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Abstract Among them, the methods used for the optimization of

single-objective, multimodal functions are the crowding

In artificial genetic search, multimodal func- method suggested by De Jong (1975) and two sharing

tions are optimized by inducing the natural schemes suggested by Goldberg and Richardson (1987).

concepts of niche and species into a population This paper compares these schemes based on their per-

of strings. In this paper, a number of meth- formance on 2 number of single and multiparameter,

ods are suggested for this purpose. Specifi- multimodal functions and implements a mating restric-

cally, crowding and sharing function methods tion scheme. In the optimization of multimodal func-

are compared on the basis of their performance tions using sharing and mating restriction, the former

on a number of test functions. Simulation re- helps maintain subpopulations at multiple peaks by di-

sults show that a GA with sharing is able to viding the population into different niches, while the lat-

* converge and distribute trials at all the peaks ter helps improve the overall performance by promoting
A of the functions, whereas 2 GA with crowd- speciation among the members of each niche.

ing is unable to maintain subpopulations at all In the remainder of this paper, a brief review of a num-

the peaks. Two forms of sharing functions are ber of crowding and sharing schemes is made. Methods

considered, so-called phenotypic and genotypic to calculate the sharing parameters are formulated, and

sharing, and a mating restriction scheme is im- experimental results comparing the performance of sev-

plemented to improve on-line performance. eral GAs on a number of multimodal functions are then

presented. Genotypic sharing results are discussed in

1 Introduction the light of a simplified convergence analysis. Finally,

a phenotypic mating restriction scheme is implemented
Over the years, genetic algorithms (GAs) have proved together with phenotypic sharing and applied to a test
useful in a variety of search and optimization problems function to show improvement over the on-line perfor-
(Goldberg, 1989). As the usage of GAs has grown, ob- ~ mance of sharing alone.
jections to their performance on specific problems have
arisen, and when this happens, natural remedies are of- 2 Niche_formation Methods
ten tried. For example, to achieve better performance on
nonstationary functions, dominance and diploidy have In the optimization of multimodal functions, a simple
been added (Goldberg and Smith, 1987); to overcome GA cannot maintain controlled competition among the
the limitations in fixed codings, inversion and reorder- competing schemata corresponding to different peaks,
ing operators have been suggested (Goldberg, 1989). In and the stochastic error associated with the genetic op-
dealing with multimodal functions, simple GAs converge erators causes the population to converge to one alter-
to a single peak (Goldberg and Richardson, 1987), even native or other. This problem with finite populations
though multiple peaks of equal quality may exist. Faced  is known as genetic drift (De Jong, 1975; Goldberg and

with a similar problem, nature forms stable subpopula- Segrest, 1987). Moreover, in dealing with multimodal
tions of organisms surrounding separate niches by forc- functions with peaks of unequal value, a simple GA con-
ing similar individuals to share the available resources. verges to the best peak; whereas, in addition to want-
In artificial genetic search, 2 number of modifications ing to know the best solution, one may be interested in
have been tried on a simple GA to implement an anal-  knowingthe location of other optima. To overcome thest

ogous form of sharing (Deb, 1989; Goldberg, 1989). limitations a natural remedy is tried.
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In nature, a niche is viewed as an organism’s task
in the environment, and a species is a collection of or-
ganisms with similar features. The subdivision of en-
vironment on the basis of an organism’s role reduces
inter-species competition for environmental resources,
and this reduction in competition helps stable subpop-
ulations to form around different niches in the environ-
ment. A number of methods are suggested to introduce
this notion in genetic algorithms. Specifically, crowding
and sharing are briefly discussed in the following.

2.1 Crowding Scheme

In De Jong’s crowding (1975), separate niches are cre-
ated by replacing existing strings according to their sim-
ilarity with other strings in an overlapping population.
Two parameters, generation gap (G) and crowding fac-
tor (CF), are defined for this purpose. Generation gap
G dictates the use of an overlapping population model in
which only a proportion G of the population is permit-
ted to reproduce each generation. To induce niche in the
population, the following approach is adopted. When se-
lecting an individual to die, CF individuals are picked at
random from the population, and the one which is most
similar to the new individual is chosen to be replaced,
where similarity is defined in terms of the number of
matching alleles. The new individual (chosen by usual
selection methods) then replaces this chosen individual
in the population. De Jong used this scheme successfully
with crowding factor CF' = 2 and 3 and with generation
gap G = 0.1. De Jong’s crowding scheme has been sub-
sequently used in a machine learning application (Gold-
berg, 1983).

2.2 Sharing Scheme

Goldberg and Richardson (1987) used Holland’s (1975)
sharing concept by dividing the population in different
subpopulations according to the similarity of the individ-
uals in two possible solution spaces: the decoded param-
eter space and the gene space. They defined a sharing
Parameter ogp, ..o to control the extent of sharing, and
they defined a power-law sharing function Sh(d) as a
function of the distance-metric (d) between two individ-
uals as follows:

Sh(d) = { (1)" (FslflTre)a'

if d < oghares (1)

otherwise.

tI‘O implement the idea of sharing, an individuals’s payoff
1s degraded due to the presence of other individuals in
Its neighborhood. When the proximity of the individu-
als is defined in the decoded parameter space, it is called
Phenotypic sharing. In two multimodal functions, Gold-

€rg and Richardson were able to show the successful
CIllstering of trials at the peaks. In the same study, they

suggested, but did not simulate, the use of sharing based
on genetic proximity or genotypic sharing. As they sug-
gested, the genetic closeness of two individuals may be
taken as the number of different alleles in their chromo-
somes (the Hamming distance between the strings).

The working of the sharing principle mainly depends
on the parameter oy}, o and must be set carefully. The
parameter oy} .. is the maximum distance between the
strings necessary to form as many niches as there are
peaks in the solution space. Therefore, the parameter
Oshare depends on the number of peaks and the upper
and lower bounds of the solution space. The next section
discusses a method to calculate the parameter Oshare i
both phenotypic and genotypic sharing.

3 Calculation of the Parameter Oshare

SincSa th<? para.met.e}- share in pheno.typiC and genotypic
sharing is defined in different solution spaces, the cal-
culation of the parameter oy}, . in each case is also
different and is discussed in the following.

3.1 Phenotypic Sharing

The distance metric (d;;) considered in phenotypic
sharing is the distance between strings in the de-
coded parameter space. For a single parameter
function, this may be calculated as the absolute
difference of the decoded parameter values of the
strings. In general, for a p-parameter function, the
distance d;; may be calculated using any suitable
distance-norm in the p-dimensional space. For sim-
plicity, the Euclidian distance in p-dimensional space
is adopted here. Therefore, for the individuals
X; = [xll.-, X2,i, ...xp,,-] and X; = [xl_j, X2,55
.. .Xp ;] the metric d;; may be calculated as

P
d,'j = Z (Xk,i - xk,j)z, (2)
k=1

where the x) ¢, X34, ...Xp ; are the decoded parameters.
To estimate the parameter o}, .., imagine that each
niche is enclosed in a p-dimensional hypersphere of ra-
dius oy}, ... such that each sphere encloses 1 of the vol-
ume of the space, where g is the number of peaks in the
solution space. The radius of a hypersphere containing
the entire space is calculated as
r= ,}\/E’;___l(xk'ma, — Xk,min)?, and the volume is cal-
culated as V' = cr? with ¢ a constant. Dividing this
volume in ¢ parts and recognizing that the hypervolume
has the same form regardless of size, Oshare May be cal-
culated as follows:

1
P — I oapP
®share q eres
— r .
Oshare ~ %’
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\/2T= (xk,maz - xk,min)2
k=1 . e

For a single parameter function (p = 1), the above equa-
tion reduces to

Xmaz — Xmin
Oshare = 29 : (4)

3.2 Genotypic Sharing

In genotypic sharing, the metric d;j is defined as the
Hamming distance between the strings, and the param-
eter Oghare is defined as the maximum number of dif-
ferent bits allowed between the strings to form separate
niches in the population. An estimate of the parameter
Oshare M3y be calculated as follows.

Consider that two binary strings s; and s; are of length
¢. Comparing string si with string s;, if only one bit dif-
ference is allowed between the strings, there are a total

li) such strings possible. Similarly, if two distinct bits

of difference are allowed, there are (%) such strings pos-

sible. In general, for k distinct allowable bits of differ-

ence, there are total i) strings possible in the solution

space. Since there are at most 2¢ strings in the solution
space, it may be argued that, in general, (i) /2¢ of the
whole solution space are all k-bits away from each other.
A similar estimate with the strings having at most a k-
bit difference in their gene space may then be calculated
by summing all such quantities varying from zero to k

(or, Z?:o (f) /2%). On the other hand, for a g-peaked

function, there are ¢ niches in the solution space, and
assuming uniform niche placement, each niche must cor-
respond to an average of ;11- of the total solution space.
Therefore, if k (oF Oghare) is the maximum bits of dif-
ference allowed between the strings to make g-subspaces
in the solution space, then

k
2y =7 ®

=0

For specific values of the number of peaks, ¢, and the
string length, £, the parameter k (or Oshare) MY be esti-
mated from the above equation. It is, interesting to note
that the left hand side of this equation corresponds to a
cumulative binomial distribution with probability of oc-
currence equal to 0.5. Therefore, a cumulative binomial
distribution chart may be used for a quick calculation of
genotypic Oghare using the above equation.

If the string length £ is large, the calculation of oghare
from the above equation becomes cumbersome; more-
over, there is no cumulative binomial distribution chart
available for large values of £. In such cases, the pa-
rameter Oghare MY be calculated by considering the

normal approximation to the binomial distribution. As-
sume that the number of bits of difference over the string
length £ between two strings is normally distributed with
mean p = pt = %, and variance o2 = £p(1—p) = L. Con-
sidering that z* is the required normalized bit difference
corresponding to -lq- of total probability space, one may

write

Oghare —# _—

*
il —— .
z )

(o4

cpare = 3FEVD: (6)
Therefore, a 2* corresponding to the fraction % may be
found from'a cumulative normal distribution chart and
the parameter Oghare MY be calculated. For large val-
ues of population size and string length, the parameter
Osha calculated from the above equation compares well
with that calculated from Equation 5.

4 Crowding versus Sharing

The crowding and the sharing methods are implemented
on genetic algorithms and applied to a number of test
functions to compare the performance of each scheme
based on three performance criteria discussed below. A
number of other test functions are considered elsewhere
(Deb, 1989). This paper considers the following three
functions: '

Fl: fi(z) = sin®(57z)

This function has five peaks of same size in the range
0<z<l

F2: fa(z) = 4:"2“""(5%%l j sin®(57z)

This function has five peaks of unequal size in the range
0<z<l

Similar functions were used in Goldberg and Richard-
son (1987). They are considered here to compare differ-
ent schemes using new performance criteria.

F3 : Himmelblau’s Function
fa(z1,22) = (z24 22— 11)2 4 (z1 + z2 - 7)%.

This function has four optima in the region —6.0 <
z,,22 < 6.0, where z; and T2 are two parameters
(Reklaitis, Ravindran, and Ragsdell, 1983). The opti-
mum points correspond to the minima of the above func-
tion. Therefore, to use this function in genetic search
technique, the function is suitably transformed into a
maximization problem.

The performance of the algorithms on these functions
are judged on the basis of two criteria: the conver-
gence and the distribution of trials at all the peaks. De
Jong’s (1975) on-line and off-line performance measures
are used to measure the best and average convergence
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of trials at the peaks. In the case of multimodal func-
tions, simple on-line or off-line performance measures do
not judge the distribution pattern of the trials over the
peaks; moreover, a high on-line or off-line performance
measure is not meaningful when the function has un-
equal peaks. Therefore, simple on-line and off-line per-
formance statistics are insufficient to judge the perfor-
mance of a GA in the case of multimodal functions. To
characterize the distribution of trials over the peaks, a
chi-square-like criterion is developed, where the actual
distribution is compared to an ideal distribution.

An ideal distribution pattern of trials over the peaks
may be calculated from the modified k-armed bandit
problem introduced by Holland (1975). In a modified k-
armed bandit problem, the individuals queued up behind
each arm correspond to a niche and if the individuals of
one arm are not allowed to share with the individuals
of other, they form a stable subpopulation of individu-
als in each arm in proportion to their arm payoff values;
however, in a real-world function such clear definitions
of peaks and the number of individuals associated with
peaks are not possible. Therefore, trials having fitness
values within a fraction ¢ of the representative peak fit-
ness value-are associated with that peak. The solution
space then:consists of ¢ subspaces corresponding to each
peak so defined and one other subspace that includes
the individuals not representing any peak. To estimate
a chi-square-like deviation measure, the expected value
and the corresponding variance of the number of indi-
viduals representing each subspace are required. For the
on-peak individuals, these parameters may be calculated
from the peak-fitness values, f;, and the population size,
N, as py; = ff" x N and o? = Npi(l — p;), where
pi = &. But, the expected number and the variance of
the individuals that do not represent any peak (441 and
03+1) cannot be calculated in this fashion since there is
no single representative fitness value for these individu-
als. Nonetheless, these parameters may be estimated by
setting the sum of the individuals in all (¢+1) subspaces
equal to the population size, N.

Let X, X2,...X, represent the number of individual
in the successive peaks and let X,4; denote the num-
ber of individuals that do not represent any peak. The
variables X, X3,...X, are assumed to be independent
of each other. Another variable X7 is chosen such that

XT = E:'I=l X

The expected value of the variable X7 may then be
written as E[X7] = Y./_, E[Xi] = Y}_,pi = N, and
similarly, 02 = 3"!_, 0?. Recognizing that,

X¢+1 = N-—-Xr;
Por1 = 0 (7)
and ”3-}-1 = o};

I
'M"’

(1 - 5. ®)

Thereafter, a chi-square-like distribution error may be

defined as
5 ———~X"”‘)2 )
o

i=1

performance measure =

This measure estimates the deviation of the actual dis-
tribution of individuals X; from the ideal distribution p;
in all the ¢+ 1 subspaces where the smaller the measure,
the better the method.

4.1 Simulation Results

The GA parameters used in the simulations are as fol-
lows:
maximum generation 200
population size : 100
string length (binary coded) : 30
probability of crossover 09
probability of mutation 0.0
crowding factor 3
generation gap 0.1

The parameters are held constant across all runs. To
minimize the stochastic error due to the selection proce-
dure, stochastic remainder selection method is used, and
to judge the appropriate diversity in the population with
the schemes alone, the probability of mutation is set to
zero. In the crowding scheme, the parameters (CF and
G) are set to the values used by De Jong (1975). In
the sharing schemes, a triangular sharing distribution
(a = 1) is used. The sharing parameter o}, used in
the simulation is calculated using the derived relations.
For the functions F1 and F2, X6z = 1, x,m,, =0,¢g=05,
and £ = 30, so that phenotypic ¢ m = 0.1 and

share™
genotypic oy}, is calculated as ) 7y ?0) = 12%;

or, 13 < 0g}are < 14. Function F3 has four peaks in the
rectangle —6.0 < z;,z2 < 6.0. Phenotypic and geno-
typic sharing parameter are calculated using Equations 3
and 5 and are found to be 4.24 and 13 respectively. To
calculate the performance measures, five runs are car-
ried out with different initial populations generated at
random, and an average statistic is calculated for each
of the three performance measures. To make a fair com-
parison, however, the same five initial populations are
used for each scheme.

Figure 1 shows the distribution of 100 individuals plot-
ted on the function F1 after 200 generations with crowd-
ing, phenotypic sharing, and genotypic sharing. A visual
comparison on the plots reveals that crowding is unable
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to maintain stable subpopulations at all the peaks of the
function, whereas the sharing methods are able to cluster
trials around all five peaks of the function.

The on-line performance measure on the function F1
after 200 generations with crowding, phenotypic shar-
ing, and genotypic sharing is found to be 0.892, 0.863,
and 0.866 respectively. Though, all three schemes show
a high value of on-line performance measure on func-
tion F1, recall that in the crowding scheme, the individ-
uals converge to only two of the five peaks (Figure 1),
whereas both the sharing methods are able to converge to
all five peaks, and still attain high on-line performance.
All three schemes achieve similarly high off-line perfor-
mance values indicating good convergence to one or more
peaks on F1 although the corresponding plot is not re-
produced here.

To determine how well the schemes have distributed
the individuals to the different peaks, the deviation mea-
sure described in the previous section is calculated and
is shown in Figure 2. Since all peaks are of the same
size, the expected number (ui) of trials in each peak is
100 = 90, and the variance o? = 100x0.2x(1-0.2) = 16.
The expected number and variance corresponding to the
individuals not representing any peak are calculated us-
ing Equation 7 and 8:

5
and o2=),100x0.2x(1- 0.2) = 80.

i=1

l“5=0i

The low deviation measure values with sharing methods
indicate a near-ideal distribution of trials over the peaks
on F1. It can be inferred from the plots that sharing
methods are better able to maintain and converge to
stable subpopulations at the peaks of function F1.
Simulations on function F2 also produces interesting
results. Figure 3 shows representative populations of
points at generation 200 generated by all the schemes.
Crowding cannot maintain a spread of trials on all the
peaks and converges to one peak. Phenotypic sharing is
able to maintain subpopulations proportionate to their
peak fitness values at all five peaks, whereas genotypic
sharing is unable to cluster trials at the smaller peaks.
It is found that when dealing with functions having un-

" equal peaks, genotypic sharing sometimes cannot main-

tain subpopulations at the peaks of lower fitness values.
There is a critical ratio of the peak fitness values above
which genotypic sharing is unable to maintain subpopu-
lations at lower peaks. A simplified analysis of this ratio
is presented in a later section.

Since F2 has unequal peaks, a high value of on-line
performance measure does not imply good convergence
at all the peaks, and the corresponding plot is not pre-
sented here. A better understanding of the performance
of the schemes may be obtained from the deviation mea-
sure. The expected number of individuals, p;, and the
variance, o, of the individuals on each peak are tabu-

———————————

lated in Table 1. Using these values in Equation 9, the
chi-square-like deviation measure may be calculated at
any generation and is shown in Figure 4. Phenotypic
sharing performs well on F2 as demonstrated by its low
deviation value.

. PHENOTYPIC
1 SHARING

GENOTYPIC
SHARING

%o CROWOING

Figure 1. State of the population on function F1 after 200
generations. GAs with sharing distribute trials to all five
peaks; a GA with crowding converges to two peaks.

—— phenotypic shoring --- genotypic sharing —- crowding

~
o

—_
w
|

~like deviotion meosure

chi-square

I I I I I T
80 100 120 140 160 180 200
generation number

T
0 20 40 60

Figure 2. Comparison of the chi-square-like deviation mea-
sure of all three schemes on function F1. GAs with sharing
show a small deviation from the ideal distribution.
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Table 1. Expected number and variance of different sub-
spaces on F2.

subspace fi Wi o}

1st peak | 1.000 | 30 | 21.00
2nd peak | 0.917 | 27 | 19.95
3rd peak | 0.707 | 21 | 16.72
4th peak | 0.458 | 14 | 11.86
5th peak [ 0.250 | 8 | 6.94
non-peak 0 | 76.47

PHENQTYPIC
SHARING

Figure 3. State of the population on function F2 after 200
generations. A GA with phenotypic sharing distributes trials
to all five peaks, a GA with genotypic sharing distributes
trials to three peaks, and a GA with crowding distributes
trials to a single peak.

Function F3 is a two-parameter function and has four
peaks in the solution space. The sketches showing the
distribution of trials on the contours of the function
are presented in the original study (Deb, 1989). The
sketches show that crowding is able to converge to two
peaks, whereas sharing is able to converge to all four
peaks. The on-line performance value on the function F3
after 200 generations with crowding, phenotypic sharing,
and genotypic sharing is found to be 0.851, 0.884, and
0.811 respectively. All the schemes show good conver-
gence to one or more peaks of the function. Figure 5
shows chi-square-like measure on F3 for all these meth-
ods. Small deviations for both sharing methods con-
firms the successful formation of niches in the popula-
tion. The difference between phenotypic and genotypic
sharing is significant, however, with phenotypic sharing

coming closer to ideal distribution.

— phenotypic sharing --- genotypic sharing — crowding
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Figure 4. Comparison of the chi-square-like deviation mea-
sure of all three schemes on function F2. A GA with pheno-
typic sharing shows a small deviation from the ideal distri-
bution.
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Figure 5. Comparison of the chi-square-like deviation mea-
sure of the schemes on function F3. GAs with sharing show a
smaller deviation from the ideal distribution than does crowd-
ing.
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n of Genotypic Sharing It is clear from the above equation that individuals exist
. in the second peak (with lower fitness value) only if the

Ou functions with peaks of uneqpal .value, genotypic  pumerator of the above equation is positive:

sharing is sometimes unable t_° maintain stable 31.1bpop-

ulations at the peaks of relatively 'low.value.' This phe- 1—vShi2 >0,

ponenon can be explained by conmds:rmg a simple func-

tion having two competing peaks with pa.yoﬁ values fi Shys <

with f1 = f2 corresponding to the strings 51 and =

alizedin Figure 6. In genotypic sharing, the met- )

ric dij 18 defined as the Hamming dist?,nce betv.veen t:he dyp > (1 - ?Y')”sha.re' (13)

strings. Considering 2 triangular s_harmg function with ‘ ' '

a = 1,the genotypic sharing function Shi; between any Therefore, there is a lower bound on f.he Hamming dif-

two individuals ; and j in the population can be written  ference between the strings representing the peaks be-

low which genotypic sharing is incapable of forming any

subpopulation on the 'smaller peak. This bound is de-

5 A Limitatio

, Or,

L=

and f2
sy aside

as

dij . . e

1- (ﬁl—> , if dij < Oghare’  (10) pendent on the fitness-ratio of the peaks, 7, and .the

Shij = share d parameter Oghare- On the other hand, for a particu-
) ij 2 Ishare- lar peak fitness ratio, the positions of the peaks in the

gene space should be such that the Hamming difference
between them is more than that derived from the right
side of Equation 13. It is interesting to note that, for
. functions having peaks of equal fitness values, v = 1,
f(s) 11 and using this value in Equation 13, di2 > 0. That is,
with peaks of equal value, any bit difference between the
strings representing the peaks is sufficient to form stable
subpopulations around the peaks. Therefore, in deal-
ing with functions having peaks of equal fitness value,
L__Li genotypic sharing allocates trials successfully over all the
S, S, peaks.

In the next section, the performance of sharing
schemes is further improved by imposing the concept of

6. Idealized bimodal function with peaks correspond- mating restriction.

LA

e—— dyg —

Figure
ing to strings $1 and s2.

6 Adding a Mating Restriction Scheme

Assume that after a substantial number of generations,
all the individuals have settled in one of the two peaks
with n and n2 individuals in peaks 1 and 2 respectively
such that the total population size n = ny + na. The
niche count of an individual corresponding to each niche

Once the sharing scheme clusters subpopulations of tri-
als at the peaks, crossover between strings on different
peaks may produce new strings that do not represent any
peak. The presence of these lethal strings in the popu-
lation degrades the on-line performance of the process.
smp=mt naShyz and my = N2 ,+ nlShl"l' There-  perefore, to achieve better performance on multimodal
fore. the shared fitness values are f; = FF%S_"T; and o = tions, crossover between strings of different peaks
fi= :,‘;7;{'3'577 respectively. To establish stable sub-  must be reduced. In nature, this is achieved by creat-
populations on oth the peaks, the shared fitness val}les ing separate species (or subpopulation) corresponding to
of an individual in either peak must be equal; otherwise.  each niche (or peak) in the solution space and restrict-
only the one with higher shared fitness will be selected.  ing the mating between species. A number of methods

Therefore, setting f1 = 2 have been suggested and developed to induce species into
the population using some sort of restriction in mating

h _mAmSha (11)  (Booker, 1982; Deb, 1989; Goldberg, 1989). This pa-

fa mt n1Shiz per considers a simple mating restriction scheme based

on the phenotypic distance between the mating individ-
uals. In the previous section, it has been shown that
a population can be divided into as many subpopula-
tions as there are peaks by suitably selecting a parameter
ny _ 1—7Shi2 (12) Oghare: A simi}ar parameter can also be (-ieﬁned to cre-
n o (1+71Q- Shy2)’ ate subpopulations that constitute a species. When the

The parameter ¥ is the peak fitness ratio and as f1 > fa.
the parameter?y has a value greater than or equal to one.
Rearranging, the above equation then takes the form

- ——
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distance-metric considered in both these cases are mea-
sured in the decoded parameter space, so-called pheno-
typic mating restriction, the individuals with the corre-
sponding distance-metric less than o), ., .. are shared and
the individuals with distance-metric less than %mating
are mated. To keep the analysis simple, the parameters
Oshare @1d Oating are set equal. The mating restric-
tion method imposed on the individuals is as follows:

To find a mating companion of an individual,
if an individual within a distance of Tmating
is found, mating is performed, otherwise an-
other individual is tried. If no such individual
is found in the population, a random individual
is chosen.

This scheme has been implemented and applied to
the test functions defined earlier. This paper presents
the simulation results on Function F1 only; more detail
results are available in the original work (Deb, 1989).
Figure 7 shows the reduction in lethal individuals due
to the mating restriction. Figure 8 shows the on-line
performance measure of phenotypic sharing alone and
phenotypic sharing with phenotypic mating restriction.
The average value of the chi-square-like measure on func-
tion F1 after 200 generations with phenotypic sharing
alone and phenotypic sharing with phenotypic mating
restriction is found to be 2.169 and 0.487 respectively.

WITH MATING
RESTRICTION

%4 WITHOUT MATING
RESTRICTION

Figure 7. Distribution of trials on function F1 with pheno-
typic sharing alone and phenotypic sharing with phenotypic
mating restriction. Sharing with mating restriction reduces
the number of lethal trials.

An increase in the value of the on-line performance mea-
sure and simultaneously, a decrease in the value the chi-
Square-like deviation measure reveal that sharing with
Mating restriction improves the on-line performance of

sharing and also better distribute trials at peaks in pro-
portion to peak fitness values.

1.00
30.80—'
H
£0.60
€
? 0.40 ---- phenotypic sharing alane
: —— phenotypic sharing with
= phenotypic mating restriction
—0.204
0.00 T T T T T T T

0 20 40 60 BO 100 120 140 160 180 200

generation number

Figure 8. Comparison of on-line performance measure on F1
with phenotypic sharing alone and phenotypic sharing with
phenotypic mating restriction.

Tag-template mating restriction has also been consid-
ered in the original study (Deb, 1989), but this work is
beyond the scope of this paper.

7 Conclusions

In artificial genetic search, multimodal functions are op-
timized by creating separate niches in a problem, thereby
forcing individuals within the same niche to fight for
limited population slots. This paper has compared the
crowding method of De Jong and the sharing function
method of Goldberg and Richardson by analyzing their
performance on three multimodal functions. Simulation
runs have shown that the sharing is better able to allo-
cate individuals to the peaks. Of the two sharing func-
tion methods, phenotypic sharing and genotypic sharing,
it has been observed that genotypic sharing is sometimes
unable to maintain subpopulations at sub-optimal peaks.
An analysis has shown that a minimum Hamming dis-
tance is required to separate peaks of differing fitness
ratio.

In multimodal function optimization, crossover be-
tween individuals of different peaks may produce indi-
viduals that do not belong to any peak. The presence of
these individuals in the population degrades the on-line
performance of a scheme. Therefore, to further improve
the performance of niche methods, a mating restriction
scheme has been used. The experimental results with
a simple mating restriction scheme have demonstrated
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improvement in the on-line performance of phenotypic
sharing.
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