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Abstract

We present an abstraction of the genetic algorithm (GA), termed population-based incremental learn
(PBIL), that explicitly maintains the statistics contained in as@&pulation, but which abstracts away
the crossover operator and redefines the role of the population. This results in PBIL being lsatipler
computationally and theoreticallthan the GA. Empirical results reported elsewhere show that PBIL is
faster and more fdctive than the GA on a lge set of commonly used benchmark problems. Here we
present results on a problem custom designed to benefit both from'ther@sover operator and from

its use of a population. The results show that PBIL performs as well as, or better than, GAs careft
tuned to do well on this problem. This suggests that even on problems custom designed for GAs, m
of the power of the GA may derive from the statistics maintained implicitly in its population, and nc
from the population itself nor from the crossover operator
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1. THE GENETIC ALGORITHM (GA) probability of randomly flipping the value in each bit posi-
tion of each chromosome at every generation. Elitist selec-
Genetic algorithms (GAs) are biologically motivated tion can either be on or fofIf it is on, the best
adaptive systems based on natural selection and genechromosome from generatiéhis automatically carried to
recombination. In the standard GA, candidate solutiongenerationG+1. With elitist selection, the quality of the
are encoded as fixed length vectors. The initial populatiobest solution in each generation monotonically increases

of solutions is chosen randomryrhese candidate solu- over time. Wthout elitist selection, it is possible to lose
tions, called “chromosomes,” are allowed to evolve over the best chromosome due to stochastic err@shriiques

number of generations. At each generation, the fithess somewhat similar to elitist selection have also been stud-
each chromosome is calculated; this is a measure of hcied outside of the domain of genetic algorithms. “Best-so-
well the chromosome optimizes the objective functionfar” techniques are explored, in the context of simulated
Subsequent generations are created through a processannealing methods, in [Boese & Kahng, 1994].

selection, recombination, and mutation. Chromosome fit

ness is used to probabilistically select which individuals

will recombine. Recombination (crossover) operators Parent A 00000000 00000
merge the information contained within pairs of selected  (One Point Parent B 11111111 11111
“parents” by placing random subsets of the informatior ~ & 0ssover Child A 00000000 11111
from both parents into their respective positions in a mem Child B 11111111 00000
ber of the subsequent generation. Due to random facto :

involved in producing “children” chromosomes, the chil- Parent A 000 0000000 000

dren mayor may not, have higher fitness values than thei

; . Parent B 111 1111111 111
parents. Nevertheless, because of the selective pressi ~ Two Point

applied through a number of generations, the overall tren & °SSOVer Child A 000 1111111 000
is towards higher fitness chromosomes. Mutations ar Child B 111 0000000 111
used to help preserve diversity in the population. Muta ! '
tions introduce random changes into the chromosomes. Parent A 0000000000000
?ggisalgyr\ilgegvs](?f GAs can be found in [Goldipet 989] ggggwer Parent B 1111111111111
Child A 0101010111000

Although there has recently been some controversy in tr
GA community as to whether GAs should be used foi
static function optimization, a lge amount of research Figure 1: Samples of Crossov@ne Point, o Point, and
has been, and continues to be, conducted in this directio Uniform Crossover

[De Jong, 1992] claims that the GA is not a function opti-

mizer, and that typical GAs which are used for function

optimization often use d#rent, specially customized

mechanisms which are not suited for GAs used for “adag

tation” in dynamic environments. Nonetheless, as many 2 FOUR PEAKS: A PROBLEM DESIGNED
the more successful applications and current trends in G

research focus on optimization (most often in static enviTO BE GA-FRIENDLY

ronments), this study also concentrates on this domain. Consider the following class of fitness functions defined

The GAs used in this study are characterized by 5 paramgn pit strings containing 100 bits and parameterized by the
ters: population size, crossover type, crossover rate, mutyajue T

tion rate, and elitist selection. The population size is thi

number of chromosomes present in every generation. Tt

crossover type determines how the information is recom z(x) = Number of contiguous Zeros ending in Position 100
bined (Figure 1). Three crossover types were examinel 0(x) = Number of contiguous Ones starting in Position 1
One-point crossover: Given two parent chromosomes,

Child B 1010101000111

select a randomly chosen crossover point and swap co REWARD ={ %)00 if O(XQ>TDZ(X) >T
tents of the chromosomes beyond the chosen pbimt. °
Point crossover is similar to one point except that two f(x) = MAX(0(X),z(x)) + REWARD

crossover points are randomly selected, and the conter
of the chromosomes between those points are swapped.
Uniform crossover, the parent is chosen randomly for each
bit position. The crossover rate is the percentage of th
time that crossover of information occurs when two chro.
mosomes are selected to recombine. (If crossover does r
occur the two chromosomes are copied directly into the
next generatios’ population.) The mutation rate is the

Suppose T=10. Fitness is maximized if a string is able to
get both the REWRD of 100 and if the length of one of
O(X) or Z(X) is as lage as possible. The optimal fithess of
189 (when T=10) is obtained by strings containing either
eighty-nine 13 followed by eleven 8'or eleven ¥ fol-
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lowed by eighty-nine @. Note that strings with O(X) and ing. Crossover on a population of strings, some of which
Z(X) larger than T but with suboptimal lengths of O(X) have O(X)>>Z(X), and others which have O(X)<<Z(X),
and Z(X), can hillclimb to one of the two global maxima but none of which have both O(X)>T and Z(X)>ill

by repeatedly flipping bits at the end of the run af @&  occasionally create individuals with O(X)>T and Z(X)>T
1's that is lagest. For example, if O(X)=20 and Z(X)=40, When this happens, the string will receive the extra
hillclimbing can reach the peak at Z(X)=89, O(X)=hy = REWARD of 100 and will have higher fitness than its par-
flipping the 41st bit to O, then the 42nd bit (if it is not ents. A GA can discover these high fitness individuals by
already 0), etc. recombining useful building blocks present infaliént
lowerfitness members of the population. The four peaks
problems are custom designed to benefit from thés GA
crossover operatprassuming the population is able to
maintain the important building blocks. The four peaks
problems are designed to work best with single point
crossover because this crossover operator maximizes the
chance that the O(X) and Z(X) ends of the string will be
recombined without modification.

The four peaks problems also have two suboptimal loc
optima with fithesses of 100 (independent of T). One o
these is at O(X)=100, Z(X)=0 and the other is at O(X)=0
Z(X)=100. Hillclimbing will quickly get trapped in these
local optima. For example, if O(X)=5 and Z(X)=20, hill-
climbing will continue to increase the value of Z(X) until
Z(X)=100. The only way for a string that has both G{K)
and Z(XkT to find the global optimum by single-bit hill-
climbing is if it continues to add bits to the shorter of the

two ends, despite never receiving better fithess in doin

so. This entails repeatedly making “correct” decisions3. SELECTING THE GA’'S PARAMETERS

while searching laje plateaus; this is extremely unlikely

in practice. In fact, steepest ascent hillclimbing is unablOne dificulty in using a GA on a new problem is that
to do this because the hillclimber must be able to accejthere are GA control parameters (e.g., population size,
moves to equally performing states, instead of only movmutation rate,...) that f&fct how well the algorithm per-
ing to better states. By increasingtfie basins of attrac- forms. T avoid the potential problems of not correctly
tion surrounding the inferior local optima increase in sizesetting the parameters of the GA, GAs with 108edént
exponentially while the basins around the global optimégparameter settings were run on the four peaks function
decrease at the same rate. Figure 2 represents one vwith T=11. Each GA was run 60 times with féifent ini-
simplified view of the four peak’search space where fit- tial random populations. In these runs, five parameters
ness is plotted as a function of the number of contiguouwere varied:

1’s and contiguous 8! » Population Size - 100, 200, 500

» Crossover ¥pe - One Point,vio Point, Uniform
» Crossover Rate - 60%, 80%, 100%

» Mutation Rate - 0.001, 0.01

« Elitist Selection - On/Gf

The average best scores of the runs are presented in Figure
3. The five graphs present the performance of the algo-
rithms, while varying the five parameters listed above. The
data has been sorted by performance (the best performers
on the left) to allow rapid visual identification of the better
T=20 settings for each paramet&everal general results can be
seen. The most apparenteet is that of elitist selection;
GAs which employ elitist selection do better than the ones
which do not. Second, as expected, the GAs which use one
point crossover perform the best. As mentioned before, the
four peaks problem is designed to do well with one point
crossoverThird, lager populations did, in general, better
than smaller ones. Again, due to the requirement in the
four peaks problems for maintaining at least two classes of
diverse individuals (one with many contiguous zeros, and
one with many contiguous ones), this result is also
Figure 2: Tvo Views of the same four peaks problem. / expected. Performance was less sensitive to the mutation
T increases, the area in the upper triangle decreas rate and crossover rate settings we tried.

For simplicity in the remainder of the paper only the five
best GAs will be compared. These GAs have the following

A traditional GA is not restricted to single-bit hillclimb- parameter settings:

Evaluation

Evaluation
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GA L Pop.: 500, One Point Crossove€rossover 4, POPULATION-BASED INCREMENTAL
Rate =80%, Mut. Rate = 0.001, Elitist On LEARNING
GA 2 Pop.: 500, One Point Crossové&rossover
Rate=100%, Mut. Rate = 0.001, Elitist On  Population-based incremental learning (PBIL) is a combi-
GA 3: Pop.: 500, One Point Crossoy&rossover nation of evolutlonz_iry optimization _and hlllcllmblng [Bal-
Rate = 60%, Mut. Rate = 0.010, Elitist On Y& 1994]. Thg .object of the_algonthm is to create a real
) ) ] valued probability vector which, when sampled, reveals
GA 4 Pop.: 200,0 Uniform CrossoveiCrossover  pigh evaluation solution vectors with high probabilfpr
Rate = 100%, Mut. Rate = 0.001, Elitist On  example, if a good solution to a problem can be encoded
GA5: Pop.: 200, One Point Crossoyérossover —as a string of alternatingand 18, a suitable final proba-
Rate = 80%, Mut. Rate = 0.010, Elitist On  bility vector would be 0.01, 0.99, 0.01, 0.99, etc.
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Figure 3: The 108 GA runs. Each point represents the average best evaluation (over 60 runs) of a GA. The parameters of the GA
are shown in the graphs. The runs are sorted from best (left) to worst (right).AXie i¥ the performance of the
algorithm, the X-Axis is the test number
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Initially, the values of the probability vector are initialized ing more eflective in supervised competitive learning net-
to 0.5. Sampling from this vector reveals random solutiorworks (or IVQ), or to increase the speed of learning, can
vectors because the probability of generating a 1 or 0 ibe used with the PBIL algorithm. This relationship is dis-
equal. As search progresses, the values in the probabilicussed in greater detail in [Baluja, 1994].

vector gradually shift to represent high evaluation solutior

vectors. This is accomplished as follows: A number 014 1. PBIL
solution vectors are generated based upon the probabilitic ™
specified in the probability vectoFhe probability vector - ; _—
is pushed towards the generated solution vector(s) with trone key feature of thearly portions of genetic optimiza-

highest evaluation. The distance the probability vector i'tlon s the parallelism in the search; many diverse points

. ‘are represented in the population of early generations. As
pushed depends upon the leaming rate paramlier o soarch progresses, the population of the GA tends to
the probability vector is updated, a new set of solutior

vectors is produced by sampling from the updated IOrob,convege around a good solution vector in the function
bility vector, and the cycle is continued. As the searct-Pace (the respective bit positions in the majority of the

progresses, entries in the probability vector move awasolution strings convee to the same value). PBIL
from their iﬁitial settings of 0.5 towards either 0.0 or l_o_attempts to create a probability vector that is a prototype

The probability vector can be viewed as a prototvpe vectcfor high evaluation vectors for the function space being
P ity : ( prototyp explored. As search progresses in PBIL, the values in the
for generating solution vectors which have high evalua

. . . probability vector move away from 0.5, towards either 0.0
gggigvnh respect to the available knowledge of the searc,. 1 o. Analogously to genetic search, PBIL cogesr

_ _ o from initial diversity to a single point where the probabili-
PBIL is characterized by 3 parameters. The first is thties are close to either 0.0 or 1.0. At this point, there is a
number of samples to generate based upon each probabilhigh degree of similarity in the vectors generated.

ity vector before an update (analogous to the populatioBecause PBIL uses a single probability vecibrmay

size of GAs). This was kept constant at 200 (the smalle - -
size used by the best GAs). The second isLeening seem to have less expressive power than a GA using a full

Rate, which specifies how lge the steps towards good bo pulation that can represent r_;\gl'arnumber of points
solutions are. This was kept at a constant 0.005. The thilsmultaneousl.yFor example, in Figure 5, the vector repre-

. .~ sentations for populations #1 and #2 are the same although
is theNumber of Vectors to Update From. In these experi- the members of the two populations are quitéectt.
ments, only the best 2 vectors were used to update ti

probability vector in each generation (the other 198 anTh'S appears to be a fundamental limitation of PBIL; a GA

! \ ) would not treat these two populations the same. A tradi-
ignored). The PBIL parameters used in this study Werional single population GA, howeverould not be able

determined by gjgormal testing using severalfedléint "o yiain either of these populations. Because of sam-
parameter settingsThe PBIL algorithm is shown in Fig- pling errors, the population will convge to one point; it
ure 4. will not be able to maintain multiple dissimilar points.
This algorithm is an extension of the Equilibrium GeneticThis phenomenon is summarized below:

Algorithm developed in conjunction with [Juels, 1993,
1994]. Another algorithm related to EGA/PBIL is Bit-
Based Simulated Crossover (BSC) [Syswerda
1992][Eshelman & Schdr, 1993]. BSC regenerates the
probability vector at each generation; it also uses selectic

s Relation to Genetic Algorithms

“... the theorem [Fundamental Theorem of Genetic
Algorithms [Goldbeg, 1989]], assumes an infi-
nitely laige population size. In a finite size popula-
tion, even when there is no selective advantage for

probabilities (as do standard GAs) to generate the probi
bility vector. In contrast, PBIL does not regenerate the
probability vector at each generation, rathiee probabil-

ity vector is updated through the search procedure. Add
tionally, PBIL does not use selection probabilities. Instead
it updates the probability vector using a few (in these
experiments 2) of the best performing individuals.

The manner in which the updates to the probability vecto
occur is similar to the weight update rule in supervisec
competitive learning networks, or the update rules used i

either of two competing alternatives... the popula-
tion will convege to one alternative or the other in
finite time (De Jong, 1975; [Goldlzp&. Segrest,
1987]). This problem of finite populations is so
important that geneticists have given it a special
name, genetic drift. Stochastic errors tend to accu-
mulate, ultimately causing the population to con-
verge to one alternative or another” [Goldipek
Richardson, 1987].

Learning \éctor Quantization Q) [Hertz, Krogh &  Similarly, PBIL will convege to a probability vector that
Palmer 1993]. Many of the heuristics used to make learnrepresents one of the two solutions in each of the popula-
tions in Figure 5; the probability vector can only represent
one of the dissimilar points. Methods designed to address
this problem are discussed later

1. One interesting di#rence between the parameter settings
used here and those used in previous studies is that PBIL per-
formed better on four peaks if the update was based on two
vectors instead of just one.
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*xxxxx |nitialize Probability Vector ******
fori:=1to LENGTH do P[i] = 0.5;

while (NOT termination condition)
*xxxx Generate Samples *****
for i :=1 to NUMBER_SAMPLES do
solution_vectors][i] := generate_sample_vector_according_to_probabilities (P);
evaluations]i] :=Evaluate_Solution (solution_vectorsi]);

solution_vectors = sort_vectors_from_best_to_worst_according_to_evaluations ();

**+* Update Probability Vector towards best solutions****
for j :=1 to NUMBER_OF_VECTORS_TO_UPDATE_FROM
fori:=1to LENGTH do P[i] := P[i] * (1.0 - LR) + solution_vectors[j][i]* (LR);

PBIL CONSTANTS:
NUMBER_SAMPLES: the number of vectors generated before update of the probability vector (200).
LR: the learning rate, how fast to exploit the search performed (0.005).

NUMER_OF_VECTORS_TO_UPDATE_FROM: the number of vectors in the current population which are used to update the
probability vector (2)

LENGTH: number of bits in the solution (determined by the problem encoding).

Figure 4: The PBIL/EGA algorithm for a binary alphabet.

which a GA holds in its population, but which does not

Population #1 Population #2 cross solutions from diérent regions of the search space,
0011 1010 performs at least as well as GAs that use crossover and
1100 0101 that are optimized for this problemafile | shows for each
1100 1010 algorithm, the number of runs (out of 25 total) in which
0011 ) 0101 the algorithm achieved an evaluation greater than 100. An
Representation Representation evaluation greater than 100 means that the algorithm
0.5,0.5,0.5,0.5 0.50.50.50.5

found a solution with at least T ones and T zeros. See the
Figure 5: The probability representation of 2 small populatic ~ Appendix for a typical run of PBIL on the fepeaks

of 4-bit solution vectors; population size is 4. Notice tha problem.

both representations for the populations are the same,

although the solution vectors each represent are entirel

different. Table I: Number of Runs out of 25 in which final
evaluation was geater than 100.

-
5. EMPIRICAL ANAL YSIS ON THE FOUR I S N RN SRR N R
PEAKS PROBLEM GA-2 25 (25| 22| 19| 10 5 3 1

GA-3 25| 25| 23| 15| 13 3 2 3
We compared the fefctiveness of the GA and PBIL on GA4 25 (21| 19| 12| 2 | 4| 2| 0
four peaks for dierent settings for TEach algorithm was GA5 25 22| 15| 7 | 4| 1| 0] 1
allowed 1500 generations per run. The total nhumber c PBIL 25| 25| 25|24 | 23] 15| 12| 5

evaluations per run were: 300,000 for PBIL (1500x200)
750,000 for GA1-3: (1500x500), and 300,000 for GA4,55 1. \Why Does PBIL Do as Wl as GAs?
(1500x200). In order to put the global maximum at 200 fol

all of the problems, the function was slightly modified tofFor crossover to discover individuals in the small basins of
make the REWRD = 100 +T Each algorithm was run  attraction surrounding the global optima, it must mate
twenty five times for each value of T individuals from the basins of two #fent local minima.
Figure 6 shows the performance of the best 5 GAs anBy maintaining a population of solutions, the GA is able—
PBIL on four peaks as a function of As expected, as T in theory at least—to maintain samples irfefiént basins.
gets lager, the problems get harder and the quality of theUnfortunately as mentioned before, most genetic algo-
solutions deteriorates. The performance of PBIL, howeverithms are not good at maintaining this diversRyema-
is comparable to, or better than, that of the GAs for all valture convegence to solutions which sample few regions of

ues of T Thus PBIL, which explicitly maintains statistics the search space is a common problem. This deprives
crossover of the diversity it needs to be daative search
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PBIL will not necessarily outperform GAs at all popula-

Fine Evaluation Four Peaks tion sizes. As the population size increases, the observed

T T T T behavior of a GA more closely approximates the ideal
S behavior predicted by theory [Holland, 1975]. For exam-
ple, on the four peaks problems, forgarenough popula-
tion sizes, the population may containfeignt samples
from the two local minima for crossover tofeatively
exchange building blocks and find the global optima.
Unfortunately the desire to minimize the total number of
function evaluations prohibits the use ofjaenough pop-
ulations to make crossover behave idedHBIL will not
benefit the same way from ¢mr populations as GAs,
since it only uses a few individuals from the population to
update the probability vectoiThe main advantage of
larger populations in PBIL is the potential for better indi-
viduals to update the probability vector

200.00|

| | | | | | | T

Figure 6: A comparison of the five best GAs, with PBIL. T 6. DISCUSSION
X-Axis is the ‘T’ parameter in the four peaks problem
As T increases, the problem becomes moffedif. The

Y-Axis is the average best evaluation of each algoritt ~ 6.1. Other Variations of PBIL
averaged over 25 runs. The optimal solution to each
problem has an evaluations of 200. The PBIL algorithm described in this paper is very simple.

There are variations of the algorithm that can improve
operator on this problem. When this happens, crossovsearch dectiveness. Wo variations which have been tried
begins to behave like a mutation operator sensitive to thinclude mutations and learning from negative examples.
estimated reliability of the value of each bit [EshelmanMutations in PBIL serve a purpose analogous to mutations
1991]. If all individuals in the population conger at N GAs— to inhibit premature comgence. In GAs, when
some bit position, crossover leaves those bits unaltered. 1€ population convges to similar solutions, the ability to
bit positions where individuals have not corges, cross- e>.<pllore diverse portions of_t_he funct|o_n space diminishes.
over will efiectively mutate values in those positions. Similarly, when the probability vector in PBIL conges
Therefore, crossover creates new individuals thderdif towards Os and 1s, exploration also is reduced. Mutations
from the individuals it mates only at the bit positionsPerturb the probability vector with a small probability in a
where the mated individuals disagree. This is analogous random dlrect|(_)n. The_ amount of the _perturbatlon is gener-
PBIL which creates new trial solutions thatfeiifmainly ~ ally kept small in relation to the learning rate.
in bit positions where prior good performers have dis-A second variation is to learn from negative examples
agreed. instead of only positive ones. In the PBIL algorithm
On the four peaks problems, PBIL (which does not usdescribed in this papethe prqbablllty vector is updated
crossover) performs comparably to the best GAs. Therdowards the M best vectors in the population. However
fore, it is unlikely that the GA is benefiting from cross- the probability vector can also be shifted away from the
over's ability to recombine building blocks from féifent ~ WOrst vectors. In implementations attempted in [Baluja,
local minima. Perhaps the main value of the Ggopula- 1995], the probability vector was moved towards the sin-
tion is as a means of maintaining statistics about the valgle best vectorand away from the single worst vector
of each bit position, as modeled in PBIL. PBIL works sim-Léarning from negative examples improved the algo-
ilarly to single population GAs because these cannchithm’s performance in the problems attempted.
maintain diverse points in their populatiohs. Another update method is to incrementally update the
probability vector as each new trial is generated rather
than updating it from only a few solutions in the new pop-

1. We suspect that it is the need to maintain diversity that ulation. This is somewhat analogous to “steady-state GAs”
caused PBIL to perform better when updating the probability that replace individuals in the population one or two at a
vector from the best 2 solutions than from just the best solu- time rather than rep]acing the entire popu]ation (as “gener-
tion. This is currently under studye have not experimented ational” GAs do) [Syswerda, 1990][De Jong & Sarma

with updating from more than the best 2 solutions to avoid

I ) ) 1992]. These GAs have the potential of keeping more
scaling issues such as having to scale the magnitude of the

. , . ; diverse members in their population for longer periods of
update by the relative quality of the solution. By using as few i th ti | GAs: thi id |ati b d
solutions as possible to update the vector we can safely avoid Ime than generationa S; S can aid popuiation-base

the problems associated with updates from poor performing crossover operators in finding regions of high perfor-
samples. mance. In an incremental version of PBIL, the probability
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vector will be influenced by many more vectors than in theThe results from the study indicated that using GAs for the
version of PBIL used here. This may have theafof optimization of static functions does not yield a benefit, in
preserving more diversity in the generated solutions bterms of either the final answer obtained, or speed, over
making the probability vector more sensitive tofefif  simpler optimization heuristics such as PBIL or Stochastic
ences in solution vectorsoBnsure that more emphasis is Hill-Climbing. In the 26 problems attempted, PBIL with
placed on better solution vectors, the strength of thmoves away from the worst solution, performed the best,
update to the probability vector would be moderated bin terms of final solutions obtained, on 21 problems.
the fitness of the individual relative to individuals seen inLearning from negative examples helped in 25 out of the
the past. 26 problems. Overall, PBIL with only moves towards
good solutions performed next best. Hill-Climbing did the
best on 3 problems, and the GA did the best on 2 prob-
lems. Details can be found in [Baluja, 1995].

PBIL's performance on the four peaks problem suggests We also compared PBIL to the traditional GA on theafil
should compare favorably with traditional GAseWiight ~ Function” devised by [Eshelman and Séeafl993] to be
expect PBIL to do especially well, in comparison to GAs,crossovedfriendly. For the traditional GA we used two-
on problems which are not custom designed to be GApoint crossover instead of one-point crossover because
friendly. The results of a lge scale empirical comparison this problem is custom designed to work better with it.
of seven iterative and evolutionary based optimizatiorPreliminary results again suggest that there is very little
heuristics support this [Baluja, 1995]. Because of spacdifference between PBIL and the traditional GA on a prob-
restrictions, only a brief overview of the experiments andem custom tailored to demonstrate the benefit of popula-
results is reproduced herew@nty-six optimization prob- tion-based crossover

lems, spanning six sets of problem classes which are cor

monly attempted in genetic algorithm literature, wereg 5 Avoiding Premature Conver gence
examined. The problem sets include job-shop scheduling

traveling salesman, knapsack, binpacking, neural Netwolyha solution to the problem of premature cogeece is

weight optimization and standard numerical optimization parallel GA (pGA) [Cohoon ef., 1988][Whitley et
These problems were chosen because much of the Cy "1990]. In the pGA, a collection of independent genetic
optimization literature has conqentrated_on exaqtly thes‘algorithms each maintaining separate populations, com-
or very similar types of scheduling, packing, routing, and , nicate with each other via infrequent irpepulation
optimization problems. Unlike the four peaks problem,(aS opposed to intra-population) matings. pGAfesUéss

these were typical benchmark problems, and were not Cug,m nremature convgence than single population GAs:
tom designed to be GA-friendlfhe parameters of all the although the separate populations typically cogeeto

algorithms were not tuned for each problem, rather thgqtions in just one region of the search spacéereiit
parameters were held constant fo_r all runs. The settings populations convee to diferent regions, thus preserving
the parameters were chosen to give good performance (jiyersity across the populations. Inpulation mating
all of the problems, without biasing the parameters to aNpermits crossover to combine solutions found ifedsht

one specific problem. regions of the search space. A pGA should outperform a
The algorithms examined in the study were: two variationtraditional single population GA on the four peaks prob-
of PBIL, one which moved only towards the single beslems for lage T because the pGA should maintain a more
solution in each generation, and the other which alsdiverse set of solutions for crossover to use. This does not
moved away from the worst generated solution. Botimean, howeverthat pGAs are inherently more powerful
PBIL algorithms also employed a small mutation, whichthan PBIL. If a single PBIL outperforms a single GA, a set
randomly perturbed the probability vectdwo variations  of parallel intercommunicating PBILs (possibly usitag

of GAs were also examined. The first is very similar to thecrossovedike operator to meye probability vectors) will
ones explored in this paper: elitist selection, two poinlikely outperform a set of parallel intercommunicating
crossover100% crossover rate, 100 population size, an(GAs. Preliminary results support this hypothesis.

mutation rate 0.001. The second used the same paramet

except: uniform crossover and an 80% crossover rate. Tt

second also scaled the evaluation of every solution in eacy CONCLUSIONS

generation by the evaluation of the worst generated solt
tion (in the generation). Finallyhree variations of next-
step stochastic hillclimbing techniques were examined
These varied in how often restarts in random position:
occurred, and whether moves to regions of equal evalui
tion were allowed. Each algorithm tested was giver
200,000 evaluations of the goal function, and was run 2
times.

6.2. Experiments on Other Test Problems

Previous empirical work showed that PBIL generally out-
performed genetic algorithms on many of the test prob-
lems commonly used to evaluate GA performance. Those
test problems, howevewere designed to be hard, but not
particularly GA-friendly This left open the possibility that
although PBIL performed better on these problems, there
were other problems better suited to GAs where they
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APPENDIX
A typical run of the PBIL algorithm is shown in Figure 7.
The Four Peaks problem was set at T=15. Generation
1300
1.07
Generation
[ 1500
0.0t .
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Figure 7: Evolution of the probability vector for a
typical run of PBIL on the Four Peaks problem at
T=15.



