
GEM - International Journal on Geomathematics (2023) 14:30
https://doi.org/10.1007/s13137-023-00240-x

ORIG INAL PAPER

Solute transport prediction in heterogeneous porous media
using randomwalks andmachine learning

Lazaro J. Perez1 · George Bebis2 · Sean A. McKenna1 · Rishi Parashar1

Received: 20 May 2022 / Accepted: 22 September 2023 / Published online: 27 October 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Solute transport processes in heterogeneous porousmedia have been traditionally stud-
ied through the parameterization of macroscale properties using upscaling approaches
over a representative elementary volume. As a result, our ability to accurately model
solute transport at fine-scale is limited. Combining multiple transport and geometri-
cal observations from the pore scale in a multiphysics framework can enhance the
understanding of transport mechanisms that manifest at larger scales. In this paper,
we predict conservative solute transport in three sandstone geometries (Castlegate,
Bentheimer, and sandpack) that range across different degrees of heterogeneity using
a machine learning approach. Our approach, which is based on the random forests
(RF) algorithm, performs simulated transport predictions such as solute breakthrough
curves. The RF algorithm used in our workflow is a tree-based ensemble method,
which builds several different decision tree models independently and then computes
a final prediction by combining the outputs of the individual trees. We employ obser-
vations, such as solute arrival time and distance traveled, as input to train the predictive
model using randomwalk particle tracking (RWPT) simulations in the sandstones.We
employ Bayesian optimization techniques to select the hyperparameter values control-
ling the structure of the RFmodel in order to avoid overfitting. Results of our workflow
show accurate RF predictions of the RWPT breakthrough curves demonstrating the
ability of the RF algorithm to capture the critical flow and transport properties of
porous media. We also examine the sensitivity to geometrical sample effects in the
training data, which can impact machine learning predictions. The RF algorithm used
is able to provide accurate results in real rock samples spanning from unconsolidated
granular to consolidated media, highlighting the ability of the model to generalize
solute transport problems in porous media.
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1 Introduction

Understanding solute transport phenomena in sedimentary rocks is key in a range
of scientific and engineering applications, such as groundwater management (Al-
Salamah et al. 2011; Swanson et al. 2015), contaminant transport (Vesper 2019;
Brusseau et al. 2020; Guo et al. 2020a), oil recovery and soil carbon storage (Popova
et al. 2012; Poffenbarger et al. 2023). The heterogeneous porous structure of geo-
logical media, ranging from pore to field scales, leads to anomalous solute transport
that cannot be adequately described by an effective advection-dispersion equation.
Such anomalous solute transport is ubiquitous in hydrological settings and has been
observed in sandstone aquifers (Edmunds and Smedley 2000; Cortis and Berkowitz
2004) and fractured porous media environments (Haggerty et al. 2000; Aquino et al.
2015). Solute transport typically consists of a broad range of behaviors across spa-
tial and temporal scales that must be incorporated in any modeling framework to
successfully reproduce transport characteristics.

Various modeling methodologies could, in principle, be employed to quantify
anomalous transport in porous media. Some of the most widely used include multi-
rate mass transfer (Guo et al. 2020b), continuous time random walks (CTRW) (Kim
and Kang 2020; Engdahl and Aquino 2022; Ben-Noah et al. 2023), and fractional
advection dispersion equations (fADE) (Qiao et al. 2020; Sharma et al. 2022). Despite
their effectiveness in reproducing actual observations in diverse hydrological scenar-
ios, these models have their limitations. CTRWmodels, for instance, typically depend
on fitting parameters that do not correspond to the physical characteristics of the sys-
tem (Bolster et al. 2019; Kurotori et al. 2020; Gouze et al. 2023). On the other hand,
fADE models can be resource-intensive computationally when used to forecast solute
transport in intricate environments (Sun et al. 2020).

Recently,machine learningmethods have been introduced as amodeling framework
for learning from observational data of physical phenomena and predict variables of
interest. These novel methods benefit from benchmark datasets and the capabilities
of surrogate models that serve as effective approximations for complex problems
(Schilders et al. 2008; De Lucia et al. 2017; Tang et al. 2020). Various machine
learning techniques (e.g., ensemble methods, kernel-based methods, neural networks,
etc.) have been successfully applied to reactive transport applications such as fluid
mixing estimation (Ahmad et al. 2019; Ahmmed et al. 2021; Li et al. 2021), chemical
equilibria computations (Leal et al. 2020; Li et al. 2021), and fluid flow and solute
dispersion prediction (Santos et al. 2020; Kamrava et al. 2020; He et al. 2020; He and
Tartakovsky 2021; Kamrava et al. 2021). These approaches substantially improve our
capabilities to develop fast, accurate, and robust predictions of contaminant fate and
transport under natural conditions.
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Among various machine learning methods, the random forest (RF) algorithm
(Breiman 2001; Breiman and Cutler 2004) has shown promising results for classi-
fication and regression problems. The RF algorithm is a tree-based ensemble method
that builds several different decision tree models independently and then computes a
final prediction by combining the outputs of the individual trees (Breiman et al. 2017).
RF presents several advantages over other machine learning techniques as it is highly
efficient with large datasets, is less sensitive to noise or over-fitting (Zhou et al. 2016;
Hong and Lynn 2020), and employs fewer parameters compared to neural networks or
support vector machines (Lee et al. 2005). The RF classification framework has been
shown to successfully describe particle trajectory characteristics (Kowalek et al. 2019;
Muñoz-Gil et al. 2020), soil and rock physical properties (Al-Farisi et al. 2019; Zhang
and Cai 2021), and groundwater pollution and water quality (Rodriguez-Galiano et al.
2014; Singh et al. 2017; Naghibi et al. 2017). To the best of our knowledge, only a few
studies have reported the use of the RF regression framework for modeling flow and
transport processes in heterogeneous porous media applications (Wang et al. 2015;
Shiri 2018; Lange and Sippel 2020). While these approaches provide dynamic frame-
works to model large-scale transport features, their tree parameterization, selection of
transport-independent parameters, and predictive power are still open questions.

In this work, spatial and temporal behaviors of solute particle transport in two nat-
ural sandstones and a sandpack are investigated numerically. The aim of the study is
to provide accurate and less computationally expensive simulated transport predic-
tions such as solute breakthrough curves (BTC) using a random forest algorithm. To
this end, we follow a workflow that uses direct measurements from particle tracking
models in synthetic and real rock geometries to accurately train the machine learning
algorithm and predict the transport features in the Bentheimer (one of the sandstone)
geometry. The methodology chosen benefits from working with large datasets, being
computationally efficient, and having an automated optimized parameter selection.
Our approach provides the flexibility to extend the study by assimilating other types
of variables and physical laws to predict transport features in complex engineered and
natural porous media.

This paper is organized as follows. Section2 describes the machine learning algo-
rithm used, the training and test data, the simulation framework for conservative
transport in the 2D geometries studied, and feature extraction. The performance and
transport prediction of the approach used, including estimation errors and limitations,
are given in Sect. 3. Concluding remarks and future directions of our work are given
in Sect. 4.

2 Methodology

In this section, we present the Machine Learning (ML) approach adopted in our work
which is based on observed transport features and its application to subsurface solute
transport. The ML approach is a regression model based on random forests (RFs)
(Breiman 2001) that predicts individual particle transport time from a feature set
calculated using geometric and statistical attributes of individual particle trajectories.
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We also present the numerical methods for simulating the flow and transport physics
to generate the training data.

2.1 Random forest regression

In this work, we use RFs for regression to predict particle transport time (i.e., a quan-
titative outcome and the dependent variable) from statistical and geometric features
(i.e., predictors/independent variables), which are computed from observed particle
trajectories. RFs is a powerful, state-of-the-art technique for both classification and
regression problems, usually outperforming more sophisticated models as shown in
a thorough comparison study (Breiman et al. 2017). They represent an extension of
single classification and regression trees (CART) (Breiman et al. 1984) coupled with
an effective methodology for building CART ensembles of high variance (i.e., mini-
mize the correlation among CART members in the ensemble). To introduce RFs, we
first introduce CART followed by bagging (Breiman 1996) that is used to build CART
ensembles, a simpler version of an RF.

Traditional regression techniques, such as logistic and linear regression, rely on a
mathematical formula for data classification or regression. CART, on the other hand,
does not develop a predictor equation. Instead, it develops a decision tree by iteratively
partitioning the data along the predictor axes into subsets. The decision tree is a set
of conditions or restrictions hierarchically organized and successively applied to the
predictors from the root to any leaf of the tree where each tree node represents a subset
of the data made as homogeneous as possible with respect to the dependent variable.
This is typically performed byminimizing the weighted average of mean square errors
over the subsets: MSE = ∑

i (ni/n)MSEi where n is the size of the data set, ni is
the size of the i-th subset, MSEi = (1/ni )

∑
j (ŷi − y j )2 is the mean square error of

the i-th subset, ŷi is the average of the i − th subset, and y j is the j-th sample of the
i-th subset. The model prediction is the average value ŷi of the dependent variable in
each subset.

To build an ensemble of regression models it is necessary to resample the data,
both predictors and target variable, multiple times. Bagging builds an ensemble of
regression models using bootstrap sampling (Breiman 1996). Assuming n samples in
the data set, bootstrap samples of size n are generated from the original data through
sampling with replacement and used to create a regression tree for each bootstrap
sample. The individual bootstrap predictions can then be combined into a single pre-
diction, for example, by averaging the outputs of the decision trees in the ensemble.
The optimal number of bootstrap samples is problem dependent.

RFs are an extension of CART bagging to address the issue of highly correlated
bootstrap samples that can lead to similarity between regression trees and reduce the
mitigating effect of bagging. To improve the variance of the regression trees in the
ensemble, RFs split the data at each node of a regression tree using a subset of the
predictors only. Assuming P predictors, a subset p is randomly chosen to split the
data at a given regression tree node. This random selection of p predictors reduces the
similarity of the regression trees built even when the bootstrap samples are similar.
In short, RF is an ensemble-based approach that combines a large set of relatively
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Fig. 1 Illustration of the Random Forest algorithm. After sample and feature bagging, the algorithm grows
a forest of n trees. At each node, the algorithm selects m variables randomly out of M possible variables
and finds the best split for the selected m variables. The trees are then grown to a maximum depth followed
by averaging of the trees to obtain new predictions

uncorrelated regression trees to reduce over-fitting and improve predictions. In this
work,we usedMatlab’s function fitrensemble.mwhere the number of randomly chosen
predictors p for each split is equal to one third of the original number of predictors P .

A common challenge with the application of RFs is determining the appropriate
number of decision trees and their size in the ensemble.We consider the minimum leaf
size (Ls), which controls the depth/size of the tree, and number of decision trees (M) as
unknownhyperparameters and coupleBayesian optimizationwith a surrogate function
to select their optimumvalues for robust predictions (Snoek et al. 2012;Wuet al. 2019).
Here, h(x) represents an unknown function that characterizes the performance of the
model given the hyperparameters x . Optimizing h(x) requires evaluating h(x) over
a large number of hyperparameter values which can be computationally expensive.
In the case of RFs, one would need to create many different ensembles, each with
different hyperparameter values, test each one of them, and choose the ensemble that
performs best.

The Bayesian optimization algorithm, used attempts to minimize the scalar objec-
tive function h(x), is described in detail in Snoek et al. (2012). The underlying
probabilistic model for the objective function h(x) is a Gaussian process (GP). Using
Bayesian inference, the GP is updated iteratively with new sample points to more
closely approximate h(x). Through this process, we are able to find the best combina-
tion for hyperparameters, that is minimum leaf size (Ls) and number of learners (P)
determines the minimum mean squared error using the training data (Fig. 1).
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Fig. 2 Pore geometry and flow velocity field for the Castlegate (a), Bentheimer (b), and Sandpack (c).
Warmer colors correspond to higher velocities, and solid grains are shown in gray

2.2 Training and test datasets

Three different porous media geometries are used in our numerical experiments where
the RF model is trained on two of the geometries and then tested on the third one.
Therefore, we perform three different tests, one for each geometry. The geometries
include two natural sandstones: Bentheimer and Castlegate and an engineered sand-
pack. The datasets used to train the RF model are built from random walk particle
simulations for each geometry.

2.2.1 Geometries

The natural sandstones studied in this work are from the Castlegate Formation (Creta-
ceous Mesa Verde Group, Utah) and from the Bentheimer shallow marine formation
deposited during the Lower Cretaceous in the Netherlands and Germany. The first is
commonly used in experimental rock mechanics studies as an analogue reservoir rock
(DiGiovanni et al. 2000), while the latter is considered to be an ideal sedimentary rock
for reservoir studies due to its lateral continuity and homogeneous block-scale nature
(Peksa et al. 2015).

Both Castlegate and Bentheimer geometries were obtained from 3D samples
archived at the digital rock portal (https://www.digital-rocksportal.org/), from which
a slice from each 3D sample was selected and processed to increase its original grid
resolution 1002 × 1000 by a factor of two. The Castlegate sandstone, with porosity
φ = 0.2 and average pore length l p = 5.77 × 10−5m, is discretized in a regular grid
that consists of 2004 × 2000 pixels in the x and y dimensions, respectively. Each
pixel is a square with a size of 1.125µm. The Bentheimer sandstone, with dimensions
x × y = 0.00225 × 0.00225 m and a pixel size of 1.125 µm (�x = �y), shows
a porosity of φ = 0.23 and l p = 6.95 × 10−5 m. Lastly, the constructed sandpack
is a close packing of irregular quartz grains of different size that aims to replicate
aquifer material (e.g. alluvial (Di Palma et al. 2019)). The discretization level selected
for the sandpack sandstone is similar to the natural sandstones with φ = 0.37 and
l p = 1.2 × 10−4 m. The geometries resulting from the three media are illustrated
together with the flow field in Fig. 2. All media differ in the distributions of pore sizes
and connectivity, which leads to different degree of flow heterogeneity as quantified
by the variance σ 2

ν of the logarithm of the flow speed ν = log10(v(x)). The variance
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of the log-speed for the Castlegate geometry is σ 2
ν = 6.71, while for Bentheimer and

Sandpack σ 2
ν equals 4.75 and 2.17, respectively. The significant high value of the vari-

ance of the flow speed for the Castlegate sandstone reflects higher flow heterogeneity
in comparison to Bentheimer (the middle case) and Sandpack (the less heterogeneous
case).

2.2.2 Flow

In order to simulate solute transport for each geometry, we first compute the 2-D flow
field by solving the Navier-Stokes equations:

∇ · v(x) = 0, (1a)

∇2v(x) = − 1

μ
∇P(x), (1b)

where v is the velocity vector (m/s), P (kg/m/s2) is the fluid pressure, and the viscosity
μ = 10−3 Pa s. The flowfield is solved using the steady-state solver for incompressible
flow simpleFOAM that belongs to the open-source code OpenFOAM (Weller et al.
1998), which uses a semi-implicit method for pressure linked equations (Icardi et al.
2014). We apply a constant pressure boundary condition at the inlet and outlet faces
of the image. On other solid faces, including the void-rock interface, we apply no-slip
boundary conditions. After convergence, that is once the residual of the pressure and
flowfields between two consecutive numerical iterations are smaller than a user defined
criterion, ε = 10−9, we extract the complete velocity field. The Reynolds number used
in simulations ranges from 2.7 × 10−4 in Castlegate to 10−3 in Sandpack.

2.2.3 Transport

The transport problem can be formulated in a Lagrangian modeling framework based
on the equivalence of the advection–diffusion equation

∂c(x, t)
∂t

+ v(x) · ∇c(x, t) − D∇2c(x, t) = 0 (2)

where D is the molecular diffusion coefficient, v(x) is the flow velocity, and c(x, t) is
the concentration of a scalar particle, with the Langevin equations (Perez et al. 2019;
Yoon and Kang 2021)

x(t + �t) = x(t) + v [x(t)]�t + √
2Dm�tξ(t), (3)

where x(t) is the position of the particles at time t , Dm = 3.5 × 10−10 m2/s is the
molecular diffusion coefficient used in all geometries, and ξ(t) are independently dis-
tributed Gaussian random variables with 0mean and unit variance. The advective step
during a time interval �t = 0.05 s, requires the interpolation of the flow velocities
that are defined at the faces of the finite voxels. We use a quadratic velocity inter-
polation (Mostaghimi et al. 2012; Puyguiraud et al. 2019; Perez et al. 2021b) as this
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approximation respects the no-slip boundary condition at the void-solid interface in
contrast to the linear interpolation that has been traditionally used in particle tracking
models (Pollock 1988).

We consider a solute line pulse injection perpendicular to the mean flow direction
with initial particle positions assigned using a flux-weighted approach. Particle trans-
port in the simulations is dominated by advection defined by Peclet dimensionless
number Pe = v̄l p/2Dm = 100, where v̄ is the mean flow velocity. The mean flow
velocity ranges from 4.7 × 10−6 m/s in the Castlegate to 2.56 × 10−4 m/s in the
Sandpack. Particle trajectories are simulated until they exit the medium.

2.3 Feature extraction

In this section we describe the features used for training and testing the RF regression
algorithm. There are N0 = 7.5× 105 particles simulated through each geometry. For
each of the N0 particles, a total of five features, described in the subsections below,
and one target variable, the travel time, are extracted.

2.3.1 Cumulative sum of displacements

The path of each particle is divided into N segments. The distance traveled within
each segment is determined by the local fluid velocity and the time step length. We
use the total distance traveled by an individual particle in the geometries,

κ =
N−1∑

i=1

| xi�t − x(i−1)�t |, (4)

as a feature that provides an indirect informative observable about the time of arrival
of a particle to the outlet. Figure3 shows the bivariate distribution of κ/l p against time
t normalized by the characteristic time τc = l p/v̄. Larger values of κ/l p for a particle
generally translate to late arrival time, which have been related to anomalous transport
features (Comolli et al. 2019; Hidalgo et al. 2021; Perez et al. 2021a).

2.3.2 Variance

The variance of the displacements of a particle relate to their individual dispersion and
their spreading in the geometries (Perez et al. 2019; Puyguiraud et al. 2020), which
provide information about their path length,

σ 2 = 〈x2〉 − 〈x〉2, (5)

where the angular brackets denote the average position. Higher particle σ 2 reflects
longer path lengths and late time arrivals, thus informing the learning algorithm about
tailing effects on breakthrough curves.
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Fig. 3 Bivariate distribution of cumulative sumof displacements and particle arrival times in the Bentheimer
sandstone. The colorbars shows the κ values. Particles that travel longer distances (high values of κ) take
more time to arrive at the outlet

2.3.3 Straightness

Straightness is a measure of the average direction change between subsequent steps
and it is essentially the inverse of tortuosity of the particle path (Sherman et al. 2020;
Puyguiraud et al. 2021) defined as ratio between the net displacement of the particle
from the start x0 to the end point xf , | xf − x0 |, and the sum of step lengths as

S = | xf − x0 |
∑N−1

i=1 | xi − xi−1 | . (6)

Particles that show high S values provide transport information about tortuous paths
and thus late time arrivals.

2.3.4 Mean velocity

The mean Lagrangian velocity across all segments along a particle path provides
information for fast particles trajectories and early time of arrivals,

v̄ = 1

N

N∑

i=1

vi , (7)

where vi is the particle’s velocity.
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Fig. 4 Particle Peclet distribution in the Bentheimer sandstone shows a broad Pe distribution where fast
particles which have higher Pe values arrive earlier than particles with lower Pe

2.3.5 Mean Peclet number

The mean Peclet number connected to the transport of an individual particle affects
tailing behavior in case of low particle Peclet numbers and describes fast arriving
particles in case of high Peclet numbers

Pe = v̄l p
2D

, (8)

where v̄ is themean particle velocity. The distribution of particle Pe for theBentheimer
sandstone is shown in Fig. 4, which shows a broad distribution of particle’s Pe. Fast
particles that will arrive earlier at the outlet have higher Pe values, while particles
with lower Pe inform the RF algorithm about tailing.

3 Results

In this section, we first discuss the accuracy of the RF algorithm in the prediction of
solute concentration breakthrough curves, and later we analyze themodel’s robustness
and its sensitivity to data scarcity.

3.1 Random forest prediction

Simulation results from two of the geometries are used to train the RF model, next the
trained random forests model is applied to the third geometry. The data structure used
for the RF development is a matrix where each set of predictors and target variable
represent a single row. As transport observations from two domains are used to predict
results in the third domain, the input data matrix has 2N0 rows where each row has
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Table 1 Best hyperparameters selected using Bayesian optimization that yielded the minimum mean
squared error between estimated and observed data

Hyperparameters

Geometry Number of iterations Minimum leaf size Number of learners

Castlegate 30 5 40

Bentheimer 30 3 47

Sandpack 30 7 38

six columns: the five features and the single target variable. This data matrix provides
the input to the Bayesian hyperparameter estimation to determine the structure of the
RF model.

Table 1 shows the best hyperparameters selected for each geometry. The selected
Ls and P for the Bentheimer are 3 & 47 respectively, while for the Castlegate and
Sandpack geometries prediction, Ls and P values are 5 and 40, and 7 and 38.

We used the square root of the mean squared error (RMSE) as the accuracy mea-
surement between RF predictions and RWPT simulations. The RMSE is the average
squared difference between each true data point (yi ) and its corresponding predicted
value (ŷi ), defined as:

RMSE =
√
√
√
√1

n

n∑

i=1

(yi − ŷi )2. (9)

Figure5 shows the comparison between the prediction of the RF algorithm and the
actual breakthrough curves from theRWPTnumerical simulations for the three geome-
tries. Results for the Castlegate (Fig. 5a) show a root mean squared error (RMSE) of
0.0781 between predicted andmeasured data. The random forest predicts early arrivals
that do not match the observed RWPT simulation results. Later, at intermediate times,
the RF prediction underestimates the RWPT concentration, while at late times the RF
prediction matches RWPT results. Here, the proposed RF estimation suffers from the
lower degree of heterogeneity inherent in the training data. Recall that the Castlegate
prediction is carried out by training the random forest algorithm on the Bentheimer
and Sandpack geometries. These geometries are less heterogeneous compared to the
Castlegate geometry, which affects the predictions. We attribute this prediction mis-
match to geometrical sample effects, which refer to training a model on one type of
data and then testing it on another type of data that is structurally different. More
specifically, this difference means that the training data may not adequately represent
all the structural complexities present in the test data. This geometrical sample effect
is responsible for the earlier and intermediate mismatch between the RF prediction
and the simulation results.

In the Bentheimer geometry (Fig. 5b), RMSE = 0.0314, the RF algorithm matches
the observed results from the numerical random walk simulations. The training data
used by the random forest prediction in this case is composed of particle informa-
tion from higher (Castlegate) and lower (Sandpack) degrees of heterogeneity. This
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Fig. 5 Measured and predicted breakthrough curve from RWPT model (symbols) and random forest pre-
diction (red dashed line) in the Castlegate (top), Bentheimer (middle), and Sandpack (bottom) geometries
(color figure online)
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decreases the accuracy of the prediction and result in early concentration overesti-
mation and intermediate underestimation in the case of the Castlegate RF prediction.
Figure5c shows the machine learning prediction for the sandpack. A slight overpre-
diction in concentration arrival is observed at early and intermediate times. The RF
prediction reflects that geometrical sample effects play a role as the training data
used by the machine learning algorithm comes from more heterogeneous geome-
tries. Here the computed RMSE between predicted and measured data equals 0.0427.
Our results suggest that solute transport predictions by machine learning algorithms
matches observations when training data used comprises data from higher and lower
heterogeneous cases. On the other hand, mismatch between learning algorithms and
actual data results is observed when concentration estimations are made in highly
heterogeneous samples while the learning algorithm is trained with data from lower
heterogeneous samples, or vice-versa.

Features of anomalous transport are observed in all geometries. Stronger non-
Fickian behaviors are confirmed in the case of the Castlegate geometry due to higher
value of the variance σ 2

ν of the logarithm ν = log10(v(x)) of the flow velocities that
reflects the presence of preferential flow paths and stagnant zones. For the Castlegate
sandstone, σ 2

ν = 3.7, while for Bentheimer and sandpack geometries the σ 2
ν values

were 3.2 and 2.1 respectively.

3.2 Sensitivity to data scarcity

Overcoming data scarcity in machine learning approaches is critical when developing
robust models. Additionally, in the case of surrogate models, such as random forests,
data-driven optimization improves the speed and computational cost of the numerical
workflow (Alizadeh et al. 2020). Here we show the efficiency of the learning algorithm
by computing the root mean squared error (RMSE) between the solute breakthrough
prediction using different proportions of data and the measured RWPT breakthrough
using all data. Later, we show how models based on limited data compares to the
RWPT and machine learning prediction using all data available.

Figure6 shows the error estimation of the random forest trained with limited data.
HigherRMSEvalues are observed in theCastlegate geometry (top),which is consistent
with the geometrical sample observations discussed above. Since the RF algorithm
is trained with data from less heterogeneous samples, RMSE values are higher as
predictions are less able to match the RWPT results. The RF algorithm trained with
data from less heterogeneous samples understandably are not able to fully capture the
transport dynamics observed in samples with higher heterogeneity. In contrast, the
lower RMSE values observed in Bentheimer prediction shows that the machine learn-
ingmodel prediction is accurate if training data cover a broad range of heterogeneities.
Note that the RMSE values in all samples reaches a constant value at 0.7 fraction of
data indicating that robust predictions can be achieved using this amount of data and
thus reducing the computational cost associated with RWPT simulations.

Figure7 shows the probability of the arrival time obtained from the RWPT simu-
lations, and RF algorithm prediction using 100% and 10% of training data. Results
show that theRFprediction using 100%of training datamatcheswell theRWPTmodel
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Fig. 6 Root mean squared error between the measured breakthrough curves fromRWPTmodel and random
forest prediction as a function of different fractions of training data in Castlegate (top), Bentheimer (middle),
and sandpack (bottom) geometries

Fig. 7 Breakthrough curve from RWPT model (blue symbols) and random forest prediction using all
available data (red dashed line) and limiting data to only 10% (black dotted line) in the Bentheimer geometry
(color figure online)
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Table 2 Comparison of key indicators of breakthrough time statistics between the RWPT predictions, and
RF predictions using all available data (100%) and using limited data (10%) obtained for the Bentheimer
geometry

Breakthrough time statistics

Time metrics RWPT RF at 100% data RF at 10% data

Peak arrival time 50.05 50.05 (9.9×10−6) 43.10 (0.1389)

25% breakthrough time 235.50 235.70 (8.5×10−4) 236.98 (0.0063)

50% breakthrough time 401.80 401.00 (0.002) 397.70 (0.01)

75% breakthrough time 562.70 561.55 (0.002) 551.80 (0.019)

The relative error for the RF prediction with respect to the RWPT simulation is shown in parenthesis

while noisy results are observed when the amount of training data is restricted to 10%.
Nevertheless, RF prediction is robust and visually captures the BTC peak and tailing
fairly well. To quantitatively evaluate the performance of RF models, and examine
the effect on RF predictions in case of limited training data, we compare some key
indicators of breakthrough time statistics obtained from RWPT simulations and RF
models using 100% and 10% of training data. Table 2 shows that for the example case
of Bentheimer geometry, the peak arrival time as well as the breakthrough time for
various quantiles, matches very well between RWPT simulations and RF predictions
when all available data is used for training of the model. When only 10% of data is
used to train the RF model, the breakthrough statistics still show a high degree of
match (within 2% error) with the RWPT values for all quantile measurements, though
the error in estimation of the peak arrival time (which occurs at a relatively early time)
is more noticeable.

4 Conclusions

Computing the solute breakthrough curves in flow through porous media, a funda-
mental characteristic of transport in geological formations, is a time-consuming task
due to modeling limitations. By applying random forest algorithms trained with data
from randomwalk particle tracking simulations, we predict solute BTCs in 2D geome-
tries extracted from images of two natural sandstones and a sandpack. Using Bayesian
optimization, we selected the best hyperparameters for predictions, avoiding data over-
fitting and bias of themachine learning predictions. The accuracy of the RF predictions
and the actual RWPT workflow built carefully for this study demonstrates the ability
of the random forests algorithm in capturing the critical flow and transport properties
of porous media for new input data that other generalized auto-machine learning tools
may not effectively capture.

Our analysis shows that the random forests algorithm accurately predicts the trans-
port behaviors, and computational cost can be reduced when training data cover broad
range of heterogeneities. The output of RF algorithm quantitatively compare very well
to key indicators of breakthrough time statistics produced using RWPT simulations,
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and moreover the impact on model performance is minimal when the amount of train-
ing data is reduced to only 10%. However, results are sensitive to the properties of the
training data if geometrical sample effects are present. We find that RF predictions
made in the Castlegate sandstone, the highest heterogeneous sample studied, under-
estimate peak concentration due to geometrical sample effects in the training data,
highlighting the shortcoming of the random forest algorithm when the representative
heterogeneities supporting the training data has a limited range.

Our work highlights the potential benefits of the random forest algorithms for
predicting transport behaviors in porous media when using limited data, while also
drawing attention to the need for careful management of the algorithm’s training
data, particularly with respect to the range of heterogeneities represented. Work in
this direction is in progress. The development of these methods and other machine
learning architecturesmayhelp avoid the time-consumingprocedure in solute transport
predictions while increasing the accuracy of the problems described in this work.
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