Exercises 463

recurse forever (or at least until the computer runs out of memory). The recursive solu-
tion also has one or more general cases that inchade recursive calls to the function. The
recursive calls must involve a “smaller calier.” One lor more} of the actual parameter
values must change in each recursive call to redefine the problem to be smalier than it
was on the previous call. Thus each recursive call leads the solution of the problem
toward the base case(s).

A typical implementation of recursion involves the use of a stack, Each call to a func-
tion generates an activation record to contain its return address, parameters, and local
variables. The activation records are accessed in a last in, first out manner. Thus a stack is
the choice of data structure.

Recursion can be supperted by systers and languages that use dynamic storage allo-
cation. The function parameters and local variables are not bound to addresses until an
activation record is created at run time. Thus multiple copies of the intermediate values
of recursive calls to the function can be supporfed, as new activation records are created
for them.

With static storage aliocation, in contrast, a single location is reserved at compile
time for each parameter and local variable of a function. No place is provided to store
any intermediate values calculated by repeated nested calls to the same function. There-
fore, systems and languages with only static storage allocation cannot support recursion.

When recursion is not possible or appropriate, a recursive algorithm can be implemented
nonrecursively by using a looping structure and, in some cases, by pushing and popping
relevant values onto a stack. This programmer-centrolled stack explicitly replaces the sys-
fem’s run-time stack. While such nonrecursive solutions are often more efficient in terms of
time and space, they usually involve a tradeoff in terms of the elegance of the solution.

Exércises
1. Explain what is meant by the following:
3. base case
lead 1o the b. general (or recursive) case
in the exer- ¢. run-time stack
ped.” ¢. binding time
' . tail recursion
Z. True or false? If false, correct the statement. Recursive functions:
mplify the a. often have fewer Jocal variables than the equivalent nonrecursive routines.
e code. As b. generally use while or for statements as their mair control structure.
s efficient, c. are possible only in languages with static storage allocation.
ilzfilsﬂ?i . d. should be used whenever execution sife:ed is critical.
e. arc always shorter and clearer than the equivalent nonrecursive routines.
tis, a case f. must alWays contain a path that does not contain a recursive call.

woaedr_ o %t

464 | Chapter 7: Programming with Recursion

3. Use the Three-Question Method to verify the ValueInList function described iy
this chapter. '

4. Describe the Three-Question Method of verifying recursive routines in relation o
an inductive proof.

5. Which data structure would you most likely see in a nonrecursive implementa-
tion of a recursive algorithm?

6. Using the recursive function RevPrint as a model, write the recursive function
PrintLdist, which traverses the elements in the list in forward order. Does One.
of these routines constitute a better use of recursion? If so, which one?

Use the following function in answering Exercises 7 and 8:
int Puzzle(int base, int limit)
{
if {base > limit)
return -1;

elae

if (base == limit)

return 1;

elge

return base*Puzzle(base+l, limit):

. Identify the following:
a. the base case(s _af the function Puzzle
b. the general case(s) of the function Puzzle

8. Show what would be written by the following calls to the recursive function
Puzzle:

a. cout << Puzzle(l4a, 10);
b. cour << Puzzle(4a, 7):
e. cout << Puzzle(d, 0);

. Given the following function:

int Func{int num)
f

.

if (num == 0)
return 0,

else N

return num + Fun(num -+ 1);

Exercises

Is there a constraint on the values that can be passed as a parameter for this
function to pass the smaller-caller test? -

. Is Fune (7) a good cali? If so, what is returned from the function?
Is Func (0) a good call? If so, what is returned from the function?
- Is Func{-5) a good call? If so, what is returned from the function?

. Put comments on the foilowing routines to identify the base and general cases
and explain what each routine does.

8. int Power(int base, int exponent)
{
if (exponent ==)
return 1;
alse

return base * Power(base, exponent-1);

)

int Factorial{int number)
{
if (num > 0)
return num * Factorial(num - 1);
else
if {num == 0)
return 1;

3

void Sort(int values{], int fromIndex, int tolndex)
{

int maxindex;

if (fromIndex |= tolndex)

{
maxIndex = MaxPosition(values, FfromIndex, toIndex);
Swap (values [maxIndex?, valuesg [toIndex]):
Sort(values, fromIndex, tolndex - 1):

]

- @ Fill in the blarks to complete the following recursive function:

int Sum{int info{l, int fromIndex, int toTndex)
// Computes the sum of the items between fromTndex and tolndex.
{ .
if (fromIndex . tolndex)
return
alse

return

Chapter 7: Programming with Recursion

‘%\\g 12,

b. Which is the base case and which is the general case?

. Show how you would call this function to sum all
called numbers, which contains elements indexed fro

d. What run-time problem might you ex

coded?

the elements in an arfay
m O to MAYX_ITEMS - 1,

perience with this function as it is how

You must assign the grades for a programming ¢l

ass. The class is studying recyr.
sion, and students have been given this simple

assignment: Write a recursive

function SumSquares that takes a pointer to a lin
retumns the sum of the squares of the elements.

Erample:

ked list of integer elements and

ligt

SumSquares (1istPtr) yields (5% 5) + {2 * 2}+(3%*3)+{1*1) =139

Agsume that the list is not empty.,

You have received quite a variety of solutions. Grad

marking errors where you see them.

& int SumBquares (NodeType* ligt)
{

return 0;
if (list !'= NULL)

e the functions that folio%?v,

return (list->info*ligt-rinfo) + SumSquares |

1

b. int SumSquares (NodeType* list)
{

int sum = 0;

while (list != NULL)

{
sum = ligt->info + gum;
list = list-dnext:

1

return sum;

bj

¢ int SumSquares (NodeType* lisgt)
{
if (ligt == NULL)
returﬂq0¥
elge

return list->info

list~>next));.5}

*list->info + SumSquares(Iigt-dnext);

l

Exercises

d. int SumSquares(NodeType* list)

{ .
if {list->next == NULL) ol
return list->info*list->info;
alge
return list->info*list->info + SumSquares(list->next):
}

€. int SumSquares (NodeType* list)
{
if (liegt == NULL)
return 0;
alge
return (SumSquares(list->next) * SumSquares(list->nexz)):
i

13. The Fibonacci sequence is the series of integers

6, 1, 1, 2, 3, 5, 8, 21, 34, 55, 89

See the pattern? Each element in the series is the sum of the preceding two items.
There is a recursive formula for calculating the nth number of the sequence (the
0th number if Fib{Q) = 0):

(= FN=00r1
b() = Fio{N-2)+Fb(N=1), #N>1

a. Write a recursive version of the function Fibonacei.
b. Write a nonrecursive version of the function Fibonacei.

¢. Write a driver to test the recursive and iterative versions of the function
Fibonacci.

d. Compare the recursive and iterative versions for efficiency. (Use words, not
Big-0 notation.)

e. Can you think of a way to make the recursive version maore efficient?

14, The foliowing defines a function that calculates an approximation of the square
o0t of a number, starting with an approximate answer (approx), within the speci-
fied tolerance {tol).

SgrRoot{number, approx, tol)=
{approx, if | approx? — number | <=tol

SqrReot{number, {approx? + number){(2=approx), tol), if | approx? — number | ol

i Chapter 7: Programming with Recursion

- What limitations must be made on the values of the parameters if thi
method is to work correctly?

. Write a recursive version of the function SqrReor.
Write a nonrecursive version of the function SgrRoot.

. Write a driver to test the recursive and iterative versions of the function Sqr-
Reoot.

. A sequential search member function of ScrtedType has the following prototype:

void SortedType::Search(int value, bool& found):

a. Write the function definition as a recursive search, assuming a linked list imples:
mentation.

- Write the function definition as a recursive search, assuming an array-
based implementation.

. We want to count the number of possible paths to move from row 1, column 7 to.
row N, column N in a two-dimensional grid. Steps are restricted to going up or to.

the right, but not diagonally. The iltustration that follows shows three of many
paths, if N = 10:

a. The following func‘uon NumPaths, is supposed to count the number of pa‘fhs
but it has somg problems Debug the function. '

int NumPaths{int row, int col, int n)
{

if (row == n)

{

b.

else

if {(num % 2 == 0)

return L1;
alse

if (col == n) L
return NumPaths + 1; ’

else
reaturn NumPaths(row + 1, col} * NumPathe (row, cel + 1);

}

After you have corrected the function, trace the execution of NumPaths with
n = & by hand. Why is this aigorithm inefficient?

You can improve the efficiency of this operation by keeping intermediate
values of NumPathe in a two-dimensional array of Integer values. This
approach keeps the function from having to recalculate values that it has
already figured out. Design and code a version of NumPaths that uses this

approach,
Show an invocation of the version of NumPaths you developed in part (¢},
including any array initialization necessary.

How do the two versions of NumPaths compare in terms of time efficiency?
Space efficiency?

™ 17. Given the following function:”

int Ulam{int num)

if (num < 2)

return 1;

return Ulam(num / 2);

else

return Ulam (3 * num + 1};

a. What problems come up in verifying this function?

How many recursive calls are made by the following initial calls:
cout << Ulam{7) << endl:

cout << Ulam(8) << endl;

cout << Ulam(15) << endl;

18. Explain the relationship between dynamic storage allocation and recursion.

“One of our reviewers pointed out that the proof of termination of this algorithm is a celebrated
open guestion in mathematics. See Programming Pearls by Jon Bentley for a discussion and further
references.

Exercises

@})\21.

22,

23.

| Chapter 7: Programming with Reeursion

19. What do we mean by binding time, and what does it have to do with recursion;
20. Given the following values in 1ig¢:

vinfeo | 2 6 9 14 23 85 | @2 [98 | 99 | 4o
£4] [5} 6] 17 (8] 5]

=

Show the contents of the run-time stack during the execution of this call 1o
BinarySearch:

BinarySearch (infa, 99, G, 9);

The parameter to the following two recursive routines is a pointer to a sing}y
linked list of numbers, whose elements are unique (no duplicates) and unsorted.

Each node in the list contains two members, info {2 number) and nexs (a
pointer to the next node).

d.

True or false? If false, correct the statement. A recursive solution should be used s
when: '

& computing time is critical.

b. the nonrecursive solution would be longer and more difficult to write.
¢ compuling space is critical.

d. your instructor says to use recursion.

Design a maze in which there are starting positions that return “Trapped” when
the starting position is Open.

&

Write a recursive value-returning function, MinLoc, that receives a pointer {o -

a list of unsorted numbers and returns a pointer to the node that contains the -
minimum vaiue in the list.

Write a recursive void function, sort, that receives a pointer to an unsorted
list of numbers and reorders the values in the list from smallest to largest;
This function may call the recursive MinLoe function that you wrote in part

(a). {Hint: It is easier to swap the values in the info part of the nodes than to -
reorder the nodes in the list.) E

