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CO-EVOLVING PARASITES IMPROVE SIMULATED EVOLUTION 
AS A N  OPTIMIZATION PROCEDURE 

W. Daniel HILLIS 
Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-1214, USA 

This paper shows an example of how simulated evolution can be applied to a practical optimization problem, and more 
specifically, how the addition of co-evolving parasites can improve the procedure by preventing the system from sticking at 
local maxima, Firstly an optimization procedure based on simulated evolution and its implementation on a parallel computer 
are described. Then an application of this system to the problem of generating minimal sorting networks is described. Finally 
it is shown how the introduction of a species of co-evolving parasites improves the efficiency and effectiveness of the 
procedure. 

1. Introduction 

The process of biological evolution by natural 
selection [5] can be viewed as a procedure for 
finding better solutions to some externally im- 
posed problem of fitness. Given a set of solutions 
(the initial population of individuals), selection 
reduces that set according to fitness, so that solu- 
tions with higher fitness are over-represented. A 
new population of solutions is then generated 
based on variations (mutation) and combinations 
(recombination) of the reduced population. Some- 
times the new population will contain better solu- 
tions than the original. When this sequence of 
evaluation, selection, and recombination is re- 
peated many times, the set of solutions (the popu- 
lation) will generally evolve toward greater fitness. 

A similar sequence of steps can be used to 
produce simulated evolution within a computer [3, 
4, 12, 17-19]. In simulated evolution the set of 
solutions is represented by data structures on the 
computer  and the procedures for selection, muta- 
tion, and recombination are implemented by algo- 
rithms that manipulated the data structures. 
Although the term "simulated evolution" deliber- 
ately suggests an analogy to biological evolution, 
it is understood that the real biological processes 
are far more complex than the simulation; simu- 

lated evolution represents only an idealization of 
certain aspects of a biological system. Such simu- 
lations are sometimes used as tools for under- 
standing biological evolution [15], but this paper 
will concentrate on the use of simulated evolution 
for optimization; that is, as a practical method of 
generating better solutions to problems. Biological 
systems will serve as a source of metaphor and 
inspiration, but no attempt will be made to apply 
the lessons learned to biological phenomena. 

As an optimization procedure, the goal of simu- 
lated evolution is very similar to that of other 
domain-independent search procedures such as 
generate and test, gradient descent, and simulated 
annealing [13, 16]. Like most such procedures, 
simulated evolution searches for a good solution, 
although not necessarily the optimal one. Whether 
or not it will find a good solution will depend on 
the distribution of solutions within the space. 

These methods are all useful in searching solu- 
tion spaces that are too large for exhaustive search. 
As in gradient descent and simulated annealing 
procedures, simulated evolution depends on infor- 
mation gathered in exploring some regions of the 
solution space to indicate which other regions of 
the space should be explored. How well this works 
obviously depends on the distribution of solutions 
in the space. The types of fitness spaces for which 
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simulated evolution produces good results are not 
well understood, but one important type of space 
for which it works is a space that is independently 
a good domain for hill climbing in each dimen- 
sion. 

Another attractive property of simulated evolu- 
tion is that it can be implemented very naturally 
on a massively parallel computer. During the se- 
lection step, for example, the fitness function can 
be evaluated for every member of the population 
simultaneously. The same is true for mutation, 
recombination, and a computation of statistics 
and graphics for monitoring the progress of the 
system. In the system described below, we rou- 
tinely simulate the evolution of populations of a 
million individuals over tens of thousands of gen- 
erations. Since these simulations take place on 
several generations per second, such experiments 
take only a few hours. 

In these simulations, individuals are represented 
within the computer 's memory as pairs of number 
strings that are analogous to the chromosome pairs 
of diploid organisms. The population evolves in 
discrete generations. At the beginning of each 
generation the computer begins by constructing a 
phenotype for each individual, using the set of 
number strings corresponding to an individual 
(the "genome")  as a specification. The function 
used for the interpretation is dependent upon the 
experiment, but typically a fixed region within 
each of the chromosomes is used to determine 
each phenotypic trait of the individual. Discrepan- 
cies between the two bit strings of the pair are 
resolved according to some specified rule of domi- 
nance. This is similar to the diploid "genetic algo- 
ri thms" studied by Smith and Goldberg [18]. 

To simulate selection, the phenotypes are scored 
according to a set of fitness criteria. When the 
system is being used to solve an optimization 
problem, the traits are interpreted as solution pa- 
rameters and the individuals are scored according 
to the function being optimized. This score is then 
used to cull the population in a way that gives 
higher scoring individuals a greater chance of sur- 
vival. 

After the selection step, the surviving gene pool 
is used to produce the next generation by a pro- 
cess analogous to mating. Mating pairs are se- 
lected by either random mating from the entire 
population, some form of inbred mating, or as- 
sortive mating in which individuals with similar 
traits are more likely to mate. The pairs are used 
to produce genetic material for the next genera- 
tion by a process analogous to sexual reproduc- 
tion. First, each individual's diploid genome is 
used to produce a haploid by combining each pair 
of number strings into a single string by randomly 
choosing substrings from one or the other. At this 
point, randomized point mutations or transposi- 
tions may also be introduced. The two haploids 
from each mating pair are combined to produce 
the genetic specification for each individual in the 
next generation. Each mating pair is used to pro- 
duce several siblings, according to a distribution 
normalized to ensure a constant total population 
size. The entire process is repeated for each gener- 
ation, using the gene pool produced by one gener- 
ation as a specification for the next. 

The experiments that we have conducted have 
simulated populations ranging in size from 512 to 
-106  individuals, with between 1 and 256 chro- 
mosomes per individual. Chromosome lengths 
have ranged from 10 to 128 bits per chromo- 
some, mutation rates from 0 to 25% probability of 
mutation per bit per generation, and crossover 
frequencies ranged from 0 to an average of 4 per 
chromosome. Using a Connection Machine ® #1 
with 65 536 processors, a typical experiment pro- 
gresses at about 100 to 1000 generations per 
minute, depending on population size and on the 
complexity of the fitness function. 

2. Sorting networks 

As an example of how simulated evolution can 
be applied to a complex optimization problem, we 
consider the problem of finding minimal sorting 

~*XConnection Machine is a registered trademark of Think- 
ing Machines Corporation. 
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Fig. 1. Sorting network. Fig. 2. Green's 60-comparison sorter. 

networks for a given number of elements. A sort- 
ing network [14] is a sorting algorithm in which 
the sequence of comparisons and exchanges of 
data take place in a predetermined order. Finding 
good networks is a problem of considerable prac- 
tical importance, since it bears directly on the 
construction of optimal sorting programs, switch- 
ing circuits, and routing algorithms in intercon- 
nection networks. Because of this, the problem has 
been well studied, particularly for networks that 
sort numbers of elements that are exact powers of 

two .  

Sorting networks are typically implemented as 
computer  programs, but they have a convenient 
graphical representation, as shown in fig. 1. The 
drawing contains n horizontal lines, in this case 
16, corresponding to the n elements to be sorted. 
The unsorted input is on the left, and the sorted 
output  is on the right. A comparison-exchange of 
the ith and j t h  elements is indicated by an arrow 
from the ith to the j t h  line. Two specified ele- 
ments are compared and they are exchanged if 
and only if the element at the head of the arrow is 
less than the element at the tail; the smallest 
element will always end up at the tail. The sorting 
network pattern shown in fig. 1 is a Batcher sort 
[1], which requires n log2n - 1 exchanges to sort n 
elements. 

A useful property of sorting networks is that 
they are relatively easy to test. A sorting network 
that correctly sorts all sequences of 1 and 0 will 

correctly sort any sequence, so it is possible to test 
an n-input sorting network exhaustively with 2" 

tests. 
In this section we describe how simulated evolu- 

tion is used to search for networks that require a 
small number of exchanges for a given number of 
inputs. In particular, the case n = 16 is of particu- 
lar interest, and has a long history of successive 
surprises. In 1962, Bose and Nelson [2] showed a 
general method of sorting networks which re- 
quired 65 exchanges for a network of 16 inputs. 
They conjectured that this was the best possible. 
In 1964, Batcher [1], and independently, Floyd 
and Knuth [6], discovered the network shown in 
fig. 1, which requires only 63 exchanges. Again, it 
was thought by many to be the best possible, but 
in 1969, Shapiro [14] discovered a network using 
only 62 exchanges. Later that year, Green [14] 
discovered a 60-comparison sorter, shown in fig. 2, 
which stands as the best known. These results are 
summarized in table 1. For a lively and more 
detailed account of these developments, the reader 
is referred to the book by Knuth [14, pp. 227-229]. 

There are two ways to cast the search for mini- 
mal sorting networks as an optimization problem. 
The first is to search the space of functional sort- 
ing networks for one of minimal length. The sec- 
ond is to search the space of short sequences of 
comparison/exchanges for ones that sort best. 
The difficulty with the first approach is that there 
is no obvious way of mutating a working sorting 
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Table 1 
Summary of number of exchanges required for best known 
sorting networks with 16 inputs. 

Best known networks 

1962 Bose and Nelson 65 
1964 Batcher, Knuth 63 
1969 Shapiro 62 
1969 Green 60 

Networks found by simulated evolution 

without parasites 65 
with parasites 61 

network into another one that is guaranteed to 
work, so almost all mutations and recombinations 
will create a network that is outside of the search 
space. It is much easier in the second approach to 
produce mutations and variations of a small pro- 
gram that stay within the space of small programs. 
Mutation can be implemented by changing the 
position of one of the exchanges, and recombi- 
nation by splicing the first part of one sorting 
network with the last part of another. This is 
essentially the approach we have adopted. 

One difficulty with this approach is that even if 
the solution is in the space of small networks, the 
easiest paths to the solution may not be. It may be 
easier, for example, to produce a short correct 
network by optimizing a slightly longer correct 
network than by fixing a bug in a short uncor- 
rect network. For this reason, we have taken 
advantage of the diploid representation of a geno- 
type to allow longer networks to be generated as 
intermediate solutions. 

The genotype of each individual consists of 15 
pairs of chromosomes, each consisting of 8 codons, 
representing the digits of 4 chromosome pairs. 
Each codon is a 4-bit number, representing an 
index into the elements, so the genotype of an 
individual is represented as 30 strings of 32 bits 
each. The phenotype of each individual (an in- 
stance of a sorting network) is represented as an 
ordered sequence of ordered pairs of integers. 
There is one pair for each exchange within the 
network. The elements of the pair indicate which 

elements are to be compared and optionally ex- 
changed. Each individual has between 60 and 120 
pairs in its phenotype, corresponding to sorting 
networks with 60 to 120 exchanges. 

The phenotype is generated from the genotype 
by traversing the chromosomes of the genotype in 
fixed order, reading off the pairs to appear in the 
phenotype. If a pair of chromosomes is homozy- 
gous at a given position (if the same pair is speci- 
fied in both chromosomes), then only a single pair 
is generated in the phenotype. If the site is het- 
erozygous, then both pairs are generated. Thus the 
phenotype will contain between 60 and 120 ex- 
changes, depending on the heterozygosity of the 
genotype. Sixty was chosen as the minimum size 
so that a completely homozygous genotype would 
produce a sorting network that matches the best 
known solution. Because most of the known mini- 
mal 16-input networks begin with the same pat- 
tern of 32 exchanges, the gene pool is initialized to 
be homozygous for these exchanges. The rest of 
the sites are initialized randomly. 

Once a phenotype is produced, it is scored 
according to how well it sorts. One measure of 
ability to sort is the percentage of input cases for 
which the network produces the correct output. 
This measure is convenient for two reasons. First, 
it offers partial credit for partial solutions. Second, 
it can be conveniently approximated by trying out 
the network on a random sample of test cases. 
After scoring, the population is culled by trunca- 
tion selection at the 50% level; only the best 
scoring half of the population is allowed to con- 
tribute to the gene pool of the next generation. 

To implement recombination, the gamete pool 
is generated by crossover among pairs of chromo- 
somes. For each chromosome pair in the surviving 
population, a crossover point is randomly and 
independently chosen, and a haploid gamete is 
produced by taking the codons before the cross- 
over point from the first member of each chromo- 
some pair, and the codons after the crossover 
point from the second member. Thus, there is 
exactly one crossover per chromosome pair per 
generation. Point mutations are then introduced in 
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the gamete pool at a rate of one mutation per one 
thousand sites per generation. 

The next stage is the selection of mates. One 
way to do this would be to choose pairs randomly, 
but our experience suggests that it is better to use 
a mating program with some type of spatial local- 
ity. This increases the average inbreeding coeffi- 
cient and allows the population to divide into 
locally mating demes. The sorting networks evolve 
on a two-dimensional grid with torroidal bound- 
ary conditions. Mating pairs are chosen to be 
nearby in the grid. Specifically, the x and y dis- 
placement of an individual from its mate is a 
binomial approximation of a Gaussian distribu- 
tion. Mating consists of the exchange of haploid 
gametes. After a pair mates, they are replaced by 
their offspring in the same spatial location, so the 
genetic material remains spatially local. 

Simulations were performed using the proce- 
dure on populations of 65 536 individuals for up 
to 5000 generations. Typically, one solution, or a 
few equal scoring solutions, were discovered rela- 
tively early in the run. These solutions and their 
variants then spread until they accounted for most 
of the genetic material in the population. In cases 
where there was more.than one equally good solu- 
tion, each "species" dominated one area of the 
grid. The areas were separated by a boundary 
layer of non-viable crosses. Once these boundaries 
were established, the population would usually 
make no further progress. The successful networks 
tend to be short because the descendant of het- 
erozygotes tended to be missing crucial exchanges 
(recessive lethals). The best sorting networks found 
by this procedure contained 65 exchanges. 

3. The co-evolution of parasites 

While the evolution of the sorting networks 
produced respectable results, it was evident on 
detailed examination of the runs that a great deal 
of computation was being wasted. There were two 
major sources of inefficiency. One was a classical 
problem of local optima: once the system found a 

reasonable solution, it was difficult to make 
progress without temporarily making things worse. 
The second problem was an inefficiency in the 
testing process. After the first few generations, 
most of the tests performed were sorted success- 
fully by almost all viable networks, so they pro- 
vided little information about differential fitness. 
Many of the tests were too "easy." Unfortunately, 
the discriminative value of a test depends on the 
solutions that initially evolve, and in the case 
where several solutions evolve, the value of a given 
test varies from one sub-population to another. 

To overcome these two difficulties, various 
methods were implemented for accelerating 
progress by encouraging a wider diversity of solu- 
tions and limiting the number of redundant test 
cases. Three general methods were investigated: 
varying the test cases over time, varying the test 
cases spatially, and varying the test cases automat- 
ically by independent evolution. Because the third 
case has yielded the most interesting results, only 
it will be described in detail. 

The co-evolution of test cases is analogous to 
the biological evolution of a host parasite, or of 
prey and predator. Hamilton has used both com- 
puter simulation and mathematical/biological ar- 
guments to show that such co-evolution can be a 
generator of genetic diversity [7-11]. The im- 
proved optimization procedure uses this idea to 
increase the efficiency of the search. 

In the improved procedure, there are two inde- 
pendent gene pools, each evolving according to 
the select ion/mutat ion/recombination sequence 
outlined above. One population, the "hosts",  rep- 
resents sorting networks, while the other popula- 
tion, the "parasites", represents test cases. (These 
two populations might also be considered as 
"p rey"  and "predator" ,  since their evolution rates 
are comparable.) Both populations evolve on the 
same grid, and their interaction is through their 
fitness functions. The sorting networks are scored 
according to the test cases provided by the para- 
sites at the same grid location. The parasites are 
scored according to how well they find flaws in 
sorting networks. Specifically, the phenotype of 
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Fig. 3. 61 exchanges. 

each parasite is a group of 10 to 20 test cases, and 
its score is the number of these tests that the 
corresponding sorting network fails to pass. The 
fitness functions of the host sorting networks and 
the parasitic sets of test patterns are complemen- 
tary in the sense that a success of the sorting 
network represents a failure of the test pattern 

and vice versa. 
The benefits of allowing the test cases to co- 

evolve are twofold. First, it helps prevent large 

portions of the population from becoming stuck in 
local optima. As soon as a large but imperfect 
sub-populat ion evolves, it becomes an attractive 
target toward which the parasitic test cases are 
likely to evolve. The co-evolving test cases imple- 
ment  a frequency selective fitness function for the 
sorting networks that discourages large numbers 
of individuals from adopting the same non-opti- 
mal  strategy. Successive waves of epidemic and 
immunity  keep the population in a constant state 
of flux. While systems with a fixed fitness criteria 
tended to get stuck in a few non-optimal states 
after a few hundred generations, runs with co- 
evolving test cases showed no such tendency, even 

after tens of thousands of generations. 
The second advantage of co-evolving the para- 

sites is that testing becomes more efficient. Since 
only test-case sets that show up weaknesses are 
widely represented in the population, it is suffi- 
cient to apply only a few tests to an individual 

each generation. Thus, the computation time per 
generation is significantly less. These two factors 
taken together make it both more practical and 
more productive to allow the system to run for 
larger numbers of generations. 

The runs with co-evolving parasites produced 
consistently better and faster results than those 
without. Fig. 3 shows the best result found to date, 
which requires 61 exchange elements. This is an 

improvement over Batcher's and Shapiro's solu- 
tions, and over the results of the simulation with- 
out parasites. It is still not the opt imum network, 
since it requires one more sorting exchange than 

the construction of Green. 
These preliminary results are encouraging. They 

demonstrate that simulated evolution of co-evolv- 
ing parasites is a useful procedure for finding good 
solutions to a complex optimization problem. We 
are currently applying similar techniques to other 
applications in an at tempt to understand the range 
of applicability. It is ironic, but perhaps not sur- 
prising, that our attempts to improve simulated 
evolution as an optimization procedure continue 
to take us closer to real biological systems. 
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