
CCF: Fast and Scalable Connected Component

Computation in MapReduce

Hakan Kardes, Siddharth Agrawal, Xin Wang, and Ang Sun

Data Research

inome Inc.

Bellevue, WA USA

{hkardes, sagrawal,xwang,asun}@inome.com

Abstract—Finding connected components in a graph is a well-
known problem in a wide variety of application areas such as
social network analysis, data mining, image processing, and etc.
In this paper, we present an efficient and scalable approach in
MapReduce to find all the connected components in a given
graph. We compare our approach with the state-of-the-art on
a real-world graph. We also demonstrate the viability of our
approach on a massive graph with ∼6B nodes and ∼92B edges
on an 80-node hadoop cluster. To the best of our knowledge, this
is the largest graph publicly used in such an experiment.

Keywords-Transitive Closure; Connected Components; Large
Scale Graphs; Hadoop; MapReduce.

I. INTRODUCTION

Many systems such as proteins, chemical compounds, and

the Internet can be modeled as a graph to understand local

and global characteristics of the system. In many cases, the

system under investigation is very large and the corresponding

graph has large number of nodes/edges requiring advanced

processing approaches to efficiently derive information from

the graph. Several graph mining techniques have been de-

veloped to extract information from the graph representation

and analyze various features of the complex networks [1].

Finding connected components, disjoint subgraphs in which

any two vertices are connected to each other by paths, is a

very common way of extracting information from the graph

in a wide variety of application areas ranging from analysis of

coherent cliques in social networks, density based clustering,

image segmentation, data base queries and many more [2].

Record linkage, the task of identifying which records in a

database refer to the same entity, is also one of the major ap-

plication areas of connected components. This paper describes

the connected component computation strategy used in the

record linkage process of a major commercial People Search

Engine to deploy a massive database of personal information.

The process starts by collecting billions of personal records

from three sources of U.S. personal records. The first source

is derived from US government records, such as marriage,

divorce and death records. The second is derived from publicly

available web profiles, such as professional and social network

public profiles. The third type is derived from commercial

sources, such as financial and property reports (e.g., informa-

tion made public after buying a house). Example fields on

these records might include name, address, birthday, phone

number, (encrypted) social security number, job title, and

university attended. Note that different records will include

different subsets of these example fields. After collection

and categorization, the Record Linkage process should link

together all records belonging to the same real-world person.

That is, this process should turn billions of input records into

a few hundred million clusters of records (or profiles), where

each cluster is uniquely associated with a single real-world

U.S. resident. Our system follows the standard high-level

structure of a record linkage pipeline [3] by being divided into

four major components: 1) data cleaning 2) blocking 3) pair-

wise linkage and 4) clustering. First, all records go through a

cleaning process that starts with the removal of bogus, junk

and spam records. Then all records are normalized to an

approximately common representation. Finally, all major noise

types and inconsistencies are addressed, such as empty/bogus

fields, field duplication, outlier values and encoding issues.

At this point, all records are ready for subsequent stages of

Record Linkage. The blocking step, presented in [4], groups

records by shared properties to determine which pairs of

records should be examined by the pairwise linker as potential

duplicates. Next, the linkage step assigns a score to pairs

of records inside each block using a high precision machine

learning model whose implementation is described in detail in

[5]. If a pair scores above a user-defined threshold, the records

are presumed to represent the same person. The clustering

step first combines record pairs into connected components,

which is the focus of this paper, and then further partitions

each connected component to remove inconsistent pair-wise

links. Hence at the end of the entire record linkage process,

the system has partitioned the billions of input records into

disjoint sets called profiles, where each profile corresponds to

a single person.

The processing of such enormous data volumes requires

highly scalable parallelized algorithms. This is only possible

with distributed computing, and the need to distribute the work

informs the design. In this paper, we propose an algorithm

for finding connected components which is based on the

MapReduce programming model and is implemented using

Hadoop.

In the remainder of the paper, we first present the related

work in Section II. Next, we describe our approach in Sec-

tion III. Then, we evaluate the performance of our algorithm

CCF-Iterate CCF-Dedup
Edge List

Node -

ComponentID

mapping

newPair

> 0
no

yes

iterationID=1

iterationID>1

Figure 1. Connected Component Finder(CCF) Module

compared to other approaches using several real-world datasets

in Section IV. Finally, we conclude with Section V.

II. RELATED WORK

Finding connected components within a graph is well-

known problem and has a long research history. However,

scale of the data has tremendously grown in recent years.

Many online networks such as Facebook, LinkedIn, and Twit-

ter, have 100s of millions of users and many more connections

among these users. Similarly, several online people search en-

gines collect billions of records about people, and try to cluster

these records after computing the similarity scores between

these records. Analysis of such massive graphs requires novel

types of algorithms.

Recently, several MapReduce approaches have been devel-

oped to find the connected components in a graph [2], [6]–[9].

In spite of the fact that the basic idea behind these approaches

has similarities such as representing each connected compo-

nent with the smallest node id, there are some differences

in the way how they implement their ideas. PEGASUS [7]

is a graph mining system where several graph algorithms

including connected component computation are represented

and implemented as repeated matrix-vector multiplications. [6]

and [7] have O(d) bound on the MapReduce iterations needed

where d is the diameter of the largest connected component.

[2] and [9] focus on reducing the boundaries of the number

of map-reduce iterations needed and provide algorithms with

lower bounds (3logd in [9]). On the other hand, in [7], Kang et.

al. analyze several real networks and show that real networks

have small diameters in general. So, these improvements might

not help much in real networks where the diameters are small.

In this paper, we present our MapReduce based approach

for finding connected components that we have been using

regularly for 2 years on massive graphs. The number of nodes

ranges from 3B to 7B, while the number of edges ranges from

15B to 100B for a typical graph that we have in production.

The size of largest connected component that we observe in

these graphs ranges from 5M to 200M.

III. METHODOLOGY

In this section we present our algorithm for finding con-

nected components in a given graph using the MapReduce

framework. We make heavy use of the Hadoop implementation

of the MapReduce computing framework, and the algorithm

described here is implemented as a series of Hadoop jobs

written in Java. It is beyond the scope of this paper to fully

describe this framework (see [10] for an overview), but we do

discuss the ways its constraints inform our design. MapReduce

divides computing tasks into a map phase in which the input

which is given as (key,value) pairs is split up among multiple

machines to be worked on in parallel and a reduce phase

in which the output of the map phase is put back together

for each key to independently process the values for each

key in parallel. Moreover, in a MapReduce context, recursion

becomes iteration.

Before describing the algorithm, let’s give a formal defi-

nition of connected components in graph theory context. Let

G = (V,E) be an undirected graph where V is the set of

vertices and E is the set of edges. C = (C1, C2, ..., Cn) is

the set of disjoint connected components in this graph where

(C1∪C2∪ ...∪Cn) = V and (C1∩C2∩ ...∩Cn) = ∅. For each

connected component Ci ∈ C, there exists a path in G between

any two vertices vk and vl where (vk, vl) ∈ Ci. Additionally,

for any distinct connected component (Ci, Cj) ∈ C, there is

no path between any pair vk and vl where vk ∈ Ci, vl ∈ Cj .

Thus, problem of finding all connected components in a graph

is finding the C satisfying the above conditions.

In order to find the connected components in a graph, we

developed the Connected Component Finder (CCF) module

shown in Figure 1. The input to the module is the list of

all the edges in the graph. As an output from the module,

what we want to obtain is the mapping from each node in the

graph to its corresponding componentID. For simplicity, we

use the smallest node id in each connected component as the

identifier of that component. Thus, the module should output

a mapping table from each node in the graph to the smallest

node id in its corresponding connected component. To this

end, we designed a chain of two MapReduce jobs, namely,

CCF-Iterate, and CCF-Dedup, that will run iteratively till we

find the corresponding componentIDs for all the nodes in the

graph.

CCF-Iterate job generates adjacency lists AL =
(a1, a2, ..., an) for each node v, and if the node id of

this node vid is larger than the min node id amin in the

adjacancy list, it first creates a pair (vid, amin) and then a

pair for each (ai, amin) where ai ∈ AL, and ai 6= amin. If

there is only one node in AL, it means we will generate the

pair that we have in previous iteration. However, if there is

more than one node in AL, it means we might generate a

pair that we didn’t have in the previous iteration, and one

more iteration is needed. Please note that, if vid is smaller

than amin, we do not emit any pair.

The pseudo code of CCF-Iterate is given in Figure 2. For

the first iteration, this job takes the initial edge list as input.

CCF-Iterate

map(key, value)

emit(key, value)
emit(value, key)

reduce(key,< iterable > values)
min← key

for each (value ∈ values)
if(value < min)

min← value

valueList.add(value)
if(min < key)

emit(key,min)
for each (value ∈ valueList)

if(min 6= value)
Counter.NewPair.increment(1)
emit(value,min)

Figure 2. Alg.1 - CCF-Iterate

In later iterations, the input is the output of CCF-Dedup from

the previous iteration. We will represent the key and value

pairs in the MapReduce framework as < key; value >. We

first start with the initial edge list to construct the first degree

neighborhood of each node. To this end, for each edge <

a; b >, mapper emits both < a; b >, and < b; a > pairs so that

a should be in the adjacency list of b and vice versa. In reduce

phase, all the adjacent nodes will be grouped together for each

node. We first go over all the values to find the minValue

and store all the values in a list. If the minValue is larger

than key, we do not emit anything. Otherwise, we first emit

the < key;minV alue > pair. Next, we emit a pair for all

other values as < value;minV alue >, and increase the global

NewPair counter by 1. If the counter is 0 at the end of the

job, it means that we found all the components and there is

no need for further iterations.

Adjusting memory utilization is a crucial step while devel-

oping tools/services to run in the cloud as the high memory

machines are much more expensive [11]. In MapReduce,

values can be iterated just once without loading all of them

into memory. If multiple passes are needed, the values should

be stored in a list. Reducers don’t receive the values in a

sorted order. Hence, the CCF-Iterate Algorithm in Figure 2

iterates over the values twice. First iteration is for finding

the minValue, the second is for emitting the necessary pairs.

The space complexity of this approach is O(N) where N

is the size of largest connected component as we store the

values in a list in the reducer. In order to improve the space

complexity further, we implemented another version of CCF-

Iterate, presented in Figure 3. A secondary sort approach can

be used to pass the values to the reducer in a sorted way with

custom partitioning (see [10] for details). We don’t need to

iterate over the values with this approach as the first value

will be the minValue. We will just iterate over the values

once to emit the necessary values. During our experiments,

the run-time performance of these two approaches were very

CCF-Iterate (w. secondary sorting)

map(key, value)

emit(key, value)
emit(value, key)

reduce(key,< iterable > values)
minV alue← values.next()
if(minV alue < key)

emit(key,minV alue)
for each (value ∈ values)

Counter.NewPair.increment(1)
emit(value,minV alue)

Figure 3. Alg.3 - CCF-Iterate with secondary sorting

CCF-Dedup

map(key, value)

temp.entity1← key

temp.entity2← value

emit(temp, null)

reduce(key,< iterable > values)
emit(key.entity1, key.entity2)

Figure 4. Alg.2 - CCF-Dedup

close to each other when the size of the largest component is

relatively small(i.e. up to 50K nodes). However, when there

are connected components with millions of nodes, the second

approach is much more efficient.

During the CCF-Iterate job, the same pair might be emitted

multiple times. The second job, CCF-Dedup, just deduplicates

the output of the CCF-Iterate job. This job increases the

efficiency of CCF-Iterate job in terms of both speed and I/O

overhead. The pseudo code for this job is given in Figure 4.

We illustrate our approach on an example set of edges in

Figure 5. In this example, there are 6 edges in the graph,

and we iteratively find the connected components. Figure 5-

(a),(b),(c), and (d) represent the CCF-Iterate jobs. Since CCF-

Dedup job just deduplicates the CCF-Iterate output, it is not

illustrated in the figure. For example, in the output of second

iteration in Figure 5-(b), there are duplicates of < B;A >,<

C;A >,< D;A >, and < E;A >. However, the duplicates

are removed by the CCF-Dedup job and are not illustrated in

the input of third iteration in Figure 5. The min value for each

reduce group is represented with a blue circle. The number of

newPairs found in each iteration are 4, 9, 6, and 0, respectively.

Thus, we stop after the fourth iteration as all the connected

components are found.

Worst case scenario for the number of necessary iterations

is d+1 where d is the diameter of the network. The worst

case happens when the min node in the largest connected

component is an end-point of the largest shortest-path. The

best case scenario takes d/2+1 iterations. For the best case,

the min node should be at the center of the largest shortest-

path.

A B

B C

B D

D E

F G

G H

A B

B A

B C

B D

C B

D B

D E

E D

F G

G F

G H

H G

B A

C A

D A

C B

D B

E B

E D

G F

H F

Mapper Reducer

B

A

B

B

D

F

G

G

A B

A C

A D

B A

B C

B D

B E

C A

C B

D A

D B

D E

E B

E D

F G

F H

G F

H F

B A

C A

D A

C B

D B

E B

E D

G F

H F

B A

C A

D A

E A

B A

C A

B A

D A

E A

D B

E B

G F

H F

Mapper Reducer

B

A

A

A

B

G

F

F

(a) Iteration - 1 (b) Iteration - 2

A B

A C

A D

A E

B A

B D

B E

C A

D A

D B

E A

E B

F G

F H

G F

H F

B A

C A

D A

D B

E A

E B

G F

H F

B A

D A

E A

C A

D A

B A

E A

B A

G F

H F

Mapper Reducer

B

A

A

A

A

G

F

F

A B

A C

A D

A E

B A

C A

D A

E A

F G

F H

G F

H F

B A

C A

D A

E A

G F

H F

B A

C A

D A

E A

G F

H F

Mapper Reducer

F

F

G

A

A

A

A

(c) Iteration - 3 (d) Iteration - 4

Figure 5. Algorithm Illustration

of iterations Run time (sec)

PEGASUS 16 2403
CC-MR 8 224
CCF 11 256

Table I
PERFORMANCE COMPARISON

IV. EXPERIMENTS

In this section, we present the experimental results for our

CCF approach. We ran the experiments on a hadoop cluster

consisting of 80 nodes, each with 8 cores. There are 10

mappers, and 6 reducers available at each node. We also

allocated 3 Gb memory for each map/reduce task.

We used two different real-world datasets for our ex-

periments. The first one is a web graph (Web-google)

which was released in 2002 by Google as a part of

Google Programming Contest. This dataset can be found

at http://snap.stanford.edu/data/web-Google.html. There are

875K nodes and 5.1M edges in this graph. Nodes represent

web pages and directed edges represent hyperlinks between

them. We used this dataset to compare the run-time perfor-

mance of our approach with that of Pegasus [7] and CC-

MR [2]. Table I presents the number of iterations and total

run-time for the PEGASUS, CC-MR, and CCF methods. CC-

MR took the least number of iterations, while PEGASUS

took the most number of iterations. PEGASUS also took

the longest amount of time to finish. Even though our CCF

approach took 3 more iterations than the CC-MR approach,

the run-time performance times are very close to each other.

In the MapReduce framework, each map/reduce task has some

initialization period. The run-time difference between CC-MR

and CCF is mainly due to the initialization periods as CCF

took 3 more iterations. In larger graphs with billions nodes

and edges, the effect of initialization is negligible.

We also used a second dataset which has around 6 billion

public people records and 92B pairwise similarity scores

among these records to demonstrate the viability of our

algorithm for very large data sets. We got several errors

when trying to use Pegasus [7] and CC-MR [2] for this

dataset. These approaches might be implemented with the

assumption that each node id will be an integer. However,

when there are 6B nodes in the graph, integer space is not

enough to represent all of the nodes. Please note that this

an assumption and the actual reason might be different. CCF

found all of the connected components in this graph in 7 hours

and 13 iterations. The diameter of this graph was 21. CCF

found 435M connected components in this graph. The largest

three connected components contain 53, 25, and 17 million

nodes, respectively. The size distribution of all the connected

components in this graph is given in Figure 6.

V. CONCLUSION

In this paper, we presented a novel Connected Component

Finder (CCF) approach for efficiently finding all of the con-

nected components in a graph. We have implemented this

algorithm in the MapReduce framework with low memory

Figure 6. Connected Component Size Distribution

requirements so that it may scale to the graphs with billions

of nodes and edges. We used two different real-world datasets

in our experiments. We first compared our approach with

the PEGASUS and CC-MR methods on a web graph (Web-

google). While our approach outperformed PEGASUS in

terms of total run time, CC-MR approach performed slightly

better than our approach. However, the main reason for that

was the initialization overhead of map/reduce tasks. Next, we

demonstrated the viability of our approach on a massive graph

with ∼6B nodes and ∼92B edges on an 80-node hadoop

cluster. Due to their limitations, we were not able to run

the other approaches with this graph. To the best of our

knowledge, this is the largest graph publicly used in such an

experiment.

REFERENCES

[1] D. J. Cook and L. B. Holder, Mining Graph Data. John Wiley & Sons,
2006.

[2] T. Seidl, B. Boden, and S. Fries, “Cc-mr finding connected
components in huge graphs with mapreduce,” in Machine Learning

and Knowledge Discovery in Databases, ser. Lecture Notes in
Computer Science, P. Flach, T. Bie, and N. Cristianini, Eds. Springer
Berlin Heidelberg, 2012, vol. 7523, pp. 458–473. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33460-3 35

[3] A. Elmagarmid, P. Ipeirotis, and V. Verykios, “Duplicate record detec-
tion: A survey,” Knowledge and Data Engineering, IEEE Transactions

on, vol. 19, no. 1, pp. 1–16, 2007.
[4] W. McNeill, H. Kardes, and A. Borthwick, “Dynamic record blocking:

Efficient linking of massive databases in mapreduce,” 2012.
[5] S. Chen, A. Borthwick, and V. Carvalho, “The case for cost-sensitive

and easy-to-interpret models in industrial record linkage,” 2011.
[6] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in

Science Engineering, vol. 11, no. 4, pp. 29–41, 2009.
[7] U. Kang, C. Tsourakakis, and C. Faloutsos, “Pegasus: mining

peta-scale graphs,” Knowledge and Information Systems, vol. 27,
no. 2, pp. 303–325, 2011. [Online]. Available: http://dx.doi.org/10.
1007/s10115-010-0305-0

[8] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman,
“Map-reduce extensions and recursive queries,” in Proceedings of the

14th International Conference on Extending Database Technology, ser.
EDBT/ICDT ’11. New York, NY, USA: ACM, 2011, pp. 1–8.

[9] R. V., M. A., C. L., and D. S. A., “Finding connected components in
map-reduce in logarithmic rounds,” in ICDE, 2013, pp. 50–61.

[10] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce,
ser. Synthesis Lectures on Human Language Technologies. Morgan &
Claypool Publishers, 2010.

[11] “Amazon ec2 pricing,” http://aws.amazon.com/ec2/pricing/.

