes the innovative

power of these operators.

2. Genetic Algorithms and Design 21

Genetic
Algorithm

Figure 2.1: The one-to-one correspondence between the three phase model and the
genetic algorithm.

2.4 Innovation

Gero and Jo, among others (Gero and Jo, 1991; Tong and Sriram, 1992), define
two types of design activity: 1) routine or parametric design and 2) non-routine
design. They further divide non-routine design into innovative and creative design.
Innovativeness is characterized by unusual combinations of design variables or features
while creativity introduces new design variables. These definitions and GA theory are

used to show how GAs are innovative.

The building block hypothesis states that GAs work by putting together good
building blocks. Innovative designers combine concepts or ideas that worked well in
certain contexts with other ideas that worked well in other contexts to form new,
possibly better ideas which help to perform the current task. In the same way genetic

algorithms through the operations of selection and crossover combine many different

2. Genetic Algorithms and Design 22

high-performance schemas (or building blocks) to form new solutions. Mathemati-
cally, the schema theorem gives the growth rate of high-performance schemas. As
long as the disruption of these schemas due to crossover and mutation (the last two
terms in equation 2.1) is sufficiently small, the necessary number of building blocks
are expected to be present. Most crossover and mutation operators satisfy this re-
quirement. Holland’s second law of genetic algorithms also quantifies the probability
that good schemas will combine through the randomized action of crossover. Suppose
m building blocks are needed to form a particular solution and each building block
has at a least P representatives in the current population of size N. Repeated cross-
ing over with a low disruption crossover operator implies that no less than (P/N)™
individuals have all the required m building blocks together. Thus selection combined
with crossover allows building blocks to grow and innovatively combine into design

solutions.

2.5 Representing Designs for GAs

In its simplest form, using a genetic algorithm for design is like playing with a
mechano set (a child’s construction kit). Given some low level primitives, the task
is to put them together so that they perform a certain function. The genotype is
a particular specification of the type and arrangement of the primitives while the
phenotype is the designed artifact as a whole. The genotype can be thought of as
a program which details how to build the phenotypic artifact. Using this simple
analogy, a GA used for design can be considered a manipulator. It manipulates low-
level “tools,” playing with their arrangements, until it finds the required structure.
Encoding therefore consists of finding a set of low-level tools for the GA to manipulate.

The number of possible codings to choose from may be very large and it is fortunate

2. Genetic Algorithms and Design 23

that GAs are robust and work quite well on arbitrarily chosen encodings. However

in addition, the following two principles are often used (Goldberg, 1989).

1. The principle of meaningful building blocks

2. The principle of minimal alphabets

In the context of design, the first principle asks the user to select codings such that the
building blocks of the underlying design are small and relatively unrelated to building
blocks at other positions. The second principle states that the user should select the
smallest alphabet that permits an expression of the design so that the number of

exploitable schemas is maximized.

However, in the kind of spaces often encountered in design, a designer may not
know whether either principle of GA coding is being followed. The mapping from
genotype to phenotype is now much more complex. To get an idea of this complexity,
compare the structure of an eye (a design phenotype) with a point in the search space
(a phenotype in function optimization) Interdependence in phenotypic space may not
be reflected in the genotype, unless it is very carefully encoded, and may cause a GA
to be mislead because it violates the first principle. Epistasis, or interrelationships
among components, in phenotypic structures therefore plays an important part in

determining the suitability of an encoding for design.

At first glance, the second principle may seem to be much simpler to follow. Since
digital computers ultimately represent all objects in bits and bytes, the problem
reduces to making sure that genetic operators work on this binary representation.
In fact, the efficiency of bit operations in digital computers was one of Holland’s
motivations for using a binary representation for genotypes. However, the problem

is to arrange for such an encoding to simultaneously follow the first principle. Our

2. Genetic Algorithms and Design 24

intuition about design spaces may not translate into an understanding of the binary
encoded spaces that GAs thrive on. Chapter 4 gives an example of this type of

problem, suggests a solution, and presents favorable empirical evidence in support.

2.6 Evaluating Designs for GAs

Evaluating a design measures performance relative to predetermined criteria. If
the criteria are well defined, a scalar or vector value can be assigned to a candidate de-
sign and compared with others. On the other hand if the problem is ill-structured and
the criteria are not well defined, precision may decrease leading to fuzzy quantization.
This may knock some paradigms out of contention, but GAs are remarkably resilient.
When using a distributed selection mechanism, such as tournament selection, all that
is needed from the evaluation function is a partial ordering on the generated popula-
tion of design alternatives. If the performance criteria are ill-defined, an interacting
designer can bring aesthetic and/or other judgments into the evaluation process and

need only compare pairs of candidate solutions indicating which is better.

For example, consider the problem of constructing a composite of a criminal’s
face by an eyewitness to the crime. Caldwell and Johnston describe a system that
uses a genetic algorithm to rapidly search through a search space containing over
34 billion possible facial composites (Caldwell and Johnston, 1991). The eyewitness
interactively and subjectively establishes the measure of fitness used to guide search.
The algorithm combines building blocks made up of five basic features. The type and
position of the forehead, the eyes and their separation, and the shape and position of
nose, mouth and chin, respectively. In their example, just 10 generations suffice to

generate a composite that is remarkably similar to the criminal.

2. Genetic Algorithms and Design 25

The genetic algorithm is also quite resistant to noise in the evaluation process
and noisy judgments are processed in useful ways (DeJong, 1975). In all cases, once
a partial ordering is available, selection can prune the search and concentrate on a

computationally tractable subset of the space.

2.7 Example Problem: Floorplanning

This section uses a floorplanning problem (Radford and Gero, 1988) to ground
the issues discussed so far. Consider the apartment floorplan shown in figure 2.2.
The problem is to find the length and width of each room that will minimize the cost
of the apartment subject to some constraints. The cost for each room in this case is
the area except for the cost of the kitchen and bathroom, whose costs are twice their

respective areas. The constraints are:

Length Width Area
Room Min Max Min Max Min Max Proportion

Living 8 20 8 20 120 300 1.5
Kitchen 6 18 6 18 50 120 any
Bath 55 55 85 85

Hall 5.5 55 35 6 19 72 any
Bedl 10 17 10 17 100 180 1.5
Bed2 9 20 9 20 100 180 1.5
Bed3 8 18 8 18 100 180 1.5

Further, there must be a space — 3.0 units — for a doorway in the walls connecting

bed2 and bed3 to the hall, and all rooms are rectangular (as is the entire plan).

2. Genetic Algorithms and Design

26

Living

Bath

Hall

Bed 2

Kitchen

Bed 1

Bed 3

Figure 2.2: Dimensionless floor plan of a three bedroom apartment

This design problem is a nonlinear optimization problem and can be formulated

mathematically as follows. Let length be the horizontal dimension and width the

vertical dimension, then the variables are given in the table below.

Room

Length/Width Label

Living
Living
Kitchen
Kitchen
Bed1
Bed2
Bed2
Bed3

length
width
length
width
length
length
width
width

X1
Xo
X3

Although at first glance there appear to be fourteen variables, one each for the

length and width of each room, analysis of the problem reveals that some of the

2. Genetic Algorithms and Design 27

variables can be computed from others. For example the width of the hall is the

width of the living room minus the width of the bathroom.

The design task is to minimize the cost of the apartment, that is, minimize

F=X1X>+2X3X,4 + 93.5 (cost of bath) +
5.5(X5 — 8.5) + XuaXs + X6 X7+
XeX3g

subject to the following constraints:

X1, X, < 20
X1, X, > 8
Living X;X, < 300
XX, > 120
X:/X, < 15
X3, Xy < 18
X,X, > 6
Kitchen
X1 X, < 120
X1 X, > 50

5.5(X,—85) < T2
5.5(X, —8.5) > 19

Hall

2. Genetic Algorithms and Design

28

X5, X, < 17
Xs, Xa 10
Bedl Xs5X. 180
Xs X4 100
Xs/Xa 1.5

vV IN IV

IN

X, X7 < 20
Xe, Xv
Bed2 XeX;
Xe X7
Xe/ Xy

vV
©

IA

180
100
1.5

Y

IA

Xe Xs < 18
Xg, Xs

Bed3d XX
XsXg
Xe/Xs

vV
0o

180
100
1.5

(VAR VAN

IA

X7 —8.5
Xg— X4

Doorways in hall

In addition the whole plan is rectangular therefore:

\Y

2. Genetic Algorithms and Design 29

X1 +5.5 = X3+ X;s
Wall alignments
8o+ (Xo—85)+Xy = Xr+Xs = Xo+Xs
To use a genetic algorithm on this problem these constraints must be incorporated
in the encoding or the objective function F', and the design variables (X; ... Xs) have
to be represented in a form suitable for a GA. That is, each variable must be encoded
in a bit string and the concatenated string of all variables forms the genotype. Since
the minimum and maximum value of each variable is given, only the range (the
difference between the maximum and minimum values) needs to be represented. The
maximum range is 12 and as an accuracy of about 0.5 units is sufficient, 11 bits are
used to encode the variables with a range of 12 and 10 bits for the rest. 11 bits can
be used to represent values from 0 to 2048 and must be mapped to the values from
0 to 12, thus if y; represents the binary encoded value of the first variable’s (X;’s)

range, the length of the living room can be computed through

100.0 x 12.0

X1 = MlIl(Xl) +
Y1

where Min(X;) = 8.0, the minimum length of the living room. The genetic algorithm
therefore codes for the range from 0 through 12 in increments of 12.0/20.48. Increasing
the number of bits for y; by 1 would result in a precision of 12/40.96. In this way
the constraints on the maximum and minimum lengths and widths of rooms are

assimilated in the encoding.

Violation of constraints on area, proportion, door and wall alignments take the

form of penalties which increase the total cost. Thus the function to be minimized —

2. Genetic Algorithms and Design 30

the objective or evaluation function — becomes:

F=X1X>+2X3X, + 93.5 (cost of bath) +
5.5(X5 —8.5) + XaXs + X6 X7+
X Xg + penalties

A genetic algorithm can now work on the encoded design problem. Starting with
an initial random population of solutions encoded as described above, selection evalu-
ates candidate solutions, while crossover and mutation synthesize new solutions. The
minimum cost found by sequential linear programming, an optimization technique
that first converts the problem to a linear one and then solves it, is 715.98 units and
this solution violates some of the constraints. In experiments with a popultion size of
30, crossover probability of 0.9 and a mutation probability of 0.01, genetic algorithms
find solutions that have costs from 689.30 to 752.92 with various degrees and types
of constraint violations. This allows an engineer or architect to choose from among

the solutions, produced in less then a minute on a work station.

2.8 Summary

This chapter has illustrated how genetic algorithms model the design process.
They mirror the three stage model of analysis, synthesis and evaluation searching
through a large space of possible designs for near-optimal structures. Noisy environ-
ments, perhaps a side effect of ill-structured problems, do not cause major problems.
In interactive systems where human designers can help evaluate ill-defined criteria
(beauty, elegance etc.), GAs only need pairwise comparisons of candidate solutions

and do not need other more time consuming evaluations. Finally, a floorplanning

2. Genetic Algorithms and Design 31

problem was used to illustrate the issues involved in analyzing and encoding a prob-

lem for a genetic algorithm.

Nevertheless, there are problems. Usually, domain information resides in the eval-
uation function, but performance of a GA depends on the suitability of the encoding.
That is, whether it follows the two principles of GA encodings. Domain knowledge
also plays a large part in deciding if a particular encoding is appropriate. But given the
same problem and encoding, when is a genetic algorithm expected to perform better
than other blind search algorithms? Next, whatever the underlying knowledge-base
(design prototypes, shape grammars etc.) and its representation, there is first the
problem of encoding this domain knowledge for a GA. Third, although GAs may be
expected to invent new designs, analysis of why the design works and what are its
strong and weak points is difficult. Finally, the time to convergence — the time that

a GA should run — must be bounded before a computational model can be advanced.

3

Comparing Genetic and Other
Search Algorithms

"Life is very strange’ said Jeremy. "Compared to what?’ replied the spider.

Anon

This chapter compares genetic algorithms with other search algorithms. It defines
a class of search spaces which are easy for genetic algorithms and hard for stochastic
hill-climbers. The defined spaces require genetic recombination for successful search
and are partially deceptive. A deceptive space for a search algorithm leads the al-
gorithm away from the global optimum and towards a local optimum. Problems
where tradeoffs need to be made subsume spaces with these properties. Results com-
paring a genetic algorithm without crossover against one with two—point crossover
support these claims. Further, a genetic algorithm using pareto optimality for selec-
tion, outperforms both. In problems with more than one criteria to be optimized,

pareto optimality provides a way to compare solutions without the need to combine

32

3. Comparing Genetic and Other Search Algorithms 33

the criteria into a single fitness measure. These results provide insight into the kind
of spaces where recombination is necessary suggesting further study of properties of

such spaces, and when to expect genetic algorithms to outperform others.

3.1 The Importance of Recombination

Recombination plays a central role in genetic algorithms and constitutes one of
the major differences between GAs and other blind search algorithms. Therefore, the
answer to the question of whether a search space is particularly suited to a genetic
algorithm hinges on the power of recombination in generating an appropriate search
bias. This chapter defines one class of spaces that requires genetic recombination for
successful search. The class includes problems where a particular kind of tradeoff

exists and is exemplified by design problems in engineering and architecture.

Recent work on GA-easy and “royal-road” functions suggests that it is not easy
to find spaces where GAs emerge a clear winner when compared with a stochastic
hill-climber (SHC) or a population of stochastic hill-climbers (Wilson, 1991; Mitchell
and Forrest, 1993). The work suggests that it is not enough that optimal lower order
schemas combine to form optimal higher order schemas. Hill-climbers often solve
such problems in a fewer number of function evaluations than a genetic algorithm.
Instead, research on deception provides insight into the kinds of spaces that are
deceptive (Goldberg, 1989a) for SHCs or a population of SHCs and that are relatively
easy for genetic algorithms. Identifying properties of spaces that are easy for genetic
algorithms and hard for stochastic hill-climbers should provide insight into the inner

workings of a GA and aid in the practical selection of search algorithms.

The next section defines the model of a stochastic hill-climber used in this chapter.

3. Comparing Genetic and Other Search Algorithms 34

Then a problem that is partially deceptive and needs recombination to overcome
deception is designed. Spaces with structure similar to the problem defined in section
three may be found in multicriteria optimization, thus pareto optimality is defined in
section four and used in selecting candidates for recombination in a genetic algorithm.
Empirical evidence in section five compares performance on the problem type defined

in section three.

3.2 GAs, Hill-climbers and Recombination

The model of a classical genetic algorithm in this chapter assumes proportional
selection, 2—point crossover and a mutation operator that complements a bit at a
randomly selected position. Proportional selection selects a candidate for reproduc-
tion with probability proportional to the fitness of the candidate. That is, if f; is the

fitness of individual 7, its probability of selection is

fi

ﬁ.
2

o

-
Il
o

where N is the population size. Two point crossover is like one-point crossover (fig-
ure 1.3), except that two points are randomly chosen and the substring defined by
those points exchanged to produce offspring. For experimental purposes a population
of stochastic hill-climbers is a genetic algorithm without crossover. In this chapter
hill-climber and stochastic hill-climber are used interchangeably and problems are

cast as maximization problems in hamming space, eliding the issue of encoding.

A genetic algorithm without crossover and only mutation can be likened to an

3. Comparing Genetic and Other Search Algorithms 35

Evolution Strategy (Back et al., 1991), albeit a simple one with a nonvarying mu-
tation rate and random bias. A GA without crossover is a stochastic hill-climber
and depending on the rate of mutation, can make jumps of varying sizes through
the search space. Being population based and stochastic it makes fewer assumptions
about the search space and as such is more robust and harder to deceive than the
bit-setting optimization and steepest-ascent optimization algorithms defined in Wil-
son’s paper (Wilson, 1991). A bit-setting optimization algorithm assumes that a
point in the search space is represented by a bit string S of length I. The algorithm
flips each bit remembering the settings that led to improvements. The solution S’
consists of the better settings of each bit. Steepest-ascent optimization accepts S’
as the starting point for iterating bit-setting optimization. This continues until no

improvements can be made.

Although there is debate in genetics as to the evolutionary viability of crossover
in nature, it suffices to note that crossover does exist in biological systems. In genetic
algorithms, Holland’s schema theorem emphasizes the importance of recombination
and provides insight into the mechanics of a GA (Holland, 1975). Recombination is
the key difference between the genetic algorithm and the hill-climbers defined above.
A GA allows large, structured jumps in the search space. In other words, it facilitates
combination of low order building blocks to form higher order building blocks, if they
exist. The type of combinations facilitated, depends on the crossover operator and
population distribution. In a random population of strings (encoded points) large
jumps in the search space are possible. However the size of jumps due to crossover in
a GA depends on the average hamming distance between members of the population
(hamming average) or the degree of convergence of the population. The hamming
distance between two binary strings of equal length is the number of corresponding

positions that differ. For example, the hamming distance between 1011 and 0010 is

3. Comparing Genetic and Other Search Algorithms 36

2 since the bits in the first and last positions differ. As the population converges,
the usual and corresponding decrease in hamming average of the population leads
to a decrease in maximum jump size and exploration of a correspondingly smaller
neighborhood. But this kind of neighborhood exploration can be carried out by a GA

with mutation only, that is, a stochastic hill-climber.

During the early stages of GA processing, large jumps, combinations of building
blocks that are hamming dissimilar, are more probable since the hamming distance
between possible mates is higher. The GA should search effectively in spaces where
such combinations of building blocks lead toward higher order optimal schemas. But
at this early stage, not only is the variance in estimated fitnesses of schemas high,
but there may be enough diversity in a population of hill-climbers to stumble on the
correct higher order schema. Both the order of early building blocks and diversity of

the population need to be considered in analyzing recombination.

The discussion above implies that for recombination to be effective and hill-
climbing ineffective, a GA needs to be able to make large, useful, structured jumps

through recombination even after partial convergence.

3.3 A Hill-climbing Deceptive Problem

Consider the function shown in figure 3.1. For this four—bit function, the global
optimum is at 1111, but there are two hill-climbing deceptive optima at 0011 and
1100, the global optimum is 2 bits away from the suboptima. Figure 3.2 gives another
rough, but perhaps more intuitive, view of the same function. Broadening the base of
the peak in figure 3.2 to make it easier on hill-climbers and genetic algorithms alike,

the function can be specified for an [length string. Let z; be the number of ones on

3. Comparing Genetic and Other Search Algorithms 37

1111

0011 1100
0001001001111011 11011110,0100,1000

FITNESS

01010010 10011010
0000

Figure 3.1: A hill-climbing deceptive function that should be easy for GAs

1111113113111
g
=
LL
1111100000 0000011111
0000000000 0000000000

Figure 3.2: An alternate view of a hill-climbing deceptive function that should be

easy for GAs (10 bits)

3. Comparing Genetic and Other Search Algorithms 38

the right half of the string (/2 bits), z; be the number of ones on the left half of the

string. Using | | to denote the absolute value function, and p the size of the base of

the peak,
if
(z1+z2) > (I —p)
then
(3.1)
fitness(string) = (21 X z2)?
else

fitness(string) = |2 X 2y — 21 |+ |2 X 21 — 22 |

Intuitively, counting from one side (left or right), fitness increases as the number of
1’s increases until the halfway point of the string, after this point, fitness decreases as
the number of 1’s increases until reaching the area near the global optimum. Here the
fitness increases sharply peaking at the global optimum. The squaring of the values
near the peak tries to ensure that once found by a classical genetic algorithm, the

peak will not be lost easily.

For sufficiently large [this type of function is deceptive for a SHC or population
of SHCs since for a string of length [, once a stochastic hill-climber reaches a decep-
tive optima, it will have to simultaneously set all the remaining [/2 (approximating
to within p bits) bits to 1 to attain the global optima. Setting fewer than [/2 bits
decreases fitness. The probability of simultaneously setting {/2 bits to 1 decreases
exponentially with [, thus making it hard on a SHC or a population of SHCs for suffi-
ciently large [. Using this chapter’s model of a stochastic hill-climber with mutation
probability p,,, after reaching the suboptima, the probability of setting [/2 bits is:
the probability that [/2 incorrect bits are flipped, multiplied by the probability that

3. Comparing Genetic and Other Search Algorithms 39

the correctly set bits are not flipped

(pm)"? X (1 — pm)?

Now consider the power of recombination. Once a genetic algorithm reaches the
hill-climbing deceptive optima, crossover can produce the global optima in one op-
eration, assuming that the population contains representatives of both suboptima.
Genetic operators that are conducive to maintaining stable subpopulations at the
peaks of a multimodal function are called niching operators (see (Deb and Goldberg,
1989) for a survey of niching operators). Niching operators can be used to provide
representatives at the suboptima as long as these operators do not entail mating

restrictions which may then not allow the algorithm to find the global optimum.

Next, consider whether this type of space may be found in normal application
domains. In many areas of engineering, a problem is usually stated in terms of mul-
tiobjective (or multicriteria) optimization, and the function above can be easily and
naturally stated as a two—objective optimization problem. This dissertation suggests
that multicriteria optimization problems may provide fertile ground for finding search
spaces in which genetic algorithms do better than other blind search algorithms. How-
ever, multicriteria optimization raises a point. The issue for the algorithms presented
earlier is that, in general, it is difficult to combine multiple measures into a single fit-
ness in a reasonable way without making assumptions about the relationships among
the criteria. Unfortunately, a single fitness measure is the usual feedback for genetic
algorithms and for the niching methods in (Deb and Goldberg, 1989). For example,
consider designing a beam section where the objectives are to maximize the moment
of inertia and minimize the perimeter. Minimizing the perimeter usually decreases

the moment of inertia and maximizing the moment of inertia increases the perimeter

3. Comparing Genetic and Other Search Algorithms 40

resulting in a tradeoff (Gero et al., 1993). Combining the two criteria into a single
measure makes no sense unless the relationship between the two is already known.
Fortunately, the concept of pareto optimality allows us to do this reasonably and, as
will be seen, provides a ready-made niching mechanism, killing two birds with one

stone.

3.4 Pareto Optimality and Selection

Pareto optimality operates on the principle of nondominance of solutions. An n

criteria solution s; with values (¢1, ¢, . .., ¢,) dominates s, with values (dy,ds, ..., d,)

if

The set of pareto optimal solutions, the pareto set, is the set of non-dominated solu-
tions. Figure 3.3 shows the pareto set for a two criteria problem. An axis represents
values for a particular criterion. The coordinates of each point (solution) denote the
values of their respective criterion. X'’s in the figure represent dominated points. The

O’s represent non-dominated points that belong in the pareto optimal set.

Considering the maximal value along each criteria to be one of our hill-climbing
deceptive optima, there is a correspondence between the function defined in section
2 and multicriteria optimization problems. If a central peak (global optimum) exists,
as in figure 3.2, then recombination should find it, if both suboptima are represented
in the population. Incorporating pareto optimality into the selection mechanism of

a genetic algorithm facilitates the maintenance of stable subpopulations representing

3. Comparing Genetic and Other Search Algorithms 41

the suboptima.

A variant of binary tournament selection is used to incorporate pareto optimality
in the genetic algorithm. The algorithm selects two individuals at random from the
current population, mates them, and produces the pareto optimal set of the parents
and offspring. Two random individuals from this pareto optimal set form part of
the next population. The procedure repeats until the new population fills up, thus
becoming the next current population. This method with a tournament size of 2 is

computationally inexpensive since only 4 solutions compete at a time.

The pareto optimal genetic algorithm is used to attack the problem in section 3.3.
First, the problem is split into two, corresponding to the two additive terms in equa-

tion 3.1. Cast as a 2 criteria optimization problem, the first criterion is

if
(z1+z2) > (I —p)
then
(3.2)
ci(string) = z1 X 22
else

ci(string) = | 2 X z1 — 22 |

where z; stands for the number of 1’s in one half of the string and z, the number of

3. Comparing Genetic and Other Search Algorithms 42

1’s in the other half of the string. The second criterion ¢; then becomes

if
(z1+22) > (I - p)
then
(3.3)
ca(string) = z1 X 22
else

co(string) = | 2 X z3 — 21 |

The point of decomposing the original problem into a two criteria problem is
not to suggest that functions in general, can be decomposed to form multicriteria
problems. Rather, the argument is that many design problems are best posed as
multicriteria optimization problems and thus provide search spaces that are easy for

genetic algorithms.

3.5 Results

This section compares the number of times the optimum is found by a GA without
crossover, a classical GA with two—point crossover (CGA) and a pareto optimal GA
with two—point crossover. The population size in all experiments was 30 and the
results were averaged over 11 runs of the algorithm with different random seeds. The
GA with mutation ran with mutation probability from 0.01 to 0.10 in increments of
0.01 and the best results used. The probability of crossover was 0.8 and the mutation
rate 0.02 for the other two algorithms.

Figures 3.4 and 3.5 compare the maximum fitness over time for the three algo-

rithms. The algorithms ran for 200 generations or 6000 function evaluations. The

3. Comparing Genetic and Other Search Algorithms 43

Length | Width PGA CGA PSHC

20 1 100% 55% 45%
30 2 100% 27% 18%
40 3 % 0% 0 %
50 4 45% 0% 0%

Table 3.1: Comparing the number of times the optimum was found in 200 generations
for narrow peaks.

string length was 30, the parameter p in the definition of the function was set to 2 to
produce figure 3.4 and to 4 to produce figure 3.5. The difference in performance of the
pareto optimal GA provides empirical support for the importance of recombination
and the niching effect of pareto optimal selection. As expected the width of the peak
affects performance, with wider peaks allowing the GA with two—point crossover to
perform significantly better than the stochastic hill-climber. The plot for the pareto
optimal GA shows the average fitness for only one of the two criteria, hence the low

(about 1/2 the value of the other two plots) initial values.

Table 3.1 compares the percentage of times the algorithms found the optima for
strings of length 20, 30, 40 and 50 for peaks of width 1, 2, 3 and 4. In the table, peak
size is given in column 2, PGA is the pareto GA while CGA is the GA with two—
point crossover and PSHC is the GA with no crossover — a population of stochastic

hill-climbers. Table 3.2 depicts the same information but for wider peaks.

3. Comparing Genetic and Other Search Algorithms 44

Criterion 22—,

Criterion 1

Figure 3.3: A graphical representation of solution points on a two criteria optimization
problem. The points within the shaded area represent the pareto optimal set of
solutions.

Performance with peak width =2

—1 1.00

—1 0.90

—1 0.80

_| 0.70

—1 0.60

—1 0.50

Performance

Simple GA

—1 0.40

—1 0.30

1 0.20

VA e,
Stochastic hill climber
| o.10

| | | |
0.00 50.00 100.00 150.00 200.00
Generations

Figure 3.4: Performance comparison for string length 30. The peak width is 2.

3. Comparing Genetic and Other Search Algorithms 45

Performance with peak width = 4

] 1.00

Pareto—GA
_| 0.90

—| 0.80

| 0.70

_| 0.60

—| 0.50

formance

\
YN
“m/”//\ " \J”PWM

| o403

P

VR
~ Stochastic hill climber
1 0.30

] 0.20

—| 0.10

! | ! |
0.00 50.00 100.00 150.00 200.00
Generations

Figure 3.5: Performance comparison for string length 30 but with peak width 4.

For table 3.1, statistical testing using a x? test of significance for comparing pro-
portions indicates that the PGA is significantly better at a confidence level greater
than 95% for the length 20 problem and a significance level greater than 99% for
the others. The difference in performance of the CGA and PSHC is not statistically
significant for any of the problems in this table. Table 3.3 shows the significance
and confidence levels for the data in table 3.2. Comparing performance using date
for the wider peaks given in table 3.2, the x? test indicates that the differences in
performance between the PGA and CGA and between the CGA and PSHC on the
30 bit problem are statistically significant. The confidence level is greater than 75%.
On the 40 and 50 bit problems the pareto GA significantly outperforms the other

algorithms.

These results strongly indicate that a pareto GA is more likely to find the optimum
on problems of this type, followed by a GA with crossover. The stochastic hill-climber
appears least likely to find the optimum and in this case had less than a 50% chance,

3. Comparing Genetic and Other Search Algorithms 46

Length | Width PGA CGA PSHC

20 2 100% 91 % 100 %
30 4 100% 8% 55%
40 6 100% 64% 0%
50 8 82 % 0% 0%

Table 3.2: Comparing the number of times the optimum was found in 200 generations
for broader peaks.

Length | Width PGA vs CGA CGA vs PSHC
Significant? Significant?

20 2 No No %

30 4 Yes (75%) Yes (75%)
40 6 Yes (95%) Yes (95%)
50 8 Yes (99%) No

Table 3.3: Statistical Significance of differences in performance according to the x?
test of significance. Confidence levels are in parenthesis.

3. Comparing Genetic and Other Search Algorithms 47

even on the smaller 20 length problem when the peak was narrow. Wider peaks help
the hill-climber for small problems (length 20, peak width 2) but as the problem
size increases the hill-climber’s performance deteriorates to become worse than even
a simple GA. In all cases the pareto GA does as well or better than the other two

algorithms.

3.6 Discussion

A preliminary analysis assumes that the algorithms need to reach the local op-
tima to be able to jump to the global optimum. For the function type defined in
this chapter, as the length of the deceptive basin between a local optima and the
global optimum decreases, hill-climbers should perform better. A break-even point
for a function shaped like the one in figure 3.2, occurs when the chances of reaching
the global optimum from one of the local optima become greater than 1/2. From
the earlier analysis the probability that a stochastic hill-climber reaches the global
optimum is

(P)% X (1 = pm)/?

where p,, is the probability of mutation and [the length of the string. Let d stand
for the length of the deceptive basin (I/2 is the length of the deceptive basin above).
Figure 3.6 is a copy of figure 3.2 but with the deceptive basin size d clearly marked.

Plotting the function for various values of p,, and d results in figure 3.7.

The plot (figure 3.7) indicates that the length of the deceptive basin plays a

major part in determining success for a stochastic hill-climber. Only for small values

48

1111111111

SsaUlI4

0000011111

deceptive basins

1111100000

3. Comparing Genetic and Other Search Algorithms

_probability

SHC_success.

Figure 3.6: The shape easier for GA and harder for hill-climbers, d denotes the size

of the deceptive basin.

Figure 3.7: The vertical axis indicates the probability of finding the global optimum

in terms of mutation rate (p,) and length of deceptive basin (d).

3. Comparing Genetic and Other Search Algorithms 49

of d are the chances of finding the optimum appreciable over a range of mutation
values. For a genetic algorithm using one-point crossover, the probability that the
global optimum is found assuming equally fit local optima is roughly the probability
that the mates chosen represent the two local optima, multiplied by the probability
that crossover produces the global optimum. Assuming that the genetic algorithm
population only contains representatives of the local optima in equal proportions,
the probability of finding the global optimum is % This simplified analysis assumes
that the algorithms need to reach the local optima to be able to jump to the global
optimum. The assumption is not strictly true. Analysis becomes much more complex,
depending on the detailed behavior of the objective function, when disallowing this
assumption. However, macroscopic behavior, like the importance of deceptive basin

length (d) is predictable.

3.7 Summary

Design problems are often formulated as multiobjective or multicriteria optimiza-
tion problems. In many cases such problems involve tradeoffs among possibly conflict-
ing criteria. Spaces where recombination of two or more single criterion optima leads
toward a global optimum, with a deceptive basin in between to trap hill-climbers,
are well suited for genetic algorithms especially when using pareto optimality in their
selection process. Pareto optimal selection appears to provide the necessary niches
until recombination produces the global optimum. This chapter defined a problem in
hamming space with these properties and empirically compared the performance of a
classical GA with two—point crossover to that of a stochastic hill-climber (a GA with-
out crossover), and a GA with pareto optimal selection. The GA with pareto optimal

selection always found the optimum more often than the others, while the classical

3. Comparing Genetic and Other Search Algorithms 50

GA wusually did better than the stochastic hill-climber. This evidence suggests a
closer look at the spaces defined in this chapter for function encoding combinations

that are relatively easy for genetic algorithms and hard for hill-climbings methods.

Pareto optimal selection also eliminates the need to combine disparate criteria
into a single fitness as is usual in genetic algorithms. The method described in
this chapter is distributable and computationally less expensive compared to other
suggested methods for incorporating pareto optimality (Goldberg, 1989b). Exploring
niche formation with pareto optimal selection remains an interesting area for further

research.

This chapter did not consider encodings since all problems were cast as opti-
mization problems in hamming space. However, encoding a problem for a genetic
algorithm is an important issue, with the biases generated by an encoding playing a

significant part in performance. The next chapter attacks this problem.

4

Genetic Algorithm Encodings

Each type of knowledge needs some form of “representation” and a body of

skills adapted to using that style of representation.

— Marvin Minsky. Society of Mind. 1985

This chapter describes the assumptions behind the principle of meaningful building
blocks and defines a new crossover operator that relaxes these assumptions. The
new operator makes choosing a GA encoding easier, paving the way for applying
GAs in design. The chapter uses design problems from combinational circuit design

(designing adders and parity checkers) to illustrate the results.

4.1 Search Bias

The search bias during genetic search depends on: the problem, the structure

of the encoded search space for the problem, and the genetic operators of selection,

51

4. Genetic Algorithm Encodings 52

crossover and mutation. For every problem there are a large number of possible
encodings. It is often possible to follow the principle of minimal alphabets when
choosing an encoding for a genetic algorithm, but simultaneously following the prin-
ciple of meaningful building blocks can be much harder. This is because our intuition
about the structure of the problem space may not translate well in the binary encoded

spaces that genetic algorithms thrive on.

There are two possible ways of tackling the problem of coding design for mean-

ingful building blocks.

1. Search through possible encodings for a good one while searching for a solution.

2. Expand the number of good encodings by increasing the types of building blocks

considered meaningful.

The first choice uses reordering operators, like inversion, that change the encod-
ing while searching for the solution and is discussed next. The rest of the chapter

motivates, develops and illustrates second approach.

4.1.1 Inversion

Inversion rearranges the bits in a string allowing linked bits to move close together.
Inversion occurs in nature and serves a similar function. Genes and their alleles are
linked if their expression is dependent on one another. Tight linkage is established
when linked alleles are close together and such alleles are called co-adapted alleles.
Epistasis is the term used to describe the degree of linkage among alleles. In genetic
algorithms, inversion is implemented by changing the encoding to carry along a tag

which identifies the position of a bit in the string (Goldberg, 1989b). With the tags

4. Genetic Algorithm Encodings 53

specifying position, it is now possible to cut and splice parts of a string allowing
bits to migrate and come together. Inversion-like reordering operators have been
implemented by Goldberg and others (Goldberg and Lingle, 1985; Smith, 1985) with

some good results.

The problem with using inversion and inversion-like operators is the decrease in
computational feasibility. If [is the length of a string, inversion increases the search
space from 2! to 2!!. Natural selection has geological time scales to work with and
therefore inversion is sufficient to generate tight linkage. Designers do not have this

amount of time or the resources available to nature.

Instead of using reordering operators, this thesis expands the number of encod-
ings that a genetic algorithm finds useful by increasing the types of building bocks

considered meaningful by a genetic algorithm.

4.1.2 Disruption and Crossover

The principle of meaningful building blocks arises mainly from the search biases
generated by the crossover operator. To see why, consider the probability of disruption
of a schema. Let H be a schema, §(H) its defining length and O(H) its order.
Then the probability that the crossover point falls within the schema is 6(H)/(I —
1) where [is the length of the string containing the schema. This is the second
term in equation 2.1 and is the probability that crossover will disrupt the schema.
Since the probability of disruption is proportional to the defining length, schemas of
long defining length tend to be disrupted more often than their shorter counterparts.
Consequently, the principle of meaningful building blocks tries to ensure that a chosen

encoding does not have long building blocks. However, the mapping from genotype

4. Genetic Algorithm Encodings 54

to phenotype is in general much more complex in design, hence it may not be known
whether the encoding follows the principle of meaningful building blocks even when
the underlying domain is relatively well understood. This means that schemas of
arbitrary defining length may need to be preserved and the bias towards short schemas

becomes a liability.

One way of combating the problem of disruption in highly epistatic design prob-
lems is to remove the bias toward short schemas and allow low order schemas of

arbitrary defining length to bias search in useful directions.

Previous approaches to this problem used a new crossover operator like punctuated
crossover or uniform crossover. Punctuated crossover relies on a binary mask, carried
along as part of the genotype, in which a 1 identifies a crossover point. Masks, being
part of the genotypic string, change through crossover and mutation. Experimental
results with punctuated crossover did not conclusively prove the usefulness of this

operator or whether these masks adapt to an encoding (Schaeffer and Morishima,

1987; Schaeffer and Morishima, 1988).

Uniform crossover exchanges every corresponding pair of bits with a probability
of 0.5. The probability of disruption of a schema is now proportional to the order of
the schema and independent of defining length. Experimental results with uniform
crossover suggest that this property may be useful in some problems (Syswerda,
1989). However, in design problems the idea is not to disrupt a highly fit schema
whatever its defining length.

A second point needs to be made. Natural selection works by biasing search in
any direction that shows the slightest improvement in survivability. This directional
information is implicit in the number of competing alleles that exist in a population,

and in nature, cannot be stored anywhere. Classical genetic algorithms and their

4. Genetic Algorithm Encodings 55

operators, mimicking natural selection are also bound by these constraints.

In summary, designing an encoding is complex and something of an art. To solve
the problem of bad taste on the part of GA programmers, or to at least give them
more leeway, this thesis lets the GA exploit encodings that are less constrained. The
following sections describe and use a masked crossover operator to remove the bias
toward short schemas and makes use of explicitly stored directional information to

efficiently bias search.

4.2 Crossover

The assumption that short, low-order schemas are needed to solve a problem is
dependent on the encoding and the crossover operator. A strategy that identifies
highly fit schemas or building blocks of arbitrary defining length would expand the
set of possible encodings with which a GA could work, leading perhaps to a lower

aesthetic threshold for GA programmers.

The operator that introduces bias due to the encoding in genetic search is crossover.
Various alternatives to the classical crossover operators have been proposed and stud-
ied (Schaeffer et al., 1991; Syswerda, 1989). Syswerda’s paper concludes that there
are no clear winners, but when in doubt, use uniform crossover. It is clear however,
that for all the operators studied, some do better on certain problems and worse on
others, indicating that the biases introduced are problem/encoding dependent. An
adaptive crossover operator that adapts to the encoding, being able to exploit infor-
mation unused by classical crossover operators, may be better than classical crossover
operators. The cost to be paid for adaptive crossover lies in the added complexity

of the operator and the paradoxical point that it can be more easily misled. The

4. Genetic Algorithm Encodings 56

more information that an algorithm looks at, the more its trajectory can be affected
by bad leads. A genetic algorithm using classical crossover is less likely to be misled
than a genetic algorithm using adaptive crossover since classical crossover ignores
information used by adaptive crossover and is thus immune to misdirection in this

information.

Simple non-adaptive crossover, the classical crossover operator, consists of choos-

ing a point in the string and following the procedure outlined below:

for : from 1 to crossover-point
begin
Copy gene to childl[i] from parentl[i]
Copy gene to child2[i] from parent2[i]
end
for ¢ from (crossover-point + 1) to Chromosome-length
begin
Copy gene to childl[i] from parent2[i]
Copy gene to child2[i] from parentl[i]

end

One point crossover, and variants thereof, limit the number of encodings that
a genetic algorithm can exploit because they assume that contiguous genes form

building blocks. With adaptive crossover, this constraint should be relaxed.

4. Genetic Algorithm Encodings 57

4.3 Crossover Bias Modification

For the search process to exploit any information in the encoding, the crossover
operator needs to be able to preserve highly fit schemas, no matter what their length.
This suggests a masking scheme, in which the positions making up highly fit schemas

are identified, tagged and preserved. Masks can be propagated in two ways.

1. Consider the masks as an extra set of genes and use the usual genetic operators

on them.

2. Through the use of special mask functions which can be used to redirect bias

in search.

When a child is produced, the masks used to produce it may be modified depending
on how well the child does relative to the parents. Initial masks can be generated
randomly, although making them dependent on the initial chromosome set using any

available domain knowledge will probably be more useful.

4.4 Masked Crossover

This dissertation defines an operator that directly makes use of the relative fitness
of the children, with respect to their parents, to guide crossover. The relative fitness
of the children indicates the desirability of proceeding in a particular search direction.
The use of this information is not limited to our operator, and can be used in classical
GAs with minor modifications (For example, one way to improve traditional crossover

operators is to keep a sorted list of previous crossover points that produced highly fit

children).

4. Genetic Algorithm Encodings 58

[1]0] 1]1 [0 | Maxl Mask2 (o] 1]0]21 1]

B . P B |

H BN Children ol |

First Child : Dominant Parent A. Second Child : Dominant Parent B

Figure 4.1: Masked crossover. The bits that are exchanged depend on the masks.
This allows preservation of schemas of arbitrary defining length

Masked crossover (MX) uses binary masks to direct crossover. Let A and B be
the two parent strings, and let C' and D be the two children produced. Maskl and
Mask2 are a binary mask pair, where Maskl is associated with A and Mask2 with
B. A subscript indicates a bit position in a string. Masked crossover is shown in

figure 4.1 and defined below:

copy A to C and B to D
for 2 from 1 to string-length
begin
if Mask2; =1 and Maskl;, =0
copy the ** bit from B to C
if Maskl, =1 and Mask2;, =0
copy the i** bit from A to D

end

First, it is easy to see that traditional crossover operators are special cases of MX.
One point crossover (figure 1.3) can be implemented by simply setting the first n bits
(n < length of string) of M1 to 1 and the rest to 0, M2 is the complement of M1.

4. Genetic Algorithm Encodings 59

For uniform crossover, the 4" bit of M1 is decided by a fair coin toss, M2 is again the
complement. This allows the disruptiveness of MX to range from that of one point

to that of uniform crossover.

Masked crossover tries to preserve schemas identified by the masks. Let A be called
the dominant parent with respect to C, and B the dominant parent with respect to
D. This follows from the definition of masked crossover since during production of

C, when corresponding bits of A and B are the same, the bit from A is copied to C.

4.4.1 Masks

Intuitively, 1’s in the mask signify bits participating in schemas. MX preserves
A’s schemas in C while adding some schemas from B at those positions that A has
not fixed. A similar process produces D. Search biasing is done by changing masks in
succeeding generations. Instead of using genetic operators on masks, this thesis uses a
set of rules that operate bitwise on parent masks to control future mask settings. Since
crossover is controlled by masks, using meta-masks to control mask string crossover
then leads to meta-meta masks and so on. Using rules for mask propagation avoids
this problem. Choosing the rule to be used is dependent on the fitness of the child

relative to that of its parents.

Three types of children can be defined:

The Good Child: has fitness higher than that of both parents.
The Average Child: has fitness between that of the parents.

The Bad Child: has fitness lower than that of both parents, or equal to one or

both parents.

4. Genetic Algorithm Encodings 60

Case Rule
Both good MF,,
Both bad Mbe
Both average MF,,
One good, one bad MFg
One good, one average | M Fy,
One average, one bad | MF,,

Figure 4.2: Six ways of pairing children and their associated mask functions/rules

(MF).

With two children produced by each crossover, and three types of children there
are a total of 32 or nine possibilities, with associated interpretations and possible
actions on the masks. However, since the order of choosing children does not matter,

the number of cases falls to six (see figure 4.2).

4.4.2 Rules for Mask Propagation

This section specifies rules for mask propagation. In each case a child’s mask is a
copy of the dominant parent’s except for the changes the rules allow. The underlying
premise guiding the rules is that when a child is less fit than its dominant parent,
the recessive parent contributed bits deleterious to its fitness. Encouraging search
in the area defined by these loci, the idea is to search in areas close to one parent
with information from the other parent providing some guidance.® A mask mutation
operator that flips a mask bit with low probability is assumed to act during mask
propagation. To illustrate a mask function and to give some intuition, the mask
function for M Fy,, when both children are good, is described below. Appendix A

contains the complete set of mask rules used in this chapter.

!Note that in MX, this is done without regard to defining length.

4. Genetic Algorithm Encodings 61

Rule M Fgg

PM1 Before PM2
[1[1[2[o[1]o[1]o[o] O[O | [1[a]ol[1[1]o[1[Ol0f1] O]

PM 1 After PM2
[1[a]2][o[1][0[1]0O] O[O] O] | 2[2[ofaf1]ol1]o[O[1][0]

cMm1 cm2
|afafafafal# 1] # #] 1[# LAl afaTafaf# a7 # #[a]#]

Figure 4.3: Mask rule M Fy,: Example of mask propagation when both C1 and C2
are good

Let P1 and P2 be the two parents, PM1 and PM2 their respective masks. Simi-
larly, C'1 and C2 are the two children with masks C M1 and C M2. The modifications
to masks depend on the relative ordering of P1, P2, C'l and C2. In this section’s

figure, the “#” represents positions decided by tossing a coin.

1. MFy,:

Case: Both children are good.

Summary: Very encouraging behavior and as such is reflected in the mask
settings below and in figure 4.3. The parents’ masks are OR’d to produce
the children’s masks, ensuring preservation of the contributions from both

parents.
Action:

— CM1: OR the masks of PM1 and PM2. If there are any 0’s left in
C M1, toss a coin to decide their value.

— CM2: Same as for CM1.

— PM1: No changes except for those produced by mask mutation.

4. Genetic Algorithm Encodings 62

— PM?2: Same as for PM1.

The mask functions in appendix A are examples from one of several different sets
of possible rules, since many mask propagation rules can be defined. In fact a GA
can search the space of mask rules to find a suitable set if an evaluation function can
be attached to the masks. This may be overkill, since the number of rules is usually

quite small, simpler methods will suffice.

With mask propagation through mask rules, directional information is explicitly
stored in the masks and used by the crossover operator to bias search. The main
features of the masked crossover operator are then, storage and use of directional
information, and independence from defining length of schemas. Think of masked
crossover as a golden mean between the disruptiveness of uniform crossover and the

bias toward short schemas of classical crossover.

Masked crossover presents a problem when using classical selection procedures.
The classical strategy of allowing the children produced to replace the original popu-
lation will not allow a genetic algorithm using masked crossover to converge. Masks
will tend to disrupt the best individuals while searching for promising directions to
explore because of the nature of the rules guiding mask propagation. Therefore our
selection procedure is a modification of the CHC selection strategy. In CHC selec-
tion, if the population size is N, the children produced double the population to 2N.
From this, the N best individuals are chosen for further consideration (Eshelman,
1991). This elitist selection strategy is used to enhance convergence. Another prob-
lem which may occur is that although MX preserves schemas of arbitrary defining
length, the fitness information itself may be misleading. Such problems are called
deceptive. When fitness information is misleading, a GA using masked crossover can

be expected to perform worse than a GA using crossover operators that do not use

4. Genetic Algorithm Encodings 63

such information. This is borne out by results from the adder problem.

A performance difference due to selection should be expected since fitness infor-
mation biases CHC selection more than traditional selection. The elitist selection
strategy used here results in a stronger focus on exploitation of the search space
at the cost of reduced exploration. Less exploration implies a reduced emphasis on
crossover (crossover explores the space). Crossover’s smaller role leads to decreased
epistatic effects since epistasis only influences crossover. Whatever the crossover op-
erator used, the CHC selection strategy should increase performance, but again at the
cost of increasing susceptibility to deception. Results presented in the next section

illustrate the effects of selection strategy.

A Designer Genetic Algorithm (DGA) therefore differs from a classical genetic
algorithm in the crossover operator (masked crossover) and in the selection strategy

(elitist) used.

4.5 Results

A designer genetic algorithm’s performance is compared with that of a classical
GA on the adder and parity problems. In all experiments, the population is made up
of 30 genotypes. The probability of crossover is 0.7 and the probability of mutation is
0.04. These numbers were found to be optimal through a series of experiments using
various population sizes and probabilities. The graphs in this section plot maximum

and average fitnesses over ten runs.

Each genotype is a bit string that maps to a two-dimensional structure (phe-

notype) embodying a circuit as shown in figures 4.4 and 4.5. 3 bits are needed to

4. Genetic Algorithm Encodings 64

Output

Genotype

Figure 4.4: A mapping from a two-dimensional phenotypic structure (circuit) to
position in a one-dimensional genotype.

represent 8 possible gates. A gate has two inputs and one output. Considering the
phenotype as a two dimensional array of gates S, a gate \S; ;, gets its first input from
S;,j—1 and its second from one of S;11 ;_1 or S;_1 j_1 as shown in figure 4.5. An addi-
tional bit associated with each gate encodes this choice. If the gate is in the first or
last rows, the row number for the second input is calculated modulo the number of
rows. The gates in the first column, S, ¢ receive the input to the circuit. Connecting
wires are simply gates that transfer their first input to their output. The other gates
are AND, OR (inclusive OR), NOT and XOR (exclusive OR).

The fitness of a genotype is determined by evaluating the associated phenotypic
structure that specifies a circuit. If the number of bits is n, the circuit is tested on
the 2™ possible combinations of n bits. The fitness function returns the sum of the
correct responses. This sum is maximized by the algorithm. For the 4-bit parity

checker, the binary numbers 0 to 15 are inputs to the decoded circuit. If the circuit

4. Genetic Algorithm Encodings 65

+
]

y

y

{

7 15 15

N i -

I nput Output

Figure 4.5: A gate in a two-dimensional template, gets its second input from either
one of two gates in the previous column.

is correct, its fitness is 16, which means that the circuit correctly finds the parity of
all the 16 possible 4-bit numbers. For the adder problem the input is a set of 2, n-bit
numbers. The output is an n + 1 bit sum. For a 2-bit adder, the maximum fitness
would be 3 % 2* or 48. Note that in contrast to optimization problems, the maximum
fitness is known — the algorithm searches for a structure (circuit) that achieves this

maximum fitness.

When comparing the performance of a classical GA using elitist selection with a
DGA on a 2-bit adder problem, the graphs in figures 4.6 and 4.7 show that the classical
GA does better, although the difference is not great. This is not very encouraging.
However, implementing the carry bit makes the solution space of the adder problem
deceptive. A problem is deceptive to a GA, when highly fit low-order schemas, lead
away from highly fit schemas of higher order. As explained earlier, since MX uses

fitness information to bias search, it is more easily mislead than traditional crossover.

4. Genetic Algorithm Encodings 66

2-Bit Adder

Fitness
41.00 — —oGA
CGA
40.50 — —
40.00 — —
39.50 — —
39.00 — —
38.50 — —
38.00 — —
37.50 — —
37.00 — —
36.50 — —
36.00 — —
35.50 — —
35.00 — —
34.50 — —
34.00 — —
33.50 — | | | | L L = Generations
0.00 10.00 20.00 30.00 40.00 50.00

Figure 4.6: Performance comparison of maximum fitness per generation of a classical

GA versus a DGA on a 2-bit adder.

Although a problem is deceptive, it does not mean that no solutions can be found.
Figures 4.8 and 4.9 show solutions to the 2-bit adder problem found be a designer
genetic algorithm and classical genetic algorithm. As wire gates ignore their second
input, only one input is shown for such gates. The gate in the third row and third

column (S33) is shown unconnected because it does not affect the output.

In figures 4.8 and 4.9 the shaded regions represent highly fit schemas. Notice that
the DGA preserves a schema of much longer length than the CGA. Additionally the
figures illustrate the difficulty of understanding why the circuit works. The problem
of opacity of GA generated solutions is handled in the next chapter.

Now, consider the parity problem. The encoding described in figure 4.4 will violate
the principle of meaningful building blocks with regard to the solution to the parity
problem as shown in figure 4.10. Since diagonal elements of S (the 2-D phenotype) are

further apart in the one-dimensional genotypic string, any good subsolutions (highly

4. Genetic Algorithm Encodings

67

Fitness

41.00
40.00
39.00
38.00
37.00
36.00
35.00
34.00
33.00
32.00
31.00
30.00
29.00
28.00
27.00
26.00
25.00

24.00

2-Bit Adder

Generations

Figure 4.7: Performance comparison of average fitness per generation of a classical

GA versus a DGA on a 2-bit adder.

IAO

BO

Al

B1

| XOR XOR WIRE
[AND WIRE | XOR

OR XOR | AND
[AND WIRE WIRE

INPUTS

OUTPUTS

Figure 4.8: A 2-bit adder designed by a designer genetic algorithm.

4. Genetic Algorithm Encodings 68

; L WIRE WIRE WIRE V_o
; | XOR WIRE WIRE X_l
; 1] xor | AND [J7] xOR WIRE v_z
L 1]' L
Bil | "I AND WIRE [xor WIRE
|Np_UTs OUT_PUTS

Figure 4.9: A 2-bit adder designed by a classical genetic algorithm.

fit, low order schemas) found will tend to be disrupted by traditional crossover. In
other words gates which are close together in two-dimensional (phenotype) space
may be far apart in one-dimensional (genotype) space, causing problems for classical
GAs. MX however, will find and preserve these subsolutions as its performance is
independent of defining length. To observe performance under these conditions, the
experiments restrict the number of gate types available to the GA to three and do not
allow a choice of input (the second input is now always from the next row, modulo
the number of rows). Although this reduces the size of the search space, traditional
crossover disrupts low-order schemas and therefore performs worse than the DGA.
Figure 4.11 and figure 4.12 show this for a 4-bit parity checker. (In cases where there
were no restrictions the performance of both GAs were comparable.) As expected,
the difference in performance gets larger as the problem is scaled in size. Figure 4.13
and figure 4.14 compare the maximum and average fitness performance on a 5-bit

problem. In the 5-bit experiments the choice of gates was still restricted to the same

4. Genetic Algorith

m Encodings

69

Inputs.
lo

11

B

R

@_

l—»\)

7

Output.
—@

!

!

!

B

B

N
49 @ @

Figure 4.10: The XOR gates that are close together (diagonally) in the two—
dimensional grid will be far apart when mapped to a one-dimensional genotype

4. Genetic Algorithm Encodings 70

4-Bit Parity Checker

Fitness

—]DGA
feleVN
13.20 — —

13.40 —

13.00 — —
12.80 — —
12.60 — —

12.40 —
12.20 —
12.00 —
11.80 —
11.60 —
11.40 —
11.20 —
11.00 —
10.80 —
10.60 —
10.40 —
10.20 —
10.00 —

9.80 —

Generations
0.00 10.00 20.00 30.00 40.00 50.00

Figure 4.11: Performance comparison of maximum fitness per generation of a classical

GA versus a DGA on a 4-bit parity checker.

4-Bit Parity Checker

Fitness

13.50 — — bcA
TEA

13.00 — —

12.50 [— , —

12.00 —

11.50 —

11.00 —

10.50 —

10.00 —

9.50 —

9.00 —

8.50 —

8.00 —

Generations

0.00 10.00 20.00 30.00 40.00 50.00

Figure 4.12: Performance comparison of average fitness per generation of a classical
GA versus a DGA on a 4-bit parity checker.

4. Genetic Algorithm Encodings 71

5-Bit Parity Checker

Fitness

DGA
24.50 [— — EEA
24.00 |—
23.50 [—
23.00 |—
22.50 [—
22.00 |-
21.50 [—
21.00 |-
20.50 [—
20.00 |-
19.50 —
19.00 |—
18.50 —

18.00 |

17.50 |— *
! ! ! ! ! !

0.00 10.00 20.00 30.00 40.00 50.00

Generations

Figure 4.13: Performance comparison of maximum fitness per generation of a classical
GA versus a DGA on a 5-bit parity checker.

three as in the previous example. However, input choice was allowed, increasing
the number of solutions in the search space. When allowed all possible gates, the
performance difference is less, and is due to the large increase in the number of possible
solutions and therefore a lesser degree of violation of the meaningful building block
principle (see figures 4.15 and 4.16). However, as the number of solutions in a given
space decreases, masked crossover does better than traditional crossover because it
uses differential information about child fitness to bias search independent of schema
defining length. Hypothesis testing using the student’s t-test on the experimental
data from the five bit parity checker proves that the difference in performance is

significant at a confidence level greater than 90%.

In the comparisons above the effect of selection was not addressed. Figures 4.15
and 4.16 compare the performance of: 1) a GA using traditional crossover and se-

lection, 2) a GA using traditional crossover and elitist selection, and 3) a DGA on

4. Genetic Algorithm Encodings 72

5-Bit Parity Checker

Fitness

24.00 — e I
23.50 —
23.00 —
22.50 —
22.00 —
21.50 —
21.00 —
20.50 —
20.00 —
19.50 —
19.00 —
18.50 —
18.00 —
17.50 —
17.00 —

16.50 —

16.00 —

| | | | | |
0.00 10.00 20.00 30.00 40.00 50.00

Generations

Figure 4.14: Performance comparison of average fitness per generation of a classical
GA versus a DGA on a 5-bit parity checker.

a 5-bit parity problem. The same parameter set as in the previous examples is used
although setting the number of gate types to six, increasing the number of possible
solutions. This was done in the hope of coaxing better performance from the GA
using traditional selection and crossover. The figures clearly show the importance of

selection strategy.

The next two figures show examples of correct circuits for the 4-bit parity problem.
A DGA produced the circuit in figure 4.17 and a classical genetic algorithm produced
the circuit in figure 4.18. The unconnected gates in the last column do not contribute
to the output, therefore their connections have been left out. Both algorithms had

the full complement of gates available.

4. Genetic Algorithm Encodings

73

Fitness

31.00

30.00

29.00

28.00

27.00

26.00

25.00

24.00

23.00

22.00

21.00

20.00

19.00

18.00

17.00

16.00

5-Bit Parity Checker

Generations

Figure 4.15: Performance comparison of maximum fitness per generation of a classical
GA using traditional selection, a classical GA with elitist selection, and a DGA on a

5-bit parity checker.

Fitness

31.00

30.00

29.00

28.00

27.00

26.00

25.00

24.00

23.00

22.00

21.00

20.00

19.00

18.00

17.00

16.00

5-Bit Parity Checker

Generations

Figure 4.16: Performance comparison of average fitness per generation of a classical
GA using traditional selection, a classical GA with elitist selection, and a DGA on a

5-bit parity checker.

4. Genetic Algorithm Encodings

T4

15

—\ pr—
| |—> | —f
NG} XOR | OR
e 7» XOR AND
- -
. AND OR
1
A3 XOR XOR
—J——V
INPUTS

| XOR ::
OR [
OR
OR
OUTPUT

Figure 4.17: A circuit designed by a designer genetic algorithm that solves the 4-bit

parity problem.

— Jr

NS | XOR » XOR

:;ij»XOR -—L: XOR

;;P_t" XOR AND

- L

A3 OR ‘> AND
|] r
INPUTS

WIRE :
OR B
AND
NOT
OUTPUT

Figure 4.18: A circuit designed by a classical genetic algorithm that solves the 4-bit

parity problem.

4. Genetic Algorithm Encodings 75

4.6 Summary

A designer genetic algorithm increases the domain of application of genetic algo-
rithms by relaxing the emphasis on schemas of short defining length. Using masked
crossover mitigates the problem of epistasis while elitist selection is crucial to good
performance. This is cheaply attained since the increase in cost in using a DGA is by
at most a constant factor per generation. Comparing the performance of the two GAs
on a problem also gives significant insights about properties of the search space. If
the performance difference is large, then highly fit, low-order schemas are expected to
be of large defining length. Some of the circuits generated by the genetic algorithms
in this chapter are not easily understandable. That is, although they can be tested
for functional performance, it is not obvious how they work. In the next chapter the
thesis describes a system that extracts information about the search space and uses

this information to explain solutions generated by genetic algorithms.

Deception also plays a role in determining performance. Traditional crossover
may do better on deceptive problems because it uses no information about search

direction and is thus immune to misleading directional information.

The problem of circuit design as stated in this chapter is not an optimization
problem. Since the fitness of a correct circuit, one that correctly performs the func-
tion, is known, the problem is to find a design that achieves this fitness. This is a
satisficing task not an optimization one. However, minimizing the number of gates,

wires or size of the circuit are constraints that are usually applied in practice.

Having mitigated the problem of choosing an encoding for a genetic algorithm, this
thesis now considers the problem of understanding solutions generated by a genetic

algorithm.

3]

Understanding Genetic Algorithm

Solutions

[The great supercomputer, asked what is the answer to] the great problem
of life, the universe and everything [replied, after many years of

computation] 42.

— Douglas Adams, The Hitch-hiker’s Guide to the Galaxy

As illustrated in the last chapter, solutions generated by genetic algorithms may

be difficult to understand. There are two main reasons for this:

1. GAs are best used in poorly—understood domains, where domain knowledge is

scarce, making both design and analysis difficult.

2. The stochastic nature of GA operators and the size of the space of all possible
building blocks and their combinations makes finding useful building blocks

76

5. Understanding Genetic Algorithm Solutions 7

and explaining their significance difficult. This makes it hard for a designer to

calculate or accept the worthiness of an evolved solution.

During the course of a GA’s search through the underlying space for a design, it
implicitly extracts and uses information about the space. The kind of information
extracted and used by a genetic algorithm depends on the specific operators used
and is indicated by the schema theorem and building block hypothesis. However,
this knowledge is never made explicit and is discarded at the end of a GA’s run.
This thesis describes a system that uses tools developed for case-based reasoning
and genetic algorithm theory to identify, extract and organize this information. The
organized knowledge can be used: to learn about the domain, to explain how a
solution evolved, to discover its building blocks, to justify why it works, and to tune

the GA in various ways.

The chapter starts with a short introduction to case-based reasoning, describes
the system, and clarifies the results using examples from circuit design and function

optimization.

5.1 Case—Based Reasoning

Case-based reasoning (CBR) is based on the idea that reasoning and explana-
tion can best be done with reference to prior experience, stored in memory as cases
(Bareiss, 1991; Riesbeck and Schank, 1989). When confronted with a problem to
solve, a case—based reasoner extracts the most similar case in memory and uses in-
formation from the retrieved case and any available domain information to tackle the
current problem. The strategy is first to collect and index a large and varied collec-

tion of examples, then, when presented with a new situation, to fetch and possibly

5. Understanding Genetic Algorithm Solutions 78

manipulate the stored example which most closely resembles the new situation. Each
stored case may be considered a previously evaluated data point, the nature and lo-
cation of which is problem dependent. If the distance metrics have been well designed
and the case-base includes sufficient variety, retrieved cases reveal useful conclusions
from previous analysis. Because it may be impractical to store all prior experience
in detail, CBR systems often include principled mechanisms for generalization and
abstraction of cases. Note that except when comparing distinct cases, a CBR system
need not include any notion of an underlying model, and that even during comparison
one can make do without much of one. One side—effect of this approach is that the

generalizations and abstractions may in fact induce a useful domain model.

5.2 Genetic algorithms and CBR

GA theory tells us little about the actual path a given GA will take through the
space on its way to an answer. Because of the stochastic nature of GA operators, a

solution’s optimality is not guaranteed and its building blocks unknown.

Information about the building blocks is implicit in the processing done by a GA
but is not documented explicitly or available to the user. Keeping track of historical
regularities and trends is key to acquiring the knowledge needed to explain what sort
of solution evolved, why it works, and where it came from. Discovering building blocks
by explicitly keeping track of the GA’s search trajectory allows principled partitioning
of the search space. Empirical regularities can be formalized and possibly put to use.
The individuals in a GA’s population act as a primitive memory for the GA. Genetic
operators manipulate the population, usually leading the GA away from unpromising

areas of the search space and towards promising ones, without the GA having to

5. Understanding Genetic Algorithm Solutions 79

ezplicitly remember its trail through the search space. Genetic algorithms trade the
use of explicit memory for speed and simplicity. This chapter uses the methods and
tools developed for case-based reasoning to extract, store, index and (later) retrieve
information generated by a GA. Individuals created by the GA provide a set of initial

cases from which a well-structured case-base can be constructed.

Defining an appropriate index or measure of similarity among the cases is one of
the first tasks in creating a case-base. The building block hypothesis implies that
syntactically-similar (short and low-order), high-performance individuals bias genetic
search. Since genetic algorithms process syntactic similarity and fitness as stated
in the building block hypothesis, this thesis uses fitness and genotype (the encoded
design) as metrics for indexing the case-base. These measures provide the key to

indexing the cases and conveniently solve one of the hardest of CBR problems.

CBR is applied to GAs as an analysis tool in order to track the history of a
search. The CBR system creates a case for each individual that the GA has evaluated.
These cases are indexed on syntactic similarity and fitness. When properly formed
and analyzed, this case-base can contribute to the understanding of how a solution
was reached, why a solution works, and what the search space looks like. At the
interruption (or termination) of a GA run, the case-base allows the interpretation

and subsequent modification of discovered solutions.

In addition, during the course of a run as the system digests more information,
it can generate hypotheses about the space. These hypotheses which take the form
of new individuals injected into the GA’s population can be tracked and evaluated,
testing the validity of the hypotheses. Given proper hypothesis formation, the CBR
module can guide the evolution more directly towards convergence. False hypothesis

may provide evidence of deception in the current search space.

5. Understanding Genetic Algorithm Solutions 80

5.3 The System

The system is made up of a genetic algorithm which runs in tandem with a CBR

analysis module (see figure 5.1).

Genetic niiadl | Clustering
Algorithm Case Pool Module

cases|_ z
oald Case Adder ;—”

Hypothesis Case Base
Generator

A

Test new cases
. and create new
Explainer 1| indices as needed

Figure 5.1: Schematic diagram of the system

The genetic algorithm records data for each individual in the population as it is
created and evaluated. This data includes a fitness measure, the genotype, chronolog-
ical data, as well as some information on the individual’s parents. This collection of
data is the wnitial case data. Though normally discarded by the time an individual is
replaced, all of the case data collected is usually contained in the genetic algorithm’s

population at some point and is easy to extract.

After creating a sufficient number of individuals over a number of generations, the

5. Understanding Genetic Algorithm Solutions 81

initial case data is sent to a clustering program. A hierarchical clustering program
clusters the individuals based on both the fitness and the alleles of the genotype. This
clustering constructs a binary tree in which each leaf includes the data of a specific
individual. The binary tree structure provides an index for the initial case-base.
Figure 5.2 shows a small part of one such tree. The numbers at the leaves of the tree
correspond to the case number (an identification number) of an individual created by
the GA. Internal nodes are denoted with a “x”. An abstract case is computed for each
internal node based on the information contained in the leaves and nodes beneath it.
The final case-base includes: 1) cases corresponding directly to GA individuals (at
the leaves) and 2) more abstract cases made up of information generalized from the

leaves.

— 25

— 42
21

2
Ta3

— 126

Figure 5.2: A small subsection of a typical binary tree created by the clustering
algorithm. Individuals are represented by the numbers at the leaves. Internal nodes
where abstract cases go are denoted with a “x”. The binary tree provides an index
for the case-base.

Although a number of clustering techniques and clustering sets are possible (exam-

ple, fitness and genotype data versus fitness alone), standard hierarchical clustering

5. Understanding Genetic Algorithm Solutions 82

on fitness and genotype produces a coherent initial index for the case-base. The fact
that fitness and genotype matter the most is predicted by the building block hypothe-
sis and borne out experimentally. After creating an index, several easy computations
are recursively performed to flesh out the abstract cases (these computations are

explained in Section 5.4).

The hypothesis generator runs in tandem with the GA. Using information from the
the case-base, it engineers individuals for injection into the population. Information
about the measured performance of such individuals, relative to the remainder of the
population, can also be fed back into the hypothesis module for analysis. The success
or failure of generated hypotheses can be used in decisions regarding the validity of

the current case-base.

At the end of a run, a well-developed case-base can be used to explain how the
GA came up with its answer, and why that answer is strong. The system can explain
something about where the winning answer came from, which of its building blocks
are the strongest, and which the weakest. This sort of data allows any future search of
the space to be fine-tuned. It also allows for a sophisticated post facto analysis. Much
of the knowledge that is usually discarded by a GA is made available in processed

form for future manipulation.

5.4 The Case-Base

Clustering the first few hundred individuals using genotype and fitness values
produces a case-base. As explained above, clustering determines the indexing scheme
of the case-base. All abstract cases, which are indexed at the internal nodes of the

tree, must be recursively computed from the leaves up. Although much of the initial

5. Understanding Genetic Algorithm Solutions 83

case data saved during the GA run is not used by the clustering algorithm, it is added

to the cases in the case-base.

Cases include the following information:

e Case number

e Distance from the root of the tree to the level of the case
e Schema for the case

e Schema order

o Average fitness

e Weight: Number of leaves (individuals) below

e Generation information: the earliest and latest leaf occurrence as well as the

average in the subtree

e Additive schema: Bitwise sum of alleles of the genotypes of all the leaves below

Using the information in the case-base, the system produces a report regarding
the GA run so far. Using fitness as a metric, computing the top or bottom ranked n
cases 1s easy, as is finding the top or bottom ranked n case schemas. These schemas
can be combined to make new schemas by applying standard schema creation rules.
For example, the two schemas **110**10 and **100***0 combine to the new schema
*E1*0***0. The resulting schemas show (among other things) which alleles are im-
portant in the genotype and which ones are not. Since order, longevity, and weight
information is available, it is straightforward to find the top few cases with given sets

of these characteristics.

5. Understanding Genetic Algorithm Solutions 84

It is also useful to calculate not only the schema which includes the subset of
leaf cases, but one which records in a more democratic fashion the relative frequency
of allele settings for the positions which are not absolutely fixed. Since the normal
schema-producing rules result in a “x” wherever there is disagreement about an allele
among leaves, schemas near the top of the tree tend to be filled with “x”s. To avoid
this information loss, the system generates an additive schema by computing the

bitwise sum of the genotypes associated with the leaves below.

An elected schema can be computed by dividing the additive schema by the weight
and squashing the results to 0, 1, or “x” using thresholds that can be changed.
Elected schema information provides a more informative way of looking at upper-
level schemas. Elected schemas play a large role in hypothesis generation discussed

in section 5.7.1.

A schema actually describes a convex hull for the leaves from which it was com-
puted. That is, it describes a portion of the space within which the unaltered leaves
fit. Since the normal schema-producing rules result in top-level schemas with a large
number of “x”s and the hull tends to span too large a portion of the entire space, it
is preferable to describe a smaller hull, one for which the average hamming distance
from an actual leaf to the hull surface is less than some predetermined constant. In
other words, the leaves deviate from their closest encompassed relative by only a small

amount on average. The elected schema describes this smaller hull.

Generation information can be used to determine when each part of the search
space covered by the GA was considered. This information is very useful in detecting
premature convergence, finding local minima, and computing the relative longevity
of a subspace. The search space itself can be carved into approximately equally pop-

ulated subsections by chopping the tree at nodes having a certain maximum weight.

5. Understanding Genetic Algorithm Solutions 85

Analysis of these subsections across dimensions of fitness and longevity sheds light

on the search space.

All of this processed information is available on—line. If desired, any case can be
displayed. Also available is the tree information in graphical form with case numbers
in their proper locations. The graphics are expandable so that subtrees can be thor-
oughly investigated. The “report” is meant for user consumption and usually raises

some questions which can be answered by pulling more information from the system.

It is important to emphasize that the system is an interactive tool for use in
explaining GAs. Although it automates the information extraction and processing to
some extent, human perception is a critical ingredient in the final analysis. However,
without reasonable organization and pre-processing which our system provides, the
large amount of data created during a GA run is impossible to digest even for an

experienced GA researcher.

5.5 An Example and Methodology

Several experiments in function optimization and circuit design show that clus-
tering techniques, if properly applied, provide a strong case-base, yielding useful data
about the GA run. These results are reported in more detail in (Louis et al., 1993).
Starting with a simple example (f(z) = z) in function optimization introduces the
system and provides a methodology for analyzing the information in the report. Next,
a design example from a genetic algorithm generated circuit for a 5-bit parity checker

supports the methodology and results obtained through the system.

5. Understanding Genetic Algorithm Solutions 86

5.5.1 A Simple Example

The tree structure resulting from clustering defines a schema hierarchy (figures 5.3
and 5.4). Schema of lower order are found near the top of the tree. Schema order gets
higher and higher towards the leaves, which, with all alleles fixed, have the maximum
possible order. Figure 5.3 depicts the index tree of an entire case-base for maximizing
a simple function: f(z) = z. Some salient features of the space are immediately
recognizable on the graph (when one can zoom in and look at cases). These features
are marked in figure 5.3. Figure 5.4 shows an enlargement of the small boxed area in
figure 5.3 (labeled “Area of Detail”). In this figure, the positions of both initial cases
(individuals) to the right of the figure and abstract cases at the internal nodes are
represented by their schemas. Schemas closer to the root of the tree are more general

(that is, of lower order) than those towards the leaves.

““““

% Sign Bit
; Branchpoint

F(x)=x

Area of Detail

High :
Fitness*,
Cases

. R
| S TTIPROPt Ly |
0.00 2.00 4.00 6.00 8.00 10.00 . 12.00
Dissimilarity

Figure 5.3: Tree structure of the cases. Nodes represent abstracted cases.

The case-base was created by clustering the 400 GA individuals from the first

5. Understanding Genetic Algorithm Solutions 87

20 generations (which resulted in a binary tree) and then computing the abstract
cases at the internal nodes. The resulting case-base had 799 cases, 400 of which came
directly from the GA. The salient features in the search space, like the importance
of the sign bit, can be identified and marked using the report mentioned above in
conjunction with the index-tree graph. Clustering partitions the individuals into
sets sharing common features, namely specific allele values (syntactic similarity) and
similar fitness. In this case, all the low fitness cases are clumped together toward the
top of the graph. The high fitness cases are at the bottom. A sign bit was used in the
genotype (values ranged from [—511..511]). The sign-bit branching point is shown in
figure 5.3 as well. Not surprisingly, all the negative numbers are clustered together
above the sign-bit branchpoint, and very little time was spent in that portion (half!)
of the search space by the GA. This information was discovered by zooming in on the
subsections of the graph and noting the obvious common features while consulting

the on-line case-base.

Case zero is located at the root of the tree. Actual output from a query shows

case-information:

> (show-case 0)

| Case: O | Distance: 0 Weight: 400 Fitness: 8441.44
|-==mm———- + Order: O Schema: *kkkkkkkkk

| Additive schema: (396 333 170 283 338 330 20 72 332 392)

| Longevity: 19 (lo:1 avg:10.5 hi:20)

| Left subtree: 1 Right subtree: 396

Since case 0 is located at the root of the tree, its distance from the root is 0. There
are 400 leaves below it, making its weight 400. Fitness is calculated by averaging the

fitnesses of the cases below. The case schema is filled with “x”s, showing once again

5. Understanding Genetic Algorithm Solutions 88

why the additive schema information is important. Leaves under case 0 spanned all
generations from 1 to 20 resulting in a longevity value of 19. Case 0 has two pointers,
one to case 1 and another to case 396. This reflects the binary nature of the index.

Had the case been a leaf it would not have pointed to further cases.

5.5.2 Methodology

Experiments in function optimization (summarized in section 5.7) combined with
genetic algorithm theory, indicate that a useful high-level description of the case-base

and the search recorded within it can be generated as follows:

e Select a subset of the internal nodes which implicitly include all of the leaves,

have no overlap, and are of fixed maximum size.
e Sort these nodes by increasing average birth generation (age).

e Report the available generational, weight, fitness, order, and elected case-schema

information.

5.6 Results from Circuit Design

The parity checker problem’s search space is poorly understood, discontinuous,

and highly non-linear. As encoded for the GA, a 5-bit parity checker problem results

5. Understanding Genetic Algorithm Solutions 89

in a 2%° sized search space having these troublesome properties. The experiments used
a genotype of length 80, a population size of 20 and ran the GA for 25 generations.
Appendix B contains a plot of the cluster tree, an abbreviated report for the 5-
bit parity checker problem from chapter 4, along with instructions for obtaining the
public domain code for clustering. The analysis below uses the report, cluster tree

(figure B.1), and figure 5.5.

The GA does not solve the problem in 25 generations. In the experiments, a case-
base was created by clustering the 500 individuals created by the GA and computing
the 499 abstract cases (see figure B.1 in appendix B). After examining the report and
following the steps outlined in the methodology section, the disjoint subtree list was
inspected. The strongest such subtree (H) was also heavily weighted and spanned
many generations. In addition, the best partial solutions all fell within H. This
implied that a complete solution would fit H’s schema. Since the order of the schema
was appreciable (38 of 80), the search could be constrained to that schema in the
hope of finding a solution. One correct solution was in fact contained within one bit

of H’s schema.

Figure 5.5 shows the circuit indicated by the previous analysis of H. By decoding
H |, it was possible to discern the general structure of a solution and determine which
parts of it were important. Labeled boxes represent one of the logic gates eXclusive-
or, And, Or, Not, and Wire. Since the circuit in figure 5.5 represents a schema,
multiple labels on the boxes show its possible instantiations. Labels above boxes
represent a correct instantiation found near the 50" generation of an unconstrained

run. The top row should be considered adjacent to the bottom.

5. Understanding Genetic Algorithm Solutions 90

Since gates form easily recognizable building blocks, the low order schemas cor-
responding to boxes whose inputs are not fixed denote unimportant gates. The un-
labeled boxes thus reflect unimportant dimensions of the search space which can be
safely ignored. Recall from chapter 4 that gates have two inputs one of which is
determined by the genetic algorithm. From the figure and report implies that gates
participating in a correct solution had already fixed their input locations by gener-
ation 25. Thus the alleles specifying input location denote an important building
block. Ignoring the schemas that specify the unlabeled boxes and the already fixed
positions in H at generation 25, the search space size reduces to 226 from 28, a sig-
nificant decrease. Finally, of the 10 schemas corresponding to boxes whose inputs
are fixed, nine can specify an eXclusive-or. These gates are important for a parity

checker.

5.7 Results on Function Optimization and Hy-

pothesis Generation

Results presented here are a summary of the more extensive work reported in (Louis
et al., 1993). Testing on a series of optimization problems including the DeJong (De-
Jong, 1975) functions and a pair of deceptive problems shows that the CBR tools
are useful for understanding GA solutions in many different kinds of spaces as exem-
plified by the test problems. These functions are given in table 5.1 and range from
linear to exponential. The three functions from the DeJong test suite for genetic

algorithms (DeJong, 1975) provide multimodal and discontinuous spaces.

5. Understanding Genetic Algorithm Solutions 91

flz)=c c is a constant (control)

f(z) = ones(z) number of ones in genotype

flz)== signed, genotype length 10

f(z) = z? signed, g-length 10

flz) =23 signed, g-length 10

flz,y) = =¥ signed, g-length 20

flz)=2" all positive, g-length 10

f(z) = log(z) all positive, g-length 10

flz,y) =z — y? all positive, g-length 20

f(z;) = 35 22 DelJong F1, (—5.12..5.12)

f(z;) = 100(z? — z5)* | DeJong F2 (—2.048..2.048)
+ 331 — z;)?

f(z;) = X2 integer(z;) | DeJong F3 (—5.12..5.12)

A pair of deceptive functions.

Table 5.1: Test Problems.

Evidence of the GA’s path through the search space can be seen. Many of the
earlier subtrees may have low average fitness and low order, whereas later subtrees
will have higher order if convergence was approached. Typically, later nodes have
higher fitness, but as clustering is sensitive to genotype, it is possible to have a weak

but young subtree.

Very low-order long-lived subtrees with poor fitness are often associated with
crippled individuals formed by mutation or unfortunate crossover. If there are many
weak subtrees one can infer a stronger focus on ezploration of new parts of the space
as opposed to ezploitation of strong, higher-order schema. The schemas defined by

such subtrees denote unpromising areas of the space.

High-order short-lived subtrees offer evidence of temporary concentration of search
effort, which often follows discovery of a beneficial building block. Once a building
block has been incorporated into the population (exploited), the search effort may

5. Understanding Genetic Algorithm Solutions 92

move on to further exploration.

In problems where there is deception (that is, where most of the gradient in the
space draws the GA away from the absolute global optimum but toward some local
optimum) a user of this system would expect to see the GA focus first on the local
maximum. If the GA manages to discover points near enough to the global maximum
that they are favorably evaluated, a paradigm shift may occur. This has been evident

in the case-bases.

If a user notices that a small but strong subtree was discovered but quickly lost
and not surpassed, it might indicate alteration of the GA parameters in favor of a
more elitist selection strategy (like rank selection or CHC). When there is suspicion
of deception, it may be confirmed or discredited by looking at the lower levels of
the quickly lost cluster. If it is discovered that within the cluster the later and
stronger subclusters had schema changes which appeared to cause relative decline in
other contemporary clusters then there is stronger evidence for deception. At this
point a more thoroughly investigation of that part of the search space without much

competition is justified.

5.7.1 Hypothesis Generation

Motivations for including a hypothesis generator are many. If hypothesis-produced
individuals prove to be better on average than GA-produced individuals, the GA will
be accelerated. They also provide evidence that produced solutions are reasonably

well understood. Further support is furnished by the identification of building blocks.

5. Understanding Genetic Algorithm Solutions 93

Work on hypothesis generation focuses on using the principled heuristics sketched
in section 5.5.2. The convex hull of each subtree selected by the method outlined
there contains a very large number of possible individuals which have never been
evaluated. The hypothesis module picks some specific individuals from within the
hull of the most promising subtree and injects them for participation and evaluation
within the GA population. Only a small number of generated individuals are injected

in a given generation.

Since individuals which fit in the reduced hull of the elected schema may be con-
sidered more prototypical of the subtree than those which do not, the elected schema
provides a better template for the generator than does the regular schema. Hypothe-

ses are therefore chosen from this reduced hull.

Finally, consider cases where a small but strong cluster is discovered but quickly
swamped out by outside evolutionary pressures. Injection of some new members of
the “lost” subspace into the population may help as the undersampled space may

deserve further investigation.

In each of the solution spaces searched by the GA, hypothesis injection on aver-
age provided detectable and reproducible improvements. Even though injection was
performed only twice per experiment, hamming distance to the optimal solution was
decreased by more than over the baseline case. A GA converges when the average
hamming distance between individuals in a population stabilizes (See chapter 6).
In several instances, the solution was discovered within one generation of the injec-
tion. In experiments, the GA converged more quickly and to better solutions when

hypothesis injection was used.

5. Understanding Genetic Algorithm Solutions 94

Hypotheses generated by CBR tools can provide principled direction to otherwise
less-productive GA search as well as help in the avoidance of deception. Although
it is possible to damage the search through hypothesis injection, this risk can be
reduced by meta-level application of CBR techniques. In the future, the hypothesis
generator should track the progress of genetically engineered individuals and update
its knowledge base, leading to the system inducing a domain model. Hypothesis
injection should also be continous with a small number of individuals injected every

generation and their progress tracked.

5.8 Summary

The system described in this chapter provides a tool with which users can explain
discovered solutions while simultaneously discovering important aspects of the search
space. The CBR module is able to make explicit the building blocks used by a GA.
Analysis of the building blocks and the path taken by a GA through a search space
provides a powerful explanatory mechanism. Salient features were apparent from
the structure of the graph and important for increasing understanding of poorly-
understood functions. Results of the explanation can be used to guide post-processing

in order to improve results in case of premature convergence or no convergence.

When designing a parity checker, search space size could be reduced, building
blocks identified, and unimportant areas of the search space avoided during subse-

quent attempts at the design task. The importance of the eXclusive-or, input location

5. Understanding Genetic Algorithm Solutions 95

choice, and the unimportance of certain positions (unlabeled boxes in figure 5.5) pro-

vides useful knowledge to a designer.

As well as providing a system for GA explanation and search space analysis, the
system provides empirical evidence that the building block hypothesis is correct, at
least for the functions in table 5.1. As mentioned above, the hierarchical clustering of
a set of GA individuals (distributed over several generations) according to fitness and
genotype leads to nested schemas. Analysis shows that the subtrees with the most fit
schemas receive the most reproductive energy while the least fit schemas are culled
from the population. Although theory said that clustering on fitness and genotype
should yield nested schemas (as a result of the BBH), the system was nonetheless
tested on several other clustering possibilities, including more generational informa-
tion and parental information. Clustering on fitness and genotype was by far the most
successful technique. The nested schemas that result from such a clustering provide

a coherent index for the case-base.

Although the time complexity of the fitness function may be known, the problem
in this thesis is to put bounds on the number of generations until convergence. To
be viable, a computational model must be able to bound time complexity. The next

chapter addresses this issue.

5. Understanding Genetic Algorithm Solutions

96

1111010*11
;——»
111**0** 1
&———»
,————————ib>
11111000* 1
J_:L:lfk * k%% :L
/————————i->
111131***1

1111010111 1111010111

1111010011

1111010011
1111010011

1111010011 1111010011

1111100001

1111100001 1111100001

1111100011

1111100001

1111100011
1111100011
1111100011
1111100011
1111100011
1111100011
1111100011
1111100011
1111100011

Figure 5.4: A closer look at the clustered cases

reveals nested schemas.

— w X X w —
XIAIO XIAIO o
InO A/X o/wW
N/W o NW s
| | % A X =
ad XINO - (L Ay O/IXIN
| A
XIAIO &
o N °
A3 x| ow
= X X X
24 AW AIX NN
INPUTS OUTPUT

Figure 5.5: Parity circuit indicated by H, and the correct instantiation of choices.

Predicting time to convergence for

GAs

The best theory is inspired by practice,

The best practice is guided by theory.

— Donald Knuth, IFIP 1992 address.

It 1s difficult to predict a genetic algorithm’s behavior on an arbitrary problem.
Combining genetic algorithm theory with practice, this chapter uses the average ham-
ming distance as a syntactic metric to derive bounds on the time convergence of ge-
netic algorithms. Analysis of a flat function provides worst case time complexity for
static functions. Further, employing linearly computable runtime information, this

thesis provides bounds on the time beyond which progress is unlikely on arbitrary

97

6. Predicting time to convergence for GAs 98

static functions. As a byproduct, the analysis also provides qualitative bounds by

predicting average fitness.

6.1 A Measure of Variation

Natural selection uses diversity in a population to produce adaptation. Ignoring
the effects of mutation for the present, if there is no diversity there is nothing for
natural selection to work on. Since GAs mirror natural selection, this chapter applies
the same principles and uses a measure of diversity for estimating time to stagnation
or convergence. A GA converges when most of the population is identical, or in
other words, the diversity is minimal. Using average hamming distance (hamming
average) as a measure of population diversity this chapter derives bounds for the time
to minimal diversity, when the genetic algorithm may be expected to make no further

progress (hamming convergence).

Previous work in GA convergence by Ankenbrandt, and Goldberg and Deb focuses
on a lower limit on the time to convergence to a particular allele (Ankenbrandt, 1991;
Goldberg and Deb, 1991) using fitness ratios to obtain bounds on time complexity.
Since GAs use syntactic information to guide their search, it seems natural to use
syntactic metrics in their analysis. The analysis here, using hamming averages, can
predict the time beyond which qualitative improvements in the solution are unlikely.
Since the schema theorem intimately links schema proportions with fitness, bounds

on average fitness follow.

6. Predicting time to convergence for GAs 99

The next section identifies the effect of genetic operators on the diversity metric,
which i1s the hamming average. Deriving an upper bound on the expected time to
convergence suggests syntactic remedies to the problem of premature convergence and,
as a side effect, how to mitigate deception in GAs. Since crossover does not affect the
hamming average, extrapolating the change in the hamming average sampled during
the first few generations is used to predict the hamming average in later generations.

Results on a test suite of functions indicate that accurate predictions are possible.

6.2 Genetic Algorithms and Hamming Distance

The average hamming distance of a population is the average distance between
all pairs of strings in a population of size N. As each member of the population is
involved in N — 1 pairs, the sample size from which to calculate the average is:

N(N - 1)
2

Let the length of the member strings in the population be I. The hamming average of
the initial population of binary strings is well approximated by the normal distribution
with mean hg where

[

h0:§

and standard deviation sq given by

Sg =

S

6. Predicting time to convergence for GAs 100

Ignoring the effect of mutation, the hamming average of a converged population is zero
(mutation increases the hamming average of a converged population by an amount
¢ > 0 depending on the probability of mutation). Given that the initial hamming
average is [/2 and the final hamming average is zero, the effects of selection and

crossover determine the behavior of a genetic algorithm in the intervening time.

6.3 Crossover and Average Hamming Distance

Assuming that offspring replace their parents during a crossover, all crossover op-
erators can be partitioned into two groups based on whether or not they change the
hamming average. If one parent contributes the same alleles to both offspring (as in
masked crossover (chapter 4)) the hamming distance between the children is less than
the hamming distance between their parents. This leads to a loss of genetic material,
reducing population hamming average and resulting in faster hamming convergence.
The vast majority of traditional operators, like one-point, two-point, ... [-point, uni-
form and punctuated crossover (Spears and DeJong, 1991; Schaeffer and Morishima,
1987; Schaeffer and Morishima, 1988; Syswerda, 1989), do not affect the hamming

average of a population. For these crossover operators the following lemma is proved:

Lemma 1 Traditional crossover operators do not change the average hamming dis-

tance of a given population.

Proof: The hamming average in generation ¢ 4+ 1 is proved to be the same as the

hamming average at generation ¢ under the action of crossover alone. Assuming a

6. Predicting time to convergence for GAs 101

binary alphabet {a, b}, express the population hamming average at generation ¢ as
the sum of hamming averages of [loci, where [is the length of the chromosome.

Letting h;; stand for the hamming average of the " locus results in:

i
hy = Z hi,t
=1

where h;yq 1s

l
heyr = Z i1
=1

In the absence of selection and mutation, crossover only changes the order in which

to sum the contributions at each locus. That is:

hiy = h'i,t-l—l

The hamming average in the next generation is therefore

he = hyq

Q.ED

Having eliminated crossover from consideration since it causes no change in the
hamming average, it remains for selection to provide the force responsible for ham-

ming convergence.

6. Predicting time to convergence for GAs 102

6.4 Selection and Average Hamming Distance

Unlike recombination, selection intensity depends on the properties of the search
space. It is the domain-dependent or problem-dependant part of a genetic algorithm.
But, independent of the domain, it is possible to obtain an upper bound on the time to
convergence. Obtaining an upper bound is equivalent to assuming the worst possible
search space and estimating the time required for finding a point in this space. For a
static function, a space on which an algorithm can do no better than random search

satisfies this criterion. The flat function defined by
f(z;) = constant

contains no useful information for an algorithm searching for a particular point in
the space. Thus no algorithm can do better than random search on this function.
In terms of selection in genetic algorithms, the flat function assigns an equal fitness
to all members of a population. There is no selection pressure to lead to a decrease
in hamming average since probability of selection is now the same for every unique
individual. However, a simple GA without mutation loses diversity and eventually
converges. An expression for the time convergence on such a function gives an upper
bound on the time complexity of a genetic algorithm on any static function. The
GA’s convergence on the flat function is caused by random genetic drift where small
random variations in allele distribution cause a GA to drift and eventually converge.
The time for a particular allele to become fixed due to random genetic drift is used

to derive an upper bound.

If a population of size N contains a proportion p; of a binary allele z, then the

6. Predicting time to convergence for GAs 103

probability that & copies of allele ¢ are produced in the following generation is given

by the binomial probability distribution

N
pi(l —p)N*

This distribution is useful in calculating the probability of a particular frequency
of occurrence of allele z in subsequent generations—A classical problem in population
genetics. Although the exact solution is complex, approximating the probability that
allele frequency takes value p in generation ¢ is practical. Wright’s approximation
for intermediate allele frequencies and population sizes, as given in (Gale, 1990), is
sufficient. Let ®(p,t) stand for the probability that allele frequency takes value p in
generation ¢ where 0 < p < 1 then

The probability that an allele is fixed at generation ¢ is
Pt) =1 - o(p, 1)

Applying this to a genetic algorithm, assuming a randomly instantiated population

at ¢ =0,

Assuming that alleles consort independently, which is true for a flat function, the

expression for the probability that all alleles are fixed at generation ¢ for a chromosome

6. Predicting time to convergence for GAs 104

of length [alleles, is given by

P, 1) = [1 _ Spo(1 = po) (1- E)t] (6.1)

Equation 6.1 gives the time to convergence for a genetic algorithm on a flat func-
tion and is therefore an upper bound for any static function. For example, on a 50
bit chromosome and a population size of 30, this gives an upper bound of 92% on the
chance of convergence in 50 generations. Experimental results get between 92% and
73% convergence starting with an initial hamming average of 50/2 = 25. Previous
work by Goldberg and Segrest on genetic drift gives a more exact albeit more compu-
tationally taxing expression for time to convergence due to genetic drift (Goldberg and
Segrest, 1987). They also include the effect of mutation in their analysis, which once
again is directly applicable to our problem. In fact since the flat function costs one
assignment statement and genetic operators are computationally inexpensive, run-
ning a genetic algorithm on a flat function with mutation and crossover probabilities

set to practical values can cheaply produce an upper bound.

Finally, that GAs converge due to random drift gives a theoretical basis to the
often observed problem of premature convergence, when the genetic algorithm con-
verges before high fitness schemas have sufficient time to recombine into the global
optimum(Thierens and Goldberg, 1993). The next section suggests one method of

alleviating this problem.

6. Predicting time to convergence for GAs 105

6.5 Handling Premature Convergence

Nature uses large population sizes to “solve” the premature convergence problem.
This is expensive, furthermore engineers need not be restricted to nature’s methods
but can do some genetic engineering. Mutation seems a likely candidate, and in
practice, is the usual way of maintaining diversity. However, although high mutation
rates may increase diversity, its random nature raises problems. Mutation is as likely
to destroy good schemas as bad ones and therefore elitist selection is used to pre-
serve the best individuals in a population. This works quite well in practice, but is

unstructured and cannot insure that all alleles are always present in the population.

Instead of increasing mutation rates, picking an individual and adding its bst
complement to the population ensures that every allele is present and the population
spans the entire encoded space of the problem. The individual to be complemented
can be picked in a variety of ways depending on assumptions made about the search
space. Randomly selecting the individual to be complemented makes the least number
of assumptions and may be the best strategy in the absence of other information. The
best or worst individual could also be selected, or probabilistic methods can be used
in choosing whom to complement. Instead of complementing one individual, choosing
a set of individuals allows spanning the encoded space in many directions. The most
general approach is to maintain the complement of every individual in the population,

doubling the population size.

The presence of complementary individuals also makes a GA more resistant to
deception. Intuitively, since the optimal schema is the complement of the decep-

tively optimal schema, it will be repeatedly created with high probability as the GA

6. Predicting time to convergence for GAs 106

converges to the deceptive optimum (Goldberg et al., 1989). In experiments the
minimum fitness individual was replaced with either the complement of a randomly
picked individual in the current population, or the complement of the current best
individual. Let [; represent the number of bits needed to represent variable z in a

deceptive problem, then the deceptive functions used can be described as follows

n T; i z; 40
Deceptive(z;) = > 7

im1 | 242 i £, =0
Dec1 and Dec2 which are 10-bit and 20-bit deceptive problems respectively were used.

Letting superscripts denote the number of bits needed for each variable, Decl can be

described by

Decl: Deceptive(z?, z5)

and Dec2 by

Dec2: Deceptive(z?, z3, =3, z,)
Figure 6.1 compares the average fitness after 100 generations of a classical GA (CGA)
and a GA with complements (GAC) on a Decl. The GAC easily outperforms the
classical GA, both in average fitness and the number of times the optimum was found.
In most experiments the classical GA fails to find the optimum in 11 runs of the GA
with a population size of 30 in a 100 generations. Since the converged hamming

average for the CGA is very small, it is not expected to be ever able to find the

6. Predicting time to convergence for GAs 107

o
S
— Deceptive function Decl —1.00%
GAC (max) =
—INN N N ENEEARN _ . (e
— PliVAY RGN N A i R (e X =Te)
s T G AC T (random) Y
— - —0.80
- -~
/ VTN
L —0.70
~
/
'
—) —10.60
/
!/ i
— S —o0.50
L —0.40
L —0.30
— —0.20
L —o0.10
| | | | |

|
0.00 20.00 40.00 60.00 80'(0_—30ener atior:‘Lg0.00

Figure 6.1: Average fitness over 100 generations of classical GA and GA with comple-
ments. GAC (max) replaces the worst individual with the complement of the current
best individual. GAC (random) replaces the worst individual with the complement
of a random individual in the population

global optimum. GAC on the other hand easily finds the optimum for Decl within
a 100 generations and usually finds the optimum for Dec2 within a few hundred
generations. Figures 6.2 and 6.3 show the number of times the optimum was found
for Decl and Dec2 within a total of 100 and 1000 generations respectively. In the
figures GAC (max) replaces the worst individual with the complement of the current
best individual. GAC (random) replaces the worst individual with the complement

of a random individual in the population.

Although this genetically engineered algorithm can mitigate certain kinds of de-
ception, it is not a panacea and cannot guarantee an optimal solution on all problems.
Messy Genetic Algorithms (Goldberg et al., 1989) can make much stronger guaran-
tees but their computational complexity is daunting. Not surprisingly, GAC also does

better than a classical GA on Ackley’s One Max and no worse on the De Jong test

6. Predicting time to convergence for GAs 108

1.00
Deceptive function Decl

rrrrrrrrrrrr _ 1090
5
T — oso®
o 4
O?ﬁ.»"' STTTTTTTTTT T _lo70 =
E
,,,,,,,,,,,, ’ g

/ 0.60
Q) =
QOQ’ 8-
S _loso @
N\ <
e <5}
O?“O _|o40 E
’’’’’’ 5
_jo30 =
i
Classical GA o2 g
LC

~|oa0

5 | 0.00

0.‘00 20‘.00 40‘.00 60‘.00 80‘.00 10$.00

Generations

Figure 6.2: Number of times the optimum was found on Decl for a classical GA
compared with the same statistic for GAs with complements (GACs).

suite (Ackley, 1987; DeJong, 1975). In problems consisting of mixed deceptive and
easy subproblems the GAC still does much better than the classical GA

6.6 Predicting Time To Convergence

Predicting performance on an arbitrary function is more difficult than obtaining
an upper bound because of the non-linearities introduced by the selection intensity.
However tracking the decrease in hamming average while a GA is working on a par-

ticular problem allows predicting the time to hamming convergence.

6. Predicting time to convergence for GAs 109

Deceptive function Dec2 — 1o
,, | oe0
2
=~
o | oso §
& g
~ o =
& bos £
,,,,,,,,,,,, / L __ 5
& _|oe0 €
< =
O 0.50 S
S B
77777777777 | o040 é
|0306
[
: S
o Classical GA o2y
/ T

\
<
\

o
5

)
8

0.00 0.20 0.40 0.60 0.80 1.00
Generations x 10

Figure 6.3: Number of times the optimum was found on Dec2 for a classical GA
compared with GAs with complements (GACs).

6.6.1 Convergence Analysis

Without mutation a GA reduces the hamming average from [/2 to zero. Therefore
predicting the time to convergence reduces to the problem of finding the rate of
decrease in hamming average. A general model for the change in hamming average

per generation:

hiy1 = F(he) (6.2)

relates the hamming average h; in generation ¢ to the hamming average in the next
generation. Finding F and solving the recurrence is enough to predict the time to

convergence.

6. Predicting time to convergence for GAs 110

The population hamming average at generation ¢ can be expressed as the sum of
hamming averages of [loci, where [is the length of the chromosome. Letting h;;

stand for the hamming average of the i* locus gives:

-1
ht - Z hi,t (63)
2=0

Assuming a binary alphabet {a, b} and a large population, the hamming average of
a locus in the current population is well approximated by the product of the number
of a’s and the number of b’s divided by the sample size N(N — 1)/2, where N is the
population size. More formally, letting m(a;,t) and m(b;,t) be the number of a’s and

b’s at a locus 1,

m(a;, t)m(b;,t)

his = 6.4
* T N(N -1)/2 (64)
Since a and b are first order schemas competing at locus z, their growth rates are

given by the schema theorem. The expected growth rate for a schema s with fitness

f(s) due to selection alone is

m(s,1)1(s)
e

Here f, is the population’s average fitness in generation ¢. As only first order schema

m(s,t+1) = (6.5)

are being considered, there is no modification needed to incorporate crossover’s effects.
Ignoring mutation for the present the hamming average in generation ¢ 4+ 1 at locus

7 can be calculated as follows. First:

6. Predicting time to convergence for GAs 111
m(a;, t + 1)m(b;,t + 1)
hity1 =
N(N -1)/2
Then using the schema theorem A,y can be expressed in terms of h,,
2,t+1 — hra —-
ft ft N(N - 1)/2
Substituting using equation 6.4:
a; bz
G (6.6)
t
The solution to this recurrence is
¢ hio
hie = (@) FBI* 22 (6.7
II /&
k=0

The denominator needs to be computed. This is an interesting problem not only

because it helps in predicting the hamming average, but because it implies the possi-

bility of fitness prediction. Once again concentrating on first order schema, consider

the average fitness in generation ¢ at locus 2.

6. Predicting time to convergence for GAs 112

Butﬁ-,t also approximates the population average fitness in low epistasis problems.
The approximation gets better as epistasis decreases and our estimates of first order
schema fitnesses get better. Keeping this assumption in mind and dropping the first

subscript

f(ai)m(as, t) + f(bi)m(bi, t)
N

7t = (6.8)

Using the schema theorem (equation 6.5) to replace the ¢ terms on the right hand

side

e 1 f(a’i)zm(a’iat_ 1)+f(b1)2m(b17t_ 1)
fiaa N

Multiplying both sides by f,_,

<+ mla,t—1)f(a;)* m(b;,t—1)f(b;)°
ftft—l - N + N

But by the schema theorem (equation 6.5)

m(a;,t —1) = m(ai,t_— 2)(e:) And m(b;,t—1)= LA

t—2 t—2

Therefore

6. Predicting time to convergence for GAs 113

<7 m(ai,t —2)f(a;)® m(bi,t—2)f(b:;)°
ftft—l - N?t—Z N?t—Z

Multiplying by f,_,

(ai,t —2)f(a;)® 4 m(b;,t —2)f(b)®

7t7t—17t—2 = N N

In general,

- - (6.9)

Y7 m(a;,0)f(a:) m(by, 0)f(b:)H
Il fx= +
k=0
which is the needed expression. This equation’s significance in fitness prediction is

discussed in the next section. For the present, substituting equation 6.9 in 6.7 gives

hi: in terms of the initial hamming average.

hio
m(a;,0)f(a;)it? m(b;,0)f(b;)t+1 2
[()N() + ()N()

hig = [f(a:) f(B:))

For a randomly initialized population

m(a;, 0) = m(b;,0) = N/2

Therefore

6. Predicting time to convergence for GAs 114

4h1’,0
[f(ai)+? + f(b:)+1]°

hig = [f(a:) (b))’

Rearranging terms

hay = 4 [f(ai) F(b:)) hio

[f (@)t + f(Ba)*]

Here h; is the initial hamming average at locus ¢. For a randomly initialized popu-

lation, the hamming average for each locus is 1/2. Replacing h; o by 1/2

2[f(a) f(b)]"

hig =)
© [f(aa)t 4 ()]

Summing over ¢ from 0 to [— 1 gives the population hamming average in

generation ¢

N b, — oS @) fGI)
T R ST

the expression for the hamming average in generation ¢, depends only on the fitnesses

of alleles in the chromosome.

L2 [fla)f))
hy = 2; @)+ + f(b)] (6.10)

6. Predicting time to convergence for GAs 115

6.6.2 Handling Mutation

With mutation the hamming average does not converge to zero, rather a popu-
lation converges when the rate of change of hamming average is very low or zero.
Consider mutation’s effect on the number of a’s and b’s. Mutation flips a bit with
probability p.,,, changing the number of copies of @ and b in subsequent generations.

Without selection
m(a’i7t + 1) = m(a’i7 t) [1 - pm] + m(bﬂ t)pm

since the a’s become b’s and vice-versa. Incorporating selection

flaiym(ai, 1) [1 = pm] + f(b:)m(bi, 1)Pm

m(a;,t+1) =
f
(6.11)
bi)m(bi,t) [l — pm i i) t)Pm
(bt 4 1) = f(bi)m(bi, t) [1 = pm] + f(ai)m(as, t)p
fi
The equation for hamming distance in generation ¢ is
it b;,t
hiy = mles, Eym(b) (6.12)

N(N —1)/2
To solve this m(a;,t) is needed in terms of m(a;,0). Substituting m(b;,t) = N —

m(a;,t) in equation 6.11

f(ai)m(as, ¢ — 1)(1 — pm) + f(8)pm [N — m(a;,t — 1)]

m(a;,t) = -

6. Predicting time to convergence for GAs

116

Collecting terms

m(a;,t — 1) [f(a:)(1 — pm) — f(bi)pm] N

m(a;,t) =

This is of the form

ft—l * ?t—l
where
¢ = f(a;)(1 = pm) — F(5:)Pm

d= f(bi)pmN

The solution to this recurrence is

t—2

o~k

cm(a;, 0)

d
II 7« II 7«
k=0 k=0

m(a;,t) =

Before calculating the product of fitnesses, rewrite the second term as

c‘m(a;, df, 4
m(a;,t) = t—(l) f Z H fe

H ?k H fk =0 k=i41
k=0 k=0

(6.13)

6. Predicting time to convergence for GAs 117

Similarly letting

u=f(5)(1 — pm) — f(a:)Pm

w = f(al)pmN

results in

utm(b;, w f, 4

e I (6.14)
H fk H fk 2=0 k=1+1
k=0 k=0

Substituting these values into equation 6.12 directly

m(bz, t) =

(az; ‘|‘dft 1ZC H fk] [bz;O ‘|‘wft 12“’ H fk

=0 k=i41 2=0 k=1+1
his =

i—1
N(N-— —2
(2 1)H I
k=0

(6.15)

Unlike the case without mutation, it is difficult to find a simple expression for the
product of fitness averages. In addition, the calculations implied by equation 6.15

are cumbersome. For practical prediction this chapter recourses to an approximate

model.

6. Predicting time to convergence for GAs 118

6.7 Practical Prediction

The intuition needed to address the problem is that the schema theorem works
both ways. If schema fitnesses are known, proportions can be predicted — if propor-

tions are tracked, fitnesses can be predicted. Rewriting equation 6.5 as

m(a’iat + 1)ft

fla:) = m(a;,t)

Keeping track of m(a;,t) over a few generations should give an estimated fitness for

a;. Mutation can be handled in the same way starting with equation 6.11.

fem(ai, t + 1) = f(ai)m(ai, t) [1 — pm] + f(b:)m(bs, t)Pm

o (6.16)
fem(bi,t 4+ 1) = f(bi)m(b;, 1) [1 — pm] + fai)m(ai, t)pm

Solving for f(b;) using the second expression

_ fem(bit + 1) — f(ai)m(s, t)pm

fb) (56, D)L —)

Substituting back in the first expression in equation 6.16 and solving for f(a;)

Ttm(bi,t + 1) — f(ai)m(ai, t)pm
m(bi,t)(1 — pm)

?tm(a’ivt—{' 1) = f(ai)m(a’i: t)(l _an)‘I' [m(bi; t)an]

which leads to

6. Predicting time to convergence for GAs 119

Fm(bit+ Upm flas)m{as t)5?,

fim(ai,t +1) = f(ai)m(ai,t)(1 — pm) + (1= pm) (1 — pm)

multiplying by (1 — pm)

?tm(a’i:t + 1)(1 - Pm) - ?tm(biat + 1)pm = f(ai)m(a’i: t)(l - pm)z - f(ai)m(ai7 t)pfn

from which the expression for f(a;) can be computed

o Fem(ait+ 1)(1 = prm) — Fom(bi,t + 1)pm
f(ai) = (e t)(1 = 2pm) (6.17)

and subsequently an expression for f(b;)

_ fem(bi t+ 1)(1 — pm) — fym(ai,t + 1)pm
m(b;,t)(1 — 2pm)

The two equations 6.17 and 6.18 above can be used to estimate first order schema

f(b)

(6.18)

fitnesses by tracking their proportions over time. Using these estimates in the expres-

sion for average fitness f, in generation ¢ gives

7, = Jomon) + S(mit 1) (6.19)

where N is the population size. This results in being able to predict fitness averages.
In other words, tracking first order schema proportions allows estimation of their

fitness. Next, using these first order schema fitnesses allows predicting their future

6. Predicting time to convergence for GAs 120

proportions from the schema theorem (equation 6.11). Finally, knowing first order
schema fitnesses and proportions allows predicting the subsequent population average
fitness which is needed for estimating future proportions and so on. Although a
closed form solution is not available for the case with mutation, the recurrences can

be programmed and run on a computer for a large number of generations.

Assuming that string similarity implies fitness similarity, then the variance of
fitness is a measure of the nonlinearities in the genome and hence a measure of
epistasis. Fortunately, competing schemas with a large fitness variance feel high
selection pressure and quickly lose diversity, diminishing epistatic effects. Since a GA
exponentially reduces high variances, O(logN) generations should suffice to mitigate

most nonlinear effects.

The following methodology is therefore used for practical prediction:

e Instead of predicting f(a;) or f(b;) by averaging the contributions of all individ-
uals which contain a; or b;, use equations 6.17 and 6.18 over a small number of

generations to get an epistasis adjusted fitness value for each first order schema.

e Start sampling allele proportions after O(log N) generations.

Using an adjusted fitness computed this way, it is possible to predict the growth
rate of first order schema and therefore the population average fitness and population

hamming average in subsequent generations.

6. Predicting time to convergence for GAs 121

6.8 Upper and Lower Bounds

Consider the effect of newly discovered schemas on the predictions. Fresh schemas
that decrease adjusted fitnesses have little effect since they are quickly eliminated
by selection. When higher fitness schemas are discovered by crossover, the fitness
of alleles participating in these schemas increases. This means that the predicted
hamming average will be greater than or equal to the observed value giving an upper
limit on the time to convergence. The predictions therefore provide upper bounds on
the hamming average and time to convergence to that hamming average. Such an
estimate is more desirable than an overly optimistic estimate: It is better to let a GA

run too long than to stop it early.

The variance in adjusted fitness for an allele bounds the number of generations
sampled to get an accurate estimate of the allele’s fitness. This variance bounds the
current fitness of schemas in which the allele participates. At a particular locus, using
the allele with the least variance to predict growth gives a conservative estimate of
hamming average. Low variance implies a good approximation to the current fitness of
the allele and provides an upper bound on our predicted hamming average. Similarly,
using the allele with greater variance gives an optimistic estimate or lower bound.
These bounds should surround the predicted value of the hamming average. Results

given in the following sections support this preliminary analysis.

Noisy functions and noise induced by mutation may cause less desirable, more
unpredictable behavior. This problem can be solved by having a larger sample space,

that is, using more generations to calculate adjusted fitnesses.

6. Predicting time to convergence for GAs 122

For much the same reasons above, calculating adjusted fitnesses allows predicting a
lower limit on the fitness average because these fitnesses only incorporate the effects of
current schemas. Any new schemas (created by crossover) that increase the adjusted
fitness of an allele can lead to a higher than predicted fitness average. In multimodal
functions, the opposite may happen. The GA could initially concentrate around one
optimum and then move toward another optimum. Since the calculated adjusted
fitnesses may no longer be correct and it takes a GA time to overcome the inertia
created by the first optimum, the predicted fitness average may be higher than the

actual fitness average.

6.8.1 Comparing Predictions

Since hamming average prediction is quite robust and a first order approximation
may be interesting enough, a linear approximation of F in equation 6.2 can be tried

out for prediction. Assuming a quick and simple model for the case without mutation

ht+1 = ah,

whose general solution is given by

ht = a,tho (620)

6. Predicting time to convergence for GAs 123

This chapter uses this simple equation’s predictions to compare with the predic-
tions generated using the analysis in section 6.7 in predicting the hamming average

at generation 50 for the following functions:

1. Flat: f(z1,z2) = 10, with a 50 bit chromosome.
2. DeJong’s five functions: F1...F5 (De Jong, 1975).

3. One Max: f(X)=|X| where |X]| stands for the norm of the bit string X, for
both a 50 (OneMaxI) and a 200 (OneMaxII) bit chromosome.

All problems were reduced to maximization problems. The GA population size
in all experiments was 30, using roulette wheel selection and two-point crossover. a
in equations 6.20 was computed from successive hamming averages in generations 0
through 10. Table 6.1 summarizes the results. The last two columns predict lower and
upper bounds from the analysis in section 6.7 equations 6.17, 6.18, and 6.19 using
proportions sampled in generations [log30] = 5 through 9 only. Since the encoding
for the DeJong functions used a sign bit, 5 samples were optimistically chosen as
sufficient. The experimental values are averages over 11 runs with no mutation. The

standard deviations over 11 runs of the GA are given in parentheses.

Surprisingly, the values predicted using the rough approximation are quite good
and are within a standard deviation of the observed values. That good results come
from even such a simple model clearly indicates the validity of this approach. Pre-
dicted upper and lower bounds on the upper limit include the observed values except
for OneMaxI whose lower bound is greater than the observed hamming average. This

implies a large variance in sampled allelic fitnesses. Intuitively, the observed fitness

6. Predicting time to convergence for GAs 124

Function Observed Predicted

ho hso hso eqn 6.20 | hsg lower hso upper
Flat 25 4.6 (2.4) 5.1 (2.2) 43(1.3) 9.3(1.1)
F1 15 2.1(1.1) 2.2 (1.2) 2.1(0.8) 4.6 (1.3)
F2 12 2.1(0.9) 2.5 (1.5) 1.7(1.0) 4.3(1.1)
F3 25 3.5 (1.7) 3.4 (1.5) 3.2(1.2) 17.9(2.0)
F4 120 18.6(8.0) | 25.3 (11.5) | 17.4(6.5) 42.2(5.7)
F5 17 29(1.7) 4.2 (2.3) 2.8(1.1) 5.7(1.0)
OneMaxI | 25 3.7 (2.3) 4.7(3.1) 4.2(1.0) 8.0(2.1)
OneMaxII | 100 15.8 (8.1) 16.0 (9.7) |12.8(5.4) 29.8 (4.8)

Table 6.1: Comparing actual and predicted hamming averages (no mutation)

of an allele depends on the number of ones in the entire chromosome, leading to the
observed conservative estimate in the absence of mutational noise. OneMax should

be expected to create greater problems when including mutation.

Next, realizing that mutation makes the final hamming average greater than 0,
another related simplified model is used to predict hamming average at convergence
for the same set of problems but with the mutation rate set to 0.01. The model is

given below.

ht_|_1 = aht + b (621)

The general solution is

l1—a

hi = atho + b

1—a

6. Predicting time to convergence for GAs 125

In these experiments the GA ran until hamming convergence when the hamming
average did not change significantly over time. Experimentally, 500 generations was
sufficient for the problem set. Calculating the values of a and b in equation 6.21
using the method of least squares, the hamming average is predicted at convergence
(generation 500). This is found by setting € = ks = A1 and solving for hy, resulting

n

Table 6.2 compares the observed hamming average at generation 500 with the pre-
dicted values. Column three tabulates the hamming average at convergence and its
standard deviation over the 11 runs. Columns four and five are the predicted hamming
averages using equation 6.21 and data from generations 5 through 20 and 5 through
45 respectively. The simpler model (curve fitting) does much worse when mutation is
incorporated. It requires more samples, and even predicts negative hamming averages
at convergence. However, the more refined model in equation 6.11 predictably needs
no extra information and therefore still uses samples from generations 5 through 9 to

produce the last two columns.

The predictions using the schema analysis in table 6.2 are very close to the ob-
served values. Although the hamming average after 500 generation is large for F'4
and OneMaxlII, there is no significant change even after 2000 generations. This just
indicates that once a GA reaches the equilibrium hamming average, some other search
method should be tried especially if the converged hamming average is large. Pre-
dicted upper and lower bounds are still good except for OneMaxII. Here, noise induced

by mutation is the major culprit. The high variance in allele fitnesses suggests using

6. Predicting time to convergence for GAs 126

Function Observed Predicted

ho hsoo h from 25 h from 45 h lower h upper
Flat 25 11.2(1.9) | 144 (6.0)* 11.4(1.5) 7.7(0.9) 11.2(1.3)
F1 15 5.8 (1.1) |9.8(10.2) 6.4 (1.3) 4.1(0.5) 6.1(1.3)
F2 12 4.3(1.2) | 7.3 (2.4) 5.7 (1.4) 3.5(0.9) 5.4(1.0)
F3 25 8.9(1.7) | 89(3.7)* 9.1 (2.1) 6.3(1.1) 9.5(1.3)
F4 120 48.9(4.7) | 64.3 (14.0)* 49.3(12.2)* | 32.3(3.9) 51.4 (4.7)
F5 17 6.8(1.3) | 11.3 (4.4 17.2(2.3) 48(0.7) 6.8(1.3)
One Max | 25 9.2 (1.7) |10.3 (4.0)* 9.0(2.2) 7.3(1.3) 11.3(1.7)
One Max | 100 45.7 (5.3) | 51.5 (11.4) 40.3 (13.6) | 25.7 (4.6) 38.7(4.5)

Table 6.2: Comparing actual and predicted hamming averages with the probability
of mutation set to 0.01, the *’s indicate that the negative values predicted in some
runs were discarded.

a larger sample space to increase the signal to noise ratio. Sure enough, using an
additional 15 generations to sample fitnesses suffices to correct the problem and give

good bounds on OneMaxII.

6.8.2 Predicting Average Fitness

Since a simplified curve fitting model gave good results on hamming average pre-
diction, equation 6.21 was used for fitness prediction as well. Table 6.3 predicts the
average fitness (F') at convergence without mutation. Column two gives the initial
average fitness and column three the converged average fitness in generation 50. The
standard deviations of the observed and predicted average fitnesses over the 11 runs
are in parentheses. The next two columns are the predicted fitness averages using
equation 6.21 from fitnesses sampled in generations 5 through 15 and 5 through 25

respectively. The last two columns use equation 6.19 to provide conservative and

6. Predicting time to convergence for GAs 127

Function Observed Predicted

F Fyo0 F/10 F/20 F lower F upper
F1 53.6 74.5 (2.8) 72.9 (14.6) 72.8 (5.2) 71.7 (4.3) 72.8 (4.5)
F2 3462.6 3931.1(69.1) | 3856.2 (71.4) 3872.6 (65.7) | 4031.0(77.2) 4098.9 (109.0)
F3 32.4 49.3(2.9) 43.0 (3.3) 51.0 (14.4) 40.8 (2.3) 41.9 (2.5)
F4 970.0 1055.4 (40.8) | 1023.0(31.0) 1020.1 (57.2) | 1040.1(27.5) 1055.5 (27.8)
F5 3.99651 3.99796 (0.0) | 3.9972 (0.0) 3.99679 (0.0) | 4.2 (0.0) 4.3 (0.0)
One Max | 24.6 33.5(2.3) 36.0 (12.2) 30.6 (11.2) 29.8 (1.2) 30.3(1.3)
One Max | 99.9 110.9 (5.4) 124.8 (59.8) 109.8 (5.9) 109.5 (3.2) 111.5 (2.7)

Table 6.3: Comparing actual and predicted fitness averages (no mutation)

optimistic bounds on the average fitness. As stated earlier, both bounds are expected
to underestimate the observed fitness, unless the function is multimodal or has high
fitness variance. Since the average fitness is a byproduct of hamming average predic-
tion in our model, the hamming average data from generations 5 through 10 is used

for fitness prediction. The flat function is not considered.

The simple linear model’s predictions of average fitness are are also within about
one standard deviation of observed values. It is more interesting to look at the upper
and lower bounds. As expected F2 and F5 which are multimodal, have higher pre-

dicted fitnesses. Other predictions serve as conservative and optimistic lower bounds.

Table 6.4 summarizes results on the same set of problems with mutation proba-
bility set to 0.01. Mutation’s effect forces good predictions to use even larger data
samples for the simpler linear model. The upper and lower bounds again fall out of

the hamming average data for generations 5 through 9 with mutation.

6. Predicting time to convergence for GAs 128

Function Observed Predicted

F, Fyo0 F/20 F/45 F lower F upper
F1 53.6 75.0 (1.8) 71.2 (3.8) 73.4 (2.6) 70.8 (4.2) 72.4 (4.5)
F2 3462.6 3919.4(66.1) | 3842.6 (43.3) 3866.8 (39.9) | 3959.4 (115.0) 4029.0 (142.0)
F3 32.4 49.6 (1.9) 55.3 (21.6) 46.9 (2.6) 40.4(2.9) 41.5(2.9)
F4 970.0 1058.6 (24.5) | 1243.3(615.8) 1077.0(68.6) | 1031.1(22.4) 1052.7(23.5)
F5 3.996 3.997 (0.00) | 3.996 (0.00) 3.997 (0.00) 4.20 (0.04) 4.25 (0.06)
One Max | 24.6 35.2 (1.6) 31.0 (4.5) 34.8 (5.0) 28.8 (1.1) 29.3 (1.2)
One Max | 99.9 110.7(3.6) | 107.4(3.6) 108.8 (5.2) 108.9 (2.9) 111.2 (3.0)

Table 6.4: Comparing actual and predicted fitness averages with the probability of
mutation set to 0.01

These preliminary results support this chapter’s model of genetic algorithm be-
havior. Although curve fitting has its uses in providing a very rough approximation,
it cannot predict the effects of changes in GA parameters and does badly in the pres-
ence of mutation. Using the analysis in section 6.7 it is easy to predict the time to
convergence on a problem. This is just the time at which the change in hamming
average is insignificant. Knowing available computing resources fixes the hamming
average below which exhaustive search of the remaining space can be undertaken,
and therefore the time needed to deliver on an application. In practice, instrument-
ing a GA to keep estimates of allele fitness and proportions should reduce the time
spent experimenting with various parameter settings and let the developer know the
computing resources needed. If the problem encoding is highly epistatic or other-
wise undesirable from a prediction point of view, just keeping track of the hamming
average and rate of change of hamming average indicates the progress of a genetic
algorithm on the problem. In addition, incorrect predictions from the theory indicate
the problem encoding exhibits these undesirable properties. This is useful information

about the problem space and can be used in changing parameters or encoding.

6. Predicting time to convergence for GAs 129

6.9 Summary

Analyzing a GA is complicated because of its dependence on the application do-
main and our lack of understanding of the mapping between our view of the applica-
tion domain and the GA’s view of the same domain. The GA’s view of the domain
is implicit in the chosen encoding. However, the overall behavior is predictable and

can be deduced from sampling suitable metrics

Analysis of the syntactic information in the encoding, gives a surprising amount
of knowledge. This chapter derived an upper bound on the time complexity from
considering the effects of drift on allele frequency. Then, from a model of the effect of
selection and mutation on the behavior of genetic algorithms, the analysis was able

to approximate two solution characteristics at convergence for static search spaces.

1. Bounds on an upper limit to the average hamming distance of a population
at convergence. In addition to providing time limits, the average hamming

distance of the population also denotes the remaining amount of work.

2. The amount of work possible by the GA, indicated by the average fitness at

convergence.

Combining fitness prediction with hamming average prediction indicates how much
progress is possible with a GA along with bounds on how much remaining work can be
done. The latter is especially important when including mutation. The predicted av-
erage fitness indicates how much progress is possible, but it is the predicted hamming

average that denotes the remaining work.

6. Predicting time to convergence for GAs 130

This dissertation has developed three tools that strongly support the viability of
genetic algorithms as a computational model of design. The last chapter summa-
rizes these developments, discusses their limitations and makes explicit the questions

arising from the research.

Discussion and Conclusions

There must be a beginning of any great matter, but the continuing unto the

end until it be thoroughly finished yields the true glory.

Sir Francis Drake.

This thesis’ main objective — to establish genetic algorithms as a viable computa-
tional model of design — was achieved by solving four problems hindering the appli-
cability of genetic algorithms in design. Casting design in terms of a search through
a state space of possible designs, genetic algorithms were introduced as the search
method of choice and contrasted with other applicable search techniques. Establish-
ing the mapping between genetic algorithms and the three phase model of design, four
open problems lying on the path to achieving this objective were identified and over-

come. This chapter summarizes the problems and their solutions, discusses results

131

7. Discussion and Conclusions 132

and limitations, and points out areas for future work raised by this dissertation.

7.1 Four Contributions

Searching in poorly—understood domains is a somewhat unpredictable proposition.
There are few guarantees about whether a solution will be found, and if found, what its
quality will be. The underlying assumptions made by a search algorithm determineits
speed, flexibility, and whether it will in fact find a solution. If an acceptable solution
is found, it can be used. However, when a solution is not found, what can the search
algorithm’s behavior tell us about the search space? This is an important question
because 1) any information about a poorly understood space can be made use of
in subsequent investigations of the problem and 2) not using available information
is, to say the least, wasteful. In design, extracting and using domain information
is especially important since sensitivity analysis and post processing also depend on
knowledge gleaned during the course of search. This point of view forms the backdrop

for discussing the results in this thesis.

The four problems identified in establishing genetic algorithms as a viable com-

putational model of design were:

1. Determining where genetic algorithms are better.
2. Surmounting encoding biases in genetic search.

3. Analyzing genetic algorithm generated solutions.

7. Discussion and Conclusions 133

4. Computational complexity of genetic algorithms.

This thesis overcame each of the four problems above and illustrated the solutions
with examples from circuit design, function optimization and floorplanning. The next

four sections review the issues, results and limitations of ths work.

7.2 Where GAs are better

Once the mapping between genetic algorithms and the three-phase model of de-
sign was established, the question became “Why should a designer use a genetic algo-
rithm rather than a hill-climber?” When choosing a blind search algorithm, a related
question is “What algorithm should a designer use on the problem at hand?” Chap-
ter 3 answered these questions by defining search spaces in which genetic algorithms
perform better and suggested that such spaces may be found in design problems for-
mulated as multiobjective or multicriteria optimization problems. In many cases such
problems involve tradeoffs among possibly conflicting criteria. Spaces where recombi-
nation of two or more single criterion optima leads toward a global optimum, with a
deceptive basin in between to trap hill-climbers, were found to be well suited for ge-
netic algorithms especially when using pareto optimality in their selection process (see
figure 7.1). Pareto optimal selection maintains the necessary niches until recombina-
tion produces the global optimum. The dissertation defined a problem in hamming
space with these properties (figure 7.1) and empirically compared performance on the

problem for three blind search algorithms.

7. Discussion and Conclusions 134

1. A classical GA with two—point crossover.

2. A stochastic hill-climber (A GA without crossover).

3. A GA with pareto optimal selection and two—point crossover.

The GA with pareto optimal selection always found the optimum more often than

the others, while the classical GA did better than the stochastic hill-climber.

Pareto optimal selection also eliminates the need to combine disparate criteria
into a single fitness as is usual in genetic algorithms. The method described in
this chapter was distributable and computationally less expensive compared to other

suggested methods for incorporating pareto optimality (Goldberg, 1989b).

When choosing a search algorithm to attack a particular problem, current choices
include simulated annealing (a stochastic hill-climber) and genetic algorithms with
and without crossover. Most other methods are variations on these algorithms (Ack-
ley, 1987; Mahfoud and Goldberg, 1992). Simulated annealing (SA) is a stochastic
hill-climber inspired through an analogy with the cooling of metals (Kirkpatrick et al.,
1983). It starts with a high temperature T' and a randomly generated initial solution
1 with a fitness F;. To find a solution that minimizes F', the SA generates a new
solution near ¢ and accepts this new solution j as the current solution if the fitness of
the new solution, F}, is less than F;. If Fj is not less than F; then j may still be ac-
cepted as the current solution with a probability depending on 7. As the temperature
decreases during the course of a run, the probability of accepting 5 when Fj is not
less than F; decreases. Initially, at high temperatures almost any change is accepted

and the algorithm stresses exploration over exploitation of the search space. At lower

7. Discussion and Conclusions 135

temperatures the probability of accepting worse solutions is low and the algorithm

stresses exploitation over exploration and converges on a solution.

The differences between a genetic algorithm with no crossover (SHC) and a sim-
ulated annealer are 1) the existence of a cooling schedule (the rate of decrease of
temperature), 2) the fact that simulated annealers are not population based, and 3)
the convergence behavior which is usually very different. Typical convergence behav-

ior for both algorithms on a maximization problem is shown in figure 7.2.

In general, choosing among blind search algorithms is not easy. The assumptions
underlying the algorithms behavior, structure of the search space, domain knowledge,
available resources and personal preference affect this choice. As shown in chapter 3,
if there are structured local optima, leading towards a global optimum with deceptive
basins in between, a genetic algorithm outperforms other algorithms. Since spaces
with such properties may be found in multicriteria optimization (a large number of
design problems are multicriteria optimization problems), choosing genetic algorithms

to attack these problems makes sense.

The convergence behavior also provides a means of choosing between simulated
annealing and genetic algorithms. GAs quickly improve the quality of their solutions,
while initially, a simulated annealer only slowly improves quality. Thus, to get a quick

solution, a designer may choose a genetic algorithm over a simulated annealer.

136

7. Discussion and Conclusions

1111111111

Fitness

0000011111

1111100000

deceptive basins

Figure 7.1: The type of spaces easy for a genetic algorithm and hard for a stochastic

hill-climber

Fithess ——————»

Time ———=
Figure 7.2: Comparing convergence behavior of a simulated annealer and a genetic

algorithm

7. Discussion and Conclusions 137

7.2.1 Limitations and Future Work

Although genetic algorithms outperform stochastic hill-climbers in the kind of
spaces described in the chapter, a stronger approach would identify and analyze
the properties of a whole range of spaces; from those that are clearly GA-easy and
stochastic hill-climbing hard, to spaces that are break-even, where GAs and stochas-
tic hill-climbers are expected to perform similarly. Unimodal spaces clearly confer
an advantage to hill-climbers. This thesis identifies one kind of GA-easy spaces, es-
pecially relevant to design. A more general theory that includes schema fitness and
proportions is an open problem and a matter for further research. Another interest-
ing research problem lies in exploring niche formation with pareto optimal selection.
Stability of niches, cross-breeding among niches, and the role of deception need to be

analyzed.

7.3 Mitigating Encoding Problems

Once a designer has decided to use a genetic algorithm, there comes the task of
encoding a design problem. The biases generated by an encoding and surmounting
unfavorable biases formed the subject of chapter 4. In design, epistatic encodings
make a GA’s preference for schema of short defining length a liability. A designer
genetic algorithm (DGA) that used a masked crossover operator to identify and pre-
serve high fitness schemas of arbitrary defining length was introduced to mitigate these
problems. Elitist selection was also introduced both to mesh with masked crossover’s

properties and to increase performance. A designer genetic algorithm increased the

7. Discussion and Conclusions 138

domain of application of genetic algorithms by relaxing the emphasis on schema of
short defining length with an increase in cost of only a constant factor per gener-
ation. Comparing the performance of a classical genetic algorithm and a designer
genetic algorithm also provided information about the space. If the DGA did better
it meant that highly fit, low-order schema were mostly of large defining length and/or
the encoded problem was not deceptive. On the other hand, if the classical genetic
algorithm did better it meant that the encoding followed the principle of meaningful
building blocks and/or the problem was partially deceptive. The example used to
illustrate these results, combinational circuit design, was a satisficing problem. The
maximum fitness achievable was known, the problem was to find a structure that

implemented the specified function.

This chapter illustrated the satisficing nature of design problems and provided
a tool to mitigate problems in representing designs for genetic algorithms. When
designing an encoding, following the principle of meaningful building blocks ensures
that epistatic effects are minimized and a genetic algorithm finds smooth sailing. If
this principle cannot be followed (lack of domain knowledge for example), designer
genetic algorithms can help. DGAs may solve the problem, or at least provide addi-
tional information about the current encoding of the problem. However, designing a
good encoding is still something of an art. Masked crossover mitigates one encoding
problem but there are others that this thesis does not handle. For example, this
thesis only considers fixed length strings and representations that do not produce

non-viable offspring. Goldberg’s book indicates examples of such problems and how

their encodings are handled (Goldberg, 1989b).

7. Discussion and Conclusions 139

7.3.1 Limitations and Future Work

Masked crossover is an option that lowers the aesthetic threshold for genetic algo-
rithm programmers but is more easily misled on deceptive problems. The heuristics
used for mask propagation are rather simple and do not track and use past mask
performance. That is, masks are not evaluated independently of their associated
genotypes. This thesis has opted for simplicity and domain independence rather than
convergence speed and algorithmic complexity. However, tracking and evaluating
mask performance and incorporating any information gleaned from this can lead to
better mask rules and finer control of search direction. Structure synthesis problems
in two or three dimensions can also be tackled by developing and using two and three
dimensional genotypes and recombination operators. With these representations and
operators, schemas of short defining “area” or “volume” can be preserved without
masks by exchanging contiguous areas or convex volumes during crossover. Inves-
tigating two and three dimensional genotypes and operators in structure synthesis

tasks is an unexplored area with much potential.

7.4 Analyzing Genetic Algorithm Solutions

The results of chapter 4 illustrated the difficulty of explaining genetic algorithm
generated solutions. When working in poorly understood domains, solutions are
already difficult to understand, using a blind search algorithm to generate solutions
makes it that much more difficult. Typically, the algorithm is started on a problem,

runs for a preset number of generations/iterations or until some termination condition

7. Discussion and Conclusions 140

is met, and the current best solution or solutions examined. The examination provides
a ranking of current solutions, if there are more than one, but little else. Why is
this solution good? What happens when this substructure or parameter is changed
by a little? Is the response linear or non-linear? Are there any crucial parts that
combined to make this solution strong? These questions and others are difficult to
answer mainly because the algorithms trajectory through the search space was not
tracked. The sequence of generated solutions (history) provides information on what
the algorithm considers important in coming up with the current solution set. When
combined with knowledge about a particular algorithm’s assumptions about search
spaces it can furnish a designer with information needed to answer questions about

a solution.

The system described in this chapter provides a tool with which designers can
explain solutions discovered by genetic algorithms. A case-based reasoning module
is able to organize and make explicit the building blocks used by a GA. Analysis of
the building blocks and the path taken by a GA through a search space provides
a powerful mechanism for explaining the solutions generated by a GA. Results of
the explanation can be used to guide post-processing in order to improve results in
case of premature convergence or no convergence. Injecting genetically engineered

individuals created through such analysis also improves performance.

As well as providing a system for explaining GA generated solutions and search
space analysis, the system provides empirical evidence that the building block hy-
pothesis is correct. The hierarchical clustering of a set of GA individuals (distributed
over several generations) according to fitness and genotype leads to nested schemas.
Analysis shows that the subtrees with the most fit schemas receive the most reproduc-

tive energy while the least fit schemas are culled from the population. Although the

7. Discussion and Conclusions 141

building block hypothesis said that clustering on fitness and genotype should yield
nested schemas, the system was nonetheless tested on several other clustering possibil-
ities, including more generational information and parental information. Clustering
on fitness and genotype was by far the most successful technique. The nested schemas

that result from such a clustering provided a coherent index for the case-base.

7.4.1 Limitations and Future Work

Chapter 5 made a start at identifying, extracting, organizing and storing do-
main knowledge garnered while searching in a poorly understood domain. During
the course of future searches, this knowledge can be used and added to, tuning the
algorithm for this particular space. As more and more knowledge gets added, the
search can use this information to increase speed. The system as whole gravitates
towards the domain dependent (inflexible) but fast end of the systems spectrum. In
other words this thesis proposes another use for search methods. Genetic or other
blind search algorithms can be used as explorers of poorly understood domains, with
the side effect of inducing a domain model during the course of search. When using
such a system, initially there would be little knowledge and much searching. With
increasing knowledge, in subsequent searches, the population of a genetic algorithm
would be seeded with individuals hypothesized to be close to the required solution.
When hypothesized solutions are the required solutions (say more that 50% of the

time), the system can be said to have induced a domain model.

Instrumentation for tracking individuals injected by the hypothesis module, a

better user interface, and more support for the case-based explanation module need to

7. Discussion and Conclusions 142

be added, before induction (learning) of domain models can become automated. The
work in this thesis only considers case—based systems. Rule based systems that induce

domain models with genetic search already exist and are called classifier systems

(Goldberg, 1989b; Holland, 1975).

7.5 Computational Complexity

Last but not least is the problem of computational complexity. In simulated
annealing, the annealing schedule defines the number of iterations until termination.
In genetic algorithms there was no such upper limit on the time to convergence, in
fact, convergence was not well defined. In this chapter, the dissertation advanced a
definition of convergence and bounded the time to convergence for genetic algorithms.
In addition the using bit complements of population members was identified as a way

of maintaining diversity and guarding against deception.

Using the average hamming distance between every pair of individuals in a popula-
tion (hamming average) as a measure of diversity, a genetic algorithm converges when
the change in hamming average is insignificant. Since crossover does not change the
hamming average, selection and mutation must be responsible in reducing the ham-
ming average. An upper bound on the time to convergence of a genetic algorithm was
therefore provided by a genetic algorithm’s performance on a flat function. That is,
a function whose fitness landscape is absolutely flat and all individuals in the GA’s
population have identical fitness. Mutation rate being fixed, any other function must

provide greater selection pressure and thus must converge in a time less than the

7. Discussion and Conclusions 143

time taken on a flat function with an identical genotype length. Genetic algorithms
converge on the flat function due to genetic drift. This chapter derived an upper
bound on the time complexity from considering the effects of drift on allele frequency.
Then, from a model of the effect of selection and mutation on the behavior of ge-
netic algorithms, the analysis was able to approximate two solution characteristics at

convergence for static search spaces.

1. Bounds on an upper limit to the average hamming distance of a population
at convergence. In addition to providing time limits, the average hamming

distance of the population also denotes the remaining amount of work.

2. The amount of work possible by the GA, indicated by the average fitness at

convergence.

Combining fitness prediction with hamming average prediction indicates how much
progress is possible with a GA along with bounds on how much remaining work can be
done. The latter is especially important when including mutation. The predicted av-
erage fitness indicates how much progress is possible, but it is the predicted hamming

average that denotes the remaining work.

Satisficing problems provide the maximum fitness, the structure that attains this
fitness needs to be generated. When the maximum fitness is known, the predictability
of average fitness at convergence indicates whether the genetic algorithm will succeed,

and if so, how long it will take.

7. Discussion and Conclusions 144

7.5.1 Limitations and Future Work

The upper limit on time to convergence is an upper limit for all functions of a
particular genotypic length. The analysis in this thesis that approximates convergence
time by tracking first order schema proportions assumes low epistatic encodings, and
will fail on highly epistatic ones. The other point of view is that epistatic encodings
can be detected through this analysis (useful information for a programmer). Finally,
since the rate of convergence depends greatly on the selection pressure, it may be
possible to tell whether a function is linear, polynomial or exponential from observing
the rate of decrease of hamming average. Finding out broad properties of a space by

instrumenting a genetic algorithm can be a very useful area for research.

7.6 Conclusions

Design is ubiquitous. Design tasks range from spacecraft design to planning the
day. This thesis establishes genetic algorithms as a viable computational model of
design. Those problems that can be cast as search problems in poorly understood
domains belong to the set attacked in this thesis. In poorly understood domains
genetic algorithms can find solutions to problems in structure synthesis, structure
configuration and parameter instantiation. The thesis introduced genetic algorithms,
compared and contrasted them with other search algorithms and explained how to en-
code problems for GAs. The biases inherent in genetic search were made explicit and

designer genetic algorithms defined to help surmount unfavorable biases. Solutions

7. Discussion and Conclusions 145

generated in poorly understood domains are hard to explain. Using case-based rea-
soning tools the thesis tracked, organized, and stored information during the course of
genetic search. This information was used to explain genetic algorithm solutions and
help in sensitivity analysis. Finally, the time to convergence of a genetic algorithm

was bounded.

The thesis settles why, when and how to use genetic algorithms for design, pro-
vides tools to explain and analyze genetic algorithm designs, and bounds the time
complexity of the task, establishing genetic algorithms as a viable computational

model of design.

7.7 Further Directions

The work reported here was concerned with laying a firm foundation for exploiting
the potential of genetic algorithms in design tasks. However, designer—client interac-
tions usually consist of a cycle of design and modification to design, converging on
an acceptable and realizable design. During this cycle the specifications of the design
may change, or the tools available to realize the design may change. Modeling these
dynamic processes is an open field of research. For example, designing a user inter-
face that over time adapts to a user or group of users is an application area which,
with the growth of interest in user interface design, is both interesting and perhaps

profitable.

7. Discussion and Conclusions 146

With increasingly powerful computers becoming available, applications in the bi-
ological sciences are growing. Genetic algorithms have been used to model aspects
of the human immune system (Smith et al., 1993) and for predicting the three-
dimensional structure of proteins (Le Grand and Merz Jr., 1993). The problem of
molecular design using computer simulations to provide a measure of the behavior of

designed molecules is still open.

Studying complex adaptive systems seeks to understand the underlying common-
alities in economies, ecologies, immune systems and political systems. This field is of
particular significance because of the need to predict the effect of changes in our inter-
connected and interdependent world. Increasing computing power and the availability
of accessible electronic data have made the task of simulating and validating complex
systems more feasible. Mathematical modeling has often proved inadequate because
of the highly non-linear nature of these systems, and direct physical experiments are
usually infeasible. Genetic algorithm based adaptive systems appear well suited for
modeling and controlling complex systems whose aggregate behavior stems from the
interaction of constituent parts. For example, one interesting problem is to model the
effects of government policy on the state of a resource. The policy’s intended effect
and its actual implementation after percolating through several layers of society are
difficult to reconcile. Modeling such a complex system is a first step toward effective
policy making. A genetic algorithm based classifier system using feedback on the
state of the resource may be able to learn effective strategies to manage the resource

optimally.

The number of possible applications is too numerous to list here and is growing.
With continued growth in the speed and size of computer systems, larger and more

complex problems will be amenable to genetic search. The work reported in this

7. Discussion and Conclusions 147

dissertation lays the foundations for the growth of genetic algorithms in design.

REFERENCES 148

References

Ackley, D. A. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers.

Back, T., Hoffmeister, F., and Schwefel, H. (1991). A survey of evolution strategies.
In Proceedings of the Fourth International Conference on Genetic Algorithms,

pages 1-10. Morgan Kauffman, San Mateo, CA.

Bareiss, R. (1991). Proceedings of the case-based reasoning workshop. In Bareiss, R.,
editor, Proceedings of the Case-Based Reasoning Workshop. Morgan Kauffman,

Inc.

Caldwell, C. and Johnston, V. S. (1991). Tracking a criminal suspect through ”Face-
Space” with a genetic algorithm. In Proceedings of Fourth International Confer-

ence on Genetic Algorithms, pages 416—421. Morgan Kauffman.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and Gero, J. S.
(1990). Knowledge-Based Design Systems. Addison-Wesley, New York.

Dasgupta, S. (1991). Design Theory and Computer Science. Cambridge University
Press, Cambridge, New York.

Dawkins, R. (1986). The Blind Watchmaker. Longman.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species forma-
tion in genetic function optimization. In Proceedings of the Third International

Conference on Genetic Algorithms, pages 42-50. Morgan Kauffman, San Mateo,
CA.

REFERENCES 149

DelJong, K. A. (1975). An Analysis of the Behavior of a class of Genetic Adap-
tive Systems. PhD thesis, University of Michigan, Ann Arbour. Department of

Computer and Communication Sciences.

Eshelman, L. J. (1991). The chc adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. In Rawlins, G. J. E.|

editor, Foundations of Genetic Algorithms-1, pages 265-283. Morgan Kauffman.
Gale, J. S. (1990). Theoretical Population Genetics. Unwin Hyman, London.

Gero, J. S. and Jo, J. H. (1991). Design mutation as a computational process. Working
Paper, Design Computing Unit, Department of Architectural and Design Science,
University of Sydney, NSW 2006, Australia.

Gero, J. S., Louis, S. J., and Kundu, S. (1993). Evolutionary learning of novel
grammars for design improvement. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, to appear.

Goldberg, D. E. (1989a). Genetic algorithms and walsh functions: Part 2, deception

and its analysis. Complez Systems, 3:153-171.

Goldberg, D. E. (1989b). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley.

Goldberg, D. E., Korb, B., and Deb, K. (1989). Messy genetic algorithms: Motiva-
tion, analysis, and first results. Technical Report TCGA Report No. 89002, The

Clearinghouse for Genetic Algorithms, University of Alabama, Tuscaloosa.

Goldberg, D. E. and Lingle, R. (1985). Alleles, loci and the traveling salesman prob-
lem. In Proceedings of an International Conference on Genetic Algorithms, pages

10-19. Morgan Kauffman.

REFERENCES 150

Goldberg, D. E. and Segrest, P. (1987). Finite markov chain analysis of genetic
algorithms. In Proceedings of the Second International Conference on Genetic

Algorithms, pages 1-8. Lawrence Erlbaum Associates.

Holland, J. (1975). Adaptation In Natural and Artificial Systems. The University of
Michigan Press, Ann Arbour.

Kirkpatrick, S., Gelatt, C. D., and Vechi, M. P. (1983). Optimization by simulated
annealing. Sciene, 220(4598):671-680.

Le Grand, S. M. and Merz Jr., K. M. (1993). The application of the genetic al-
gorithm to the minimization of potential energy functions. Journal of Global

Optimazation, 3:49-66.

Louis, S. J., McGraw, G., and Wyckoff, R. (1993). Case-based reasoning assisted
explanation of genetic algorithm results. Journal of Ezperimental and Theoretical

Artificial Intelligence, 5:21-37.

Louis, S. J. and Rawlins, G. J. E. (1991). Designer genetic algorithms: Genetic algo-
rithms in structure design. In Proceedings of the Fourth International Conference

on Genetic Algorithms, pages 53—60. Morgan Kauffman, San Mateo, CA.

Louis, S. J. and Rawlins, G. J. E. (1993a). Pareto optimality, ga-easiness and decep-
tion. In Proceedings of the Fifth International Conference on Genetic Algorithms,
page to appear. Morgan Kauffman, San Mateo, CA.

Louis, S. J. and Rawlins, G. J. E. (1993b). Syntactic analysis of convergence in genetic
algorithms. In Whitley, L. D., editor, Foundations of Genetic Algorithms - 2,
pages 141-152. Morgan Kauffman, San Mateo, CA.

Mahfoud, S. W. and Goldberg, D. E. (1992). Parallel recombinative simulated an-
nealing: A genetic algorithm. Technical Report IlliGAL Report No. 92002, The

REFERENCES 151

[linois Genetic Algorithm Laboratory, Department of General Engineering, Uni-

veristy of Illinois at Urbana-Champaign.

Mitchell, M. and Forrest, S. (1993). Relative building-block fitness and the building-
block hypothesis. In Whitley, L. D., editor, Foundations of Genetic Algorithms
- 2, pages 109-126. Morgan Kauffman, San Mateo, CA.

Powell, D. J., Tong, S. S., and Skolnik, M. M. (1989). Engeneous domain independant
machine learning for design optimization. In Proceedings of the Third Interna-

tional Conference on Genetic Algorithms, pages 151-159. Morgan Kauffman.

Radford, A. D. and Gero, J. S. (1988). Design by Optimization in Architecture,
Building, and Construction. Van Nostrand Reinhold Company, New York.

Rawlins, G. J. E. (1991). Introduction. In Rawlins, G. J. E., editor, Foundations of
Genetic Algorithms-1, pages 1-12. Morgan Kauffman.

Riesbeck, C. K. and Schank, R. C. (1989). Inside Case-Based Reasoning. Lawrence
Erlbaum Associates, Cambridge, MA.

Schaeffer, D. J., Eshelman, L. J., and Offut, D. (1991). Spurious correlations and
premature convergence in genetic algorithms. In Rawlins, G. J. E., editor, Foun-

dations of Genetic Algorithms-1, pages 102-114. Morgan Kauffman.

Schaeffer, D. J. and Morishima, A. (1987). An adaptive crossover distribution mech-
anism for genetic algorithms. In Proceedings of the Second International Confer-

ence on Genetic Algorithms, pages 36—40. Lawrence Erlbaum Associates.

Schaeffer, D. J. and Morishima, A. (1988). Adaptive knowledge representation: A
content sensitive recombination mechanism for genetic algorithms. International

Journal of Intelligent Systems, 3:229-246.

REFERENCES 152

Simon, H. (1969). Sciences of the Artificial. MIT Press, Cambridge, MA.

Smith, D. (1985). Bin packing with adaptive search. In Proceedings of an International
Conference on Genetic Algorithms, pages 202-206. Morgan Kauffman.

Smith, R. E., Forrest, S., and Perelson, A. S. (1993). Population diversity in im-
mune system models: Implications for genetic search. In Whitley, L. D., editor,
Foundations of Genetic Algorithms - 2, pages 153-166. Morgan Kauffman, San
Mateo, CA.

Spears, W. M. and DeJong, K. A. (1991). An analysis of multi-point crossover. In
Rawlins, G. J. E., editor, Foundations of Genetic Algorithms-1, pages 301-315.

Morgan Kauffman.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of
the Third International Conference on Genetic Algorithms, pages 2-8. Morgan

Kauffman.

Thierens, D. and Goldberg, D. E. (1993). Mixing in genetic algorithms. In Proceedings
of Fifth International Conference on Genetic Algorithms, pages 38-45. Morgan

Kauffman.

Tong, C. and Sriram, D. (1992). Introduction. In Tong, C. and Sriram, D., editors,

Artificial Intelligence in Engineering Design. Academic Press, Inc.

Wilson, S. W. (1991). Ga-easy does not imply steepest-ascent optimizable. In Pro-
ceedings of the Fourth International Conference on Genetic Algorithms, pages

85-89. Morgan Kauffman, San Mateo, CA.

Complete Mask Rules

1. MFy,:

Case: Both children are good.

Summary: Very encouraging behavior and as such is reflected in the mask
settings below and in figure A.1. The parents’ masks are OR’d to produce
the children’s masks, ensuring preservation of the contributions from both

parents.
Action:

— CM1: OR the masks of PM1 and PM2. If there are any 0’s left in

C M1, toss a coin to decide their value.

— CM2: Same as for CM1.

PM1: No changes except for those produced by mask mutation.

— PM?2: Same as for PM1.
2. Mbei

Case: Both children are bad.

Summary: Discouraging behavior and must be guarded against in future.

Each parent contributed bits that were detrimental to the children’s fitness.

153

A. Complete Mask Rules 154

Rule M Fgg

PM1 Before PM2

[1[a[1]of1Tof[1[o[o[ofo| [a[2[O[2f1]O[1[OlO[1]O]

PM 1 After PM2

[1[a[1] o[a]o[1[0[O[O] O] | 1/afof1[1]o[1][0[O[1][0O]

CM1 CcM2

|afafafafaf# 3] A # 1]# (A[Afafafa[# 1] # #] 1] #]

Figure A.1: Mask rule M F,,: Example of mask propagation when both C1 and C2

are good

Rule M Fbb

PM1 Before PM 2

[a[1[a[o[1[o[1]0 0[O0 [A[1[o[1[1][0o[1[O[O1[O]|

PM1 After PM2

[1[1]#]#]1]o]1]0]O[#]O] |1]a]#[#|1]o[1]O[O[#[O]

CM1 Assume P2 > P1 CM2

|#][#]1]0]#[o] #|0[0] O[O] [1[1[Oo[I[21[O[1[O]O[1[O]

Figure A.2: Mask rule M Fy,: Example of mask propagation when both C1 and C2

are bad.

MX has not set up the parents’ masks correctly. Changes are given below

and shown in figure A.2.
Action:

— C'M1: This mask should reflect the undesirability of the current search

direction. Contributions from P2 were detrimental, therefore C M1
should search in the area of P2’s contribution which is specified by
the loci where PM1; 1s 0 and PM?2; is 1. Set these loci in CM1; to
0. If P2 > P1 in fitness, toss a coin to set the bits of C M1 at those

A. Complete Mask Rules 155

locations where both PM1, and PM?2, are 1.
— CM2: A similar rule applies to C M2.

— PM1: P2’s contribution to C1 led to a bad child. The C'1 positions
copied from P2 need to be explored in P1. These loci are those for
which PM1; was 0 and PM2; was 1. Therefore set these loci in
PM1; by tossing a coin. In addition, PM1 specified loci that were
detrimental to C2. Therefore when PM1; is 1 and PM2; is 0, set

these locations by tossing a coin.

— PM?2: A similar rule applies for PM2.
3. MFabZ

Case: One child is bad while the other is average. Assume that C'1 is bad

and C2 is average.

Summary: There are two sub-cases. If C2’s fitness is less than that of P2,
it means that P1’s contribution was deleterious, and that PM2 needs to
be augmented with 1’s at those positions that were copied from P1 to C2
(see figure A.3). If C2’s fitness is less than that of P1, P1’s contribution
increased C2’s fitness, so preserve P1l’s contribution in C'2. The masks are

shown in figure A.4.
Action:

— When C1 < P1 < C2 < P2:

x CM1: Very similar to M Fy’s C M1. This mask should reflect the
undesirability of the current search direction. Contributions from
P2 were detrimental, therefore C M1 should search in the area of
P2’s contribution which is specified by the loci where PM1; is 0
and PM2; 1s 1. Set these loci in CM1; to 0. Since P2 > Pl in

A. Complete Mask Rules 156

Rule MF, (Part 1)

PM1 Before PM2
[1[a[1]o[1[o[1]0[0O] O[O [1[1]o[a[i[o[1[0[0[1[O]

Cl <Pl <C2 <P2

PM1 After PM2

[a[a[#[#[2] o 1]O] O[#][O] [T[I[I[#[I[#[L[#[#[1[# |
CM1 CM2

| #] #[1] o[#[o] #] 0] 0] O] O] [I[a[#1a[1][0[1[O[O[1]O]

Figure A.3: Mask rule M F,;, Part 1: Example of mask propagation when C1 is bad
and C2 is average. (C1 < P1 < C2 < P2)

fitness, toss a coin to set the bits of C M1 at those locations where

both PM1, and PM?2, are 1.

x CM2: As P1’s contribution decreased C'2’s fitness, set C M2; by
tossing a coin when PM1; is 1 and PM2; is 0, searching around

P1’s contribution.

x PM1: P2’s contribution to C1 led to a bad child. The C1 posi-
tions copied from P2 need to be explored in P1. These loci are
those for which PM1; 1s 0 and PM2; is 1. Therefore set these loci
in PM1; by tossing a coin. In addition, PM1 specified loci that
were detrimental to C2. Therefore when PM1; is 1 and PM2; is

0, again set these locations by tossing a coin.

x PM2: Since Pl’s contribution led to a decrease in fitness, set
PM?2; to 1 for those loci for which PM1,; i1s 1 and PM2; 1s 0. To
help fix positions currently 0, toss a coin to fix those loci in PM2;
for which both PM1; and PM2; are 0.

— When C1 < P2 < C2 <« P1:

* OM1: Same as the action for CM1 when C1 < P1 < C2 < P2.

A. Complete Mask Rules 157

Rule MR, (Part 2)

PM1 Before PM2

[1[a[1]o[afo[1[o[o[ofo| [a[2[O[1[1][o[1[Olo[1]O]

Cl<P2<C2<P1

PM 1 After PM2

[l 1f#[1]2]o[a1[0[0[1] O |2lafo[#[a]o[1]O[O[#[O
CcM1 CcM2

| #] #[1] o] #| o] #| o[0] O] O] [1[1][1]3[1]O[1[O O[1[O]

Figure A.4: Mask rule M F,;, Part 2: Example of mask propagation when C1 is bad
and C2 is average. (C1 < P2 < C2 < P1)

4.

MF,,:

Except that as P1 > P2, no action need be taken when both

parent masks have a 1 at some position.

CM2: To preserve P1’s contribution, when PM1; is 1 and PM?2;
1s 0 set CM2; to 1.

PM1: Those bits that contributed to C'l but not those that helped
C?2 need to be modified. Therefore for those loci where PM1; is
1 and PM2; is 0, toss a coin to decide PM1;. P2’s contribution
was detrimental so when PM2; i1s 1 and PM1; 1s 0 set PM1; to
1.

PM?2: Set PM2; by tossing a coin for those loci that contributed
to C1.

e Case: Both children are average.

e Summary: Once again there are two sub-cases depending on whether a

child is better or worse than its dominating parent. Assume that C1 is

better than P1 implying that C'2 is worse than P2. The complementary

A. Complete Mask Rules

158

Mask Function 4
PM1 Before PM2
[t]z]x]ofaJoJx]ofo oo | [t]r]of*[afoJz]oJo]1]o0 |
PM1 After PM2
[t[z[#[Of1]o]2[o]ofO]0] EEEEE R E
cM1 cM2
[1f2]afa[afo]2]ofof2]o] [f[2[ofa[[o[a]O[0[2]0]

Figure A.5: Mask rule M F,,, Example of mask propagation when both C1 and C2

are average.

case when C1 is worse than Pl and C2 is better than P2 is treated the

same way by substituting C'l for C2 and P1 for P2. The masks are given

in figure A.5.

e Action:

— C'M1: This mask should reflect the desirability of the current search

direction since P2 contributions lead to C1’s increased fitness.

OR

the masks of PM1 and PM2, if there are any zeero’s left in C M1 toss

a coin to decide their value.

— CM?2: Contributions from Pl were detrimental.

specify P1 contribution to C2 to 0.

Set the loci that

— PM1: P1’s contributions to C2 were detrimental, set these loci by a

coin toss.

— PM2: The positions that P1 contributed to C'2 decreased C'2’s fitness,

set these loci to 1.
5. MFy,:

e Case: One child is good and the other average.

A. Complete Mask Rules 159

Mask Function 5

PM1 Before PM2

[1[2[2]ofzfofx[oofofo | [2[z]o]*[zfof2]ofo]z]0 |

Pl <Cl<P2<C2

PM1 After PM2
[rf22]ofaf#] [+ #o]*] | 2 [afofa] af#]a]#[#][2]0]
cM1 cm2
|2 2fa]2[afo]afofofa]o] EEEEEDEDEEE

Figure A.6: Mask rule M F,,, Part 1: Example of Mask propagation when C1 is
average and C2 is good. (P1 < C1 < P2 < C2)

e Summary: There are two sub-cases depending on the relative ordering
of the parents and children. If P1 < C1 < P2 < (C2 is behavior to be

encouraged. The other case stresses the importance of P1.
e Action:
— When P1 < C1 < P2 < C2: This is also encouraging behavior and is
depicted in figure A.6.
* CM1: Same as for M Fy,’s CM1.
x CM2: Same as for C M1 above.

x PM1: Since both children are better than their prospective par-
ents flip a coin to decide positions that are 0 in both PM1 and
PM?2

* PM2: Same as for PM1 above .

— P2 < C1 < P1 < C2 Clearly Pl’s contribution is vital to repro-

duction. The mask settings describe this below and in figure A.T.

x* CM1: P2’s contribution decreased C1’s fitness. To encourage
search in this area, when PM2; is 1 and PM1; is 0 set CM1; to

A. Complete Mask Rules 160

Mask Function 5

PM1 Before PM2

[1[2[2]ofafofx[oofofo | [2[z]of[zfof2]ofofz]0 |

P2 < Cl<Pl<C2

PM1 After PM2
[t[t[2]a]2]ofsfofo]a]o] |t [afofofr[ofzr]ofofo]o]
cM1 cM2
| 2[s]2]ofsfofa]ofofofo] (E I I) S I S N)

Figure A.7: Mask rule M F,,, Part 2: Example of Mask propagation when C1 is
average and C2 is good. (P2 < C1 < P1 < C2)
0.

x CM2: P1l’s contribution clearly contributed positively to C2’s
fitness. Set CM2; to 1 when PM1; 1s 1 and PM?2; is 0.

x PM1: Since P2’s contribution decreased the fitness of C'1, PM1;
should be 1 at those loci where PM2; is 1 and PM1; is currently
0.

x PM2: Since P2’s contribution to C'l was negative, set PM2; to 0
at those loci where PM1; is 0 and PM2; is currently 1.

6. Mngi
7. Case: One child is good and the other bad. Assume C'1 is bad and C2 is good.

8. Summary: This should try to preserve C'2’s schemas, while the relative fit-

nesses of P1 and P2 drive the settings of PM1 and PM2.
9. Action:

o CM1: Same as M Fy,’s CM1.

A. Complete Mask Rules 161

Mask Function 3

PM1 Before PM2

[2[2[2]of2fofx[oofofo | [2[z]of*[zfof2]ofo]z]0 |

PM1 After PM2

[#l#]2]2]#[O]#]ofo]1]O] | t[rfofaf2rofafofofr]fo |

CcM1 CM2

|#]#]2]of#[o] #]ofofo]o0] [t[2[afe]r[#][2][7]#]2]#]

Figure A.8: Mask rule M Fg: Example of Mask propagation when C1 is bad and C2
is good

e CM2: When PM1; is 1 and PM2; is 0, set CM2; to 1. In addition,
whenever both parent masks are 0 use a random coin toss to set the cor-
responding position in CM?2;.

o PM1: P2’s contribution decreased C1’s fitness. Set PM1; to 1 when

PM1;1s 0and PM2;is 1. If P1 < P2 in fitness, to further improve PM1,
flip a coin to set positions where both PM1; and PM2; are 1.

e PM2: No changes except for mask mutation.

Data for the 5-Bit Parity Checker

B.1 Cluster Tree

Cluster tree for a 5—bit parity checker

| | |
80.00 100.00 120.00

Dissmilarity

Figure B.1: Tree structure of the cases for a 5-bit parity checker

The labels represent the case number of the cases in the tree. Because of the
number of individuals that are very similar in fitness and genotype, the labels at the
leaves overlap causing the dark areas. The utility “xgraph” however allows zooming

in on areas, expanding the level of detail that can be made visible to a user and

162

B. Data for the 5-Bit Parity Checker

163

clearing the image.

B.2 Report for 5-bit Parity Checker

This section contains part of the report generated after creating cases for the 5

bit parity checker. The report is too large and cumbersome to include in its entirety.

Vertical dots (:) indicate material that was not included.

Chez Scheme Transcript [Fri Feb 7 20:23:12 1992]

ii (process-cases 'circ2 100)
Loading casevec " /usr2/gem/circuit/circ2-c2c.cvec”

length 499

(

———-Average age of schema - distance less than 5:

NO DST Schema ORD WT LON lw av hi Fitness
DEQ D KKK oRoRoROKOKoK ok oK oK oK KK oK oK oK K oK oK oK K K oK oK oK K ok oK oK K K oK oK oK K ok oK o K K ok oK oK K K oK oK oK K ok oK oK K K SR oK oK K KoK oK KK KKK K KK OKOKK KKK () 941 14 0
DGO 3 RKKKRoRoRoRoKoKoK ok ok oK oK oK K oK oK oK K ok ok ok K ok ok oK oK K ok ok o K ok ok ook ok ok ok o K K ok ook K ok oK oK K K ok ok ok K ok Sk oK oK K KoK KKK KKK K KKK KKK () 990 14 ()
QBT L ROKRKRoRoRoRoKoKoK ok ok oK oK oK K oK ok oK K ok ok oK K K ok o oK ok ok ok o K K ok ook ok ok ok o oK ok ok ok o K K ok ook ok ok ok ok K K ok oKk K Kok KKK KKK K KKK KKK () 943 15 ()
DEL A RORORKRoRoRoRoKoKoK ok ok oK oK oK K oK oK oK K ok ok ok K K ok oK oK ok ok ok o K K ok ook ok ok ok oK K ok ok ok ok K ok ook ok ok ok ok K ok ok oK oK K KoK oK KK KKK K KKK KKK () 919 14 (
DG B RRKOKRoROROKOKOKoK ok oK oK oK KK oK oK oK K ok oK oK K K oK oK oK K ok oK oK K K oK oK oK K ok oK o K K ok oK oK K K oK oK K K ok oK oK K K SR oK oK K KoK SRR K KKK K KKK KKKK () 911 14 0
0 O ROk ok oK oK KoK ok ok ok ok oK ok ok oK oK K ok ok o oK ok ok ook K Kk ok o oK ok ok o ok ok ok ok oo ok Kk ok o oK K ok ook ok ok ok ook K ok ok ok ok ok ok Kok kKK KKK KKK KK KKK K () B0 24 O
236 5 **%*%00110100*00001000000110*%101111111000110011110100*%00000*000110011101011101110 92 17 11 6
81 4 0***QQ11***0*0*0*010001110*%1111001111101*00001000010*1*111**1001101*0100*11*1*00 78 10 4 12
80 3 Q***¥(] 1 ***0*0*0*010001110*1*11001111*01*0000*000010* 1 ¥ 11 1***Q* 1 *¥Q1¥****11*1¥*0 65 16 4 12
90 4 0000101110100000101000111001*110011110010000000000101101110000110011101011101110 98 6 3 13
82 5 0*11001101000010001000111001111001111101*0000100001011*1111*1001101*0100011*1*00 91 7 3 13
104 4 *AXX0011***0%*00001*000001*0*10*111*11000*10*1*1*0100*00000**** 1 ¥00* 1 *0L01*1*1*** 65 149 19 5
96 3 KAKKKQLLRFRKQHQQOIKKRQQO¥ KL FHkNKKKK] %1 1 k00X 10*¥1*1%0100*00000****1*¥00*1*0101* 1 *1*** K4 157 19 b
95 2 KAKKKQLLKFRKQHQQO¥KKQQO¥ KL FHKKKKKK] X1 1 *Q**] 0¥ 1 *1%0100*%00000****¥1*¥00*1*0101* 1 *1*** 53 163 19 b
1 1 kskakokk()] 1 KooK KK KRR () KK KKRoK KKK | K 1 KKK KK () KKK ok () KK () KKK KKK KK KKK K () RKKRKO KK K KKK 81 BT 19 B
5 5 0000101110100000101000111001111001111101000001*000101101*100100110110100*1101*00 95 Bl 16 8
2 2 Q***¥(] 1 ***0*0*0*010001110*1*110*1111**1*0000**¥ 0001 0¥ 1 ¥ L ¥ 1 *** k1 X1 ¥*k**k] 1*1%*%) E8 94 16 8
105 5 *FXX0011***0%*00001*000001*0*10*111*11000*10*1*1*0100*00000****1*¥00* 1 *0L01*1*1*** 65 132 19 b
4 4 00001011101000001010001110011110*11111*1000001*000101101*100100110110100*1101*00 91 70 16 8
00001011101000001010001110011110*11111*1000001*000101101*1*0100110110100*1101*00 87 78 16 8

©w
©w

14
5 14
12 24
12 17
14 16
14 16
14 16
14 16
17 24
17 24
17 24
17 24
17 24
17 24
18 24
18 24
18 24

16.09
16.1
16.12
16.1
16.1
19.94
20.0
19.4
19.62
20.0
20.0
23.54
23.57
23.73
23.56
24.0
23.26
24.0
24.0
24.0

B. Data for the 5-Bit Parity Checker

164

———-Cases within depth 5:

NO
0

1
267
2
95
258
259
3
80
96
252

DST Schema ORD WT Fitness

0

oo NN

L W o @

KoK ook oK K K ok ok oK oK K K K o K K K ok ok K K K ok oK K K o ok K K K ok ok K K K ok K K K o ok K K K ok oK K K K o oK K K o oK oK K K o oK K K o KK KKK KKKk KKK K () B ()
HoRoKoKoK () 1 1 KKK (K () K ()RR () () K 1 KKK oRoKOK K 1 3K 1 K oKoKOK oK () oK oK oK ok ()oK () oK KK KKK Kok KKK oK (ROKKK K ()oK | K KKK 31 9ET
Kok ook ok K K ok ok oK oK K K K ok ok o K ok ok oK K K ok ok ok K K ok ok K K ok ok ok K K ok ok K K ok ok ok K K ok ok ok K K ok ok K K ok ok ok K ok ok K koK KKK KKK KKK () 94
Q¥**X(] 1***0*0*0¥010001110*1*110*1111**1*¥0000**¥ 0001 0¥ L¥ L ¥ 1¥** k1 X QL ¥****]1 1*1¥*0 B8 94
KAKKK(QL LRFRKQHQQOIKKRQQO¥ KL FHkNKKkK] k1 1 kQ**] 0¥ 1*1%0100*00000****¥1*¥00*1*0L01*¥ 1 *1*** 53 163
11000001010111110101010111111000001111010000010000101101110010011011110001101000 () 2
Kok ook ok K K ok ok oK oK K K K ok ok o K ok ok o 3K K ok ok oK K o ok oK K K ok ok o K K ok ok K K ok ok oK K K ok ok ok K K ok ok K K ok ok ok K K ok ok KK ok koK KKK KKK KK KKK () 94]
00001011101000001010001110011110*11111*1000001*000101101*1*0100110110100*1101*00 87 78
Q***¥(] 1 ***0*0*0*010001110*1*11001111*01*0000*000010*1*¥ 11 1¥** k1 XL ¥*** k1 1*1**0 g5 16
KAKKKQLLRFRKQHQQOFKHRQQON KL ¥H kKKK K] X1 1%00*10*1*1*0100*00000****¥ 1 *00*1*0L0L*1*¥1*** 54 157
11000011010000000100000011011011011110011100111101001000000000100001101010111010 () 6

———-Additive schemata - depth less than b range, (0.6 0.4):

NO
259
260
267
261
262

236
81
80
90

DST Add Schema

© e ok owon

[I

KKK () () (KK] KK] KRKKK K (KK KRKKK K] 1] KKKKK] (KK QRKKK(KK K] QRKKKKRKRGOQKRKAKKQ] ¥K]KOK*K] | ¥X0* 0 D47

KKK QKK KKKQK] KKK KA KK] KKK] | HRKKKK] ()] K QRRKKQRK] KRKQRKQK] KQORKKKKK] 0K KKK 1 ¥¥0* o 9299
KKK () (KK] KK KRKKK KKK KKKKKK] | KRR K] O] K QRHKKQRK] K] QRKKKKKRGORKKKKG] KK KOK*K] 1 ¥X0* 0 D43
KKK QKK HK] QK KK] QRN KRKQRK] KK KKRK] 1 0 FQHRNRKKQKK] KQKRQRKQK] X QQQRK*K*(] 0¥ 1 *¥Q**11*%0* 0 219
KKKOQQKK]HK] Q] 1 KK QFFFRKQRK] | FRKKK] K] K QRKKKKKK] KKKQK] K] KQORKKKK] QX1 KQ**1 1 ¥¥0* 0 211

00**00111*¥00000***000**1*¥011¥1¥*1111¥00**00*1*¥10**01*0***¥*0*011*011**¥10111*1**0 0 50O

00110011010010000100000011001011111110001100111101001000000000110011101011101110 92 17
00110011010000100010001110011110011111010000010000101101111010011011010001101000 78 10
00**0011***000*0*%01000111001111001111101000001000010110111*0100110110100*1101*00 65 16
00001011101000001010001110011110011110010000000000101101110000110011101011101110 98 6

———-Additive schemata - depth less than b range, (0.8 0.2):

NO
259
260
267
261
262

236
81
80
90

0

DST Add Schema

© moe o, owon

[S T

KoK KK () K oK 3K 2K oK oK oK K K oK oK oK oK oK K 3K K K oK oK oK oK oK o oK K K oK oK oK oK oK o oK o 3 oK oK oK oK oK o K oK K oK oK oK oK oK KK KKK oK KKK KK KKK KKK KKRK 0 947
KoK KoK () K oK 3K 3K oK oK o K oK oK oK 3K oK oK K 3 K oK oK oK oK oK oK K 3 K oK oK oK oK oK o o o K oK oK oK oK oK ok K oK 3k K oK oK oK oK ok K oK 3k K oK oK oK oK ok o ok K K oK oK oK oK ok ok K K K ok oK

KKK () K oK 3K 3K oK oK oK K oK oK oK oK oK K 3K K oK oK oK oK oK oK o oK 3k K oK oK oK oK o o o 3k K oK oK oK oK o 3k K 3k K oK oK oK oK oK ok K 3k 3 oK oK oK oK oK ok o 3k K oK oK oK oK oK ok K K K oK oK

KKK oK ()3 K ok oK oK oK K K K ok oK o K ok ok oK K K ok ok oK K ok ok oK K K ok ok 3K 1 3k ok oK K K ok ok oK K K ok ok ok K ok ok oK K K ok ok o K ok ok oK K K ok ok o K K ok ok K K ok ok oK K K ok oK

KRR oK oK () ook oK oK oK oK K oK o KKK o ok KKK ok KKK o ok KKK o ok 3K 1 Kok KKK ok ok KKK ok KKK oK () KoK K ok KoK oK () K KKK oK () KOKK KK () KoK 1 KKK () B OO
**%*%00110100*00001000000110*%101111111000110011110100*00000*000110011101011101110 92 17
0***(Q011***0*0*0*010001110%1111001111101*00001000010*1*111**1001101*0100*11*1*00 78 10
00***011***000*0*01000111001111001111*0100000*000010110111*0*0*1*011***0*1101**0 65 16
0000101110100000101000111001*110011110010000000000101101110000110011101011101110 98 6

ii (transcript-off

)

19.94
23.56
16.12
23.26
23.73
20.0
16.09
24.0
19.62
23.57
28.0

ORD WT LON lw av hi Fitness

14 0
14 0
15 0
14 0
14 0
24 0
11 6
4 12
4 12
3 13

ORD WT LON lw

14 0

229 14 0
243 156 0

0
0

3K oK KoK () K oK 3K 3K oK oK o K oK oK oK oK oK oK K 3K K oK oK oK oK oK oK K KoK K oK oK 1 3K oK K KoK K oK oK oK oK oK K K KK oK oK oK oK KKK KKK KKK KKK KKKKKKKKKKKRK 0 919 14 0
0

211 14 O

24 0
11 6
4 12
4 12
3 13

oroovoovoon

12
12
14
14
14

oroovoovoon

12
12
14
14
14

14 16.09
14 16.1
15 16.12
14 16.1
14 16.1
24 19.94
17 20.0
16 19.4
16 19.62
16 20.0
hi Fitness
14 16.09
14 16.1
15 16.12
14 16.1
14 16.1
24 19.94
17 20.0
16 19.4
16 19.62
16 20.0

B. Data for the 5-Bit Parity Checker 165

B.2.1 The Schema extracted from the Report

The schema selected by the methodolgy in chapter 5 is given below. This schema,
case number 95 has weight 163, one of the longest lives, 19, and is in the region where
the genetic algorithm’s solutions have high fitness (the bounded area in figure B.1).
The schema’s fitness is 23.75, which can be compared to fitness of the best solution
found so far at 28.0.

F%%% %01 1%%%0*%000%*¥000%* Lkskskskskskokk 141 1%0**10% 1% 1%0100%00000****1k00%1%010 1% 1% 1k**

B.3 Obtaining Clustering Code

The cluster code can be obtained through anonymous ftp from the University of

California, Berkeley. Follow the instructions below to obtain the program.

cluster is available via anonymous ftp from icsi-ftp.berkeley.edu

(128.32.201.55). To get it use FTP as follows:

% ftp icsi-ftp.berkeley.edu

Connected to icsic.Berkeley.EDU.

220 icsi-ftp (icsic) FTP server (Version 5.60 local) ready.
Name (icsic.Berkeley.EDU:stolcke): anonymous

Password (icsic.Berkeley.EDU:anonymous) :

331 Guest login ok, send ident as password.

B. Data for the 5-Bit Parity Checker 166

230 Guest login Ok, access restrictions apply.

ftp> cd pub/ai

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> get cluster-2.2.tar.Z

200 PORT command successful.

150 Opening BINARY mode data connection for cluster-2.2.tar.Z (15531 bytes).
226 Transfer complete.

15531 bytes received in 0.08 seconds (1.9e+02 Kbytes/s)

ftp> quit

