racter,

n the function
fo 26 for 'z’ or
m returns 27.
for ASCI, not

st. A project
vay that will

list has been

are emply. I

s the number
me for all our
af a kev. The

Section 8.6 e Hashing 353

nlgn. If the keys are long but there are relatively few of them, then k is large and
7 relatively small, and other methods (such as mergesort) will outperform radix
sort; but if k is small and there are a large number of keys, then radix sort will be
faster than any other method we have studied.

Exercises 8.5 FL

E2.

E3.

Programming PL

Projects 8.5

P2.

8.6 Hashing

8.6.1 SPARSE TABLES

Trace the action of radix sort on the list of 14 names used to trace other sorting
methods:

Tim Dot Eva Roy Tom Kim Guy Amy Jon Ann Jim Kay Ron Jan

Trace the action of radix sort on the following list of seven numbers considered
as two-digit integers:

26 33 35 29 19 12 22
Trace the action of radix sort on the preceding list of seven numbers considered

as six-digit binary integers.

Design, program, and test a version of radix sort that is implementation inde-
pendent, with alphabetic keys.

The radix-sort program presented in the book is very inefficient, since its
implementation-independent features force a large amount of data movement.
Design a project that isimplementation dependent and saves all the data move-
ment. In Rethread you need only link the rear of one queue to the front of the
next. Compare the performance of this version with that of other sorting meth-
ods for linked lists.

1. Index Functions

We can continue to exploit table lookup even in situations where the key is no
longer an index that can be used directly as in array indexing. What we can do is to
set up a one-to-one correspondence between the keys by which we wish to retrieve
information and indices that we can use to access an array. The index function that
we produce will be somewhat more comvlicated than those of previous sections,

index function not one
to one

hash function

collision

Chapter 8 o Tables and Information Retrieval

The only difficulty arises when the number of possible keys exceeds the amount
of space available for our table. If, for example, our keys are alphabetical words of
eight letters, then there are 26° ~ 210! possible keys, a number likely greater than
the number of positions that will be available in high-speed memory. In practice,
however, only a small fraction of these keys will actually occur. That is, the table
is sparse. Conceptually, we can regard it as indexed by a very large set, but with
relatively few positions actually occupied. In C, for example, we might think in
terms of conceptual declarations such as

typedef sparse table of Entry type SparseTable [MAXENTRY];

Even though it may not be possible to implement a declaration such as this directly,
it is often helpful in problem solving to begin with such a picture, and only slowly
tie down the details of how it is put into practice.

2. Hash Tables

The idea of a hash table (such as the one shown in Figure 8.12) is to allow many
of the different possible keys that might occur to be mapped to the same location
in an array under the action of the index function. Then there will be a possibility
that two records will want to be in the same place, but if the number of records
that actually occur is small relative to the size of the array, then this possibility will
cause little loss of time. Even when most entries in the array are occupied, hash
methods can be an effective means of information retrieval.

S
M h D B
a|D i) J B Kle e
hia r Tit ufhAie Alein n
ltviP | ile L Fintr njlvii i
oflija e niv e iinik dalils t
njidim y ale e efale yinte a
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 8.12. A hash table

We begin with a hash function that takes a key and maps it to some index
in the array. This function will generally map several different keys to the same
index. If the desired record is in the location given by the index, then our problem
is solved; otherwise we must use some method to resolve the collision that may
have occurred between two records wanting to go to the same location. There are
thus two questions we must answer to use hashing. First, we must find good hash
functions, and, second, we must determine how to resolve collisions.

Before approaching these questions, let us pause to outline informally the steps
needed to implement hashing.

2ds the amount
etical words of
:ly greater than
ry. In practice,
1at is, the table
e set, but with
might think in

I

as this directly,
1d only slowly

0 allow many
same location
'e a possibility
ber of records
>ossibility will
ccupied, hash

~ 3 O W

20 21 22

0 some index
s to the same
1 our problem
sion that may
on. There are
nd good hash

keys in table

initialization

insertion

retrieval

Section 8.6 e Hashing 355

3. Algorithm Outlines

First, an array must be declared that will hold the hash table. With ordinary ar-
rays the keys used to locate entries are usually the indices, so there is no need to
keep them within the array itself, but for a hash table, several possible keys will
correspond to the same index, so one field within each record in the array must be
reserved for the key itself.

Next, all locations in the array must be initialized to show that they are empty.
How this is done depends on the application; often it is accomplished by setting
the key fields to some value thatis guaranteed never to occur as an actual key. With
alphanumeric keys, for example, a key consisting of all blanks might represent an
empty position.

To insert a record into the hash table, the hash function for the key is first
calculated. If the corresponding location is empty, then the record can be inserted,
else if the keys are equal, then insertion of the new record would not be allowed,
and in the remaining case (a record with a different key is in the location), it becomes
necessary to resolve the collision. '

To retrieve the record with a given key is entirely similar. First, the hash func-
tion for the key is computed. If the desired record is in the corresponding location,
then the retrieval has succeeded; otherwise, while the location is nonempty and
not all locations have been examined, follow the same steps used for collision res-
olution. If an empty position is found, or all locations have been considered, then
no record with the given key is in the table, and the search is unsuccessful.

8.6.2 CHOOSING 4 Hasy FUNCTION

method

The two principal criteria in selecting a hash function are that it should be easy and
quick to compute and that it should achieve an even distribution of the keys that
actually occur across the range of indices. If we know in advance exactly what keys
will occur, then it is possible to construct hash functions that will be very efficient,
but generally we do not know in advance what keys will occur. Therefore, the usual
way is for the hash function to take the key, chop it up, mix the pieces together in
various ways, and thereby obtain an index that (like the pseudorandom numbers
generated by computer) will be uniformly distributed over the range of indices.

Note, however, that there is nothing random about a hash function. If the
function is evaluated more than once on the same key, then it gives the same result
every time, so the key can be retrieved without fail.

It is from this process that the word hash comes, since the process converts
the key into something that bears little resemblance to the original. At the same
time, it is hoped that any patterns or regularities that may occur in the keys will be
destroyed, so that the results will be uniformly distributed.

Even though the term hash is very descriptive, in some books the more technical
terms scatter-storage or keu-transformation are used in its nlace.

356 Chapter 8 o Tables and Information Retrieval

prime modulus

1. Truncation

Ignore part of the key, and use the remaining part directly as the index (Considering
non-numeric fields as their numerical codes). If the keys, for example, are eight-
digit integers and the hash table has 1000 locations, then the first, second, and fifth
digits from the right might make the hash function, so that 62538194 maps to 394,
Truncation is a very fast method, but it often fails to distribute the keys evenly
through the table.

2. Folding

Partition the key into several parts and combine the parts in a convenient way
(often using addition or multiplication) to obtain the index. For example, an eight-
digit integer can be divided into groups of three, three, and two digits, the groups
added together, and truncated if necessary to be in the proper range of indices,
Hence 62538194 maps to 625 + 381 + 94 = 1100, which is truncated to 100. Since all
information in the key can affect the value of the function, folding often achieves 3
better spread of indices than does truncation by itself.

3. Modular Arithmetic

Convert the key to an integer (using the above devices as desired), divide by the
size of the index range, and take the remainder as the result. This amounts to using
the C modulus operator %. The spread achieved by taking a remainder depends
very much on the modulus (in this case, the size of the hash array). If the modulus
is a power of a small integer like 2 or 10, then many keys tend to map to the same
index, while other indices remain unused. The best choice for modulus is often,
but not always, a prime number, which usually has the effect of spreading the
keys quite uniformly. (We shall see later that a prime modulus also improves an
important method for collision resolution.) Hence, rather than choosing a hash
table size of 1000, it is often better to choose either 997 or 1009; 21° = 1024 would
usually be a poor choice. Taking the remainder is usually the best way to conclude
calculating the hash function, since it can achieve a good spread at the same time
that it ensures that the result is in the proper range.

4. C Example

As a simple example, let us write a hash function in C for transforming a key
consisting of alphanumeric characters into an integer in the range

0..HASHSIZE —1.
That is, we shall begin with the type

typedef char «Key;

We can then write a simple hash function as follows:

X (considering
ple, are eight.
cond, and fifth
'4 maps to 394,
1e keys evenly

mnvenient way
mple, an eight-
jits, the groups
age of indices.
0 100. Since all
ften achieves a

. divide by the
ounts to using
inder depends
If the modulus
ap to the same
dulus is often,
spreading the
o improves an
wosing a hash
= 1024 would
ay to conclude
the same time

forming a key

Section 8.6 Hashing . 357

/% Hash: determine the hash value of key s.

Pre: s is avalid key lype.

Post: s has been hashed, returning a value between 0 and HASHSIZE —1 =/
int Hash(Key s)
{

unsigned h = 0;

while (*s)

h+=vs++;

return h % HASHSIZE;

}

We have simply added the integer codes corresponding to each of the characters in
the string. There is no reason to believe that this method will be better (or worse),
however, than any number of others. We could, for example, subtract some of
the codes, multiply them in pairs, or ignore every other character. Sometimes an
application will suggest that one hash function is better than another; sometimes
it requires experimentation to settle on a good one.

8.6.3 CoLLISION RESOLUTION WITH OPEN ADDRESSING

example of clustering

1. Linear Probing

The simplest method to resolve a collision is to start with the hash address (the
location where the collision occurred) and do a sequential search through the table
for the desired key or an empty location. Hence this method searches in a straight
line, and it is therefore called linear probing. The table should be considered circu-
lar, so that when the last location is reached, the search proceeds to the first location
of the table.

2. Clustering

The major drawback of linear probing is that, as the table becomes about half full,
there is a tendency toward clustering; that is, records start to appear in long strings
of adjacent positions with gaps between the strings. Thus the sequential searches
needed to find an empty position become longer and longer. Consider the example
in Figure 8.13, where the occupied positions are shown in color. Suppose that there

358

instability

rehashing

proof

Chapter 8 » Tables and Information Retrieval

are n locations in the array and that the hash function chooses any of them with
equal probability 1/n. Begin with a fairly uniform spread, as shown in the top
diagram. If a new insertion hashes to location b, then it will go there, but if it
hashes to location a (which is full), then it will also go into b. Thus the probability
that b will be filled has doubled to 2/n. At the next stage, an attempted insertion
into any of locations a, b, ¢, or d will end up in d, so the probability of filling d is
4/n. After this, ehas probability 5/n of being filled, and so as additional insertions
are made the most likely effect is to' make the string of full positions beginning at
location a longer and longer. Hence the performance of the hash table starts to
degenerate toward that of sequential search.

The problem of clustering is essentially one of instability; if a few keys
happen randomly to be near each other, then it becomes more and more likely
that other keys will join them, and the distribution will become progressively
more unbalanced.

3. Increment Functions

If we are to avoid the problem of clustering, then we must use some more sophis-
ticated way to select the sequence of locations to check when a collision occurs.
There are many ways to do so. One, called rehashing, uses a second hash function
to obtain the second position to consider. If this position is filled, then some other
method is needed to get the third position, and so on. But if we have a fairly good
spread from the first hash function, then little is to be gained by an independent
second hash function. We will do just as well to find a more sophisticated way
of determining the distance to move from the first hash position and apply this
method, whatever the first hash location is. Hence we wish to design an increment
function that can depend on the key or on the number of probes already made and
that will avoid clustering.

4. Quadratic Probing

If there is a collision at hash address h, this method probes the table at locations
h+1,h+4,h+9,..., thatis, atlocations h + i? (% HASHSIZE) for i = 1,2,.... That
is, the increment function is 2.

Quadratic probing substantially reduces clustering, but it is not obvious that -

it will probe all locations in the table, and in fact it does not. For some values of
HASHSIZE, for example powers of 2, the function will probe relatively few positions
in the array. When HASHSIZE is a prime number, however, quadratic probing reaches
half the locations in the array.

To prove this observation, suppose that HASHSIZE is a prime number. Also
suppose that we reach the same location at probe i and at some later probe that
we can take as i + j for some integer j > 0. Suppose that j is the smallest such
integer. Then the values calculated by the function at i and at ¢ + j differ by
multiple of HASHSIZE. In other words,

h+i?=h+(i+)% (% HASHSIZE).

When this expression is simplified, we obtain

J2 +2ij = j(j + 2i)= 0 (% HASHSIZE).

1y of them with
wown in the tq

» there, but if i
 the probability
npted insertion
ty of filling di¢
ional insertiong
ns beginning at
1 table starts to

if a few keys
nd more likely
2 progressively

1e more sophis-
ollision occurs.
1 hash function
hen some other
ve a fairly good
n independent
histicated way
and apply this
11 an increment
2ady made and

ble at locations
=71,2,.... That

ot obvious that
some values of
v few positions
robing reaches

number. Also
ater probe that
: smallest such
+ j differ by a

ks

calculation

Section 8.6 ¢ Hashing 359

This last expression means that HASHSIZE divides (with no remainder) the product
J(j +21). The only way that a prime number can divide a product is to divide one
of its factors. Hence HASHSIZE either divides j or it divides j + 2i. If the first case
occurred, then we would have made HASHSIZE probes before duplicating probe i.
(Recall that j is the smallest positive integer such that probe i + j duplicates probe
i.) The second case, however, will occur sooner, when j = HASHSIZE — 2i, or, if this
expression is negative, at this expression increased by HASHSIZE. Hence the total
number of distinct positions that will be probed is exactly

(HASHSIZE + 1)/2.

It is customary to regard the table as full when this number of positions has
been probed, and the results are quite satisfactory.

Note that quadratic probing can be accomplished without doing multiplica-
tions: After the first probe at position x, the increment is set to 1. At each successive
probe, the increment is increased by 2 after it has been added to the previous loca-
tion. Since

14345+ -+ (20— 1)= i
forall i = 1 (you can prove this fact by mathematical induction), probe i will look
inposition x +1+3+ -+ (2i - 1)= x + i2, as desired.

5. Key-Dependent Increments

Rather than having the increment depend on the number of probes already made,
we can let it be some simple function of the key itself. For example, we could
truncate the key to a single character and use its code as the increment. In C, we
might write

increment = +key;

A good approach, when the remainder after division is taken as the hash func-
tion, is to let the increment depend on the quotient of the same division. An
optimizing compiler should specify the division only once, so the calculation will
be fast, and the results generally satisfactory.

In this method, the increment, once determined, remains constant. If HASHSIZE
is a prime, it follows that the probes will step through all the entries of the array
before any repetitions. Hence overflow will not be indicated until the array is
completely full.

6. Random Probing

A final method is to use a pseudorandom number generator to obtain the incre-

ment. The generator used should be one that always generates the same sequence
nrnridod it etarie wiith tho cama coad Qoo MThantor 4 N Tho cand fhan ~am bum oo,

360

initialization

Chapter 8 ¢ Tables and Information Retrieval

7. C Algorithms

To conclude the discussion of open addressing, we continue to study the C example
already introduced, which used alphanumeric keys of the type

typedef char «Key;
We set up the hash table with the declarations

f= declarations for a hash table with open addressing */
#define HASHSIZE 997
typedef char =Key;
typedef struct item {
Key key;
} Entry;
typedef Entry HashTable [HASHSIZE];

The hash table must be created by setting the key field of each item to NULL. This is
the task of the function CreateTable, whose specifications are:

void CreateTable(HashTable H);
precondition: None,

postcondition: The hash table H has been created and initialized to be empty.

There should also be a function ClearTable that returns a table that already has been
created to an empty state. Its specifications follow, but its code (for the case of hash
tables using open addressing) will be identical to that of CreateTable.

void ClearTabie(HashTable H);
precondition: The hash table H has been created.

postcondition: The hash table H has been cleared and is empty.

Although we have started to specify hash-table operations, we shall not continue
to develop a complete and general set of functions. Since the choice of a good
hash function depends strongly on the kind of keys used, hash-table operations
are usually too dependent on the particular application to be assembled into a set
of functions.

To show how the code for further routines will be written, we shall continue to
follow the example of the hash function already written in Section 8.6.2, page 357,
and we shall use quadratic probing for collision resolution. We have shown that
the maximum number of probes that can be made this way is (HASHSIZE + 1)/2, and
we keep a counter pc to check this upper bound.

With these conventions, let us write a function to insert a new entry newentry
into the hash table H.

7the C example

to NULL. This is

o be empty.

ready has been
he case of hash
e.

Il not continue
oice of a good
ble operations
ibled into a set

all continue to
3.6.2, page 357,
ve shown that
ZE + 1)/2, and

Section 8.6 o Hashing 361

I* Insert: insert an item using open addressing and linear probing.
Pre: The hash table H has been created and is not full. H has no current entry with
key equal to that of newitem.
Post: The item newitem has been inserted into H.
Uses: Hash. */
void Insert(HashTable H, Entry newitem)

{
int pc = 0; [probe count o be sure that table is not full wf
int probe; 1 position currently probed in H wf
int increment = 1; /% increment used for quadratic probing f
probe = Hash(newitem.key);
while (H[probe].key !=NULL&& /* Is the Jocation empty? *f
stremp(newitem.key, H[probe].key) && 7 Duplicate key present? wf
pc <= HASHSIZE/2) { I* Has overflow occurred? wf
pC++;
probe = (probe + increment) % HASHSIZE;
increment += 2; 1* Prepare increment for next iteration. f
}
if (H[probe].key == NULL)
Hlprobe] = newitem; [+ Insert the new entry. f
else if (stremp(newitem.key, H[probe] key) == 0)

Error("The same key cannot appear twice in the hash table.");

else
Error("Hash table is full; insertion cannot be made.");

}

A function to retrieve the record (if any) with a given key will have a similar
form and is left as an exercise. The retrieval function should return the full entry
associated with a target key. Its specifications are:

int RetrieveTable(HashTable H, Key target);
precondition: The hash table H has been created.

postcondition: If an entry in H has key equal to target, then the function returns
the index for the entry. Otherwise, the function returns —1.

8. Deletions

Up to now, we have said nothing about deleting entries from a hash table. At
first glance, it may appear to be an easy task, requiring only marking the deleted
location with the special key indicating that itis empty. This method will not work.
The reason is that an empty location is used as the signal to stop the search for a
target kev. Suppose that. before the deletion. there had heen a rallicinn ar fura and

362 Chapter 8 < Tables and Information Retrieval

position will stop the search, and it is impossible to find the entry, even though it
is still in the table.

special key One method to remedy this difficulty is to invent another special key, to be
placed in any deleted position. This special key would indicate that this position is
free to receive an insertion when desired but that it should not be used to terminate
the search for some other entry in the table. Using this second special key will,
however, make the algorithms somewhat more complicated and a bit slower. With
the methods we have so far studied for hash tables, deletions are indeed awkward
and should be avoided as much as possible.

8.6.4 Corrision RESOLUTION BY CHAINING

Up to now we have implicitly assumed that we are using only contiguous storage
while working with hash tables. Contiguous storage for the hash table itself is, in
fact, the natural choice, since we wish to be able to refer quickly to random positions

linked storage in the table, and linked storage is not suited to random access. There is, however,
no reason why linked storage should not be used for the records themselves. We
can take the hash table itself as an array of pointers to the records, that is, as an
array of linked lists. An example appears in Figure 8.14.

=
-
-~
£
: +
+
- +
=
+
-
" <
L
+
. <
Figure 8.14. A chained hash table
chaining It is traditional to refer to the linked lists from the hash table as chains and call

this method collision resolution by chaining.

even though it

acial key, to be
this position is
ad to terminate
secial key will,
it slower. With
deed awkward

iguous storage
able itself is, in
adom positions
>re is, however,
hemselves. We
s, that is, as an

space saving

collision resolution

overflow

deletion

use of space

small records

Section 8.6 ¢ Hashing 363

1. Advantages of Chaining

There are several advantages to this point of view. The first, and the most im-
portant when the records themselves are quite large, is that considerable space
may be saved. Since the hash table is a contiguous array, enough space must
be set aside at compilation time to avoid overflow. If the records themselves are
in the hash table, then if there are many empty positions (as is desirable to help
avoid the cost of collisions), these will consume considerable space that might be
needed elsewhere. If, on the other hand, the hash table contains only pointers to
the records, pointers that require only one word each, then the size of the hash ta-
ble may be reduced by a large factor (essentially by a factor equal to the size of the
records), and will become small relative to the space available for the records, or for
other uses.

The second major advantage of keeping only pointers in the hash table is that
it allows simple and efficient collision handling. We need only add a link field to
each record, and organize all the records with a single hash address as a linked
list. With a good hash function, few keys will give the same hash address, so the
linked lists will be short and can be searched quickly. Clustering is no problem at
all, because keys with distinct hash addresses always go to distinct lists.

A third advantage is that it is no longer necessary that the size of the hash table
exceed the number of records. If there are more records than entries in the table,
it means only that some of the linked lists are now sure to contain more than one
record. Even if there are several times more records than the size of the table, the
average length of the linked lists will remain small and sequential search on the
appropriate list will remain efficient.

Finally, deletion becomes a quick and easy task in a chained hash table. Deletion
proceeds in exactly the same way as deletion from a simple linked list.

2. Disadvantage of Chaining

These advantages of chained hash tables are indeed powerful. Lest you believe
that chaining is always superior to open addressing, however, let us point out one
important disadvantage: All the links require space. If the records are large, then
this space is negligible in comparison with that needed for the records themselves;
but if the records are small, then it is not.

Suppose, for example, that the links take one word each and that the entries
themselves take only one word (which is the key alone). Such applications are
quite common, where we use the hash table only to answer some yes-no question
about the key. Suppose that we use chaining and make the hash table itself quite
small, with the same number 1 of entries as the number of entries. Then we shall
use 3n words of storage altogether: n for the hash table, n for the keys, and n for
the links to find the next node (if any) on each chain. Since the hash table will be
nearly full, there will be many collisions, and some of the chains will have several
entries. Hence searching will be a bit slow. Suppose, on the other hand, that we use
open addressing. The same 31 words of storace 1t entirely inta the hach tahle

364 Chapter 8 e Tables and Information Retrieval

3. € Algorithms

A chained hash table in C takes the simple declaration
typedef List HashTable [HASHSIZE];

where List refers to the linked implementation of lists studied in Chapter 5.
initialization The code needed to create the hash table is

for(i = 0; i < HASHSIZE; i++)
Createlist(H[i1);

To clear a chained hash table that has previously been created is a different task, in
contrast to open addressing, where it was the same as creating the table. To clea
the table, we must clear the linked list in each of the table positions. This task can
be done by using the linked-list function ClearList.

We can even use the list processing functions to access the hash table. The
hash function itself is no different from that used with open addressing; for data
retrieval, we can simply use a linked version of SequentialSearch. The essence of
RetrieveTable is

SequentialSearch(H [Hash(target)], target);

The details of converting this into a full function are left as an exercise.
Similarly, the essence of insertion is the one line

InsertList(0, newentry, H[newentry.key]);

-

Here we have chosen to insert the new entry as the first node of its list, since that
is the easiest. As you can see, both insertion and retrieval are simpler than the
versions for open addressing, since collision resolution is not a problem and we
can make use of the previous work done for linked lists.

deletion Deletion from a chained hash table is also much simpler than it is from a table
with open addressing. To delete the entry with a given key, we need only use
sequential search to find the entry where it is located within its chain in the hash
table, and then we delete this entry from its linked list. The specifications for this
function are:

Entry =DeleteTable(HashTable H, Key target);

precondition: The chained hash table H has been created and contains an entry
with key equal to target.

; postcondition: The entry with key equal to target has been deleted from H and
its pointer has been returned.

et

Writing the corresponding function is left as an exercise.

