University of Nevada, Reno

Combining Role Playing Game Constructs Toward Realime Strategy Games

A thesis submitted in partial fulfillment of theg@rements for the degree of Master of

Science in Computer Engineering

By:
Bradford Allen Towle Jr.

Dr. Monica Nicolescu/Thesis Advisor

December 2007

University of
Nevada, Reno
THE GRADUATE SCHOOL

We recommend that the thesis

Prepared under our supervision by

BRADFORD ALLEN TOWLE JR.
Entitled

Combining Role Playing Game Constructs Toward Realime Strategy Games
Be accepted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE

Monica Nicolescu, Ph.D., Advisor

Sergiu Dascalu, Ph.D., Committee Member

James Henson, Ph.D., Graduate School Representative

Marsha H. Read, Ph.D., Associate Dean, Graduateobch

December 2007

Abstract

The computer game industry has grown to a mildmtar industry with new
tittes coming out every month. However, with dlese great achievements the video
game industry does have one significant problera: lays in which the games are
played are very similar. One particular genrevidiich this is true is the group of real
time strategy games. Almost all of these games llae same structure, in which players
first build and upgrade a base, with the propdr&t the more upgraded the base the more
powerful the units that can be built, and the mmoeerful the units the better chance of
winning. The prospects for making a successfulegagwvard a company with perhaps
millions of dollars more games are now flooding #melves and quantity has become
more important then quality. This thesis presentew way to look at game design, by
analyzing different computer game genres and iraratpng new attributes to the genre
which needs improvement. In this case four magmmonents (character equipment,
character advancement, character customizationglagchcter classification) were taken
from the role playing genre and combined to enhdheereal time strategy game using
five rules. In addition, this thesis demonstratesuccessful implementation of the
unified modeling language (UML) in game design. &gmonstrating game design
through UML programmers could see potential prolslemith game play before the
entire code was written. This thesis also presarggot game which was developed in
order to prove that real time strategy games couldct be enhanced with role playing

constructs.

Dedicated to Albert Towle a loving grandfather gnelat inspiration, your memories and
kindness will never be forgotten. Thank you foowing the value of education and

allowing me the chance to pursue graduate school.

Special thanks to:

Dr. Monica Nicolescu — for being there for me wimenone else could help.

Dr. Sergiu Dascalu — helping me even when you latiihme to spare.

My father, Brad Towle - for encouraging me throulyé process.

The Carson City Highway Patrol — for inspiring theme of the pilot game.

Table of Content:

1

Chapter 1: Introduction and BacKgroUnd....ceeeeeiierreeiiiieeereeieneeeeeinseeseneeeeeaes 1
1.1 10T [8ox 1T o PO SRRURR 1
1.2 Background of Role Playing Games (RPG)cccoeiviiiiiiiiiiiiie e 3
1.3 Background of Real Time Strategy Games (RTS)ceeu.iiviiiiiiiiiiiiiiiiieeeciiiiieeeees 5.
14 PrevioUS WOTKouuiiiiiii et ettt e e e e e e s 8
15 PreSent WOTKoooiiiiiiiiiiie et e e e e s 10
1.6 OVverview Of the TRESIS........iuiii e 11

Chapter 2: Method............iiiii e e e 12
2.1 The Initial SEVEN RUIEScooiiiiee e 13
2.2 The revised Set Of RUIES ... 15
2.3 Prototype Game Construction using Game MakKer...........cccovvvvvvviineeeeiiiiinennnns 7.1
2.4 Game MakKer LimitationS...........oceeei et e e eeeeeeeiiiiiias e e e e e e e e e eeteebibeeeeeaeeeeeees 17
2.5 Method used and an Overview of the Pilot Game?’s Revenge”..............ccccvu..... 18

Chapter 3: Software Requirements for “FUuzz’s RG@&.............coooiiiiieiiiiiiinie e 21
3.1 The Initial Requirements
3.2 Use CaSse.....ccceveeevnieieiieeennnn.

U LY o= 1T =N 1 4 [0 o [=1 11 o P PP
3.3 Primary SCENAIOSuiiiiiiiiii e emmcee e e e e et e e e et e e e e e ane e e e abeaaeaaees 28

331 Y= [T o S o U UPUPTPTRTR 28

3.3.2 1Y T 1Y o S 29

3.3.3 LU | A 1 = o] 29

3.34 (0] o 1 VA Tod (o] Y /AP 30

3.35 UNIt DEIEAL. ...t e e e e e s 31

3.3.6 UNIt SEALISTICS ...ttt e eeee e s 31

3.3.7 Unit Attribute Upgradeoooveiiiiiieiie e 35

3.3.8 UNit Class UPQrade..........uuiiiiiiiiieeeee e e e e e s e e eea s 37

3.39 (21011 [o [TaTo I @Xo] o 1S3 1 (1 ox 1 o] o PR 39

3.3.10 (D] aTo [=To o I b o] (o] = 11 o] o WU 42

3.3.11 WOITA STANT ... emme et e e e e eeaees 43

3.3.12 2 U] Lo I o 1 PP 44

3.3.13 [TU][0 AT o Lo o ISR 45

3.3.14 =0 (U] o IR TAT/=T= T o o [a7

3.3.15 MaNAGE RESOUICE. .. .cuiiiit it eeemceee et e e e e e e e e e e e 48
3.3.16 Game ManNagemMENTt ceerceer et e e e et e e e e an s 49
3.3.17 Special ADIIIES. .. ciieeee e 49
3.4 Requirement FUIfIlIMENtoii i e e e 52
3.5 Modified REQUINEMENTSuuiiiiciii s ceeee e ee e e et e e e ena e eeees 54
3.6 MOIfIEd USE CASES ..ottt e e e e enn s 55
3.6.1 Group ASSIGNMENT ee e e e e e et e e e et e e e ernneaeees 55
3.6.2 (€] (o TU] o IR Y= 1= Tox 1 o o P 56
3.6.3 (] o]0 o JN 1Y, [0)V/=T 0 41T o | PR 56
3.6.4 Group De-SelECHONciiiii e e 57
Chapter 4: High Level Design of Fuzz's ReVENge.............covviiiviiiiieiiiiiei e 58
4.1 o TU =T [] o LU PSS 59

4.2 Display System
4.3 Combat System

4.4 SYStEM MaANAGEIMENT ...t e e e s ane e e eean s 69
Chapter 5: Fuzz's Revenge Uustratedccccceeiveeiiiiiiicece e 72
5.1 L 1 £ PSS 72
5.2 S = VS 1oAY T T [1R 73
5.3 Weapon BUIIAINGuuiiiiii e eeemmme et e et eee e e e eaeaaa s 74
5.4 VAV LT T o Lo g I =T (01 o] o] 1 o TR 75
55 L (01U oIS} Y] (= 1 PPN 77
Chapter 6: FULUIE WOTKcoeei et e e e e e e s 82
6.1 FULUIE WOTK ... et eee e 82
6.1.1 YT 0] = Y] SN 82
6.1.2 AN =T o 71 3 83
6.1.3 27 = g oo T R P 83
6.1.4 New Combinations of Genre CharacteriStiCS ...c.......oooeevviiiiiiiiiiiiiiieeeee, 84
6.1.5 Improved Software Engineering Practices aathtions for Game Development
84
(01 g =T o] =Y gy A 0] o o] [1 13 o] o [P 85

(R S1 (=T (=] o1 87

Vi

List of Figures:

Figure 3-1:Break down of Actors in "Fuzz's Revenge®...........cccoeiiiiiei e, 27
Figure 4-1: High Level Diagram of FUZZ'S REVENQ . .ccccoiiiiiiiiiiiiiii 58
Figure 4-2: Modules Dedicated to MOUSE CONIOL...cccc.iiiiiiiiiiiiiiiiiiiiiieiiiiieiieiieiiieeas 59
Figure 4-3: flowchart of the Left Mouse Button’s Mple Functionsccceeee. 61
Figure 4-4: Unit Movement Controlled by Right MOUBELONeemvemnnniennnnnnnnnns 62
Figure 4-5: Equipping Fuzz Units With WeapONS. . ..c.veveeieeiiiiiiiiiiiiiiiiieviiiienniend 63
Figure 4-6: Attribute Upgrade ProCESSucceeeeieiiiiiieiieeeeeeeeee 64
Figure 4-7: Class Upgrade PrOCESS uuuiuiiiiini s e smsseeneees 64
Figure 4-8: Display SYStemM PrOCESScceeememrererrrrriririiriinnninennrenennnennennennnnreeeee 66
Figure 4-9: Basic Combat SYStem ProCess ..o 67
Figure 4-10: Fuzz UNit VICIOrY PrOCESSuuuuuiiiiinisii s e 68
Figure 4-11: Fuzz Unit Defeat PrOCESS.......cccceee e 69
Figure 4-12: Resource Management PrOCESS....uuu e erirreriireeiiiiiererrierenereneneninnenn. 70

Figure 4-13: Enemy Unit Process Manager eeeeereeeerreninememmnmmmnemmnsnnmnmmmnnnes 11

Figure 5-1: The Enemy Unit (Left) The Friendlyit (right).cooovviiiiiiiiininnnn. 27
Figure 5-2: The Unit's StatiStiCS WINGOW ... cceceeuuennimiiniiiiiiisienseees s e 73
Figure 5-3: Available Weapons in the Magic Shop.............cuviiiiiiiiiiiiiiiiiiiiiiiiiiiees 74
Figure 5-4:Weapon SeleCtion MENUceemeeeuiniiiiiiiesesee s saeneees 75
Figure 5-5: Equipping the Magic Hat ... 76
Figure 5-6: Assigning @ UNit t0 @ GrOUPuuuuuuumemmmmminiensssssssssssssss e ssssenenes 77
Figure 5-7: A SeleCted GrOUPuuuueueeerimemmmesstiitintiiini s e e e esneee 78
Figure 5-8: The OPening SCIrEEN......c.ouu it 78
Figure 5-9: After construction of Home Base ocawew buildings are available........... 79
Figure 5-10: Fuzz unit entering DUNQEON..... . ccacariiiiiiiiiiiiiiiiiieiiiiiiieniieieeeeeiemneneeees 80

Figure 5-11:Fuzz unit inSide a DUNQEON......ccooiiiumii e 81

Vii

List of Tables:

Table 2-1: Calculating Level Thresholds......cccceeoi oo, 19
Table 3-1: Initial Requirements for the Pilot Gathezz's Revenge”c.ooeee. 22
Table 3-2: Use Cases Designed to Implement Caté@oneyRequirements 25
Table 3-3: Selecting @ UNIt.........ueiii e 28
Table 3-4: Selecting a BUildingoooi oo 28
Table 3-5: MOVING @ UNItouiiiiiiiiiiiiii e 29
Table 3-6: Moving Unit when a ColliSION OCCUI S .vvvrrrrieiiiiriiiiiieriieninnnenennnennnenes 29
Table 3-7: Attacking an Enemy with @ UnNit.... e ..eeeeiei s 30
Table 3-8: Defeating the ENEMYi e se s sesssnsnennnes 30
Table 3-9: Friendly Unit Defeated.......... .o 31
Table 3-10: Statistics Window Display without SEIOINtS..............ccevvvvviiiiiiiiiinnnee. 32.
Table 3-11: Statistics Window Display with SkilliRts and No class upgrades............ 32
Table 3-12: Statistics Window Display with SkilliRts and First Class Upgrades........ 33
Table 3-13: Statistics Window Display With Skillits and Wizard Class Upgrades .. 34
Table 3-14: Upgrading UnNit DEfENSE..........cmmmmiiiiiieis i 35
Table 3-15: Upgrading Unit Attack RANQe.......ccccciviiiiiiiiiiiics e 36
Table 3-16: Upgrading Unit Movement SPeed...........ccovvvviviiiiieieieiiiiiiin e eeeeees 36
Table 3-17: Upgrading Unit Rate oOf Fire......cccueiviiiiiiiiiiiiiiiiiiciiciieiveeeveeeveeeeee e 36
Table 3-18: Upgrading a Unit's AttaCK POWEN ..ccceeeeeieiiiiiiiiiiiii e 37
Table 3-19: Upgrading a Unit's Regenerationcccc.....ooovvvvviiiiiiiiiiiiieiiieieeieeiieeeen. 37
Table 3-20: Upgrading a Unit from "NEWB" to Soldierl.............cccevvvvviiiiiiiecieeeiiiiinn, 38
Table 3-21: Upgrading a unit from "NEWB" to Wizard...............cevvvviiiiiiiieeieeiiin. 38
Table 3-22: Upgrading a unit from "NEWB" t0 PrieSt............ccccvvviviiiiiiieeieeiiiinnn 38
Table 3-23: Upgrading a unit from Wizard to Fira@merccoooeevvvviiiiiiineeeen 9.3
Table 3-24: Upgrading a unit from Wizard to Ice Mag...........cccooeveeevvvieiiiiiiiieeee, 39.
Table 3-25: Constructing the HOme Base...... oo 40
Table 3-26: Constructing the Marketplaceccccc.oioiiiiiiiii s 41
Table 3-27: Constructing the Bio-Dome.......cccoooi i 41
Table 3-28: Constructing the Gold MINe..........cccccoeeeiiiiiiii e 41

Table 3-29:
Table 3-30:
Table 3-31:
Table 3-32:
Table 3-33:
Table 3-34:
Table 3-35:
Table 3-36:
Table 3-37:
Table 3-38:
Table 3-39:
Table 3-40:
Table 3-41:
Table 3-42:
Table 3-43:
Table 3-44:
Table 3-45:
Table 3-46:
Table 3-47:
Table 3-48:
Table 3-49:
Table 3-50:
Table 3-51:
Table 3-52:
Table 3-53:
Table 3-54:
Table 3-55:
Table 3-56:

CoNnsStructing the FACIOIY e eeeeeeieeieiiie e 42
Constructing MagiC SNOPcummmmeeeeeeeeieeiieiieiieieeieeieeeeeeeeeeeieeeeee e 42
Friendly Unit ENters @ DUNQEON .. eeeeeeeeeeeeeieeiieeeeee e 43
Unit Leaves @ DUNQGEONcoiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeseneseeeeemeeeneeeeees 43
GAME INITALIONciiiiiiiiiie e e 44
BUIldiNg @ UNit ... 44
Building the HOly Stave ..., 45
Building the Assault Rifle ..o, 46
Building the Bazookacccoooeeeriiii 46
Building the MagiC Hatceummiiiiniiiie s 46
Building the Fire Wandcccm s a7
Building the 1ce Staffviceeeeiiii e a7
Equip Weapon COITECEIYi ittt eeeeee e 48
Attempting to Equip an Invalid WeapOon...............eeueeveiiiiveeueevieiiinininns 48

Resource Management SYSTEM ... eeeee 49

Game Management SYSIEM........ccceemeemriiiee et 49

Soldier Special Dash ADIlILY oo eeeeeerieireiiiiieiieiiiieee 50
Priest Special Heal ADIlItY ..o 51
Wizard Special Shield ADIlity........cc..oviviiiiiiiiiiiiiiieeeeeee 51
Fire Sorcerer Special Fire Elementaliéb...................ccccccn 51

Ice Mage Special Frost Nova ADIlitY.........ccoooiiiiiiiiiee, 52

Requirement Fulfillment Table ... 52

Additional REQUIrEMENTES........uiiieeiee i 54
Additional USE CaASEScooiiiiceemmem e 55
Group Assignment for Individual UNitS.............cccciien, 56

(10101 o IR ST=1 (=T o i o] o D TP UR P PTPPPPPRP 56
Group MOVEMENT ...t 57
Group De-Selection (AUtOMALIC) .ueeeeeervieiiiiiiiiiiiiiieieeeeeeeeeeee e 57

1 Chapter 1: Introduction and Background

1.1 Introduction

With the recent interest in video games, the cbsteating a best selling title is high and
increasing [2] [11] . Many video and computer ganteave a production price
surprisingly close to the cost of producing a Helbpd movie. Even more surprising,
the reward for creating a best seller game can avdockbuster movie (e.g. The week
Halo 2 was released Microsoft made an estimated 125dviilliollars a day, out grossing
the opening movies that week). Because of thisyyngamputer games companies adopt
the “stick with what works strategy” and simply adtdferent stories and graphics to
games that otherwise have very similar game playegies. For exampl®awn of War
andCompany of Heroeshave different themes, but very similar mechanitsvbich the
games are built. Another possible reason for anglame play is the re-use of code:
game engines are usually arduous to write fromtetrand therefore, if a company can
use the same game engine for multiple games itsaite money. Historically, there are
six main computer game genres each with a varietljfierent subgenres. These genres

are:

First Person Shooter (FPS) As the name implies, this genre gives the playéwok
through the character’'s eyes. This style of gamae almost always a violent game in
which players would go around with large guns aedtry one another. Hence the

name shooter was added.

Role Playing Games (RPG)- This genre focuses on an individual or a smaitypof
individuals. In this genre, a party of charactersst progress through the story and grow
stronger (level up) in order to achieve victory owhatever foes assail them. Character

customization, development and advancement ark vita

Real Time Strategy (RTS)— This genre allows the player to command vastiesm
whether in an ancient medieval, fantasy or futirisetting. This game will almost
always incorporate resource management and gaghdrase construction, and building
armies. The player must then make strategic chaseto where to spend the resources

that have been gathered.

Simulation Games— Historically, this genre has included mostly fiigsimulators or
other such programs that give the feel of manipndaé vehicle. More recently, a new
type of game has emerged, which simulate a cestaiation or place. The player does
not have direct control of the characters, butlmaild or add things to the environment in
order to change they way they adRoller Coaster Tycoonand the ever popul&ims

are good examples of this new style of simulatiamegs.

Sports/Board Games— Perhaps some injustice is done by trying to coseethese

games into one genre, however, games that have dreend before computers were
available, and which were transferred onto this iomad fall under this category. The
sports games have been increasing in popularitya fang time. However, the board

games and some of the early puzzle games seemmeatsanall, but stable popularity.

Adventure/Platform Games - Many of the older “platform” games, where a ch&ac

must jump from platform to platform, fall under dhtategory. Good examples are the
original Super Mario Brothers andDonkey Kong. With improvements on graphics, the
genre has changed from platforms to a three dirmeabk(3D) setting, where the player
can move characters around and try to accomplighah Good examples of these are

Super Mario 64 andZelda 64 “Ocarina of Time”.

The pilot game created for this project combinesovs aspects of RPG and RTS games
by applying individual character development torelosters in an RTS setting. Therefore,
the project must incorporate the individuality foun the RPG games while maintaining
its army command structure. To allow this, fouifedient role playing game constructs

have been programmed into this project that enidigleolayer to equip items, strengthen
power, customize attributes, and change classendofidual characters. With these
added capabilities, RTS games become more dynardiplayer skill plays a larger role
in the game outcome.

The next two sections will give background fortbodle playing games and real
time strategy games. This will familiarize thedeawith the information to understand
various elements necessary of a RPG’s and RTS'® gday and where these elements

were derived from.

1.2 Background of Role Playing Games (RPG)

The author of the book Dungeon and Dreanjgfsxplains that computer games

were first born on college campus mainframes. c@frse, there were no displays on
these early computers and everything was text basddcontrolled by keyboard input.
The author describes one of the earliest gameatelayed which was very limited; a
character in a dungeon was controlled by typingroamds on the keyboard only. The
moves were generally limited to moving North, SouHast, West, attack and run.
However, this marked the beginning of the computde playing games that have
become very advanced and popular today. Rolengayames had been around before,
but were limited to table top rules where dice, gleand paper were used for the
mechanics. An example of this type of gam®isigeons and Dragond14] , which
allowed the player to create characters in a matlifantasy realm. According to the

official Dungeons and Dragons website this is hbgvgame is described:

“This is the Dungeons & Dragons Role-playing Game, the game that defines the
genre and has set the standard for fantasy role-playing for more than 30 years.

D&D is an imaginative, social experience that engages players in a rich fantasy world
filled with larger-than-life heroes, deadly monsters, and diverse settings. As a hobby
game, D&D is an ongoing activity to which players might devote hours of their time -
- much like a weekly poker game -- getting together with friends on a regular basis
for weeks, months, or even years.

Players create heroic fantasy characters -- mighty warriors, stealthy rogues, or
powerful wizards -- which they guide through an ongoing series of adventures,
working together to defeat monsters and other challenges and growing in power,
glory, and achievement. The game offers endless possibilities and a multitude of

choices . . . more choices than even the most sophisticated computer game, because
you can do whatever you can imagine!” [15] .

Before personal computers were readily availablpeiople’s homes, the console
industry (i.g., Nintendo and Sega) capitalized oAGR and introduced graphics in
addition to text and allowed the user to equiprtiobiaracters with various items. As
early console games had less than 1 megabyte obrgenepetitious use of background
scenery called "tiles" were used to minimize theoam of graphics and memory. With
the evolution of these early console (role-playinggmes, three major constructs
emerged. First, each character couldeheipped with specific weapons and armor.
Second, each character had a diffectats such as being a fighter, healer, or magician.
Equipment items that were available to characteesewimited by class. Third, a
leveling system was developed that allowed the game clearimcbecome more powerful
based on experience and success. For exampleghiracter survived and managed to
defeat a certain number of enemies, the charaateidweach a new level and acquire
new skills. Usually role-playing games were anel d@riven by a dramatic story line to
maintain player interest throughout the game. issly, these games are interactive
story plots in which the player can develop androwp the character's skill level, thus
influencing the game outcome.

With the availability of the personal computer, gamies began creating PC
versions of role-playing games. The rule setdhese early computer games mimicked
the table-top versions. However, the player nod the ability tocustomize characters
before starting the game by defining their att@suand appearance, thus taking the game
a step farther than the console versions. Gaadples of this new style RPG are the
Baldur's Gate [18] series, which debuted in 1998, with an earliesiaerMight and
Magic [19] , which debuted first on Apple in 1986 and finallydeat to PC in 1987. In
both of these games the player would create eiher character or a small group of
characters and define their abilities, appearaandsequipment, allowing a full range of
customization. These characters venture throughstbry, gain levels, and eventually

become powerful enough or of a high enough levéktable to win the game. Although

this customization became very important to the-paying community, these games
were still designed for a single-player.

Some of these early games allowed for local areaank (LAN) connections, but
the game play was still single-player. This siAgleyer focus changed with the
introduction ofUltima Online [1] released in 1997. This was the first gamehvat
"persistent world'in which a user could log on and off while maintag progress in the
game and allow other players to keep playing. d&me play was very similar to other
fantasy based RPG’s, except that now players doatlte each other as well as computer
controlled monstersUltima Online is the first example of a massive multiplayer oali
game, such as those that dominate the role-plagarge industry today.Everquest
came out soon aftésltima Online in 1999 and gained widespread popularity due ¢o th
fact that it added a 3D environment. Tod&igrld of Warcraft , which debuted in 2004,
has by far surpassed the popularity of its prederesand it is estimated that 6.5 million
players subscribed to this game[13] . Ironicathg settings are still the same for all
three of these games, which is in a fantasy reaimere knights and monsters battle each
other. The player can choose to be a wizard, oriovabr some other fantasy occupation.
However, each massively multiplayer game has usesliqus massively multiplayer
game to evolve, becoming more immersing and addjdid the player. In fact, many
critics complain it is becoming too addicting. FheMassive Multiplayer Online Role-
Playing Games (MMORPG) are the most advanced andvative form of the role-
playing genre and provide social interaction thaswnly available in the early table-top

versions.

1.3 Background of Real Time Strategy Games (RTS)

The history of the real time strategy game genneotsas complex as that of the RPGs.
Some early text-based strategy games allowed #mwtion and deployment of armies,
which would be displayed by numbers in a grid oe 8treen, providing a game
atmosphere similar to the board gamek. The game ofRisk is defined as the

following:

“Risk is a game of world domination, where the object is to conquer the world. To
win, you must attack and defend - attacking to acquire territory, and defending to
keep it from your opponents.

The game board features a map of six continents divided into 42 territories. It's a
game of strategy as you battle to win by launching daring attacks, defending your
territory, and moving across continents with your cunning plan! Play three
variations: World Domination, Capital Risk, and Secret Mission Risk. This game will
engage and challenge any player to join the ranks of world leaders!

The standard Risk board game includes dice, Risk cards, and six sets of miniature
armies. The newer editions include new scenarios and objectives, and are stand-
alone games (not expansions).

The software version features cutting-edge artificial intelligence and stunning 3-D
graphics, as well as excellent multiplayer options.” [16]

These early tactic games were like the game ofscligssed on turn taking) and
were not RTS games in the modern sense. ThesetesiHbased games were supplanted
by console games where a graphical environmentimesduced, providing an easier
interface for character control. The consoles agan used tiles to create a background
and allowed the users to move each character asgibbp attack with it before their turn
ended. These early console strategy games weegl lmasturns and players took turns
moving, attacking, or retreating, depending onrthwdividual character’s strength.

Military-based strategy games, where victory depenoh merely making a more
powerful character, employed strategies and limiteer options. Game designers began
incorporating fock, paper, and scissbrules of encounter to increase user involvement.
For example, one character could be effective agdwo different types of characters
but weak against a third. Therefore, the playeukhtry to find the best combination of
characters to handle the widest variety of tadtiat the other players may use. This
concept still permeates real time strategy gamélisoday. Although turn-based games
were entertaining, they ultimately reduced to a jglocated version of chess.

Herzog Zwei[9] , which was released in 1989, changed the viteg)y games
were played. This strategy game, which was dedidoe Sega, did not employ turn
taking. When units came within a certain rangaroEnemy, an attack was automatically
initiated and units did not wait for user inputhi3 game only allowed the user to give a

certain set of basic commands to each of the cteagacThese commands were more like

goals for the characters. Once the player gavedhenmand, the character would then try
to perform it as best as it could without any imavhent from the player. This game also
employed an interesting mechanism for selectingradters. The player’'s only
controllable character was a jet airplane that@d@nsform into a robot. If the Jet was
over a friendly character it could pick it up. $Hact allowed the player to move the
character and give it a new goal or commands tfopar Such novelty in character
selection has not been surpassed since. RTS davesiot met with very much success
in the console world most likely due to the diffiguof selecting input with a console
controller and not a mouse. The PC realm quicaly the advantage of units not waiting
for turns. Thus, games likkommand and Conquer[20] andWarcraft | [21] had a
much faster game play and the player had less tinmgonder the next move. More
emphasis was placed on battle preparations wheagerd accumulate resources,
construct proper buildings, acquire wealth, upgreldaracters and finally build armies
for the upcoming battle. The player now had theabdjiies to choose priorities for battle
preparation.
From games such a¥arcraft | , four basic themes evolved that are infused int® R
games today. Players must:

» Build a base- base complexity varies from game to game

* Manage resources this includes acquiring and managing resources

» Decide the types of characters to create appropriate character combinations

influence battle outcomes
» Choose the appropriate character upgrades -character capabilities also
influence battle outcomes

Although RTS games use rules and strategies toupeodrmies, the final battle is
mostly controlled by the game and not the usethdlgh the player decides what units
to send into battle, it is almost impossible forhaman player to control all units
simultaneously once the fighting begins. This lbatiften degenerates into a brawl
between massive numbers of troops where attrinbnegnces the outcome more than the
strategy. RTS games today have not evolved mushthes character preparation and

giant end-battle scenario.

1.4 Previous Work

Several past attempts were made to improve RTS gdipancorporating RPG
game play elements. The first attempts were taking tactic games that were made
popular by the console game industry, but PC vessitever achieved wide popularity.
These games allowed the player to select spedificacters for a mission and move them
to locations of choice. These characters fulfispecific combat roles during battles. In
these games the user and computer alternate takimgy and once armies are in place the
battle begins. An example of this type of gamé&irsal Fantasy Tactics,produced for
the Game Boy Advance. In this game, the charaetere stored and made available for
future use if the player so wished. These chamaciuld change jobs, learn skills, level
up (increase in ability) and be equipped with vasiaveapons and armor depending on
their current job. Once the battles started, ehenacter could move and attack once per
turn, therefore the user had complete control chezharacter and the computer did not
automatically force the player’'s character to &tache more victories a character won,
the more powerful it became. With these propertiee game did in fact successfully
incorporate the aforementioned RPG elements istoadéegic game setting.

Although Final Fantasy Tacticsincorporated these elements, it was still not a
true RTS game. This game allowed the player tdoatige and deploy characters for
specific missions, but no bases or buildings werestructed. Characters were randomly
added to the army over time, with the player hawinglirect control of when that would
occur. As previously mentioned, turn based gameh @sFinal Fantasy Tactics
allowed for thought and careful planning, but latkiee fast paced environment found in
current RTS games. These games also lacked thity dbr the user to manage and
select resources, which were merely gained by cetingl missions. Therefore, the
players’ economical involvement in the game wastéchto the purchase of equipment
for their characters with no ability to build basepgrade, or acquire more characters.

Another attempt to combine RPG constructs with Ryé@nes was seen in
Warcraft Il . A Hero character was added who needed to reaiai@ in order for the
player to progress to the next level. This herd imore capabilities (more strength and

health) than other non-special counterparts, aipthyer could still not directly develop

or equip this hero character. This same conceptapglied inStarcraft as well. In this
game, the hero would have more health and gre#tickapower but would have to
remain alive on certain missions if the player wednto advance in the single player
game.

Relic’'s Dawn of War provided a different approach that allowed the herancrease
other character capabilities such as attack podefense and morale, which could be the
defining factor between victory and defeat. Howevkere still was no procedure for
allowing characters to become stronger from expeegleveling up) nor was there any
focus on equipment or individual character custatn.

The concept of combining role-playing game elemémtRTS games by allowing
characters to develop and gain power has not basfastorily accomplished. Some
possible reasons for the lack of incentive to tdke innovative step could be the fact
that:

1. Fans of RTS games have become accustomed to massiwmbers of
characters with limited control. Game skills reqdi are similar among
various RTS games, allowing the player to easilgobge accomplished in
new games as they are produced.

2. During the 1990's, some extremely complex RTS gamese produced.
Much of the complexity detracted from their enteni@ent value. A good
example of this isStar Wars Rebellion in which there were over 100
different subsystems the player needed to conttd] [Therefore, game
developers worried about over-complex game plagstitued producing the
games based on standard “massive horde” RTS meshani

3. The standard RTS game maintained a delicate balagteesen characters, in
order to allow equal chance for victory. Incorgorg aspects from the RPG
games complicates this balance due to the faaththsacters must be balanced
for all levels they could potentially reach. Thisquires greater game
development time.

Regardless of these complications, the survivalthef RTS game industry is
dependent on fresh ideas. To date, much effoRTi§& game development has been to

10

apply the same mechanics, or processing that is dehind the scenes, to programs with
better graphics and more exotic settings. For @@amRelic'sDawn of War and
Company of Heroeshave similar mechanics and game play, but onetigiftic while
the other takes place in a World War Il settingeli®kdid not merely reuse their code in
these two games. The work that was put intoGbenpany of Heroesgraphic system
was quite impressive and much more complex thenfdreDawn of War. The user
could assign squadrons to various buildings ande anside, the characters would shoot
enemies from the windowsill. During game play tleer commands a wide variety of
camera controls, one of which was the zoom featuhgon zooming in on the character
firing from the window the player can see the faepressions of that character. This
amount of detail proves that the graphics are ewglas technology becomes better and
game companies are pushing the envelope for lgtees.

However, better graphics and visual effects cary amprove the game up to a
point. Regardless of this impressive graphical, féee game play, or rules of play, are
almost the same for both of these games. Thewollpchapters will expand on how it is
possible to change the very mechanics of the gamdeadd an entirely new dimension to

real-time-strategy games thus providing a new dsizento enhance this genre.

1.5 Present Work

Warrcraft Il was one of the first RTS games with character ldgweent. This game
allowed a player to have up to three special ufiesoes) who could carry items and
increase in strength as the game progressed. H&aolunit would gain a new ability or
upgrade an existing ability as they increasedvelk In fact, the mechanics of heroes in
this game met all five rules proposed by this thedn Warcraft Ill the player could
only develop three hero units in each game, bukunz's Revengeevery unit may be
customized and developed. However, the abilityeeelop three characters\iviarcraft

Il was a marked improvement ov&Varcraft [I. This changed the game play
dramatically and made for a much more intriguingSRjame Warcraft Il was limited

to building large numbers of units and engagingniassive battles to wear down the
enemy and consume his resources with few stratggions, outside of building massive

amounts of the most powerful unit to crush yourreypeby force. In addition to

11

developing heroesWarcraft Il provided incentive for players to maintain smaller
armies by introducing "upkeep" as a form of a téxol would be increased if armies
became too large. Blizzard, the company who preduthe Warcraft series, also
balancedWarcraft 11l by making a level ten unit more valuable than ¢erfifteen
normal units. In this way, new strategies invofyumnit combinations were introduced
that could affect game outcome.

By creating a game with a maximum of three hefoegustomization, Blizzard
did not fully develop this idea to full potentiakFor example, Footmen (the grunt unit for
humans) surviving multiple battles could not gaiorenpower. Regardless of this, just
allowing the development of three hero unit&\farcraft Ill increased strategic options

and added more entertainment value to the game.

1.6 Overview of the Thesis

Chapter 2 introduces the test bed software, c&llacthe Maker, used to make our
pilot game and defines the method and approachhierproject. Chapter 3 lists the
initial and final requirements of the prototypegewsses, and primary scenarios. Chapter
4 expands on the high level design and moduleisfgroject. The final pilot game
results are discussed in Chapter 5. Chapter 6Glgstmilar and future work regarding
the concept of combining RPG elements to RTS gen@sapter 7 concludes the thesis

with an overview of the work done in this project.

12

2 Chapter 2: Method

This chapter will present the idea behind thisjgmband introduce the rule
system behind the pilot games development. Thipten will also introduce the
software tool called Game Maker and will then detarious components of the pilot
game, “Fuzz’s Revenge”.

As stated in the previous chapter, the purposthisfproject is to combine the
four components of a RPG into the RTS game playornder to allow character
customization. The four RPG constructs are thieviehg:

» Each character can lequipped with specific weapons and armor.
» Each character can have the ability to become ponerful, based on
experience and success which is calesdling up.
» Each character can lsastomized by defining its attributes and, if graphics allow,
its appearance.
» Each character can have the ability to upgradeass status when certain levels
have been attained.
The approach to this project was quite linear isigle An undesirable aspect of a
common game genre (RTS) was noted. Regardlesshaf battles a unit survived it
could not grow based on experience. Therefordjxtdhis problem a hypothesis of
combining RPG aspects to an RTS game was propoAéer a prototype game was
developed the hypothesis was modified to improvenufpe undesirable problems in the
original proposal. The final design was then doented using uniform modeling
language (UML) and the prototype or pilot game waslified to reflect these changes.
Initially, this project had a hypothesis that if’ea rules were followed then the two game
genres, RPG and RTS, could be combined. This woealdccomplished by adding the
four components of an RPG to be combined with th& Rame. The next section will
look at each rule with detail and then give explemato why two of the rules were
considered unnecessary. From this, the five finlgls have been defined to successfully
allow character development in an RTS setting.

13

2.1 The Initial Seven Rules

To preserve the unit control that is characterigfikTS games and to provide a
sense of character development found in role ptagemes, the prototype gankejzz’'s
Revenge was based on character individuality and not amngd numbers of
undifferentiated identical characters. The follogviseven rules were applied in the
prototype game.

1) Every unit should have some degree of customization

2) Every unit should have the ability to increaseewel or rank.

3) Unit capability should be limited by its skills anahk.

4) Game mechanics should encourage the use of minamabers of units.

5) Every unit should have an equipment and statiptcel.

6) The game should have specific goals and objectorasnits or groups of units to
accomplish and not merely the sole goal of dispatrcthe enemy.

7) Increasing the character's strength should be maek valuable then building a

more expensive unit.

Rule 1- Every unit should have some degree of custoioizat

Every unit needs customization capabilities. Aniaimum, skills and equipment
should be customizable. The prototype (pilot gafae}his project allows the player to
name the unit, change the unit’'s equipment, aretséte unit's capability when leveling
up. With more advanced graphics, the player caldd have the ability to change the
outward character appearance. The potential fauation in this area is quite large and

could enhance the game play substantially.

Rule 2- Every unit should have the ability to increasdéeivel or rank.

Each player’s unit should develop as the gamerpssgs, based on success and
experience. Without this capability, the game wlaulerely be a basic real time strategy
game (RTS). Not only should each unit have an eérience point) counter variable
that allows the characters to increase in level,ghme play should facilitate this aspect

of strengthening the unit. For example, due totigh death rate experienced by lower

14

level characters in an RTS game, the units shoaildllowed to rest after battle to regain
strength. Without this capability most units woulot survive to grow and would perish

after a few battles.

Rule 3- Unit capability should be limited by its skilt tevel.

RPG’s have evolved two styles of character advaece. One is the skill
advancement method with which after the characts successfully accomplished
something for a certain amount of time its abilitythat task, or skill, will improve. The
other method is leveling, where after a charactsrduccessfully beaten a certain number
of enemies it will advance to a new rank or levéVhen this happens, all of the unit's
attributes increase. Because the pilot game usetevel system this paper will refer to
this system instead of the skill advancement system
Unit performance should be limited by level becatlse higher the level is, the greater
the unit’s potential performance is. For examplbasic space marine private should not
be allowed to command a battle cruiser. Characterst evolve to higher levels in order
to use more advanced equipment, and further, oedll levels must be reached to
complete the mission. As previously mentioned; fhiaces the game focus on individual

unit development and not on massive armies collelgti

Rule 4- Game mechanics should encourage the use of mlimombers of units.

The game mechanic, such as resource managemesd, rbanagement and
construction, upgrades, and unit production, sheualkcburage a limited number of units,
thus facilitating the use of fewer units versugyéaarmies of anonymous soldiers. In
other words, the player may utilize four to eighits in battle during several minutes of
game play, where as in a basic RTS game an armg betbuilt during this time period,
where the player would not pay as much attentiosingle units. Just because this
hybrid game is built on individual customizationdbes not mean it needs to be overly
complex. For example, in the mid 1990’s a grougames were produced that were so

complex it required an economist and a militaryisoivto play them (e.gStar Wars

15

Rebellion). The game design for this hybrid game may beptexy but the game play,
from the user's perspective, should be relativiehpke and easy to interact with.

Rule 5- Every unit should have an equipment and stesigianel.
For the sake of utility, every unit should havestatus window. When this
window is opened, it should display important st&ts, current equipment, acquired

attributes, and optional upgrades.

Rule 6- The game should have specific goals and obgstior the player to accomplish,
and not merely the goal to dispatch the enemy.

A vital part to an RPG is a strong story line thalt maintain a player's interest,
in contrast to games centered on dispatching tleengnwhich soon lose their luster.
Starcraft andWarcraft Ill are good examples of the latter. The player waoslkel built-
in tools, such as a map editor, to add diversityht® game. Without this ability to
customize the game mechanics, players might lasgest once the game or the main
campaign with a story, was conquered. In the chsgtarcraft andWarcraft Ill the
game makers also depended on renewed intereso dne &bility to play with or against

friends over a network.

Rule 7- Increasing a character's strength should be mumie valuable then building a
more expensive type of unit.

Increasing a unit's level adds a new dimensiahéogame. The longer surviving
units become more powerful and exert more influesrtéghe game outcome. Preserving
units and proper utilization of specific units bews a major game strategy. Players can
still build an army, but they will be an army offimiduals and not "cookie cutter" units.
This rule captures the essence of the major tholighis project; to incorporate unit

development into an RTS game.

2.2 The Revised Set of Rules

Once work began on the initial prototype, it becapparent that rule number four was

unnecessary. This rule was initially included tsuwe that the game play would allow

16

small groups of units to gain experience and theodpnity to level up. However, the
pilot game seemed to lose the RTS feel becauseapsiall number of units could be
used at one time. This seemed more akin to ay B&G game where small groups of
units would try to complete a goal. Thereforey@s concluded that small numbers were
not essential for combining RPG and RTS game sjiedeas larger troop numbers could
be used while allowing individuality among units.

Rule number six requires a strong story line mheoito incorporate all aspects of a
RPG into an RTS game. However, the essence optbjsct is to add unit development
to a RTS game, and by enforcing rule six the pypitexhibited more RPG qualities
than RTS. RTS games rely on massive battles agd feumbers of units to provide their
entertainment value and not on story lines. AliolRTS games have a story, the
addition of a strong story line and alternate footrer then conquest, detracted from the
RTS feel of conflict [12] .

Likewise, it was originally thought in rule sevemat leveling up was the most
important part of this hybrid game development. wdeer, if game success weighs too
heavily on leveling individual units, the RTS feglalso lost. For this reason, rule seven
was revised. Although unit strength should be momgortant than building expensive
units, building large armies should also exertrargf influence on game outcome.

In summary, the first seven rules were designedldoe the game focus on individual
units, but when this was carried too far, the R&fhg feel was lost. The following list
details the final five rules utilized for this peaj.

1) Every unit should have some degree of customization

2) Every unit should have the ability to increaseewel or rank.

3) Unit capability should be limited by skills and kan

4) Every unit should have an equipment and statiptcel.

5) Increasing the strength of a character should be vaduable then building a

more expensive unit. However, losing their mosv@dul character should not

end the player’s chances of winning.

17

2.3 Prototype Game Construction using Game Maker

Game Maker is a high level program that allows uker to create almost any
game desired, while keeping difficult issues suslgi@phics input and sound abstracted
enough to allow easier use. Therefore, the programdoes not have to worry about
coding drivers and graphics but merely calls thergypriate function. Game Maker was
used to construct the prototype, allowing for ea®ation of graphics, sounds, and input
thus more time was available for game play devebm Game Maker is a reliable test
bench for analyzing game design and facilitatesetis use of graphics.

Game maker utilizes object oriented programmirngofgect oriented algorithms.
These objects are created before the game is cexinpiio an executable. The object can
then be modified and can either be i) an invisdigects, ii) purely code, or iii) an actual
entities in the game. These objects are recipesdate various entities, and once an
object is created in Game Maker it is easy to répce objects in as many instances as
desired. Therefore, only one adjustment is ne¢dexhange all instances of that object
in the game before the game is compiled.

Various sub-modules, such as mouse, keyboardcalfidion, could be defined
for each object. These sub modules determined digects react when colliding with
one another. These sub modules also handled kelylzral mouse inputs and with
various options the user could define mouse funstidor example, left click, left press,
left released, left drag and the equivalent fordtier buttons). These sub modules acted
as events that can trigger the object to run aeptdccode. Special care must be taken
that only the desired instances execute the piéamdae and not all instances of that
object type. This was a large problem with unitveraent and the graphical user

interface.

2.4 Game Maker Limitations

Game Maker is a great test bench, however becalugs ease of use it has
functional limitations. Game Maker was designed fmn-programmers, therefore
functionality was so simplified that it had a Idtaverhead that caused limitations. Some

of these limitations noted during this project were

18

1. A large degree of overhead, or more processesmngrnithe background, was
included with the program (especially timer funoatity). C or C++ code would
have been a lot more efficient then the Game Makept.

2. Game Maker it is not designed for three-dimensignaphics but produces two-
dimensional graphics with sprites very well.

3. Afull version of Game Maker is required for netlk@aming.

4. Each object required more processing time than @#dl, the more objects that
were used such as walls and characters, the stbeezystem would run. It took

careful programming in order not to over use theetiinterrupt functionality.

2.5 Method used and an Overview of the Pilot Game “Fuzg Revenge”

The pilot game developed in this thesis is calledzz's Revenge”. This game
allows the player to build a base and there isseahthy of buildings that must be built in
the correct order. This simulates many of the Rjé&es on the market today. For
simplicity, the player can create one type of uaiblue fur ball called "Fuzz". These
units must search for three keys and in the prolgissvarious monsters, which as they
defeat, the fuzz units gain experience points.thesgame proceeds and the "Fuzz" units
journey farther from the starting point, they enueuw different monsters that
progressively get harder to defeat. As the mosdtecome more difficult to defeat,
more experience points are awarded to the victerimnits. From 3 to 40 experience
points are awarded to the units, depending upociwmonster they defeat. All units that
have the monster within range gain experience pauhien the monster is dispatched.

A combination of experience points, a variabldechl'delay constant”, and the
experience points for next level determines whéfuzz" unit is eligible level up. As
noted in Equation 2.1, as the delay constant ise®aore points are needed to level up.
This constant could be reduced when testing theegdhus speeding up the leveling
process. The following equation is used to deteerntiis eligibility:

ExperienceNeededForNextLevel = PreviousExpereieeeddld + DelayFactor*NextLevéEr.1)

19

Initially, each unit begins at the first level (\0), the delay constant is 10, and
the next level is 1. Therefore, from Equation A points are needed to proceed from
level O to level 1 (Points needed = 0 + 10 * 1 ¥ 1As shown in Table 2.1 the number of
points required for leveling up increase at a exptial rate with each level. Technically
there are a maximum of 99 levels that could beinéthin this game, but in practicality
this level cap will most likely never be reacheddugse the player would have to spend a

day or so to gain the necessary experience points.

Table 2-1: Calculating Level Thresholds

Minimum Experience Point for

)] Delay Next

Level Points For Required for Next
Factor Level

Current Level Level

0 0 10 1 10

1 10 10 2 30

2 30 10 3 60

3 60 10 4 100

Every time a unit reaches a new level it gains ski# point. With each skill
point the player can open a statistic panel andagegone of six attributes: rate of fire,
regeneration rate, attack, defense, speed, ance.rangrhis process allows for the
customization of each unit as the game proceeddwfiés rule number four. As the
unit level increases, class options also increds@. example, at level five the unit may
be upgraded from "newb" to soldier. This abilityihcrease the skill and choose the
class of each unit, produces individuality amongrahbters and allows the player to
develop them as desired, thus fulfilling rule one.

The game requires the player to go into three dong and find three keys. As
the units progress farther and farther away froenstiarting location, the enemies become
stronger. In fact, a newly created unit could suotvive in the final area. Therefore, it is
necessary for the "Fuzz" units to gain levels ideorto conquer the game. Thus, rule

three is fulfilled, requiring that each unit's chipi#y be limited by rank. Because of this,

20

unit development is more important than buildingssie armies and rule five is
fulfilled.

As explained above, this project underwent twospka Initially, seven rules
were used to design the first prototype game. rLiateecame apparent that only five of
these rules were necessary, thus the secondate@itihe prototype ensued. Along with
these changes, group movement was added to math&iRTS game play. After this
was achieved, the game design began. Chaptei 8ival the details of the requirement

and high level methods usedrnzz’s Revenge

21

3 Chapter 3: Software Requirements for “Fuzz’s Reveng’

This chapter details the initial requirements loé game prototype, as well as
various modifications implemented during the coursé¢he project. This chapter also
presents a thorough view of the use cases and myriswenarios of the pilot game

“Fuzz’s Revenge”.

3.1 The Initial Requirements

There are several important reasons for creatinpegaequirements for
integrating RPG components into the RTS game streclittle success has currently
been demonstrated in incorporating software engimg@éto game design. By designing
a simple prototype to test a theory before desggaifiormal design the freedom to make
modifications and analyze the results was now ptessiithout rewriting the entire
design. It was then possible to document the gdesgn with Unified Modeling
Language (UML)[8] . The UML documentation was pacant to ensure that the five
final rules were incorporated in the final iteratiof the game code.

Table 3-1 details the various functional requiretsef "Fuzz's Revenge".

Requirements are broken down into three differat¢gories which are:

* R#[1] Required components tHdtJST be in the game.

* R#[2] Components that should be incorporated inRI& game but are not vital
to this project.

* R#[3] Components that would enhance the game, dquire a more advanced
platform and time to develop. If this were a comerad project these components

would be necessary.

22

Table 3-1: Initial Requirements for the Pilot Game“Fuzz’'s Revenge”

Requirement

Descriptions

RO1 [1]

The SYSTEM shall allow for mouse input #ext and construct buildings.

R0O2 [1] The SYSTEM shall allow the base camp buaidio be built upon start.

RO3 [1] The SYSTEM shall select a fuzz unit whea thouse is clicked on it.

R0O4 [1] The SYSTEM shall have an interface windotvtlae bottom, which contains
available buildings that may be constructed.

RO5 [1] The SYSTEM shall have an interface windawthee bottom, which displays the
food and gold the player has acquired.

RO6 [1] The SYSTEM shall have an interface windawthee bottom, which displays the
option of the selected building.

RO7 [1] The SYSTEM shall allow the user to constriac unit if the gold and foodl
requirements are met and the home base is selected.

R0O8 [1] The SYSTEM shall allow the user to constran assault rifle if the golgl
requirement is met and the fair ground is selected.

R0O9 [1] The SYSTEM shall allow the user to createoly stave if the gold requirement jis
met and the bio dome is selected.

R10 [1] The SYSTEM shall allow the user to createmaooka if the gold requirement is met
and the factory is selected.

R11 [1] The SYSTEM shall allow the user to createagic hat if the gold requirement jis
met and the magic shop is selected.

R12 [1] The SYSTEM shall allow the user to creatfire wand if the gold requirement |s
met and the magic shop is selected.

R13 [1] The SYSTEM shall allow the user to createice staff if the gold requirement |s
met and the magic shop is selected.

R14 [1] The SYSTEM shall require a base camp irentd build a fair ground.

R15 [1] The SYSTEM shall require a base camp ireotd build a bio-dome.

R16 [1] The SYSTEM shall require a bio-dome in oritebuild a gold mine.

R17 [1] The SYSTEM shall require a gold mine in@rtb build a factory.

R18 [1] The SYSTEM shall require a fair grounds anthactory in order to build a mag|c
shop.

R19 [1] The SYSTEM shall, upon start up, defineaaray of values that shall represent the
experience needed for the appropriate levels.

R20 [1] The SYSTEM shall, if a fuzz unit is selatt®pen a sub window when the space
bar is hit.

R21 [1] The SYSTEM shall display the Health Poisitshe unit if the sub-window is open

R22 [1] The SYSTEM shall display the total Healthir®s of the unit if the sub-window is
open.

R23 [1] The SYSTEM shall display the experiencenpoiof the unit if the sub-window is
open.

R24 [1] The SYSTEM shall display the next level uggment of experience points if the
sub window is open.

R25 [1] The SYSTEM shall display the attack ratoighe unit if the sub window is open.

R26 [1] The SYSTEM shall display the defense raththe unit if the sub window is open.

R27 [1] The SYSTEM shall display the class (or jobjhe unit if the sub window is open.

R28 [1] The SYSTEM shall display the numeric leokthe unit if the sub window is open

R29 [1] The SYSTEM shall display the speed of thi ifithe sub window is open.

R30 [1] The SYSTEM shall display the weapon the imusing if the sub window is open

R31 [1] The SYSTEM shall display the regeneratiate rof the unit if the sub window |s

open.

23

Requirement

Descriptions

R32 [1]

The SYSTEM shall display the rate of fiffettoe unit if the sub window is open.

R33 [1] The SYSTEM shall display the name of thé ifithe sub window is open.

R34 [1] The SYSTEM shall display the range the gait fire at if the sub window is open

R35 [1] The SYSTEM shall display the icon (whichadlges with class upgrades) of the ynit
if the sub window is open.

R36 [1] The SYSTEM shall display the speed upgrade when the sub window is opgn,
where the skill points of the unit are greater tbaand if the units speed is less tHen
2.

R37 [1] The SYSTEM shall display a rate of fire tggde icon when the sub window is open
and if the selected unit’s skill points are gredtean 0 and if the rate of fire |s
greater than or equal to 30.

R38 [1] The SYSTEM shall display the defense upgradn when the sub window is opgn
and the selected unit’s skill points are greatant@.

R39 [1] The SYSTEM shall display the range upgram® when the sub window is opgn
and the selected unit’s skill points are greatant@.

R40 [1] The SYSTEM shall display the attack upgramba when the sub window is open)|if
the selected unit’s skill points are greater than 0

R41 [1] The SYSTEM shall display the regeneratipgnade when the sub window is opg¢n,
if the selected unit’s skill points are greatentifa

R42 [1] The SYSTEM shall add one to the regenematiate of the unit when the
regenerations upgrade icon is selected and shhtrasat 1 from the unit’'s skil
points.

R43 [1] The SYSTEM shall add 2+round(units levelstPthe attack power of the unit when
the attack upgrade icon is pushed and shall suldtritom the unit’s skill points.

R44 [1] The SYSTEM shall add 1+round(units leveli@the defense rate of the unit whien
the defense upgrade icon is selected and shaleslit from the unit’s skill points.

R45 [1] The SYSTEM shall subtract 10 from the ratdire of the unit when the rate of fire
upgrade is selected and shall subtract 1 from litésskill points.

R46 [1] The SYSTEM shall add 1 to the speed ofuthit when the speed upgrade icon is
pressed and shall subtract 1 from the unit’s gkilhts.

R47 [1] The SYSTEM shall add 10 to the range ef ahit when the range upgrade icor] is
pressed and it shall subtract 1 from the unit'8l gkiints.

R48 [1] The SYSTEM shall display upgrade to soldeéen when the unit’s level is greatpr
than or equal to five, the current class of thet isi‘newb”, the skill points ar¢
greater than 0, and the sub window is open.

R49 [1] The SYSTEM shall display upgrade to wizaxah when the unit’s level is greatgr
than or equal to ten, the current class of the isninewb”, the skill points ar¢
greater than 0 and the sub window is open.

R50 [1] The SYSTEM shall display upgrade to priesin when the unit's level is greatger
than or equal to fifteen, the current class of uhd is “newb”, the skill points ar¢
greater than 0, and the sub window is open.

R51 [1] The SYSTEM shall display upgrade to firgcawer icon when the unit’s level |s
greater than or equal to fifteen, the current clalsthe unit is “wizard”, the skil
points are greater than 0, and the sub window&sop

R52 [1] The SYSTEM shall display upgrade to ice mapn when the unit’s level is greater
than or equal to twenty, the current class of thi¢ is “wizard”, the skill points ard
greater than 0 and the sub window is open.

R53 [1] The SYSTEM shall, if the soldier upgradericis hit, change the unit’s class |to
soldier, changing the unit's appearance and subtat from the unit’s skill points

R54 [1] The SYSTEM shall, if the wizard upgradericis hit, change the unit's class [to

wizard, changing the unit’s appearance and sulm@dtfrom the unit’s skill points

24

Requirement

Descriptions

R55 [1]

The SYSTEM shall, if the priest upgraderigs hit, change the unit’s class to prig
changing the unit's appearance and subtractingrh the unit’s skill points.

y

e

a

is

At

y

Nt

IS,

e

ar

rby.

—

R56 [1] The SYSTEM shall, if the fire sorcerer upde icon is hit, change the unit’s class
fire sorcerer, changing the unit's appearance aitracting 1 from the unit’s skil
points.

R57 [1] The SYSTEM shall, if the ice mage upgraztmiis hit, change the unit’s class to
mage, changing the unit’s appearance and subtgattirom the unit’s skill points.

R58 [1] The SYSTEM shall open a dungeon window o liottom left of the screen if an
units have come in contact with a dungeon on thedwoap.

R59 [1] The SYSTEM shall close the dungeon windolew all units have either left th
dungeon or died.

R60 [1] The SYSTEM shall add 1 gold to the playkeraevery 100 cycles per fair groun
that are built.

R61 [1] The SYSTEM shall add 3 food to the max fodthe player per bio dome build.

R62 [1] The SYSTEM shall not allow a fuzz unit te bonstructed unless the food used is
greater than or equal to total food.

R63 [1] The SYSTEM shall subtract 1 from “food usedhen a fuzz unit dies.

R64 [1] The SYSTEM shall add 1 to “food used” wteefuzz unit is created.

R65 [1] The SYSTEM shall allow the fuzz unit toefion an enemy when it is inside
certain range.

R66 [1] The SYSTEM shall create the appropriatackitbased on what weapon the fuz3
using.

R67 [1] The SYSTEM shall allow enemies to fire tvie fuzz units once they are inside the
enemies range.

R68 [1] The SYSTEM shall reward experience poitsany monster who dies within th
unit’s range value.

R69 [1] The SYSTEM shall calculate damage, whetbexr monster or fuzz unit, if and on
if the attack actually collides with the fuzz unit.

R70 [1] The SYSTEM shall, upon initialization, cteall monsters on the map.

R71 [1] The SYSTEM shall make the fuzz unit staalking toward a point where the rig
mouse button was clicked, if the fuzz is selected.

R72 [1] The fuzz units will stop should it hit eolbking terrain, such as trees, cactus, w4
etc.

R73 [1] The player shall gain 3 gold per gold mawvery 100 ticks.

R74 [1] The SYSTEM shall teleport the fuzz unittte dungeon area if it should collig
with a dungeon icon.

R75 [1] The SYSTEM shall teleport the fuzz outstle dungeon if it should collide wit
the exit door icon inside the dungeon.

R76 [1] The SYSTEM shall, if the status window =0, close this window if the space |
is pressed.

R77 [1] The SYSTEM shall allow the soldier to ingse speed if it senses an enemy neg
This shall cost magic points.

R79 [1] The SYSTEM shall allow the wizard to cagiratection spell if it senses an enemy
nearby. This shall cost magic points.

R80 [1] The SYSTEM shall allow the priest to healydriendly units in its vicinity if it
detects they are low on health. This shall cogiimpoints.

R81 [1] The SYSTEM shall allow the fire sorcereistanmon a fire pet (walking flame) if
detects an enemy within its range. This shall owsgic points.

R82 [1] The SYSTEM shall allow an ice mage to gestattacks in 8 directions if it deted

ts

an enemy presence. This shall cost magic points.

25

Requirement Descriptions

R83 [1] The SYSTEM shall give a predefined antafrgold to the player for each monster
that is killed.

R84 [1] The SYSTEM shall not allow the “newb” classreceive any special bonus skills.
Therefore, “newb” units can only attack and move.

R85 [1] The SYSTEM shall allow the equip menu t pg if the middle mouse button |s
clicked on the unit.

R86 [1] The SYSTEM shall allow the equip menu toneoup for whichever unit is selected
if the left mouse button is pressed on the “E-quggh in the bottom right screen.

R87 [2] The SYSTEM shall be implemented to workeal time.

R88 [2]* The SYSTEM shall allow for group movemeshd with possible multiple unit
selection.

R89 [2] The SYSTEM shall include different types wfits, performance based upon cpst
and style.

R90 [2] The SYSTEM shall allow for certain weapaogiestroy certain terrain (trees, rocks,
etc).

R91 [2] The SYSTEM shall include sound effectsdiferent attacks and actions.

R92 [3] The SYSTEM shall be implemented in a 3Digmnment.

R93 [3] The SYSTEM shall include multiple racest(iwst fuzz units) in which the playegr
can choose to be a member of.

R94 [3] The SYSTEM shall allow for multi-player LAjames.

R95 [3] The SYSTEM shall include background musiattchanges with certain conditions
(peaceful, hostile, victorious, etc).

*It is important to note that R88 [2] was modifiand became a mandatory requirement.

3.2 Use Case

Use case modelinig a technique for capturing functional requirersesfta system

or systems via use cases(Defined by Google Diatygpna Use cases describe the

interactions between the users and the systemessfsam the outside of the system.

The following use cases (table 3-2) walk throughots modules or smaller units of the

program. Each use case has a title and a briefrigesn that explains what each use

case performs.

Table 3-2: Use Cases Designed to Implement CategadPne Requirements

Use
Case Use Case Title Use Case Descriptions
Number
uco1 Select Unit If the left mouse button is clicked fehthe mouse is on
specific unit, that unit’s id becomes the globdueaselected
UCo02 Move Unit If a unit is selected it will try to moweward a point that th
mouse was pointing at the time the right mouseobuttas
clicked.
uco3 Unit Attack Regardless of whether the unit is mgvim not, it will attack
if an enemy gets within its range variable.
UCo04 Unit Victory If an enemy is killed, the player réees gold and any
friendly units that the enemy was in range of reeegi

26

Use
Case Use Case Title Use Case Descriptions
Number
experience.
UCO05 Unit Defeat If a unit’s health falls to O or belothen that unit dies. Al

gear and skills on that unit are lost. Howeveg, fitod used
is decreased by one.

Uco6 Unit Statistics When a unit is selected and thecsplar is pushed, the
system opens a window on the bottom right screen,
displaying Name, Class, HP, max HP, Attack, Defense
Range, Rate of fire, Regeneration, Speed and an |ico
displaying its appropriate class. If the unit feageled, skill
points are greater than 0, it will display the atkibutes of
upgrades. Also if the unit reached appropriateleit will
display the appropriate class upgrades.

uco7 Unit Attribute Upgrade If an attribute upgrade &lested, the system will upgrade
the corresponding attribute with a calculated arhoufhis
will subtract 1 from the skill points of the unit.

uco8 Unit Class Upgrade The unit’s class or job will sba to the corresponding icon
that was pressed. NOTE: all class upgrades be¢ome
available at different times or conditions.

uco9 Construct Buildings On the bottom of the screenaa Will list the available
buildings. The buildings that cannot be built a&ffold
icons. Once the mouse’s left button is pressednon-
scaffold building, the mouse will display a scaffalext to
the pointer. The player can then move the mouse [to
specific area and left click in order to build thalding.

UC10 Unit Enter Dungeon When a fuzz unit touches a dangeon, it is teleported tp
the entrance of that dungeon and a window is opéndike
bottom left of the screen.

UC11 Unit Leave Dungeon In all dungeons there is an @gitr, usually very close tp
where the fuzz came in. If a fuzz comes in contéttt that
icon then the fuzz unit will be teleported backthe world
map outside the dungeon. If all fuzzes have exitedied
inside the dungeon the dungeon window will close.

uci2 World Start Upon startup a script will be run tdtiadize values such as
level placements, enemies, and other entities. fOreunit
will be created, which the user must name. The miip
become visible. The starting fuzz unit will haveeoskill
point to spend.

UC13 Build Unit If the gold amount is acceptable andhiére is enough food
when the mouse arrow is on the create fuzz icontlamdeft
mouse button is pressed, a fuzz unit will be ckatdhe
user will be asked to enter its name and then tiiewill
appear inside the Base Camp icon (the building thast
have been selected in order to build the unit).chEfuzz
starts with 1 skill point the player can use.

uci4 Build Weapon If the player has selected one ofahmslidings: Bio-Dome
Marketplace, Factory or Magic Ship, the appropriagapon
icon/s will be displayed in the bottom interfacendow.
Left clicking on the weapon icon will add that weapo the
weapon list assuming the gold requirement is met.

UC15 Equip Weapon If the player clicks the middle mobsgton on a selected
unit or clicks the “E-quip” icon in the bottom rigka weapon

27

Use
Case Use Case Title Use Case Descriptions
Number

list of all the weapons the player has built witippup. If the
player selects a weapon from that list and thecsadefuzz
unit can use that weapon then that weapon will isengto
that specific unit. (NOTE: the starting weaporpistol. If
the fuzz unit has not equipped anything beforestohiit will
replace the weapon in the list. (You cannot bpitdols)
UC16 Manage Resources Every marketplace will add 1 gokty 100 game cycles.
Every Gold mine will add 3 gold every 100 game egcl
Every Bio-Dome will add 3 food to the max food usgabn
construction. This sub-module will display golddafood
used/total food on the status bar.

UC17 Manage Game The system will move bad guys (alsokcfa collision of
bad guys against trees, rocks, etc). It will dismdle bad
guys attacking player units and re-spawning the duac at
the appropriate time.

UCi18 Special Abilities Depending on its class, the fugit should be able to dp
some specific ability if it has enough magic poiard is
threatened by an enemy. The “newb” class doeshaot
any special abilities.

Figure 3-1 presents the relationship between thersadnvolved in this system
and the system’s functionality as described in esses. The fuzz unit handles various
functions on its own therefore the user really amdeds to move and upgrade the unit.
Resources are managed as a function of time ahéeatue automatically. Finally, the
system, or the Background Process, manages the gachgudges which units are

victorious in combat. The System also manages gnenits.

) Select Unit Special Abilities o
/ Iove Unit »
/‘ Unit Statistics Unit Attack by
P Unit Attributes Upgrade Fuzz Unit

E d Units Class Upgrade Manage Resource "
== Construct Buildings

* J

User B TUnit Enter Dungeons // Manage Gamne
[+ UmtLeave Dungsons / / World Start
= Build Unit J/ Unit Defeat
N Build Weapons '//

N Equip Weapons |4 Unit Victory

Figure 3-1:Break down of Actors in "Fuzz's Revenge"

28

3.3 Primary Scenarios

In computing, a scenario is a narrative descrilborgseeable interactions between
the users (actors) and the system, or between diwae components [8] . Due to the
large amount of possible scenarios only the mopbntant and prominent scenarios are

detailed in the following scenario tables.

3.3.1 Select Unit

A unit or building is highlighted by a white box et the player clicks on it with
the mouse's left button. The object's identifmatnumber (ID) is stored in the global

variable named "selected" (Table 3-3 and 3-4).

Table 3-3: Selecting a Unit

Use Case: Select Unit

ID:

Actor: User

World has started.

Fuzz unit does exist.

User moves mouse pointer onto unit.
User left clicks mouse button.

A box is drawn around the unit.

Unit can be moved.

Unit statistics can be displayed.

Pre-Conditions:

Scenario

Post-Conditions:

NN PN P

Table 3-4: Selecting a Building

Use Case: Select Unit (Building)

ID: uCo01.2

Actor: User

World has started.

Building does exist.

User moves mouse to point at building.

User left clicks the mouse button.

A box is drawn around the unit.

Player can now build any items or characters tlileling offers.

Pre-Conditions:

Scenario

RSNl A o

Post-Conditions:

29

3.3.2 Move Unit

Once the movable unit is selected and the uset dlitks on the location to
which the user desires to move, the unit will begioving. Should the unit encounter
any obstacles or other fuzz units, it will stopl§lea3-5 and 3-6).

Table 3-5: Moving a Unit

Use Case: Move Unit (Success)

ID:
Actor: User
Pre-Conditions: 1. A fuzz unitis selected.
Scenario 1. The user moves the mouse to the desired location.
2. The user right clicks the mouse.
3. The fuzz unit will attempt to walk toward that pbin
4. Once the fuzz unit has arrived within a certairaates unit will stop
moving.
Post-Conditions: 1. Unit can be moved again.
2. Unit statistics can be viewed.

Table 3-6: Moving Unit when a Collision Occurs

Use Case Move: Unit (Failure)

ID: uco02.2
Actor: User
Pre-Conditions: 1. A fuzz unit must be selected.
Scenario 1. The user moves the mouse to the desired location.
2. The user right clicks the mouse.
3. The fuzz unit will attempt to walk toward that pbin
4. Before the unit reaches the destination it encaarae obstacle.
5. The unit stops moving.
6. The walking animation will continue to specify thhe unit has gotten
stuck.
Post-Conditions: 1. The unit can move again.
2. The unit statistics can be viewed.

3.3.3 Unit Attack

The fuzz unit will automatically attack when an eme enters the range
designated to that particular unit. The rangeh® énemy is calculated by a distance
formula between the two entities. The more powehie monster, the greater their attack

30

ranges. Once initiated, the unit will launch itsapons (each unit may be equipped with
different weapons) toward the spot where the monstelf the attack fails to strike the
monster or it strikes a blocking terrain, the dttadl be terminated. Some weapons can

penetrate interfering objects and still collidelwthe monster (Table 3-7).

Table 3-7: Attacking an Enemy with a Unit

Use Case: Unit Attack

ID: UCo03.1
Actor: Players Unit
Pre-Conditions: 1. Unit exists
2. Enemy comes within range.
Scenario 1. For enemies within range, their id is copied tasitarget variable.
2. Target variable x and y coordinates are stored.
3. Unit creates an appropriate attack.
4. Appropriate attributes are copied from unit to thtiack (attack power,
destination, parent unit, etc).
5. Attack will move toward unit at a much faster ritan units move. (It is

possible for the attack to miss).

Post-Conditions:

3.3.4 Unit Victory

Once the enemy's health drops to zero as a rekalh attack, it is destroyed.
Every unit that had the enemy within range recei@esertain number of experience
points depending on the monster. This allows & advancement of multiple units
(Table 3-8).

Table 3-8: Defeating the Enemy

Use Case: Unit Victory

ID: uco4.1

Actor: System

Pre-Conditions: Unit fired on enemy.

Enemy was hit by unit’s attack.

Enemy takes necessary damage calculated by tharsyst

Enemy’s health falls below or equal to 0.

Enemy icon is erased from world.

All units that had the enemy within their rangeeige experience bonus.
A gold reward is given to the player for killingetenemy.

Enemy is destroyed.

Unit can now re-acquire a new target.

Scenario

POk whEINE

Post-Conditions:

31

3.3.5 Unit Defeat

If an enemy hits and destroys a friendly unit, timit is deleted from the game.
With respects of implementation, once the instaotdhe unit is deleted from the
program the array is then consolidated so thaemlbty spots reside at the end of the

array holding the enemies (Table 3-9).

Table 3-9: Friendly Unit Defeated

Use Case: Unit Defeat

ID: UCO05.1

Actor: System

Pre-Conditions: Enemy has fired.

Enemy’s attack hit unit.

Unit looses necessary hit points.
Unit's health points fall below 1.
Unit sprite is deleted from world.
One is subtracted from food used.
Unit is deleted from array.

Special weapons equipped to unit are also deleted.

Scenario

PlaswhEINE

Post-Conditions:

3.3.6 Unit Statistics

The following four scenarios are examples of many-statistic combinations available
to each unit:

* The statistics, name, and class icon will be diglan the status window for the
unit with no skill (Table 3-10).

» The statistics, name, class icon, and attributdk bvei displayed in the status
window for a unit with skill points, but not eligdto change class (Table 3-11).

» If the unit has not been designated a class by [E¥€it is still a “newb”) the
statistics window will additionally display thredass levels that may be selected
if one or more skill points are available, alsathe status window. These three
options are soldier, wizard, and priest (Table 3-12

* A unit that has been designated a wizard will have more secondary classes
visible at level 20 that allow the selection oheit fire sorcerer or ice mage if the
required skill points are available. This shalldisplayed in the status window
(Table 3-13).

32

Table 3-10: Statistics Window Display without SkillPoints

Use Case: Unit Statistics (No Skill Points)

ID: UCo06.1
Actor: User
Pre-Conditions: 1. Unitis selected.
Scenario 1. User pushes space.
2. Sub window pops up.
3. Sub window displays unit name in window.
4. Sub window displays unit class in window.
5. Sub window displays unit icon (representing Classyindow.
6. Sub window displays experience and necessary expezifor next level in

10.
11.
12.
13.
14.
15.

window.

Sub window displays current health out of max Hreiltwindow.
Sub window displays current level in window.

Sub window displays attack power in window.

Sub window displays defense power in window.

Sub window displays speed rating in window.

Sub window displays regeneration rating in window.

Sub window displays range in window.

Sub window displays rate of fire in window.

Sub window displays weapon currently used in window

Post-Conditions:

User can close statistics window.

Table 3-11: Statistics Window Display with Skill Pints and No class upgrades

Use Case: Unit Statistics (Skill Points)

ID: UCO06.2
Actor: User
Pre-Conditions: 1. Unitis selected.
2. Unit has at least one skill point.
3. Unit's speedis only 1.
4. Unit’s rate of fire is above or equal to 30.
Scenario 1. User pushes space.
2. Sub window pops up.
3. Sub window displays unit name in window.
4. Sub window displays unit class in window.
5. Sub window displays unit icon (representing Classyindow.
6. Sub window displays experience and necessary expazifor next level ir

10.
11.
12.
13.
14.

window.

Sub window displays current health out of max Heidtwindow.
Sub window displays current level in window.

Sub window displays attack power in window.

Sub window displays defense power in window.

Sub window displays speed rating in window.

Sub window displays regeneration rating in window.

Sub window displays range in window.

Sub window displays rate of fire in window.

33

15. Sub window displays weapon currently used in window

16. Sub window displays upgrade for defense in window.

17. Sub window displays upgrade for range in window.

18. Sub window displays upgrade for speed in windowy(mat always be
available).

19. Sub window displays upgrade for Rate of Fire indew (may not always
be available).

20. Sub window displays upgrade for attack in windo

21. Sub window displays upgrade for regeneratiomiindow.

=

User can close statistics window.
2. User can now upgrade the unit.

Post-Conditions:

Table 3-12: Statistics Window Display with Skill Pints and First Class Upgrades

Use Case: Unit Statistics (Skill Points)

ID: uUC06.5

Actor: User

Unit is selected.

Unit has at least one skill point.

Unit's speed is only 1.

Unit's rate of fire is above or equal to 30.

Unit’s level is 15 or above.

Unit's class is “newb”.

User pushes space in window.

Sub window pops up in window.

Sub window displays unit name in window.

Sub window displays unit class in window.

Sub window displays unit icon (representing Classyindow.

Sub window displays experience and necessary expexifor next level in

window.

7. Sub window displays current health out of max Hreiltwindow.

8. Sub window displays current level in window.

9. Sub window displays attack power in window.

10. Sub window displays defense power in window.

11. Sub window displays speed rating in window.

12. Sub window displays regeneration rating in window.

13. Sub window displays range in window.

14. Sub window displays rate of fire in window.

15. Sub window displays weapon currently used in window

16. Sub window displays upgrade for defense in window.

17. Sub window displays upgrade for range in window.

18. Sub window displays upgrade for speed in windowy(mat always be
available).

19. Sub window displays upgrade for rate of fire in eav (may not always
be available).

20. Sub window displays upgrade for attack in window.

21. Sub window displays upgrade for regeneration indeim.

22. Sub window displays upgrade for priest in window.

23. Sub window displays upgrade for wizard in window.

Pre-Conditions:

Scenario

OUuRrONREOORWNE

34

23. Sub window displays upgrade for soldier in vawd

Post-Conditions: 1. User can close statistics window.
2. User can now upgrade the unit.
3. User can now change class to priest, wizard, soldie

Table 3-13: Statistics Window Display With Skill Pants and Wizard Class Upgrades

Use Case: Unit Statistics (Skill Points)

ID: UCo06.7
Actor: User
Pre-Conditions: 1. Unitis selected.
2. Unit has at least one skill point.
3. Unit's speed is only 1.
3. Unit's rate of fire is above or equal to 30.
5. Unit's level is 20 or above.
6. Unit's class is wizard.
Scenario 1. User pushes space.
2. Sub window pops up.
3. Sub window displays unit name in window.
4. Sub window displays unit class in window.
5. Sub window displays unit icon(representing classyindow.
6. Sub window displays experience and necessary expazifor next level ir
window.
7. Sub window displays current health out of max Hreiltwindow.
8. Sub window displays current level in window.
9. Sub window displays attack power in window.
10. Sub window displays defense power in window.
11. Sub window displays speed rating in window.
12. Sub window displays regeneration rating in window.
13. Sub window displays range in window.
14. Sub window displays rate of fire in window.
15. Sub window displays weapon currently used in window
16. Sub window displays upgrade for defense in window.
17. Sub window displays upgrade for range in window.
18. Sub window displays upgrade for speed in windoway(mot always be
available)
19. Sub window displays upgrade for rate of fire in eamv. (may not always
be available)
20. Sub window displays upgrade for attack in window.
21. Sub window displays upgrade for regeneration indwim.
22. Sub window displays upgrade for fire sorcerer inaaw.
23. Sub window displays upgrade for frost mageiimdow.
Post-Conditions: 1. |If user pushes space again statistic window wilsel
2. User can now upgrade the unit.
3. User can now change class to fire sorcerer or nagje.

35

3.3.7 Unit Attribute Upgrade

Attribute upgrades require 1 skill point that isaaded to the unit at each level

boundary. The following attribute upgrades areld in the six subsequent tables:

When the defense upgrade icon (shield) is visiblghie statistics window the
unit's defense can be increased by a factor camelspg to that particular level
(the defense level is determined by the equatioluded in Table 3-14).

When the range icon (arrow and target) is visiltkee unit's range may be
increased by a factor of ten (Table 3-15).

When the speed icon (boot) is visible, the unpisesi may be upgraded by one.
Each unit can only have a speed upgrade once disififgtime (Table 3-16).
When the rate-of-fire icon (gun and target) ishlisj the unit's fire delay may be
decreased by ten. Once the delay value reachethi®0pption is no longer
available (Table 3-17).

When the attack icon (gun and wand) is visible, uh#'s attack ability may be
increased to the corresponding level (Table 3-18).

When the regeneration icon (red cross) is visibie, rate at which the unit

increases health points is increased by one (TxL).

Table 3-14: Upgrading Unit Defense

USE CASE: Attribute Upgrade (Defense)

ID: UCo07.1

Actor: User

Pre-Conditions: 1. Skill points must greater than 0.
2. Skill upgrades must be visible.

Scenario 1. Defense upgrade selected by user with left mousk. cl
2. Defense increases by 1+round(level/2).
3. One is subtracted from skill points.

Post-Conditions: 1. Defense is now higher.

Table 3-15: Upgrading Unit Attack Range

USE CASE: Attribute Upgrade (Range)
ID: UCo07.2

Actor: User

Pre-Conditions: Skill points must greater than 0.
Skill upgrades must be visible.
Range upgrade selected by user with left mousk.clic

1
2
1.
2. Range is increases by 10.
3
3

Scenario

. One’s subtracted from skill points.

Post-Conditions: Range is now higher.

Table 3-16: Upgrading Unit Movement Speed

USE CASE: Attribute Upgrade (Speed)
ID: ucCo7.3

Actor: User

Skill points must be greater than 0.

Skill upgrade must be visible.

Speed must only be 1.

Speed upgrade selected by user with left mousk. clic
Speed increases by 1.

One is subtracted from skill points.

Speed is now higher.

Pre-Conditions:

Scenario

PloNPwN P

Post-Conditions:

Table 3-17: Upgrading Unit Rate of Fire

USE CASE: Attribute Upgrade (Rate of Fire)

ID: uco7.4
Actor: User
Pre-Conditions: 1. Skill points must be greater than 0.
2. Skill upgrade must be visible.
3. Rate of fire must be 30 or greater.
Scenario 1. Rate of fire upgrade selected by user with left sgoclick.
2. Rate of fire decreases by 10.
3. One is subtracted from skill points.
Post-Conditions: 1. Rate of fire is how faster.

37

Table 3-18: Upgrading a Unit's Attack Power

USE CASE: Attribute Upgrade (Attack)

ID: ucCo7.5

Actor: User

Skill points must be greater than 0.

Skill upgrade must be visible.

Attack upgrade selected by user with left mousekcli
Attack increases by 2 + round(level/2).

One is subtracted from skill points.

Attack is now higher.

Pre-Conditions:

Scenario

L KSR Nl

Post-Conditions:

Table 3-19: Upgrading a Unit's Regeneration

USE CASE: Attribute Upgrade (Regeneration)

ID: UCO07.6

Actor: User

Skill points must be greater than 0.

Skill upgrade must be visible.

Regeneration upgrade selected by user with leftsmalick.
Regeneration increases by 1.

One is subtracted from skill points

Pre-Conditions:

Scenario

B ®@ N PN E

Post-Conditions: The regeneration rate is now higher.

3.3.8 Unit Class Upgrade
The following class level upgrades are only possddl certain levels when the
level requirements are met:
» If the unit's level is 5 or greater and currensslé “newb”, its classification can
be upgraded to soldier at the player's discrefl@ble 3-20).
» If the unit's level is 10 or greater and curremisslis “newb”, its classification can
be upgraded to wizard at the player's discretiabld 3-21).
» If the unit's level is 15 or greater and curremssslis “newb”, its classification can
be upgraded to priest at the player's discreti@bl@ 3-22).
» If the unit's level is 15 or greater and currerassl is wizard, it may be given a

secondary classification of fire sorcerer at thaypt's discretion (Table 3-23).

38

» If the unit's level is 20 or greater and currerassl is wizard, it may be given a

secondary classification of ice mage at the playdiscretion (Table 3-24).

Table 3-20: Upgrading a Unit from "NEWB" to Soldier

Use Case: Unit Class Upgrade (Soldier)

ID: uco8.1

Actor: User

Pre-Conditions: Skill points must be greater than one.

Class upgrade must be visible.

Soldier class upgrade is selected with left molisk.c

Sprite changes to soldier graphic.

Icon changes to soldier graphic (if status windswpen).

Unit will now receive soldier attribute increaseken it levels up.

Unit is now a soldier.

Scenario

PP wN NP

Post-Conditions:

Table 3-21: Upgrading a unit from "NEWB" to Wizard

Use Case: Unit Class Upgrade (Wizard)
ID: uCo08.2

Actor: User

Pre-Conditions: Skill points must be greater than one.

Class upgrade must be visible.

Wizard class upgrade is selected with left mous.cl

Sprite changes to wizard graphic.

Icon changes to wizard graphic (if status windowpsn).

Unit will now receive wizard attribute increaseseatit levels up.

Unit is now a wizard.

Scenario

il SRl I

Post-Conditions:

Table 3-22: Upgrading a unit from "NEWB" to Priest

Use Case: Unit Class Upgrade (Priest)

ID: ucCo08.3

Actor: User

Pre-Conditions: Skill points must be greater than one.

Class upgrade must be visible.

Priest class upgrade is selected with left mouis&.cl

Sprite changes to priest graphic.

Icon changes to priest graphic (if status windowgsn).

Unit will now receive priest attribute increasesentit levels up.

Unit is now a priest.

Scenario

PPN EINE

Post-Conditions:

39

Table 3-23: Upgrading a unit from Wizard to Fire Sacerer

Use Case: Unit Class Upgrade (Fire Sorcerer)
ID: uCo08.4

Actor: User

Pre-Conditions: Skill points must be greater than one.

Class upgrade must be visible.

Fire sorcerer class upgrade is selected with lefisa click.

Sprite changes to fire sorcerer graphic.

Icon changes to fire sorcerer graphic (if statusdeiv is open).

Unit will now receive fire sorcerer attribute inases when it levels up.

Unit is now a fire sorcerer.

Scenario

PR wNdEINE

Post-Conditions:

Table 3-24: Upgrading a unit from Wizard to Ice Mage

Use Case: Unit Class Upgrade (Ice Mage)
ID: ucCo08.5

Actor: User

Pre-Conditions: Skill points must be greater than one.

Class upgrade must be visible.

Frost mage class upgrade selected with left molicde ¢

Sprite changes to frost mage graphic.

Icon changes to frost mage graphic (if status wimdoopen).

Unit will now receive frost mage attribute incressehen it levels up.

Unit is now a frost mage.

Scenario

Pl EINE

Post-Conditions:

3.3.9 Building Construction
The management of structures is vital to RTS gaméis.is a prerequisite for
constructing more powerful weapons. The followirgy details the existing building
types and functions:
» The home base must be constructed before any ethastures can be built
because it is necessary for building the fuzz (irable 3-25).
* The market place provides one gold piece per 1@@egacks. This building is
also necessary for creating assault rifles for isol@dlass units and for the

construction of a magic store (Table 3-26).

40

The bio-dome provides a one-time increase of tladgitional food points. In
addition, this structure is required to build ayhstave for priest class units, and
must be constructed before the player can devedgprgines (Table 3-27).

The gold mine provides the income source for treeygal and adds three gold
pieces to the gold stores for each 100 game tidke gold mine is a prerequisite
for factory construction (Table 3-28).

The factory allows the player to build a more pdwleweapon for the soldier (a
bazooka). In addition to a market place, a facterglso needed as a prerequisite
for building a magic shop (Table 3-29).

The most advanced building is a magic shop, whicheguired to build three
powerful weapons for wizards: the magic hat, firand, and ice staff (Table 3-
30).

Table 3-25: Constructing the Home Base

Use Case: Construct Building (Home Base)

ID: UC09.1
Actor: User
Pre-Conditions: 1. Game started.
2. Gold requirement is met.
Scenario 1. User selects home base icon on bottom interface bar
2. Mouse turns to scaffold allowing player to placesnhhe/she whishes the

building to be built.
Appropriate value is subtracted from gold.
Scaffold appears and after build time home badeappear.

Post-Conditions:

=B

Player can now build fuzz units from this building.

Table 3-26: Constructing the Marketplace

Use Case: Construct Building (Marketplace)
ID: UC09.1

Actor: User

Home base constructed.

Pre-Conditions: 1
2. Gold requirement is met.
1
2

Scenario User selects marketplace icon on bottom interface.
Mouse turns to scaffold allowing player to placeanéhhe/she wishes the
building to be built.

3. Appropriate value is subtracted from gold.

4. Scaffold will appear in location and after builché marketplace will
appear.

Post-Conditions: 1. Player can now build assault rifles.

2. Player now receives gold every 100 ticks.

Table 3-27: Constructing the Bio-Dome

Use Case: Construct Building (Bio-Dome)

ID: UC09.3
Actor: User
Pre-Conditions: 1. Home base has been built.
2. Gold requirement is met.
Scenario 1. User selects bio-dome icon in bottom interface wind
2. Mouse turns to scaffold allowing player to placeanéhhe/she wishes the
building to be built.
3. Appropriate value is subtracted from gold.
4. Scaffold appears in location
5. After build time bio-dome replaces scaffold.
Post-Conditions: 1. Player now gets a one time +3 to max food.
2. Player can now construct holy staves.

Table 3-28: Constructing the Gold Mine

Use Case: Construct Building (Gold Mine)

ID: uCo09.4
Actor: User
Pre-Conditions: 1. Bio-dome constructed.
2. Gold requirement is met.
Scenario 1. User selects gold mine icon in the bottom interfagelow.
2. Mouse pointer turns to scaffold allowing playeiptace building where
they want.
3. Appropriate value is subtracted from gold.
4. Scaffold appears in location
5. After build time gold mine replaces scaffold.
Post-Conditions: 1. Player now receives 3 gold per 100 ticks.

42

Table 3-29: Constructing the Factory

Use Case: Construct Building (Factory)

ID: UC09.5
Actor: User
Pre-Conditions: 1. Gold mine constructed.
2. Gold requirement is met for construction.
Scenario 1. User selects factory icon in the bottom interfacedaw.
2. Mouse pointer turns to scaffold allowing playeptace building where

they want.

Appropriate value is subtracted from gold.
Scaffold appears in location.

After build time factory replaces scaffold.

Post-Conditions:

[Y

User can now build bazookas.

ID:

UC09.6

Table 3-30: Constructing Magic Shop

Use Case: Construct Building (Magic Shop)

Actor:

User

Pre-Conditions:

Factory is built.
Marketplace is built.
Gold requirement for construction is met.

Scenario

NEwN e

User selects magic shop icon in the bottom interfaindow.

Mouse pointer turns to scaffold allowing playemptace building where
they want.

Appropriate value is subtracted from gold.

Scaffold appears in location.

After build time magic shop replaces scaffold.

Post-Conditions:

= ([ion B

Player can now build magic hat, fire wands, andcsiees.

3.3.10 Dungeon Exploration

There are three dungeons associated with the fithal game.

explore these dungeons and collect a key from edtiis required designing a way for

units to enter and leave the dungeons as follows:

* When a unit touches a dungeon tile, it is trangubrhside. A window at the

bottom left of the screen will open and allow theeuto explore the dungeon

(Table 3-31).

The player must

43

* When a unit touches the door icon inside the dumgéois teleported back to
world map next to the corresponding dungeon tilthe dungeon window will

close when there are no units remaining in the dandTable 3-32).

Table 3-31: Friendly Unit Enters a Dungeon

Use Case: Unit Enter Dungeon

ID: uci1o.1
Actor: User
Pre-Conditions: 1. Unit moves toward dungeon.
Scenario 1. Unit collides with dungeon tile.
2. Unitis teleported to beginning area of dungeon.
3. Dungeon window is opened at the bottom left of sare
4. Global dungeon count +1 (Note that only one dungeantime can be
open at the same time).
Post-Conditions: 1. Unit can now move or attack in dungeon.
2. Unit can move toward door tile and exit.

Table 3-32: Unit Leaves a Dungeon

Use Case: Unit Leaves Dungeon

ID: UC11.1

Actor: User

Pre-Conditions: Unit moving toward door icon.

Unit collides with door icon.

Unit teleported to outside, by dungeon icon.
Global dungeon count -1.

If global dungeon count = 0 then close window.
Unit can now attack or move.

Unit can re-enter dungeon.

Scenario

Post-Conditions:

NEIRONDE P

3.3.11 World Start

The world start script is called when a map istfisaded. Upon game
initialization, the enemy is placed at various poas of the game world. In addition, a
starting amount of gold is assigned to the played Bevel thresholds are calculated

according to the assigned delay factor (Equati@h ZTable 3-33 details this process.

44

Table 3-33: Game Initiation

Use Case: World Start

ID: ucCiz2.1

Actor: System

Pre-Conditions: 1. Game has just started.

Scenario Player array is created.

Enemy array is created.

Global parameters are created.

Player gold is set.

Fuzz unit created (initial one).

Enemies created statically and placed in “bad-guydy.
Building parameters are set to 0 (no buildingsthuil
Food set to 1.

Food used set to 0.

0. Number of keys set to 0.

Game can be played.

PBOONo G RWDNE

Post-Conditions:

3.3.12 Build Unit

Each fuzz unit is built as a level one class “newaht requires 25 gold pieces and
one food point. Therefore, in order to create mients, the bottom tool bar must indicate
that the available/max food exceeds the food used, that enough gold pieces are
available (Table 3-34).

Table 3-34: Building a Unit

Use Case: Build Unit

ID: UC13.1

Actor: User

Pre-Conditions: Gold requirements are met.

Food used is at least one less than total food.

User selects base camp.

User selects build fuzz icon in interface window.
Appropriate amount of gold is taken out of userisl gesource (25).
Food used is incremented by 1.

Unit is created and added to players array (50 max)
Default attributes are given to the unit.

Unit is classified as “newb” and given a pistol.

Unit is level 1 and has 1 skill point to spend.

Unit appears inside the base camp icon.

Unit can how move.

Unit can now attack.

Unit can be upgraded.

Scenario

Post-Conditions:

WNROONO TR WNREINE

45

3.3.13 Build Weapon

Providing that the player has enough gold, weagansbe created and stored for use

when units meet the requirements to use them. Weagre assembled in four different

structures:

Holy staves, used by priests, are constructedebib-dome (Table 3-35).
Assault rifles are constructed in the market p(d@ble 3-36).

Bazookas are built in the factory and can penetrateerable obstacles inflicting
much more damage than assault rifles (Table 3-37).

Magic hats are created in the magic shop and iserd#& wizard's attack power
(Table 3-38).

Fire wands are built in the magic shop and incrdhsefire sorcerer's attack
power more than the magic hat (Table 3-39).

Ice staffs are also produced in the magic shopisecréase the ice mage's attack
power more than the magic hat. These are the pwmserful weapons of the
game (Table 3-40).

Table 3-35: Building the Holy Stave

Use Case: Build Weapon (Holy Stave)

ID: uci4.1
Actor: User
Pre-Conditions: 1. Bio-dome is selected.
2. Gold requirement is adequate.
Scenario 1. User selects build “holy stave” icon.
2. Appropriate money is withdrawn from the gold ressur
3. Holy stave is added to the weapons list.
Post-Conditions: 1. Holy stave can now be equipped by a priest.

Table 3-36: Building the Assault Rifle

Use Case: Build Weapon (Assault Rifle)

ID: uC14.2

Actor: User

Pre-Conditions: Market place is selected.

Gold requirement is adequate.

User selects build “assault rifle” icon.

Appropriate money is withdrawn from the gold reseur
Assault rifle is added to the weapons list.

Assault rifle can now be equipped by a soldier.

Scenario

=& N =) =

Post-Conditions:

Table 3-37: Building the Bazooka

Use Case: Build Weapon (Bazooka)

ID: uCi14.3

Actor: User

Pre-Conditions: Factory is selected.

Gold requirement is adequate.

User selects build “bazooka” icon.

Appropriate money is withdrawn from the gold reseur
Bazooka is added to the weapons list.

Bazooka can now be equipped by a soldier.

Scenario

S| N = =

Post-Conditions:

Table 3-38: Building the Magic Hat

Use Case: Build Weapon (Magic Hat)

ID: uCi4.4

Actor: User

Pre-Conditions: Magic shop is selected.

Gold requirement is adequate.

User selects build “magic hat” icon.

Appropriate money is withdrawn from the gold reseur
Magic hat is added to the weapons list.

Magic hat can now be equipped by a wizard, firesar, and ice mage.

Scenario

R IR

Post-Conditions:

47

Table 3-39: Building the Fire Wand

Use Case: Build Weapon (Fire Wand)

ID: UC14.5

Actor: User

Pre-Conditions: Magic shop is selected.
Gold requirement is adequate.

1
2
Scenario 1. User selects build “fire wand” icon.
2
3
1

Appropriate money is withdrawn from the gold reseur
Fire wand is added to the weapons list.
Fire wand can now be equipped by a fire sorcerer.

Post-Conditions:

Table 3-40: Building the Ice Staff

Use Case: Build Weapon (Ice Stave)

ID: UC14.6

Actor: User

Pre-Conditions: Magic shop is selected.

Gold requirement is adequate.

User selects build “ice stave” icon.

Appropriate money is withdrawn from the gold reseur
Ice stave is added to the weapons list.

Ice stave can now be equipped by a ice mage.

Scenario

Pwh W

Post-Conditions:

3.3.14 Equip Weapon

To equip a unit, the user selects the appropriate tinit and clicks the middle
mouse button or the "E-quip"” icon on the lower tighthe screen. A list of all weapons
available to the player is displayed and the ddsiveapon may be selected. If the unit
class is appropriate, it will be equipped with etected weapon (Table 3-41). If the unit
does not fulfill class requirements for the weapuothing changes and a message box is
displayed that says "This class cannot use thipargaTable 3-42).

48

Table 3-41: Equip Weapon Correctly

Use Case: Equip Weapon (Success)

ID: UC15.1
Actor: User
Pre-Conditions: 1. Fuzz unit selected.
2. Either middle mouse button pressed or “E-quip” icobottom right is
pressed.
Scenario 1. Once mouse button or icon pressed list opens.
2. User selects desired weapon.
3. Class can use desired weapon.
4. The weapon string is placed into unit’s weapon.
5. The old weapon the unit was using is placed intlable weapons list.
Post-Conditions: 1. Next time unit fires weapon string will be compaget new attack will be
created.

Table 3-42: Attempting to Equip an Invalid Weapon

Use Case: Equip Weapon(Failure)

ID: UC15.2
Actor: User
Pre-Conditions: 1. Fuzz unit selected.
2. Either middle mouse button pressed or “E-quip” icobottom right
pressed.
Scenario 1. Once mouse button or icon pressed weapons listsopen
2. User selects desired weapons.
3. Class cannot use weapon.
4. Error message pops up.
Post-Conditions: 1. Nothing has changed the user can try to equipferdift weapon or go on
using the same weapon.

3.3.15 Manage Resource

Resources are managed automatically as a backgrpwowkss. Therefore,
market places and gold mines provide the apprapaatount of gold every 100 cycles in
the game, automatically. Available food is alsonaged in the background processes
(Table 3-43).

49

Table 3-43: Resource Management System

Use Case: Manage Resource

ID: UC16.1

Actor: Time

Pre-Conditions: 1. Gold mine, marketplace, and/or bio-dome built.
Scenario For every 100 game cycles user gets 1 gold perehatéce.

1.
2. Fore every 100 cycles user gets 3 gold per gole&dmin
3. For ever bio-Dome user gets +3 to max food once {iN® dependant).

Post-Conditions:

3.3.16 Game Management

The Manage Game Use Case provides the enemy iattificelligence. This
function controls the monster's movements, attaeks| occasionally produces more

monsters to provide opportunity for additional arid level up (Table 3-44).

Table 3-44: Game Management System

Use Case: Manage Game

ID: UC17.1
Actor: System
Pre-Conditions: 1. Game has started.
Scenario 1. System checks to see if enemies collide with waillslocking terrain.
2. When units collide they will be assigned a randoradation.
3. When enemies are within range they will stop atacitplayers units.
4. The system will randomly choose array locationsregmies.
5. When the array locations are empty (enemy has teferated) it will
create a new enemy using that array locations.
6. System checks to see if all three keys are takguidyer, the game ends.
Post-Conditions:

3.3.17 Special Abilities

Except for the “NEWB” class, every class has a speability associated with it
described as follows:

e The soldier units have the ability to increase dpé® a short time, when

attacked, to better avoid the enemy. This actequires magic points (not

50

replenished very quickly in the soldier unit) ascthot always available (Table 3-
45).

A priest unit has the ability to heal friendly wivho are short on health points.
Magic points must be available to perform this tiorc (Table 3-46).

The wizard can create a defense shield around itssting it more difficult to
be hit. Magic points are also required to perfoinia function (Table 3-47).

The fire sorcerer has the ability to summon a "8femental” into the world.
This "fire elemental” is another unit that can m@tea speed of one and fire a
bazooka. In addition, the “fire elemental" can absthe enemy attack,
preserving the fire sorcerer's life. Magic poiate also required for this function
(Table 3-48).

The ice mage has the ability to fire a "frost noiraight directions. This is the
most powerful special ability in the game and reegiia considerable number of

magic points, limiting the number of times it canused (Table 3-49).

Table 3-45: Soldier Special Dash Ability

Use Case: Special Abilities (Soldiers DASH)

ID: uci1s.1
Actor: Fuzz
Pre-Conditions: 1. Unit must be class soldier.
2. Unit must have enemy within range.
3. Unit must have enough magic points for the desspatial ability.
Scenario 1. Soldier unit recognizes threat.
2. Soldier unit checks a random percent to see iflitpgrform speed boost.
3. Soldier unit passes percent and increases its spegabrarily.
4. Magic points subtracted.
Post-Conditions: 1. Soldier unit can now move faster than other units.
2. Magic points begin to go up again until they hi thaximum value.

51

Table 3-46: Priest Special Heal Ability

Use Case: Special Abilities (Priest Heal)

ID: ucC18.2
Actor: Fuzz
Pre-Conditions: 1. Unit must be class priest.
2. Other units must be less than full health.
3. Enemy must be within range.
4. Magic points must be high enough to perform heal.
Scenario 1. Soldier unit recognizes threat.
2. Priest checks to see if any friendly units areginge.
3. Priest checks a random percent whether to headtor n
4.
5. When the priest pass the check priest will hedkighdly units within its
range.
6. Magic points are reduced.
Post-Conditions: 1. All fuzz units within the range are now at highealth points (cannot
exceed max hp).
2. Priest will begin to regain magic points.

Table 3-47: Wizard Special Shield Ability

Use Case: Special Ability (Wizard Defense)

ID: uC18.3

Actor: Fuzz

Unit must be class wizard.

Enemy units must be within range.

Magic points must be high enough to perform defestmseld.
Soldier unit recognizes threat.

Wizard checks a random percent to see if it perfoshield or not.
When wizard passes the check and increases itssgetemporarily.
Magic points are reduced.

Wizard now has a temporary higher defense rating.

Wizard begins to regain magic points.

Pre-Conditions:

Scenario

Post-Conditions:

N Ea Nl K o

Table 3-48: Fire Sorcerer Special Fire Elemental Altity

Use Case: Special Ability (Fire Elemental)

ID: ucCi18.4

Actor: Fuzz

Unit must be class fire sorcerer.

Enemy unit must be within range.

Magic points must be high enough to summon elerhenta

Soldier unit recognizes threat.

Fire sorcerer checks a random percent to se&viflisummon elemental.
When fire sorcerer passes it creates a new ehtityrésembles a walking

Pre-Conditions:

Scenario

whPwh e

52

flame.
After a while the entity will disappear.
Magic points are reduced from fire sorcerer.

Post-Conditions:

wn =0 s

Player can move fire elemental.
Fire elemental will attack enemies.
Fire Sorcerer will begin to regain magic points.

Table 3-49: Ice Mage Special Frost Nova Ability

Use Case: Special Ability (Frost Nova)

ID: ucC18.5
Actor: Fuzz
Pre-Conditions: 1. Unit must be class ice mage.
2. Enemy must be within range.
3. Magic points must be high enough to perform attack.
Scenario 1. Soldier unit recognizes threat.
2. Ice mage checks a random percent to see if itugél its ability.
3. When the ice mage passes it will shoot ice blast/gry direction (only

eight directions).

4. Magic points are reduced from unit.
Post-Conditions: 1. Ice blast deal powerful damage and can kill mo#isun one shot.
2. Ice mage will begin to regain magic points.

3.4 Requirement Fulfillment

Table 3-50 maps game requirements to use caseslingyvehat all level 1

requirements were met. These are requirementkeiBd to R86.

Table 3-50: Requirement Fulfillment Table

[Continued on next page]

R#\UC | 01 | 02

03|04 |05[06|07|08|09|10|11 12|13 |14 |15]|16 |17

18

RO1

\/

R0O2

\/

RO3

R04

\/

R0OS5

R0O6

RO7

R0O8

R0O9

R10

R11

R12

R13

2|22 12|

R14

53

R#\UC

01

02

03

04

05

06

07

08

10

11

12

13

14

15

16

17

18

R15

R16

R17

R18

<2|2]1212 10

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31

R32

R33

R34

R35

R36

R37

R38

R39

R40

R41

R42

2l el |22 |22 2|22 |22 (2|2 |2 |2 |2|2]|2]2]

R43

R44

R45

R46

R47

R48

2leje|elel2]

R49

R50

R51

R52

R53

E P P B

R54

R55

R56

R57

2|22 |2

R58

R59

R60

R61

R62

R63

R64

54

R#\UC | 01] 02
R65
R66
R67
R68 N
R69 N
R70 N N
R71 N
R72 N
R73 N
R74 N
R75 N
R76 N
R77 N
R78
R79
R80
R81
R82
R83 N
R84
R85 N
R86 N

2]2]=210

< 222122]

3.5 Modified Requirements

The player can create a maximum number of ten groupo assign a unit to a
group, the user selects the desired unit and thesses the control key. A list of zero to
nine appears and the user selects the group nufmbesnit will be associated with. In
order to re-assign a unit to another group thisgse is repeated. When the user selects a
number key (0 to 9) the corresponding group ofsumitll highlight in blue, and this
group can then be moved as a unit. Additional irequents for group selection are
detailed in Table 3-51.

Table 3-51: Additional Requirements

ARO1[1] | The SYSTEM shall have groups from 0 — 9.

ARO2[1] | The SYSTEM shall, by default, assign eveey fuzz unit to group 10 (no group).
ARO3[1] | The SYSTEM shall, if control is pressed the key board, assign the selected fuzz to a
group depending on which number is selected in Bume
ARO4[1] | The SYSTEM shall enable all units withingaoup to move if the user has pushed the
corresponding group number without control beingsped.
ARO5[1] | The SYSTEM shall make the fuzz units stdpew they collide with one another. Otherwjse
they would merely stand on top of each other ryjrifre effect.

55

ARO6[1] | The SYSTEM shall, once a group has beeecsetl, allow the user to right click on a po
all fuzz units within that group will attempt to m®to that point.

ARO7[1] | The SYSTEM shall clear the group move fifithe user selects an individual unit with t
mouse (thus, individual movement is still possible)

ARO8[1] | A limitation with this implementation is & once a unit has been re-assigned to a gro
will not be able to return to group 10 (no assignimgroup). Therefore, once a unit
assigned it will always be part of a group regagslié it is re-assigned or not.

3.6 Modified Use Cases

nt

ne

up it

is

Four new use cases were added to incorporate thep gnovement function.

These use cases are detailed in table 3-5.2.

Table 3-52: Additional Use Cases

Additional Use Cases

AUCO01

Group assignment

When control is pushed a menuapjlear allowing the
user to assign the specific fuzz unit to a group 0-

AUCO02

Group Selection

If the user pushes a numeric keycthiresponding group

will be selected for movement. (Note: this is e
global select variable for the status window. Tisisa
separate variable).

AUCO03

Group Movement

After a group is selected, the gserright click with the
mouse and the fuzz units will try to move towardtt
point. They will stop if they hit each other orobking
terrain.

AUC04

Group De-Selection

If the user selects an individuait. The group
movement flag is turned off. Therefore, the uselyg

controls one unit.

3.6.1 Group Assignment

Table 3-53 details the process the player musbparin order to assign a fuzz

unit to a group.

56

Table 3-53: Group Assignment for Individual Units

Use Case: Group Assignment

ID: AUCO01.1

Actor: User

Pre-Conditions: Game started.

Fuzz selected.

User pushes control.

Menu pops up 0-9.

User selects a group.

The selected fuzz changes its group number todiresponding number.
Fuzz can now be moved in a group.

Player can select individual fuzz again.

Scenario

Post-Conditions:

NP RPN R

3.6.2 Group Selection

Table 3-54 details the process the player musoparin order to select a group
that fuzz units have been assigned to.

Table 3-54: Group Selection

Use Case: Group Selection

ID: AUCO02.1

Actor: User

Pre-Conditions: Game started.

Fuzz units have been assigned to that group.
User pushes digit 0 — 9.

Global variable set to that group’s number.
Units can now move as a group.

User can select new unit or group.

Scenario

Post-Conditions:

[=) =) =

3.6.3 Group Movement

Table 3-55 details the process the player musoparin order to move a group
that is currently selected.

57

Table 3-55: Group Movement

Use Case: Group Move

ID: AUCO03.1
Actor: User
Pre-Conditions: 1. Game started.
2. Group selected.
Scenario 1. User right clicks the mouse at desired location.
2. Fuzz checks to see if global group variable is etpuis group variable.
3. |If so fuzz begins to move toward point.
4. Fuzz will stop if it comes in contact with anotHiezz unit or blocking
terrain.
Post-Conditions: 1. Fuzz units can be moved again.
2. New group or unit can be selected.

3.6.4 Group De-Selection

Table 3-56 details the process the player mugbipe in order to de-select a
group. This process is done automatically wherptager selects another entity with the

mouse.

Table 3-56: Group De-Selection (automatic)

Use Case: Group De-select

ID: AUCO04.1
Actor: User
Pre-Conditions: 1. Game started.
2. Group selected.
Scenario 1. User will left click the mouse on a unit or a birlg.
2. Global group selected will be set to either “noo(mill) or group11
(unusable group).
Post-Conditions: 1. Player can now move single unit.
2. Player can now select others unit, buildings ougso

Now that the requirements have been listed out gieat detail, the complexity
of this program can be appreciated. This procésseating requirements allows the
programmer to identify tangible goals to achieVidis process would be helpful to game
designers who were interested in the game playgainae.

58
4 Chapter 4: High Level Design of Fuzz's Revenge

This chapter addresses the high level design efpitot game. Due to space
limitations not all of the UML (Unified Modeling lrteguage) design models used for the
game are outlined in this chapter. The designrdragshown in Figure 4-1presents the
placement of modules in the program. Subsequewtcharts outline each component of
the prototype game. Modules can fall under orth@following four categories:

e Mouse/Keyboard Input
» Display
* Combat

* Resource and System Management

G
U
| _ Gul
T
fffffff «subsystem»
Display Ojbects
i
| | [|
B ! ! [PO _l
i |
U N ! ! «subsystem» - — - «subsystem>
! | Select Unit | __ Upgrade Attributes
|
|
S «subsystem» | ettt
P I I !
N Select Building [N ! i |
| 1 |
E T «subsystem» i i !
S E Select Button b b e «subsystem»
s i ! Upgrade Class
|
|
i
! i i
I ! !
L [l
******* «subsystem» «subsystem»
o «subsystem» «subsystem» ! Equip Weapon Move Unit
G Build Unit Build Weapon
1 i
i
C U
«subsystem»
Construct Building
)
! | subsysterm» [---—----mmmn
77777777777 _| Enemies within Range |
l i 1.
,,,,,,,,,,,,,,,,, |
' i «subsystem»
1 «subsystem» ! Special Abilities
Gold Manager ! |
! | T
Monster Management T |
| : ‘
T | «subsystemy f-—————————————I
Collision Handler
U
T w o : —
! 1 | | |
AN I IS ! «subsystem»
St | |
L i i Game Maker Graphic Engine
| «subsystem» K-————-——>
Game Maker Timer ! «subsystem»
T Game Maker Input
Y
«subsystem»

Game Maker Collision Utility

Figure 4-1: High Level Diagram of Fuzz's Revenge

4.1 Mouse Input

Due to the interactive style in which this gamelgyed, many modules provide

mouse functionality.

the modules that are dedicated to mouse control.

[1

«subsystem»
Select Building

[1

«subsystem»
Build Unit

[1]

«subsystem»
Select Button

«subsystem»
Build Weapon

[]

[1

[1

«subsystem»
Select Unit

«subsystem»
Equip Weapon

[

59

When an object is selectdiks¢é modules determine the
appropriate outcome for that particular objectickbhg on different objects has different
consequences. For example, clicking on a buildway bring up buttons for weapon or

unit construction, but clicking on a fuzz unit migreelects that unit. Figure 4.2 details

[]

«subsystem»

[1

«subsystem»
Upgrade Class

T
|
|
|
|
|
| L
|
|
|
|
|
|
|

«subsystem»

Construct Building

«subsystem»
Move Unit

Figure 4-2: Modules Dedicated to Mouse Control

The four main scenarios for the left mouse cliak iuupgrading unit statistics, ii)

building weapons or units, iii) selecting buildings units, and iv)construction of new

buildings. These functionalities are explainebeand illustrated graphically in Figure

4-3.

» If the mouse’s left button is pushed while the ours pointing to a unit

upgrade, that upgrade is applied to the selecta&d un

» If the mouse’s left button is pressed on a fuzz,uhe unit will be selected

and can be moved or have its statistics viewed regsing the space bar.

Building-specific functions appear at the bottontte# screen when buildings

are selected with the left mouse button.

Upgrade Attributes

60

When a “Build Weapons” button is pressed, the playgold will be reduced
by the appropriate amount and the list of availa@apons will increase.
When a “Build Fuzz Unit” button is pressed, a nexzf dialogue window will
appear asking for a name for the new unit.

Multiple events occur when the “Construct Buildifgitton is selected. First,
if the player has the necessary gold, a scaffolldl agpear on the screen
following the mouse cursor. Second, when the plajieks the left mouse
button on the desired location for the new buildiognstruction will begin if
no other object is present at the selected locatidbhe player cannot select

another object until a suitable location has beemd for the new building.

Mouse Left Click

Is On
Upgrade?

NO

Is on Build
weapon?

NO

NO

Is on Building?

NO

s on Construct
Building?

NO

Is Mouse
scaffold?

Upgrade selected

YES—» unit attribute or

61

class

Check to make sure gold
requirements are good,

YES—» then subtract necessary
gold and add weapon to
list

Global variable

YES selected” now

points at specific
units object ID

Global variable

YES selected” now

points at buildings
object ID

Check if gold is

subtract

YES— high enough, then — Mouse turns to scaffold.

Is location
valid for
construction?

YES—p,

Building begins to
construct.

Figure 4-3: flowchart of the Left Mouse Button’s Mutiple Functions

62

Unit movement requires that the user has selectedzaunit. This is controlled
exclusively with the right mouse button. Therenis “path finding” functionality in
Fuzz’'s Revenge. Therefore, if a unit collides wéthblocking object it will stop. As

Figure 4-4 reveals, even with this simplified agmo, the process is still complex.

T

Mouse Right
Clicked

NO-
N

Unit(s) set(s) .
Is unit YES destination to the Un(')tiit"::\(/: tg::ja);d
selected? point where mouse M P (Sp with wall?
" 100 ticks.
was clicked.
NO ith other unit?
¢7YE
Is unit in Is unit within a

certain area of the

rou
group click?

selected?

Unit Stops —YE

Figure 4-4: Unit Movement Controlled by Right MouseButton

The player presses the middle mouse button csdtwl wheel to equip fuzz units
with weapons (Figure 4-5). Players using two-buttaice can select the “E-quip” icon
to accomplish this task. After pressing the middieuse button on the appropriate fuzz
unit, a list of all available weapons will appeadaa new weapon can be selected. The
previous weapon associated with the fuzz unit thidin be placed in the list of available
weapons. Therefore, weapons are not lost but mdned the unit to the existing

weapons list.

63

‘7

4

Middle Mouse
Button Selected
(Oricon is pressed)

v

List of weapons
user has created
pops up. User
selects one.

Old weapon is put
Unit’'s weapon into the list where
YES———» variable is now the selected

unit capable of
wielding the selected

4

Weapon? changed. weapon was
initially.
NO
Print out “Invalid ;/‘\A
Selections” U

Figure 4-5: Equipping Fuzz Units With Weapons

Figures 4-6 and 4-7 detail attribute and class ecdraents available for fuzz unit
upgrades. Upgrade buttons appear only when tleetsdl fuzz unit qualifies for the

upgrade.

Select Attribute
Upgrade

64

Attack upgrade
selected.

Regeneration

upgrade selected.

Speed upgrade
selected.

Range upgrade
selected.

Rate of Fire
upgrade selected.

Defense upgrade
selected.

v

v

v

v

Selected Units
Attack +2 +
round(level/5)

Selected Units
Regen +1

Selected Units
Speed +1
(*This can only be
upgraded once)

Selected Units
Range + 10

I

v

v

v

v

v

Selected Units Rate
of fire delay -10.
(*This can only be
done 3 times)

Selected Units
Defnse +1 +
round(level/5)

v

v

b

Sill points - 1

®

Figure 4-6: Attribute Upgrade Process

Select Class
Upgrade.

v

v

v

v

Soldier upgrade
selected.

Wizard upgrade
selected.

Fire Sorcerer

upgrade selected.

Priest upgrade
selected.

lce Mage upgrade
selected.

v

v

v

v

v

Selected Units
becomes a soldier

Selected Units
becomes a Wizard

Selected Units
becomes a Fire
Sorcerer

Selected Units
becomes a Priest

Selected Units
becomes a Ice
Mage

v

v

v

v

Sill points - 1

Figure 4-7: Class Upgrade Process

65

4.2 Display System

The display system is encapsulated in the Game=Magraphic engine and each
object can have a sub-routine caltbdw(). During screen refresh, the Game Maker will
call each object’'siraw function and perform the code that is written ¢helf there is no
draw routine, such as in the case of terrain objebe default sprite will be drawn. The
default sprite is a setting that can be changedreaghe game is compiled. It is a static
picture of some entity that can either have trarespeaor filled background. The enemy’s
draw routine adds their names, health bar, and ateonsprite or moving picture, to the
video buffer. The building and fuzz unit draw tioes are more complicated than the
enemy's (Figure 4-8). A white frame will always thrawn around the selected unit. A
selected building will display available optiong(j to build weapons or fuzz units). The
fuzz unit's name and health bar is always displayedhe screen. When the fuzz unit is
selected and the space bar depressed a sub-wirppmara showing the appropriate unit
statistics. In addition, upgrade buttons will agpé the unit has skill points and new

class upgrade options will appear if the unit I&slaks requirement is met.

Draw Object’s
Sprites

Display white
frame border
and optional |«——YE
buttons building

Building
selected?

provides
NO
b 4
Is fuzz unit YES Draw white fr'ame
selected? around unit.
s inventon Draw statistics and
. Y YES—» icon for specific
window up?
class
¢—N
Does the Show available
4¢—NO selected unit have YES—p unarades
skill points? P9
NO
Does the
NA selected unit meet
l o requirements for
class upgrade?
Yes
v
P NO Show available
class upgrades
b 4
Is unit in Show dungeon

dungeon? window

Figure 4-8: Display System Process

67

4.3 Combat System

As this is a pilot game designed to test a thedrgombining game genres, a
simple battle sub-module was implemented, in whiodth enemy and fuzz units
automatically attack each other when they comeiwitange(Figure 4-9). Also, a delay
variable controls the rate of fire. Once the fun becomes a class other than “NEWB”,
it will gain a special ability. If the characteahienough magic points, a random number
is generated. If this generated number is less ghpre-defined unit value, the fuzz unit
will perform the special ability associated with @lass. Therefore chance is introduced

into the game that can influence outcome. Enenitg dio not have special abilities.

List of Attacks:
Pistol->Yellow bullet
Assault Rifle-> Green bullet
Bazooka-> Red bullet
Magic Hat-> Energy blast

Enemy unit
within range of
friendly unit?

Rate of Fire

YES Counter=0

List of Special Abilities:
Soldier->speed increase
Wizard->defense increase
Priest->heal injured units
Fire Sorcerer->summon fire
elemental
Ice Mage->Ice Nova

\/\

YES—p

Create an attack
and send it
towards enemy’s
location. Set rate
of fire counter to =
unit DELAY
(Rate of Fire)

Holy Stave-> Holy blast
Fire Wand->Fire ball
Ice Stave-> Frost Shot

\/\

Does unit have
special ability?

YES

Does unit
have enough
magic points?

YES
A 4

Take a random
percentage, If
below a certain
value, use special
ability.

Subtract magic
points

e

Figure 4-9: Basic Combat System Process

68

When the attack initiated by the fuzz unit reacties enemy, the program will
compare the attack with the enemy’s defenses termete the effect. If the attack is
greater than the defense, the enemy unit takesgigraad if the enemy’s health falls to
zero it is destroyed. When the enemy is destrofiez; units within range receive
experience points and the player receives the gpipte amount of gold. This process is

depicted in Figure 4-10.

Friendly units
attack collides with
the enemy

Xp given to every
unit who was
within range of the
enemy.

A

Is Friendly .
. Enemy HP is
randl;rr:t(ggfgke;emy YES—» subtracted Is enemies Gold rewarded to
defense + Random(damage hp<=0 player
andom(20)? of attack)

:

Enemy object
NO cleared from array
and deleted.
(Note enemy array
is not condensed)

b4
(o]
A

Figure 4-10: Fuzz Unit Victory Process

In contrast with the previous scenario is the sitmawhere the fuzz unit is hit by
an enemy'’s attack and takes damage (Figure 4411fe fuzz unit’'s health falls to zero,
it is destroyed and the player’s array is adjustaéter this is done, the unit is destroyed

and any weapons it was equipped with are lost.

Enemy attack
collides with
friendly unit.

69

YES P

Player unit array
clears pointer that
is holding this unit.

!

All entries are

shifted up one to
Is enemy attack + Random (1- fill in the hole.
random (20) > friendly S damage) is
defense + YE subtracted from
random (20)? friendly unit. i

Unit object is
deleted.
(Weapons are
deleted as well)

Figure 4-11: Fuzz Unit Defeat Process

4.4 System Management

The System Management has two parts, one the msmanagement of the game
and two, controlling the enemy. The first sub-egsttakes care of various
miscellaneous tasks to keep the game running. giobh@ and resource system
functions are as follows and illustrated in Figdré2:

* For every bio-dome constructed three food units added to the player's
resources. The system tracks the numbers of fu#s gonstructed and also
determines if enough food points are present tatereew fuzz units.

» For every market place constructed, a gold pie@ded to the player's money
every 100 game tics.

* For every gold mine, three gold pieces are add¢detplayers money every 100
game tics.

70

Has a Bio

Dome Been Add 3 to player

YES——p

built? max food
NO
[P
. Add 1 Gold per Add 3 Gold per
Has it been 5 each market place each Gold mine
100. game YE the user has > the user has
ticks
constructed constructed

NO

Figure 4-12: Resource Management Process

The enemy manager component, Figure 4-13, keepseitemy units moving
continuously through the world. If the enemiedidel with an object, they will proceed
in a new random direction. When they come in raoiga fuzz unit they will stop and
fire. They will only begin moving after the fuznitiis destroyed or moves out of range.

This module also spawns new enemy units when tigenumber has been
destroyed. Some of the newly created enemy uretsvaaker than veteran units allowing

for novice fuzz units to test their mettle and gakperience points.

71

Has Monster
Collieded with
Blocking terrain

Find new random
direction to move

YES—» Stop Monster

NO

Monster in Can Create attack, and
Range of Fuzz YE Monster fire YES—» send it toward fuzz
unit Yet? unit
NO
v NO
Getarandom | i
Probablility
Create new Set new monsters
Is probability < S Find empty spot in monster in that ;
20% YE Monster array location on the location to a
array predefined area

SE—CY

Figure 4-13: Enemy Unit Process Manager

As the flow charts demonstrate, even with simple-sodules used, such as the
attack and move, the game was still quite complBixe process of outlining the code in
flow chart form allows the programmers to see wiaiables, functions, and possibly
objects they will need in order to complete thétaBlow charting is also a good way of

finding potential flaws or bugs in the code beftive code is actually entered.

72

5 Chapter 5: Fuzz's Revenge lllustrated

This chapter provides screen shots from the pilatneg with accompanying
explanations which describe the results of thegatoj These screen shots demonstrate

both real time and role playing strategies thaehasen incorporated into the game.

5.1 Units

Figure 5-1: The Enemy Unit (Left) The Friendlyunit (right).

Figure 5-1 shows the standard display of an enamtyincluding name, health bar,
and sprite (image). Figure 5-1 shows the friendiit surrounded by the white selection

box and includes its name, health bar, and apptepciass sprite.

73

5.2 Statistic Window

Speed Upgrade
Range Upgrade
Defense Upgli'ade

Class Upgrades
- Soldier -
- Wizard
- Priest

Press Space 1o Closs

ofl o B e
\ ':5-':#1
) < ; ,
Regeneration Upgrade o §° Ki g::,;.___'.'

Attack Upgrade
Rate of Fire Upgrade

Figure 5-2: The Unit's Statistics Window

Figure 5-2 shows the status box that is associai#tdeach unit. Once a unit is
selected and the space bar is pressed, the statuspbears showing the attributes of the
selected unit. In this example, 40,000 experigruiats were given to the unit, placing it
at level 89. Because the fuzz unit's class isBWS” it can become a solder, wizard, or
priest because its level is higher than 5, 10, Encespectively. Also note that the player
can individually customize six attributes for eaoht depending on the unit's skill level.
However, certain upgrades have limitations. Fanegle, speed can only be upgraded
once, to a rating of 2, and rate of fire can ordyupgraded three times, which lowers the

delay that is required to attack again to 20 (cle

74

5.3 Weapon Building

Figure 5-3 gives one example of building a weapoterthe selected building
(white square) and the option tool bar to build pages. In this example, the magic shop
can build three powerful weapons: a magic hatithased by wizards, fire sorcerers, and
ice mages, a fire wand that is used by fire sorse@nd a frost stave that can only be

used by ice mages.

Figure 5-3: Available Weapons in the Magic Shop

75

5.4 Weapon Equipping

Maigic Hat
Fire Wand
Ice Skave

Cancel

Figure 5-4:Weapon Selection Menu

Figure 5-4 shows a selected fuzz unit (wizard ¢lassl the equipment menu for
this unit that appears when the middle mouse busoalicked. Only wizards, fire
sorcerers and ice mages can use the magic hat me@dhough all weapons are visible
in the menu, only fire sorcerers can use a firedvamd only ice mages can use an ice

stave. The system will not allow a wrong weapobédaelected for a unit.

76

Once the fuzz unit reaches the appropriate claspldyer can trade the current
weapon used by the unit to a more powerful onguré 5-5 shows a fuzz unit that has

been elevated to a wizard class with the magic hat.

Fire sorcerer
(class upgrade for wizard only)

Ice Mage
(class upgrade
for wizard only)

Weapon changed

Figure 5-5: Equipping the Magic Hat

Figure 5-5 shows the two secondary classes availablthe wizard: the fire
sorcerer and the ice mage. On the condition tlefuzz unit is a wizard class, it can be
upgraded to fire sorcerer or ice mage, providinghds reached level 15 or 20

respectively.

77

5.5 Group System

0

Q Assigning
? group number
. ~ Yo fuzz unit
mm 7

e

B N L LT I %]

Figure 5-6: Assigning a Unit to a Group

In order to regain thermy feel that is found in RTS strategy games, group
movement was introduced into the pilot game. FdbH6 illustrates the procedure for
group assignment. Once the user selects the ajdmuzz unit and then presses the
control key, a menu with the list of existing grompmbers will appear. The user then
clicks the appropriate group number with the mou$ke group number is stored in the
unit's group variable, and when the appropriateugraumber key is pressed, units

assigned to that group will be highlighted in agbhox (Figure 5-7).

78

. Members in group
BT that was selected

Figure 5-7: A Selected Group

There is still only one fuzz unit stored in the lgd “selected” variable,
highlighted in white. Therefore, the status windeal still work, even if a group is
selected. If the user selects another unit ougrthe current group will be de-selected
automatically. Once a unit or group is selected, glayer can right click the mouse on
any location in the world and the group or unithwibve to that particular location unless

they collide with blocking terrain.

Figure 5-8: The Opening Screen

79

The opening screen provides users with money aod ¢éounters. The "E-quip”
button allows players without a middle mouse buttmequip units with weapons (Figure
5-8). All, but one, of the buildings in the tochrbare scaffolds. Therefore, the home
base must be built first. Once the home basernstoacted, other buildings will become

available (Figure 5-9).

Figure 5-9: After construction of Home Base occurgew buildings are available

The final, novel component in this RTS game isdbegeon screen which opens

and closes when a fuzz unit comes in contact wihrageon (Figure 5-10).

80

Fuzz unit
Eiok

Figure 5-10: Fuzz unit entering Dungeon

Once the fuzz unit comes in contact with the dung@eégure 5-10), it will be
transported into another area of the map and andacp window will open (Figure 5-
11). Note the white, door-shaped image: this isetkie When a fuzz unit collides with

the door, the fuzz unit leaves the dungeon.

81

Exit Door

@50 Fuzz unit

Dungeon |

Figure 5-11:Fuzz unit inside a Dungeon

Recalling chapter two, the pilot game requireduber to get three keys. Figure
5-11 shows the location of the key in the first geon. Two more keys are located in
two other dungeons found in the world.

This chapter has covered the major aspects opitbegame “Fuzz’s Revenge”.
Although difficult to demonstrate on paper, theeger shots display an RTS setting where
the player controls multiple units, constructs @migys, builds weapons to equip to fuzz
units and can move units in groups. Along withsthéRTS factors this chapter also
demonstrated various RPG concepts such as: leyelsgomization, weapon equipping,

and “dungeon crawling”.

82

6 Chapter 6: Future Work

This chapter discusses further research possasilitor the concept of RPG/RTS
combination. Using the ideas discussed in the ipusvchapters as a spring board,
various new options become available. This chagitmusses some of the options which

have the largest potential.

6.1 Future Work

Although the pilot game presented in this thesistaios the desired functionality,
there are still more areas in which the game cteldmproved. These areas fall into
three categories:

e Multiplayer

* New units

» Balancing (Game mechanics)

In addition, further research and development candbne to investigate new
combinations of genre characteristics as well ggaved approaches and notations (in

particular, UML) in game development.

6.1.1 Multiplayer

Preliminary programming was done to allow two play® compete against each
other on the same computer (using the same keypwaFlizz's Revenge Those who
played the game found it entertaining and develaggethterest in individual characters.
Therefore, the players were much more careful fangiting to keep their characters
alive. Upgrading unit attributes provided a seofsaccomplishment and induced players
to set goals for leveling up, which is what driRBG game participation. Therefore,
incorporating LAN capabilities and allowing for niple players to compete on
individual computers would make it much more maakét. This feature was not a
scope in the original problem; however, Game Mal@#s allow for networking. This

would be a logical next step for this research.

83

This game could be further developed by applyingsive multiplayer online
(MMO) capabilities. With support for MMO, a playean log out of the game and log
back in to find the server still running; this slled a "persistent world". To accomplish
this, several design problems would need to becovee such as home base design and
the problem of an individual building a base in g@me location as another who is
logged off the system at the time. Never-the-legsallowing characters to advance in
rank, a game such as this would allow for many nommbinations and increase game

longevity, which in turn would help maintain thepér's interest.

6.1.2 New Units

This pilot game could also be further developednidude multiple types of
characters. The pilot game has one type of urth wifferent classes, but other units
could be introduced with their own class systenhese new units could develop and
change within their own class structure. Thus,abdjpies and power would also vary
between character types as well as within unitseélas RTS games depend largely on the
"rock, paper, and scissor" construct, where difietgpes of units are weak against other
units. Developing several types of characters withir own class system would

introduce this concept and allow for more strategigation in the game play.

6.1.3 Balancing

Further work could also be done to assure unitzaland allow equal chances to
win. Now that individual units can increase iresgth a new dimension has been added
to the balancing equation. Therefore, if game camgs implement the five rules
described in this project, balancing will becomecinmore difficult. For example, if one
player has an army of humans and he is playinghagan army of orcs, each with their
own class structure, then the power and unit costese two different characters must be
balanced to assure equal chance of winning. Adtaying this game and seeing the
beneficial effects that unit development hadWarcraft Ill (see Chapter 1), the pros
outweigh the extra time needed in balancing. &dase of the pilot game, the value of
unit development is exaggerated and the loss ¢flleigel units results in game loss. In a

fully developed game a player should be able towecfrom unit loss. The development

84

of a generic algorithm to evaluate the degree t&riz® between a unit and its cost versus
a different unit and its cost would be very benafito the game industry and expedite
this balancing process.

Hopefully one of these ideas proposed in this tawill be used to further
develop the RTS genre. Once the player is allowezteate units to their specifications,

the options for RTS games are expanded greatly.

6.1.4 New Combinations of Genre Characteristics

A promising direction of related research and depedent is offered by the
possibility of combining new genre characteristmslevelop hybrid games and combine
paradigms. For example, future work could explexéending the MMO (Massively

Multi-Player) paradigm to incorporate RTS type ahtgs.

6.1.5 Improved Software Engineering Practices and Notatins for Game Development

Connected with one of this thesis’ main contribagipthat of applying software
engineering to game development, new research dmulgerformed to define enhanced
processes and specific modeling notations custahiaethe realm of game construction.
For example, a specialized UML-based notation cobkl developed for game

specifications, design and deployment.

85
7 Chapter 7: Conclusion

This thesis has presented an approach of combiourghecessary components of an
RPG,equipmentleveling customizationandclassification into the realm of RTS games
by obeying the following five rules:

1. Every unit should have some degree of customization
Every unit should have the ability to increaseewel or rank.
Unit capability should be limited in skills and kan

Every unit should have an equipment and statipacel.

a ~ N

Increasing the strength of a character should behmmore valuable then
building a more expensive unit. However, loosingury most powerful
character should not end the player’s chances rfivwg.

With these new constructs the Real Time Strategyegean expand in new
dimensions and possibilities for the players. il increase the number of strategies
used and bring the player’'s own creativity into ¢faene. In addition, the characters will
have more worth and the player will have a greaésd to preserve the units instead of
merely sending them off to battle without a thought

Another contribution of this thesis was the nov@pmach to applying more
extensively software engineering aspects to ganelalement. Building and evaluating
a prototype greatly assisted with the innovativecpss of game design. Once the game
requirements (the five rules) were established tsted, then the well-defined model
elements of UML were used to specify the progranakenit more efficient, and
thoroughly check for errors. This process of gatesign left room for innovation and
maintained design standards through UML. The afergioned steps used for the
prototype design are as follows:

» Program a prototype with the desired testing festur

» Evaluate the prototype and design a final listp#csfications.

* Use UML to design the final software package.

* Write the final software.

86

These steps would allow the computer game inddstrgake their design process more
efficient and still easily add or change game memsa Also, based on the modeling
power of UML, the design team could detect posdilales or errors in game algorithms
before the code was written, thus reducing the tamd money needed for correcting
mistakes.

Computer games have become compartmentalized o specific types
(genres) and a good degree of repetition can hedffnom one game to another. A good
example of this was the similarity betweleawn of War andCompany of Heroes the
setting was different, the graphics were improvenlyever the resource management and
game play were almost the same. This thesis fdcasea new method for computer
game design in general and illustrated it on aiqddr prototype game developed, “The
Fuzz’'s Revenge”. The thesis performed an analgsigame patterns (genres) and
explored the combination of RPG and RTS game mechas a means to enhance the
entertainment value of video games. In additionjust improving graphics, this
approach could assist game manufacturers to createl game play mechanics that

would hold consumer interest for longer periodsrog.

87

8 Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

King, Brad., John Borland. Dungeon and Dreamers Hise of Computer Game

Culture from Geek to ChicEmmeryville: McGraw-Hill, 2003.

Crawford, Chris. Compiled by Prof. Sue Peabodye Art of Computer Game
Design Vancouver: Washington State University, 1997.
Paul Gee, James. What Video Games Have to TeacAbdst Learning and

Literacy. New York: Palgrave Macmillan, 2003.
Wirman, Hanna., Rika Nakamura. “Counter-Playingtits of Female Players.”

The International Journal of Computer Game Rese&fwlume 6, Issue 1 (2006).

Ermi, Laura., Frans Mayra. “Player-Centered Gamsidde Experience in Using

Scenario Study to Inform Mobile Game Design.” Timetnational Journal of

Computer Game Researdholume 5, Issue 1 (2005).
Nintendo Wii Zone. “Wii Development Kits to Cost1$00.” 12-17-06.

http://www.nwiizone.com/nintendo-wii/nwii/wii-devepment-kit-to-cost-1700/

Kolo, Castulus., Timo Baur. “Living a Virtual LifeSocial Dynamics of Online
Gaming.” The Journal of Computer Game Researolume 4, Issue 1 (2004).
Arlow, Jim. lla Neustadt. _UML and the Unified Pess London, Addison-

Wesley.
Imagine Publishing, “Why you Must Play Herzog Zwel he Essential Guide to

Classic Games, Retro Gam¥plume 28, Pages 34-37.

Habgood, Jacob. Mark Overmars. The Game Makerigdgice China, Apress
(20086).

GameSpot. “Microsoft Raises Estimated First-DayoHalSales to $125 Million-
Plus”. http://www.gamespot.com/news/2004/11/10/news_81%htmIRetrieved
on 2006-03-15.

Salen, Katie. Eric Zimmerman.__Rules of Play, Gabesign Fundamentals
Cambridge, MS: MIT Press 2004.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

88

Khazan, Olga. “Lost in an Online Fantasy World”, 8hiBngton Post, 8-18-2006.
http://www.washingtonpost.com/wpdyn/content/ari2@6/08/17/AR20060817
00625 pf.htmlRetrieved on 2006-5-25.

Tweet, Jonathan. Monte Cook. Skip Williams. Dungeand Dragons Players
Handbook Wizards of the Coast (2003).

D&D Home “What is D&D”.
http://www.wizards.com/default.asp?x=dnd/whatisdrdtrieved on 2006-5-25.

Board Game Central. “The Game of Risk”

http://boardgamecentral.com/games/risk.h&Rdfrieved on 2006-5-25.

E. Ryan, Michael. “Star Wars Rebellion”.
http://www.gamespot.com/features/rebelliomtrieved on 2006-5-25.

Game FAQS. “Game Company Information”.

http://www.gamefags.com/features/company/844.htattiBved on 2006-5-25

Game FAQS. “Game Company Information”.

http://www.gamefags.com/features/company/72467 .Rettieved on 2006-5-25.

Wikipedia. “Command and Conquer”.
http://en.wikipedia.org/wiki/Command and_ConquetriRged on 2006-5-25
Retrieved on 2006-5-25.

Wikipedia. “Warcraft, Orcs and Humans”. http://eikivedia.org/wiki/\Warcraft
Retrieved on 2006-5-25.

