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Hough has proposed an interesting and 
computationally efficient procedure for detecting lines 
in pictures. This paper points out that the use of 
angle-radius rather than slope-intercept parameters 
simplifies the computation further. It also shows how 
the method can be used for more general curve fitting, 
and gives alternative interpretations that explain the 
source of its efficiency. 
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1. Introduction 

A recurring problem in computer picture processing 
is the detection of straight lines in digitized images. In 
the simplest case, the picture contains a number of dis- 
crete, black figure points lying on a white background. 
The problem is to detect the presence of groups of  co- 
linear or almost colinear figure points. It is clear that 
~he problem can be solved to any desired degree of ac- 
curacy by testing the lines formed by all pairs of  points. 
However, the computation required for n points is ap- 
proximately proportional to n 2, and may be prohibitive 
for large n. 

Rosenfeld [1] has described an ingenious method due 
to Hough [2] for replacing the original problem of  find- 
ing colinear points by a mathematically equivalent prob- 
lem of finding concurrent lines. This method involves 
transforming each of  the figure points into a straight 
line in a parameter space. The parameter space is defined 
by the parametric representation used to describe lines 
in the picture plane. Hough chose to use the familiar 
slope-intercept parameters, and thus his parameter 
space was the two-dimensional slope-intercept plane. 
Unfortunately, both the slope and the intercept are un- 
bounded, which complicates the application of the tech- 
nique. In this note we suggest an alternative parameteri- 
zation that eliminates this problem. We also give two al- 
ternative interpretations of  Hough's method, one of  
which reveals plainly the source of its efficiency. Finally, 
we show how the method can be extended to find more 
general classes of  curves in pictures. 

2. Fundamentals 

The set of all straight lines in the picture plane con- 
stitutes a two-parameter family. If we fix a parameteriza- 
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tion for the family, then an arbitrary straight line can be 
represented by a single point in the parameter space. For  
reasons that become obvious, we prefer the so-called 
n o r m a l p a r a m e t e r i z a t i o n .  As illustrated io Figure 1, this 
parameterization specifies a straight line by the angle 0 
of its normal and its algebraic distance p from the origin. 
The equation of a line corresponding to this geometry is 

x c o s O  + y s i n O  = p. 

If  we restrict 0 to the interval [0, ~-], then the normal 
parameters for a line are unique. With this restriction, 
every line in the x - y  plane corresponds to a unique point 
in the 0-o plane. 

Suppose now, that we have some set { (xa, ya), . . . ,  
( x , ,  y , )  } of n figure points and we want to find a set of  
straight lines that fit them. We transform the points 
(x~, y~) into the sinusoidal curves in the 0-p plane de- 
fined by 

o = x~ cos 0 + y~ sin 0. (1) 

It is easy to show that the curves corresponding to co- 
linear figure points have a common point of  intersec- 
tion. This point in the 0-p plane, say (00, o0), defines the 
line passing through the colinear points. Thus the prob- 
lem of detecting colinear points can be converted to the 
problem of finding concurrent curves. 

A dual property of  the point-to-curve transforma- 
tion can also be established. Suppose we have a set 
{(01, oi), . . . ,  (Ok, Ok)} of points in the 0-o plane, all 
lying on the curve 

o = X o C O S O + y o s i n O .  

Then rt is easy to show that all these points correspond 
to lines in the x - y  plane passing through the point (x0, 
y0). We can summarize these interesting properties of 
the point-to-curve transformation as follows: 

Property 1. A point in the picture plane corresponds 
to a sinusoidal curve in the parameter plane. 

Property 2. A point in the parameter plane corre- 
sponds to a straight line in the picture plane. 

Property 3. Points lying on the same straight line in 
the picture plane correspond to curves through a com- 
mon point in the parameter plane. 

Property 4. Points lying on the same curve in the 
parameter plane correspond to lines through the same 
point in the picture plane. 

In Section 3 we apply these results to the problem of  
detecting colinear points in the picture plane and show 
how significant computational economies can be realized 
in certain situations. 

3. Applications and Alternative Interpretations 

Suppose we map all of  the points in the picture plane 
into their corresponding curves in the parameter plane. 
In general, these n curves will intersect in n(n  - -  1)/2 
points corresponding to the lines between all pairs of 

Fig. 1. The normal parameters for a line. 

Fig. 2. Projection of colinear points onto a line. 
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figure points. Exactly colinear subsets of  figure points 
can be found, at least in principle, by finding coincident 
points of intersection in the parameter plane. Unfor- 
tunately, this approach is essentially exhaustive, and the 
computation required grows quadratically with the num- 
ber of picture points. 

When it is not necessary to determine the lines ex- 
actly, the computational burden can be reduced con- 
siderably. Following Hough's basic proposal, we specify 
the acceptable error in 0 and p and quantize the O-p 
plane into a quadruled grid. This quantization can be 
confined to the region 0 _< 0 < 7r, - R  _< p _< R, 
where R is the size of the retina, since points outside 
this rectangle correspond to lines in the picture plane 
that do not cross the retina. The quantized region is 
treated as a two-dimensional array of accumulators. 
For  each point (x~, y~) in the picture plane, the cor- 
responding curve given by ( l )  is entered in the array 
by incrementing the count in each cell along the curve. 
Thus, a given cell in the two-dimensional accumulator 
eventually records the total number of curves passing 
through it. After all figure points have been treated, the 
array is inspected to find cells having high counts. If 
the count in a given cell (0i, pi) is k, then precisely k 
figure points lie (to within quantization error)  along the 
line whose normal parameters are (0;, pj). 

An alternative interpretation of the point-curve trans- 
formation can be obtained by recognizing that the p 
computed by (1) locates the projection of the point 
(x~, y~) onto a line through the origin with slope 
angle 0. Thus, if a number of figure points lie close to 
some line 1, their projections onto the line normal to 
I are nearly coincident (see Figure 2). A given column 
in the O-p accumulator array is just a histogram for 
these projections, so a high count in a given cell clearly 
corresponds to a nearly colinear subset of figure points. 
A variation of this approach was used by Griffith [3] 
to find long lines in a picture. 

Let us investigate how the computation required by 
the accumulator implementation varies with the number 
of figure points. To be more specific about the quantiza- 
tion, suppose that we restrict our attention to d~ values 
of 0 uniformly spaced in the interval [0, 7r). Suppose 
further that the p axis in the interval [-- R, R] is quantized 
into ~ cells. For  each figure point (x~, y~), we use (1) 
to compute the d~ different values of p corresponding to 
the dl possible values of the independent variable 0. 
Since there are n figure points, we need to carry out 
this computation nd~ times. When these computations 
are complete, the dld.2 cells of the two-dimensional 
accumulator are inspected to find high counts. Thus the 
computation required grows linearly with the number 
of figure points. Clearly, when n is large compared to 
dl,  this approach is preferable to an exhaustive pro- 
cedure that requires considering the lines between all 
n (n - 1)/2 pairs of  figure points. 

Another alternative interpretation exposes the source 
of this efficiency. Consider again Property 4 in Section 
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2: Points lying on the same curve in the O-p plane cor- 
respond to lines through the same point in the picture 
plane. When the curve corresponding to figure point 
(x~, yi) is "added"  to the accumulator, we are really 
computing and recording the parameters of  the d: lines 
in the picture plane passing through (x, ,  y~), and 
because 0 is quantized, these are "all the lines in the 
plane" passing through (xl ,  yi). Should a given param- 
eter pair ever recur as a result of computing the dl 
lines through some other figure point, the recurrence 
will be reflected in an increased count in the appro- 
priate accumulator cell. Roughly speaking, then, for 
each figure point the quantized transform method con- 
siders only the set of  all d~ lines through that point, 
whereas more exhaustive methods consider all (n - 1 ) 
lines between the given point and all other figure 
points. 

4. Example 

The following example illustrates some of  the features 
of the transform approach. Figure 3 (a) shows a televi- 
sion monitor view of a box, and Figure 3 (b) shows a 
digitized version of that view. A simple differencing 
operation locates significant intensity changes and pro- 
duces the binary picture shown in Figure 3(c).  This 
120 X 120 picture contains many nearly colinear figure 
points that can be fit well by a few straight lines. 

Sampling 0 at d~ = 9 twenty-degree increments in 
0 and, quantizing p into d2 = 86 two-element cells, we 
obtain the two-dimensional accumulator array shown 
in Table I. If  the array entry at (00, p0) is k0, then k0 
figure points lie on parallel lines for which 0 = 00, and p 
lies between p0 and p0 d- 2. When many points are 
nearly colinear, the entry for the line that fits them best 
is large. The largest entry in Table I occurs at (0 °, - 5 )  
and corresponds to the middle vertical edge of the box. 
The nine circled entries correspond to locally maximum 
values that exceed the arbitrary threshold of  35. The 
corresponding nine groups of nearly colinear figure 
points are shown in Figure 3(d) .  In this example, it 
happens that every group corresponds to some phys- 
ically meaningful line in the picture. However, two 
significant lines on the top of the box were not f ound - -  
one, because it contained very few points, and the other, 
because it fell between the lines at 0 = 80 ° and 0 = 100 °. 
The 20 ° angular quantization interval was chosen to 
keep the accumulator array small. Clearly, we were 
fortunate to have found as many lines as we did, and a 
smaller quantization interval would have to be used in 
practice. 

A few remarks concerning some limitations of the 
transform approach are in order. First, the results are 
sensitive to the quantization of both 0 and p. Finer 
quantization gives better resolution, but increases the 
computation time and exposes the problem of clustering 
entries corresponding to nearly colinear points. Second, 
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the technique finds colinear points without regard to 
contiguity. Thus the position of  a best-fit line can be 
distorted by the presence of unrelated figure points in 
another part of the picture. A related problem is that 
of meaningless groups of  colinear points being detected. 
In our example, a false line would be detected if the 
threshold were reduced from 35 to 24, the value needed 
to detect the top left-hand edge of  the box. 

The transform approach does successfully find groups 
of colinear or nearly colinear figure points. If  the mini- 
mum size of a significant group is known, all such groups 
can be detected. If additional properties such as con- 
tiguity are known, they can be used to reject meaning- 
less results. In general, the transform approach should 
be viewed primarily as a computationally efficient way 
of accomplishing a conceptually simple step in scene 
analysis. 

Fig. 3 An illustrative example. 
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(a) Monitor 

5. Extensions and Conclusions 

The transform method can be generalized and spe- 
cialized in several ways. We note immediately that any 
parametrization of the family of straight lines can be 
used. As we have mentioned, Hough used the slope- 
intercept parameterization. However, this parameteriza- 
tion has the disadvantage of being sensitive to the choice 
of coordinate axes in the picture plane. If  several figure 
points lie on a nearly vertical line, for example, both the 
slope and the intercept may be arbitrarily large. Thus 
the entire two-dimensional parameter plane must be 
considered. As Rosenfeld [1] has pointed out, one could 
do the entire problem twice, interchanging the x- and 
y-axes, but this would introduce additional complica- 
tions. The normal parametrization avoids these dis- 
advantages, fundamentally for the same reasons that 
make it useful in integral geometry: It allows us to 
place an invariant measure on the set of all straight 
lines. 

An important  special use of  the transform method is 
to detect the occurrence of figure points lying on a 
straight line and possessing some specified property. 
For  example, suppose we want to find whether a sig- 
nificant number of figure points lie on a line through the 
point (x0, y0) in the picture plane. As we have seen 
from Property 4, the normal coordinates of any such 
line must lie on (or, in practice at least near)  the curve 
n = x0 cos 0 + y0 sin 0. Hence, the transform process 
can be carried out in the usual way, but attention can be 
restricted to the region of the 0-p plane near this curve. 
I f  we find a cell with count k near this curve, then we are 
assured that k figure points lie on a line passing (nearly) 
through the point (x0, y0). Similarly, suppose we are 
interested only in lines having a given direction, say 
00. Again, we carry out the process in the usual way, 
but restrict our attention to a subset of the 0-p plane in 
the vicinity of 0 = 00. 

It is clear that the general transform approach can be 

(b) Digitized 

(c) Gradient 

ii, 

(d) Lines 
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Table I. AccumulatorArray for Figure 3(c) 

\ 0 
~ - - ~ 0 :  20: 40: 60: 80 ° zoo: 120: 140:160: 

85 2 
83 1 2 
81 4 4 
79 2 6 5 
77 2 8 4 2 
75 6 6 2 
73 4 3 3 
71 2 1 1 4 2 3 
69 1 4 12 4 3 5 
67 3 2 14 2 3 4 
65 1 11 1 2 4 
63 5 2 2 4 
61 1 3 9 
59 4 1 11 9 1 8 12 
57 4 3 3 10 12 3 10 15 
55 9 5 4 5 4 5 11 12 
53 6 6 4 10 11 9 14 
51 4 9 4 20 2 11 10 8 
49 5 6 2 10 3 11 13 8 
47 8 4 4 4 2 13 10 10 
45 4 7 14 3 11 6 8 
43 4 18 21 5 I 12 10 8 
41 9 17 21 15 25 18 7 8 
39 8 20 21 13 22 11 11 7 
37 12 17 22 17 9 10 9 10 

(3~ 14 17 17 38 8 7 9 6 35 
33 37 16 22 21 10 5 9 9 
31 35 11 21 23 23 8 11 9 10 
29 13 18 18 23 20 14 13 9 9 
27 7 16 12 30 20 20 7 9 6 
25 7 18 12 32 19 27 8 7 8 
23 8 12 11 20 17 5 ~  11 6 7 

21 7 17 12 23 8 11 15 11 10 
19 9 14 12 16 7 7 14 6 7 
17 9 12 12 16 6 9 16 12 7 
15 8 13 13 11 7 10 16 14 10 
13 10 9 15 11 7 10 16 13 6 

!2 11 13 14 ( ~  10 16 13 13 11 
9 10 10 16 14 8 9 14 21 22 
7 10 8 22 12 Q ~  6 7 12 21 
5 11 12 15 11 23 6 11 14 14 
3 13 15 15 8 18 7 11 16 15 
1 10 14 17 11 7 8 9 10 12 

o 
o ~ 0 =  20 = 40:  60: 80: 100 = 120 ° 1 4 0 : 1 6 0  ° 

--85 
--83 
--81 
--79 3 1 
--77 i 3 

--75 
--73 
--71 2 
--69 2 
--67 
--65 1 2 
--63 1 2 
--61 5 
--59 7 2 l 1 
--57 6 2 1 2 
--55 0 I0 6 l l 4 
--53 16 13 12 18 4 1 6 

t~ 15 II 15 16 6 ~ 5 ~ 

(~ )  15 23 I 1 5 ~ 4 9  32 18 11 
- 4 7  10 16 i1 22 14 16 21 9 5 
--45 7 17 11 11 16 18 4 ~  21 6 
--43 8 12 14 10 13 17 12 17 6 
- -4 l  6 7 14 11 14 14 7 19 12 
--39 7 10 9 8 12 8 11 20 23 
--37 7 7 14 8 17 9 12 18 24 
--35 8 9 17 8 10 7 10 23 23 
--33 6 12 15 8 12 9 11 22 26 
--31 5 9 19 9 8 11 16 18 15 
--29 9 10 12 9 8 9 18 18 15 
--27 7 12 10 8 6 9 18 19 19 
--25 5 10 8 8 7 7 22 9 14 
--23 6 I1 9 9 6 11 19 12 9 
--21 7 15 9 7 10 10 16 10 11 
--19 ~ 13 8 16 9 11 17 9 10 
- -17 7 17 9 15 7 I1 16 14 13 
--15 6 15 10 17 8 13 10 14 9 
--13 10 15 9 15 9 17 11 13 12 
--11 10 13 10 7 8 17 9 11 15 

--9 7 14 8 7 8 23 8 12 15 
--7 9 15 12 7 8 21 7 13 12 

( ~  13 15 9 7 14 10 12 15 ~ 5 

--3 26 14 14 6 8 12 9 11 18 
--1 10 13 18 9 8 8 11 12 15 

extended to curves other than straight lines. For  ex- 
ample, suppose we want a method to detect circular 
configurations of  figure points. We can choose a para- 
metric representation for the family of  all circles (within 
a retina) and transform each figure point in the obvious 
way. If, as a parametric representation, we describe a 
circle in the picture plane by 

( x -  a) 2-+- ( y -  b) 2 = c ~, 

then an arbitrary figure point (x~, y~) will be trans- 
formed into a surface in the a-b-c parameter  space de- 
fined by 

( X i  - -  a )  2 -q- ( y i  - -  b )  ~ = c 2. 

in this example, then, each figure point will be trans- 
formed into a right circular cone in a three-dimensional 
parameter  space. I f  the cones corresponding to many 
figure points intersect at a single point, say the point 
(a0, b0, co), then all the figure points lie on the circle 
defined by those three parameters.  As in the preceding 
case of  straight lines, no saving is effected if the entire 
process is performed analytically. However, the process 
can be implemented efficiently by using a three-dimen- 
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sional array of accumulators representing the three- 
dimensional parameter  space. 

In principle, then, the transform method extends to 
arbitrary curves. We need only pick a convenient param- 
eterization for the family of  curves of  interest and then 
proceed in the obvious way. A parameterization having 
bounded parameters  is obviously preferable, although 
this is not essential. It is much more important  to have 
a small number  of  parameters  since the accumulator 
implementation requires quantization of the entire pa- 
rameter  space and the computat ion grown exponentially 
with the number  of  parameters.  
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