

COMPUTER VISION AND IMAGE UNDERSTANDING

Vol. 72, No. 3, December, pp. 360–378, 1998
ARTICLE NO. IV980679

George Bebis

Department of Computer Science, University of Nevada, Reno, Nevada 89557

Michael Georgiopoulos

Department of Electrical & Computer Engineering, University of Central Florida, Orlando, Florida 32816

and

Mubarak Shah and Niels da Vitoria Lobo

Department of Computer Science, University of Central Florida, Orlando, Florida 32816

Received January 10, 1997; accepted January 16, 1998

���������
	��������������������������	�����������	�������������! �����
"�������"����
����	#�$��%��
�!��	
���$���
��&��!'$�
����(� ��)�!&*�� ,+-��"!�����!"��������
���
�$��.0/1�����
���2�
��&��!'��
���$�0�*��"!����	���&��!�
���)������	3���54���&��!�������
����	3���&6�*�7���������!	��!���5��
�������2%��
�!�*	�8 �
. �!. �9��4:����!	�;
������������=<>"!��?������&���"����
�@A���	��?��� ��
�!.CB2���D�
4:��$�!	1�������E�����$���
����4:��&����������
����	�"!��E���)��&���"!�F����1"!�$4:�������!&A G<H"!�$4: ��
���
�����	�4���
�
����4: ��!�3�$�����!�������!��"!�2%$�
�!�*	3�����
"!�6"!�$������
�6�,���2���������6��	��
������
���! ��)��
"
������"!���
����	��$�$%��
�!�*	�.JI3����&�$4:�!����$�!�,�#�����
	�������"��!&��������
	�#4��!������&��$�
���G<��
 �$	��!&E���EK����������
���L���
���F/6�!"!��4�����	��
���
�$�E���&E�����,�!��%����M����
����4:�����
"!�
���$���!)���
4:����
���������#����
���*� ��
����$�����!	N���O%���
���!	N������O����������)�4:�!������	����
������! �����
"P������"!���
�$��	Q"!��R$	�	���4:��.�/6���)�
���S���!"��������
���
������	�"��!���T�����$����	
��)�D��	��!&?���A�)�!�����
�!%��S������4U�����S���	��?��� $�
�D�����D4:�$	������!�	��� ��
�D4:��&��!�
���)������	2������34:�
�����3���%��*�����$&���"!�!&:�����*	�"!�!���*����������	�.OB2���*��	��*���3��
(
���� �����
"F������"!��������	�����%��
�!��	��������
��&���'��
����(� �$	��!&E����"!�������
�,�
���E���,���!��	�
����4: ��!���$���&�%����������!	�.GI3�
��	��$������
�
�G���������	��*��� $�
�3"!��* $�3 ����
�
����	��
���2
	�4���
������4: ������$���)�!���!���!��"���%��
�!�*	����!���� ,+!�!"!��.GB#���
	��
	��
��"!�$�������	��$���#"!����(
�������$��������$�"!���!	������
"!�� ����
�
&����������	������ $�
����	��
���#���
�����!����
�����������4:(
 ����C���5�������!���!��"��7%��
�!��	C���CV�/W4:��&����
	�.$XE��	��5�
4��������������� <��9���!"!���$���
���
���
&��$�!	������Y���!� <Z���R�����F	��
4��
�
����
� <[��!�����!�!�A���!�,�!���!��"!�T%��
�!�*	Q���&A���$%��!�
%����!�*	�\$��
�]�,����^�
	C���!_����
����&S�����C�����Q����%��!�]%$�
�!�*	Y�
	C���T"���������
�`"!��4:4����
���)������	����Y�����
����	Q�*�
���AS	�4:��
�^����4: ��!�Q�������!�,�!���!��"!�T%��
�!�*).5K���"!����&��
%������
a�"!��������` ��!"���4:�!	C)�
4:���
�!�
.9B2���
	3�
	C ��!"����	��7"!$��&��
&�����24:��&����
	C"!��
���$�b $�2 �$"!c�(������d+-�!"!���!&1�����,�*�����2	�"��!���# G<S������ <N�
������
�
���!$�3����$��	�������(
4�����
���������	�4:��
�0����4� ��!�O���9���!���!�)�!��"!�N%��
�!��	��$�$������"����&��
&�$����4���&��!�
.
I3������
� <��0�����3���������$	��!&P����������"!�*�
	54:�$���C���!���!����-$��&P�!'��,�!��&��
 ��
��.�B#���
	
�
	� $�!"!���	�����
���! ��)��
"3������"����
����	��$��%��
�!�*	����%��3 ����!�*	��������*���2�!'$�
	�����%��!�
D�*�
&��1�)������F�����������)������4:$���
����	����&A�����,+!�!"!���
����).5B2���F���!"��������
���
���
������������4:$��"!�7���5�����7����������	���&`����������"��`�
	C&��!4:�$��	����������&`��	��
���P ����,�
��)���
a�"!�
��]���&S���!$�O&�$���.fe

© g h�h�i�j e�k�lnmpo�q esrJt�m�u u

v�wPx�yRzT{S|S}R~���zPx�|Sy

Recognizing objects from images has been a challenging task
in computer vision. This is because objects may look very dif-
ferent from different viewing positions. The most successful ap-
proach is in the context of model-based object recognition [1],

where the environment is rather constrained and recognition re-
lies upon the existence of a set of predefined model objects.
Given an unknown scene, recognition implies: (i) the identifica-
tion of a set of features from the unknown scene which approx-
imately match a set of features from a known view of a model
object, (ii) the recovery of the geometric transformation that the
model object has undergone (pose recovering), and (iii) verifica-
tion that other features coincide with predictions. Since usually
there is no a priori knowledge of which model points correspond
to which scene points, recognition can be computationally too
expensive, even for a moderate number of models. Various ap-
proaches have been proposed in the literature for dealing with
this issue.

One approach to limit the possible number of matches is by us-
ing geometric constraints [2]. Another approach is to establish
hypothetical matches using the minimum possible number of
model-scene feature correspondences [3]. Indexing is an alterna-
tive approach which has been given considerable attention lately
[4–14]. It is based on the idea of using a priori stored information
about the models in order to quickly eliminate noncompatible
model-scene feature matches during recognition. Hence, only
the most feasible matches are considered, that is, the matches
where the model features could have projected to the scene fea-
tures. Indexing-based methods usually employ a hash scheme
to efficiently store and retrieve information about the models
into a hash table. There are two different phases of operation:
preprocessing and recognition. During preprocessing, groups of
model features are considered and a description for each one of
them is computed. These descriptions are then used to access the
hash table. Appropriate information about the group of model
features is stored in the indexed location. During recognition,
groups of scene points are considered and their descriptions are
used to access the hash table.

In the noiseless case, each indexed location will contain ex-
actly the set of model groups compatible with the group of scene

360
1077-3142/98 $25.00
Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 361

features used to access the table. Ideally, one would like the index
computed from a group of model features to remain the same,
regardless of changes in the appearance of the model when it is
observed from different viewpoints. Such an index is said to be
invariant. The main advantage of invariant indices is that a single
entry for each group of model features needs to be stored, regard-
less of changes in the viewpoint. Geometric hashing [4] is an
example of a method which uses affine invariants for the recog-
nition of planar objects. Projective invariants of some special
case, two-dimensional, algebraic curves have been also utilized
in another study [8].

Building indexing schemes to recognize general 3D objects
using invariants is not possible in general, since it has been shown
that no general-case invariants exist for single views of general
three-dimensional point sets [12]. As a result, model-based in-
variants have been proposed for indexing [10]. These invariants
can be learned from several images of the object. The basic idea
is that a function can be constructed for each group of model
features that, given a group of image features, evaluates to zero
if and only if the model group could project to the image group.
Another approach is to take advantage of the fact that the angles
and distances of image features change little (i.e., remain invari-
ant) over a substantial range of viewing directions (probabilistic
peaking effect [15]). Probabilistic indexing [11] is based on this
idea. Quite common are also approaches which consider a sep-
arate model for each view of a 3D object [5], obtained by taking
pictures of the object from different viewing directions. Then, an
indexing scheme based on invariants is employed for each model
view. Alternatively, other methods assume that the 3D structure
of the model objects is available (i.e., CAD models). The view-
ing sphere is then sampled and a description about the images
that groups of model features produce, from each point on the
viewing sphere, is stored in a hash table. During recognition,
groups of features are chosen from the scene and the hash table
is accessed to find the most feasible three-dimensional model
groups that might have produced them. A system based on this
idea has been implemented in [12], assuming orthographic pro-
jection. This system has been improved in the case of 3D linear
transformations so that the hash table is built using analytical
formulas, without having to sample the viewing sphere [13,14].
In particular, it was shown in [14] that the images of groups of
3D points can be represented as a pair of 1D lines in two high-
dimensional spaces. During preprocessing, each group of model
points is represented by a line in each of the two spaces. During
recognition, groups of scene points are used to retrieve sets of
model features indexed in both spaces. The intersection of the
two sets corresponds to the possibly matching groups of model
points.

In this paper, a new indexing-based object recognition ap-
proach is proposed based on algebraic functions of views
[16–22]. Algebraic functions of views are functions which ex-
press a relationship among a number of views of the same object
in terms of their image coordinates alone. For example, in the
case of orthographic projection, the image coordinates of any

three views of an object satisfy a linear function [16]. The key
idea in using algebraic functions of views for indexing is that
they allow us to compute all possible views (i.e., images) that
a group of model points can produce using a small number of
views which contain the group. Thus, 3D models are not re-
quired. We will be referring to the space of views that a group
of points can produce as the space of transformed views of the
group. During indexing, the space of transformed views is sam-
pled and the sampled views are represented in a hash table.
During recognition, image groups are used to retrieve from the
hash table the model groups that might have produced them.
To construct the space of transformed views of a group, we ap-
ply the algebraic functions of views on the reference views of
the group. To estimate the allowable ranges of values that the
parameters of algebraic functions can assume, we use a method-
ology based on Singular Value Decomposition (SVD) [24] and
Interval Arithmetic (IA) [25].

Our approach is different from [5] which requires a large
number of reference views to ensure that new views are similar
to at least one of the reference views. In our case, new views
can be constructed by combining a small number of reference
views. Furthermore, our approach for generating the images that
a model group can produce during preprocessing is more practi-
cal since it does not require 3D models. In [13,14] for example,
the lines which represent the images of a model group can be
found easily only if the 3D structure of the object is known.
Since this information is not always available, a set of different
2D images, containing the group, is used instead [13,14]. Each
image defines a point in each of the two representational spaces
and a line must be fitted to these points, in each space, to ap-
proximate the actual lines. This procedure requires more effort
and time since edges must be extracted, interest points must be
detected, and point correspondences across the images must be
established. On the other hand, our approach is based on a small
number of images per model and makes on approximations in
computing the images that a group of model points can produce.
Another advantage of using algebraic functions of views is that
verification becomes simpler. This is because candidate mod-
els can be back-projected onto the scene by combining a small
number of their reference views only. Finally, the availability
of algebraic functions of views over a wide range of transfor-
mations and projections [16–22] makes the proposed approach
more general and extendible.

The paper is organized as follows: In Section 2 we present an
overview of the algebraic functions of views. A general frame-
work for employing algebraic functions of views for indexing-
based object recognition is presented in Section 3. In Section 4
we present a method for estimating the allowable ranges of val-
ues that the parameters of algebraic functions can assume, and
in Section 5 we introduce a procedure, called “preconditioning,”
for obtaining tighter ranges of values. Sections 6 through 9 deal
with a number of practical issues and in Section 10 we con-
sider various issues related to the performance of the method.
Section 11 presents recognition results using both artificial and

362 BEBIS ET AL.

real 3D objects, assuming orthographic projection and 3D linear
transformations. Finally, Section 12 includes our conclusions.

���������
	��������������������������������
� �����
��������� � ��! ����"#�

In this section, we summarize a number of theoretical results
regarding algebraic functions of views. First, we introduce some
terminology that will be useful throughout this paper. We assume
that the database contains M models and that each model is rep-
resented by a number of aspects Am,m = 1, 2, . . . ,M . In the
case of planar objects, one aspect per object is enough, while
in the case of general 3D objects, more aspects are necessary to
represent the object from different viewing directions. We as-
sume that each aspect is represented by V different views which
we call reference views. The number of reference views V per
aspect depends on the transformations and projection under con-
sideration and will be specified in the next paragraph. For each
aspect, we assume a number of “interest” points N (e.g., corners,
junctions, etc.), which are common in all the views associated
with the aspect. We also assume that the point correspondences
across the views have been established.

Algebraic functions of views were first introduced, in the
case of scaled orthographic projection (weak perspective), by
Ullman and Basri [16]. In particular, it was shown in [16] that
if we let an object undergo 3D rigid transformations (i.e., rota-
tions and translations in space) and we assume that the images
of an object are obtained by orthographic projection followed
by a uniform scaling, then any novel view of an object can be
expressed as a linear combination of three other views of the
same object. Specifically, let us consider three reference views
of the same object V1, V2, and V3, which have been obtained
by applying different rigid transformations, and three points
p′= (x ′, y′), p′′= (x ′′, y′′), and p′′′= (x ′′′, y′′′), one from each
view, which are in correspondence. If V is a novel view of the
same object, obtained by applying a different rigid transforma-
tion, and p= (x, y) is a point which is in correspondence with
p′, p′′, and p′′′, then the coordinates of p can be expressed in
terms of the coordinates of p′, p′′, and p′′′ as

x = a1x ′+ a2x ′′ + a3x ′′′ + a4 (1)

y = b1 y′ + b2 y′′ + b3 y′′′ + b4, (2)

where the parameters a j , b j , j = 1, . . . , 4, are the same for all
the points which are in correspondence across the four views.

The above result can be simplified if we generalize the ortho-
graphic projection by removing the orthonormality constraint
associated with the rotation matrix. In this case, the object un-
dergoes a 3D linear transformation in space. Linear combina-
tions correspond to scaled orthographic projection followed by
a 2D affine transformation and they characterize also the im-
ages that can be produced by a photograph of an object [26].
In this case, the algebraic functions of views are simpler and
they involve only two reference views. Let us consider two ref-

erence views V1 and V2 of the same object which have been
obtained by applying different linear transformations, and two
points p′= (x ′, y′), p′′= (x ′′, y′′), one from each view, which
are in correspondence. Then, given a novel view V of the same
object which has been obtained by applying another linear trans-
formation and a point p= (x, y) which is in correspondence with
points p′ and p′′, the coordinates of p can be expressed as a linear
combination of the coordinates of p′ and p′′ as

x = a1x ′ + a2 y′ + a3x ′′ + a4 (3)

y = b1x ′ + b2 y′ + b3x ′′ + b4, (4)

where the parameters a j , b j , j = 1, . . . , 4, are the same for all
the points which are in correspondence across the three views. It
is worth mentioning that not all the information from the second
reference view is used but only “half” of it (i.e., only the x
coordinates). Of course, (3) and (4) can be rewritten using the y
coordinates of the second reference view instead.

The extension of algebraic functions of views in the case of
perspective projection was carried out in [20–23]. In particular,
it was shown that three perspective views of an object satisfy
a trilinear function. Moreover, it was shown that a simpler and
more practical pair of algebraic functions exist when the refer-
ence views are orthographic [20, 21]. This is useful for realistic
object recognition applications. In this paper, we consider the
case of orthographic projection assuming 3D linear transforma-
tions only.

$%��� � ���&'��"#���	 � ��(��������)����*�+���,�-���
���.�/��������0� � ���*�
���-������� ��! �-��"#�

Algebraic functions of views can be used to predict the image
coordinates of points in a novel view by appropriately combin-
ing the image coordinates of the same points across a number of
reference views. This idea can be used for recognizing unknown
views of an object [17, 23]. There are two main problems with
this approach: first, we need to find which points from the refer-
ence views correspond to which points from the unknown view
and, second, we need to find the correct values for the param-
eters of the algebraic functions (i.e., a j ’s, b j ’s). Both problems
are difficult to deal with. First of all, the number of possible point
correspondences between reference and novel views increases
exponentially with the number of points. Second, searching for
the appropriate parameter values might be prohibitive since the
domain of parameters might be very large [16]. Here, we pro-
pose the coupling the algebraic functions of views with indexing.
The idea is to use algebraic functions of views to predict all the
views (i.e., images) that a group of model points can produce
and represent the predictions in a hash table. During recogni-
tion, groups of points are chosen from the scene and the hash
table is accessed to find all the model groups that might have
produced them along with information related to the point cor-
respondences and the parameters of the algebraic functions.

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 363

�����������
A framework for indexing using algebraic functions of views.

Given a model, a set of aspects, a set of reference views per
aspect, and the point correspondences across the views of each
aspect, the first step is to compute the allowable ranges of val-
ues that the parameters of algebraic functions can assume. Then,
the views that a model group can produce (space of transformed
views) can be computed by combining the reference views of the
model group using algebraic functions of views. From a practical
point of view, it is impossible to consider all possible combina-
tions, that is, to assume all possible values for the parameters of
the algebraic functions, since this will generate an infinite num-
ber of transformed model views. As a result, each parameter’s
range is actually sampled into a finite number of points and a
finite number of transformed model groups is generated only.
The coordinates of the transformed model groups are then used
to generate an index to a hash table where information about
the model, the aspect, the group, and the set of parameter values
used to generate the transformed model group are stored. Dur-
ing recognition, we consider groups of scene points and we use
their image coordinates to generate an index to the hash table.
The entries stored at the indexed location identify a model, an
aspect, a model group, and a set of parameter values that might
have produced the scene group. A verification step follows to
reject or accept candidate matches. Figure 1 illustrates these
steps.

There are some important issues that must be considered dur-
ing the implementation of the proposed scheme. One of them
is how to compute the range of values that the parameters of
the algebraic functions can assume. Here, we propose a method

based on SVD [24] and IA [25]. Another important issue has
to do with the space requirements of the method. We are deal-
ing with this issue (i) by preconditioning the reference views
in order to compute narrow ranges of values for the parameters
of algebraic functions, (ii) by generating and storing informa-
tion about only the x or y coordinates of the transformed model
groups, and (iii) by considering only well-conditioned groups,
that is, groups which are tolerant to noise. Finally, we consider
the issue of predicting the parameters of the algebraic functions
accurately during recognition. A scheme based on neural net-
works is employed for this.

	�
������������������������������� ���"!�#%$&��')(���
#)!��*����,+��������-�������

Under the assumption of orthographic projection, two refer-
ence views V1 and V2 must be combined in order to obtain a new
view V , as Eqs. (3) and (4) illustrate. Given the point correspon-
dences across the three views, the following system of equations
must be satisfied,

x ′1 y′1 x ′′1 1

x ′2 y′2 x ′′2 1
· · · · · · · · · · · ·
x ′N y′N x ′′N 1

a1 b1

a2 b2

a3 b3

a4 b4

 =

x1 y1

x2 y2

· · · · · ·
xN yN

 , (5)

where (x ′1, y′1), (x ′2, y′2), . . . (x ′N , y′N) and (x ′′1 , y′′1), (x ′′2 , y′′2), . . .

364 BEBIS ET AL.

(x ′′N , y′′N) are the coordinates of the points of the reference views
V1 and V2, respectively, and (x1, y1), (x2, y2), . . . (xN , yN) are
the coordinates of the points of the novel view V . Splitting the
above system of equations into two subsystems, one involving
the a j parameters and one involving the b j parameters, we have

Pc1 = px (6)

Pc2 = py, (7)

where P is the matrix formed by the x and y coordinates of the
reference views (plus a column of 1’s), c1 and c2 are vectors
corresponding to a j ’s and b j ’s (the parameters of the algebraic
functions), and px , py are vectors corresponding to the x and y
coordinates of the novel view. Both (6) and (7) are overdeter-
mined which means that they can be solved using a least-squares
approach such as SVD [24]. Since SVD is very important for the
estimation of the parameters’ ranges, we briefly present its main
steps here. Using SVD, P can be factorized as P =UP WP V T

P
where both UP and VP are orthonormal matrices, while WP is a
diagonal matrix whose elementswP

ii are always nonnegative (the
singular values of P). The solutions of the above two systems
are c1= P+ px and c2= P+ py where P+ is the pseudoinverse
of P . Assuming that P has been factorized, its pseudoinverse is
P+= VP W+P U T

P where W+P is also a diagonal matrix with ele-
ments 1/wP

ii if wP
ii greater than zero (or a very small threshold

in practice) and zero otherwise. In specific, the solutions of (6)
and (7) are given by the equations [24]

c1 =
k∑

i=1

(
u P

i px

wP
ii

)
vP

i (8)

c2 =
k∑

i=1

(
u P

i py

wP
ii

)
vP

i , (9)

where u P
i denotes the i th column of matrix UP , v

P
i denotes the

i th column of matrix VP , and k= 4.
To determine the range of values for c1 and c2, we assume

first that the novel views has been scaled such that the x and y
coordinates belong within a specific interval. This can be done,
for example, by mapping the novel view to the unit square. In this
way, its x and y image coordinates will be mapped to the interval
[0, 1]. To determine the range of values for c1 and c2, we need to
consider all possible solutions of (6) and (7), assuming that px

and py belong to [0,1]. We have used IA [25] in order to solve
this problem. In IA, each variable is represented as an interval
of possible values. Given two interval variables t = [t1, t2] and
r = [r1, r2], then the sum and the product of these two interval
variables is defined as [25]

t + r = [t1 + r1, t2 + r2] (10)

t ∗ r = [min(t1r1, t1r2, t2r1, t2r2), max(t1r1, t1r2, t2r1, t2r2)].

(11)

Applying the interval arithmetic operators to (8) and (9), instead
of standard arithmetic operators, we can compute interval solu-
tions for c1 and c2 by setting px = [0,1] and py = [0,1]. In in-
terval notation, we want to solve the systems Pc1= p I

x and
Pc2= p I

y , where the superscript I denotes an interval vector.
The solutions cI

1 and cI
2 should be understood to mean cI

1 =
[c1: Pc1= px , px ∈ p I

x] and cI
2 = [c2: Pc2= py, py ∈ p I

y].
Significant research has been performed in the area of inter-

val linear systems [27]. In general, the matrix of a system of
interval equations is also an interval matrix, that is, a matrix
whose components are interval variables. In our case, things are
simpler since the elements of P are the x and y coordinates of
the reference view of the object which are always fixed. When
interval solutions are computed, not every solution in c I

1 and cI
2

corresponds to px and py that belong to p I
x and p I

y [27, 28].
In other words, p I

x ⊆ PcI
1 and p I

y ⊆ PcI
2 . In the context of our

approach, if new views are generated by choosing the values for
the parameters of the algebraic functions from the interval solu-
tions obtained, then some of the generated views might not lie
completely within the unit square. We will be referring to these
views as “invalid views” and to the solutions which generate the
invalid views as “invalid solutions.” Clearly, invalid views can
be rejected easily by testing whether the coordinates of a view
lies within the unit square.

An interval solution is called “sharp” if it does not contain
many invalid solutions. Within our context, it is important to
compute sharp interval solutions since this will save time and
space. However, if we merely apply the interval arithmetic op-
erators on (8) and (9), then it is very likely that we will obtain
solutions that will not be very sharp. There are various factors
that affect the sharpness of an interval solution. One of them is
the participation of a given interval quantity to the computations
of a solution more than once [28]. As a matter of fact, this is the
case with (8) and (9). To make it clear, let us rewrite the solution
for the i th component of c1, 1 ≤ i ≤ k, more analytically:

ci1 =
vP

i1

wP
11

(
u P

11x1 + u P
21x2 + · · · + u P

N1xN
)

+ vP
i2

wP
22

(
u P

12x1 + u P
22x2 + · · · + u P

N2xN
)

+ · · · v
P
ik

wP
kk

(
u P

1k x1 + u P
2k x2 + · · · + u P

Nk xN
)
.

Clearly, each x j (1 ≤ j ≤ N) enters in the computation of ci1

more than once. To avoid this, we can factor out the x j ’s and
rewrite the above equation as

ci1 =
N∑

j=1

x j

(
k∑

r=1

vP
ir u P

jr

wP
rr

)
.

The interval solution cI
i1 can now be obtained by applying the

interval arithmetic operations on the equation above. Similarly,

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 365

�����������
Some artificial 3D objects.

we can obtain interval solutions for the rest elements of cI
1

as well as for cI
2 . It should be noted that since both (8) and

(9) involve the same matrix P and p I
x , p I

y assume values form
the same interval, the interval solutions cI

1 and cI
2 will be the

same.
As an example, let us consider the 3D objects shown in Fig. 2

(two different reference views are shown per object). The inter-
est points used in this experiment correspond to corner points.
Table 1 shows the range of values computed for c1 (which are
the same with those computed for c2).

	�
����������������������������� ��!��"���#$������%���"&�����')(

As Table 1 illustrates, the width of the range of values varies
from parameter to parameter. Wide ranges are not desirable be-
cause more sets of values must be considered. It is thus important
to consider ways to compute narrower ranges. In this section,
we present a methodology called preconditioning for optimizing
the parameters’ ranges of values. By preconditioning we imply

*,+.-$/1032
*$4�5�6.798�:�;�<=5�>@?�ACB�DC5�EGFHEJIKB�DL<=4�5NM�OJIKDCIKB�ACPRQ�IK5�S.E

Ranges of values

range of a1 range of a2 range of a3 range of a4

model1 [−25.321 25.321] [−10.154 10.154] [−23.173 23.173] [−5.943 6.943]
model2 [−27.771 27.771] [−10.154 10.154] [−24.328 24.328] [−8.496 9.496]

a transformation that transforms the original reference views to
new reference views, yielding very narrow ranges. Before we
describe the steps involved in this transformation, let us first
investigate how the width of the ranges is affected.

In the previous section, we considered the interval solutions
of Pc1= px and Pc2= py . Alternatively, we could have con-
sidered the solutions of P(c1+ δc1)= (px + δpx) and P(c2+
δc2)= (py + δpy), assuming all possible δpx and δpy with (px +
δpx) and (py + δpy) in [0,1] (px and py can be assumed fixed,
for example, px = py = 0.5). Obviously, the width of the com-
puted interval solutions cI

1 and cI
2 will depend on the magnitude

of δc1 and δc2. It is well known that the relative error in the
solution of a system of equations depends on the condition
number of P [29]. In other words, if we consider the system
P(c1 + δc1)= (px + δpx), the following inequality is known to
be true,

‖δc1‖
‖c1‖

≤ cond(P)
‖δpx‖
‖px‖

,

366 BEBIS ET AL.

�����������
The width of a1’s range versus the condition of the reference views.

where cond(P) is the condition number of P defined as ‖P‖
‖P−1‖. If the condition number of P is large, then the relative
error will also be large which implies that the width of c1’s range
will also be large. The same holds true for c2.

We define the “condition” of a reference view as the ratio of
the maximum singular value over the minimum singular values
of P . This ratio can be regarded as the condition number of P
and while it is not exactly equal to the actual condition number,
they usually have about the same order of magnitude numerically
[24, 29]. We have performed a number of experiments to demon-
strate the dependence of the width of the parameters’ ranges on
the condition of the reference views. First, we generated a num-
ber of random views per object and we computed each parame-
ter’s range. Then, for each parameter, we plotted the condition
of the view (horizontal axis) versus the width of the computed
ranges (vertical axis). Figure 3 shows one of the plots, assum-
ing 20 random views, model3, and a1. Clearly, large condition
numbers imply wide ranges.

It is thus reasonable to ask whether it is possible to choose
reference views having the best possible condition. Here, we
propose a procedure (preconditioning) to transform the original
reference views to new reference views having better condition.
A transformation to obtain new reference views from the old
reference views can be obtained using (5)

x ′1 y′1 x ′′1 1

x ′2 y′2 x ′′2 1
· · · · · · · · · · · ·
x ′N y′N x ′′N 1

a1 b1 a5 0

a2 b2 a6 0

a3 b3 a7 0

a4 b4 a8 1

=

x ′ n1 y′ n1 x ′′ n1 1

x ′ n2 y′ n2 x ′′ n2 1
· · · · · · · · · · · ·
x ′ nN y′ nNm (a) x ′′ nN 1

 (12)

or

PC = Pn, (13)

where C is a transformation matrix, P is the matrix corre-
sponding to the old reference views, and Pn is the matrix cor-
responding to the new reference views. The idea is to find a
matrix C which yields new reference views having better condi-
tion. Let us consider the singular value decomposition of P,C ,
and Pn: P =UP WP V T

P ,C =UC WC V T
C , and Pn =UPn WPn V T

Pn .
Substituting these expressions in (13) we have

(
UP WP V T

P

)(
UC WC V T

C

)
=
(
UPn WPn V T

Pn

)
. (14)

In order for the new matrix Pn to have good condition, its
singular values, that is, the elements of WPn , must have sim-
ilar magnitudes. Observing (14) we find it rather difficult to
draw any conclusions about the condition of the new view Pn .
However, this would be much easier if we could relate the sin-
gular values of Pn to the singular values of P and C . Without
making any assumptions about the transformation matrix C ,
it is difficult to establish such as relationship. However, since
we have freedom in choosing the elements of C , (14) can be
simplified if we choose UC = VP . Then, (14) can be written as
(UP WP V T

P)(VP WC V T
C)= (UPn WPn V T

Pn) or (UP WP WC V T
C)=

(UPn WPn V T
Pn), since V T

P VP = I . According to the above equa-
tion, the singular values of Pn are now equal to the product of the
singular values of P and C , that is, WPn =WP WC . The key idea
is then to choose the singular values of C in a way such all that
the singular values of Pn have the same magnitude. Obviously,
we must choose WC as

WC = λW−1
P , (15)

where λ is a positive constant. As a result, WPn = λI , which
means that all the singular values of Pn will be equal to λ
and the condition of the new view will be the best possible
(one). The details involved in the calculation of λ as well as in
the calculation of the elements of matrix C can be found in
Appendix A.

We have performed a number of experiments to demonstrate
the preconditioning procedure, using the objects shown in Fig. 2.
Figure 4 shows the preconditioned views (only the first precon-
ditioned reference view is shown per object since only the x
coordinates of the second reference view are used). One com-
ment we can make by observing Fig. 4 is that preconditioning
seems to spread the views around origin. Table 2 shows the
ranges of the parameters in the case of the preconditioned refer-
ence views. Comparing them with the ranges obtained using the
original views (Table 1) we can conclude that preconditioning
yields very tight ranges.

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 367

���������	�
The “preconditioned” reference views.

��������������������� ��!��"��#%$&�'�(�)����*�����+$,���.-

In this section, we consider again the preprocessing step of the
proposed approach and we show that there is significant redun-
dancy in the information stored in the hash table. According to
our discussion in Section 3, for each model group, we compute
first the images that the model group can produce (i.e., trans-
formed model groups). Then, the coordinates of the points in
the transformed model group are used to store appropriate in-
formation in the hash table. The computation of the coordinates
of the points in a transformed model group is performed using
Eqs. (3) and (4). There are two observations to be made at this
point. First, let us recall that both a j ’s and b j ’s assume values
from the same ranges (see our discussion in Section 4). Second,
the same basis vector (i.e., (x ′, y′, x ′′)) is involved in the com-
putation of both the x and y coordinates of the groups. Based on
these two observations it can be easily concluded that the trans-
formation which generates the x coordinates is exactly the same
as the transformation which generates the y coordinates. As a
result, it is not necessary to represent the same transformation
twice over the hash table and only one of the two coordinates
(the x coordinates here) can be used for indexing. This simplifi-
cation offers significant time and space savings; however, recog-
nition becomes slightly more complicated. Specifically, the hash
table must be accessed twice per scene group during recogni-
tion: first, the x coordinates of the scene group are used to give
rise to hypotheses which predict the a j parameters and, second,
the y coordinates of the scene group which will give rise to hy-
potheses which predict the b j parameters. Then, the intersection
of the hypotheses needs to be found. Figure 5 shows the revised

/10,2�35476
/�8:9�;�<>=@?:A:BC9�DFE�G>H:I>9KJMLNJPOQH�IRBS8:9)TVUP9KWK<>H�D:OQBCOQ<>H:9KD�X�OQ9KY,J

Ranges of values

range of a1 range of a2 range of a3 range of a4

model1 [−0.454 0.454] [−0.417 0.417] [−0.392 0.392] [0.000 1.000]
model2 [−0.439 0.439] [−0.413 0.413] [−0.423 0.423] [0.000 1.000]

scheme where only the x coordinates of the transformed model
groups are utilized.

Z �.��*�����[�������\�]��!��"�^$�*_$�#%���.��*�-`�_a
��!��"$��'�N��b.*_$��[�%a��+�����������+-
+��*��c��� *��@���&�'���c�.�����

Given a scene group, the goal of recognition is to predict the
model group and the parameters of the algebraic functions that
have produced the scene group. However, it is important to un-
derstand that there will be errors in the recovery of the parameters
mainly because the hash table is built by sampling the space of
parameters into a finite number of points. As a result, if an actual
image group is not very similar to one of the transformed model
groups computed during preprocessing, then the predicted pa-
rameters might not be very close to the actual ones. Of course,
the error depends on the sampling step used to sample the space
of parameters. This error can be made small by choosing a small
sampling step but this is not desirable since it will increase space
requirements. Since errors in the prediction of the parameters
will have a great impact on the performance of the verification
step (i.e., the predicted model might not be back-projected onto
the scene accurately), it is important to consider approaches
which will allow us to predict the parameters accurately.

In a recent paper [31], we studied the problem of learning
to predict the correct pose of a planar object, undergoing 2D
affine transformations. The idea was to train a neural network
with a number of affine transformed views of the object in order
for it to learn to predict the parameters of the affine transfor-
mation between the training views and a reference view of the
object. To demonstrate our approach, we performed experiments
using several objects. A separate neural network was assigned
to each object which was trained with views of this object only
(object-specific networks). Our experimental results showed that
training was extremely fast and that only a small number of train-
ing views was sufficient for the networks to generalize well. By
generalization we mean the ability of the networks to predict the
correct affine transformation even for views that were never ex-
posed to them during training. We also considered issues related
to the discrimination power and noise tolerance of the networks.

368 BEBIS ET AL.

�����������
A revised framework for indexing using algebraic functions of views.

Our results showed that the discrimination power of the net-
works was excellent. Their noise tolerance was not very good
initially; however, it was dramatically improved by applying a
preprocessing to the inputs based on PCA [24].

Motivated by this work, we have decided to use the same ap-
proach for model groups. The idea is assign a different neural
network for each model group (group-specific neural networks).
To train the networks, we generate a number of training views
which contain the groups. In fact, the training views can be cho-
sen from the views we generate during the hash table construc-
tion step. Then, when an entry is stored into the hash table, in-
stead of storing the parameters of the algebraic function we store
a pointer to the neural network associated with the model group.
Figure 5 shows the hash entries. During recognition, the coordi-
nates of the scene group are used to retrieve from the hash table
appropriate hash entries. Then, the parameters of the algebraic
functions are estimated by presenting the coordinates of the
scene group to the neural network whose pointer is part of the
hash entries retrieved. Figure 6a illustrates the neural network
approach. Figure 6b illustrates the simplified neural network
scheme (only the x coordinates are used).

It should be noted that the neural network approach is not
the only alternative approach to recover the parameters of the
algebraic functions. For example, we could have stored the coor-
dinates of the transformed model groups in the hash table during
preprocessing. Then, when a scene group is matched to a model
group during recognition, the parameters can be recovered by

solving two systems of equations (Eqs. (6) and (7)). Since the
systems are overdetermined, a least-squares approach, such as
SVD [24], can be used. However, the neural network scheme
has the advantage that it is faster and has less space require-
ments. To see this, let us assume that the decomposition of P is
computed offline, as the training of the neural networks is also
performed offline. Assuming that each model group contains G
points and that the number of parameters is 2k (k= 4 in our case),
the neural network approach requires 2kG multiplications and
2kG additions to predict the parameters of the transformation
(linear networks). On the other hand, SVD requires 2k(G+ 2k)
multiplications, 2kG divisions, and 2k(G+ 2k) additions (see
Eqs. (8) and (9)). Given that these computations must be repeated
many times during recognition, the neural network approach is
obviously less time consuming. In terms of space requirements,
the neural network approach requires the storage of 2kG val-
ues per network (i.e., weights), while SVD requires the storage
2kG+ 2k+ (2k)2 values (U, W, and V matrices). Given again
that this information must be stored for many groups, the neural
network approach has less space requirements.

	�
������������������� �!�#"$"�%'&(��)+*���,#����)���*-�.�������$�/�
0)+*1����*+�#����)2�

An important issue when we consider groups of points is
how to chose the group size G, that is, the number of points
in a group. Obviously, in order for the groups to be useful for

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 369

���������	�
(a) The neural network scheme; (b) The simplified neural network scheme.

matching, they must provide enough discriminating power. In
fact, it is desirable to choose G in a way such that every group
of image points may have been produced only by one group
of model points. For 3D linear transformations, the algebraic
functions of views involve eight parameters. This means that we
need to match at least four image points to four model points
in order to determine the parameters. As a result, the minimum
group size which provides some discrimination is five.

It has been shown that the likelihood a particular group of
image points matches a particular group of model points shrinks
exponentially with the size of the group [12]. However, it is not
possible to consider large size groups because they are more
vulnerable to occlusions. Also, the discriminatory improvement
offered by large groups diminishes rapidly beyond some point
[7]. In this paper, we have chosen to demonstrate our approach
using groups of size five (G= 5). It should be noted, however,
that this choice is somewhat subjective, and other approaches
might be more appropriate, for example, using multiple group
sizes, an adaptive group size, or grouping [14].

Considering all possible model groups for a given size is not
practical since this would require too much space. Here, we
consider only well-conditioned model groups. The definition of
the condition of a model group is similar to the definition of the
condition of a model view: it is the condition of the G× k matrix
(denoted as Pgm), formed by considering the x and y coordinates
of the points in the group, across the reference views, plus a
column of 1’s (see Eq. (5)). Assuming noise in the location of the
image points, the solution of (5) will include some error which
is related to the condition of the matrix Pgm [29]. As a result,
even though a model group might have been correctly matched
to an image group, it will be very difficult for the verification
procedure to find additional matches to support this hypothesis.
This will waste recognition time and it is better to avoid such
hypothetical matches from the beginning by disqualifying bad-
conditioned model groups during preprocessing.

To choose groups with good condition, we simply compute
the condition of each model group and then we reject groups
having a condition greater than a threshold t . It is important,
however, to ensure that most model points are represented in the
groups chosen and that the same model point does not appear
in every model group chosen. This is to ensure that recognition
does not depend on a few model points which might not be
always available anyway due to occlusions. To find the number of
times a model point appears in the groups chosen we construct a
histogram. If there are many model points that are not sufficiently
represented in the groups chosen, we choose new model groups
by increasing the threshold t . If a model point appears in many
groups (e.g., in half or more), we start removing groups which
contain this point, updating the histogram at the same time, until
a certain criterion is met (e.g., at most half of the groups contain
the point). If this procedure eliminates many groups, then we
increase t and we repeat the same steps.

Another important issue is the order of the points in a group.
If we do not make any assumptions about the order, either all
possible orders must be considered during preprocessing or all
possible orders must be considered during recognition. Since the
second approach will increase recognition time, we consider the
first approach only. To avoid considering all possible orders dur-
ing preprocessing, we apply a canonical ordering to the points
of the model groups. During recognition, the same canonical
ordering is applied to the scene groups. Information about the
ordering is stored in the hash table during preprocessing. The
canonical ordering procedure employed here is very simple: we
just sort the x coordinates of the points within a group in in-
creasing order. During recognition, we sort both the x and y
coordinates of the scene groups before we compute the indices
to access the hash table. A different canonical ordering proce-
dure has been proposed in [12]; however, it is not applicable
here because only the x coordinates of the model groups are
used during preprocessing.

370 BEBIS ET AL.

���������
	��
������������
��������
����������������� ���

By considering only well-conditioned groups during prepro-
cessing, we have restricted ourselves to a much smaller set of
model groups. This saves space during preprocessing but the
probability of selecting a scene group which matches one of the
model groups is now much smaller. Hence, most of the hypothe-
ses that will be established during recognition will be incorrect
and must be ruled out quickly. If the unknown scene contains
more than one object, it will be very beneficial to apply some
kind of grouping in order to identify groups of scene points that
might belong to the same object. Then, we can select subgroups
of size G from these groups instead of selecting them randomly.
This approach will eliminate many matches, but there will be
still many invalid matches left. To speed up recognition, it is
important to keep the number of hypotheses low. Our approach
is to reject as many invalid matches as possible without having
to verify them first. This is performed by evaluating each hy-
pothesis before verification, using a number of simple tests. If a
hypothesis passes all the tests, then it is passed to the verification
step; otherwise, it is rejected.

The way hypotheses are formed during recognition is by com-
bining every hash entry retrieved using the x coordinates of the

!#"
$�%
&'%
Evaluation of hypotheses.

scene group with every hash entry retrieved using the y coordi-
nates of the group. This will produce many hypotheses but not all
of them need to be verified. In specific, let us consider a hypoth-
esis formed by combining the entry (modelx , ax , nnx , orderx)
retrieved using the x coordinates of the scene group with the en-
try (modely, ay, nny, ordery) retrieved using the y coordinates
of the same group. This hypothesis will be considered for veri-
fication, only if all of the following five conditions are satisfied:
(1) modelx =modely , (2) ax = ay , (3) nnx = nny , (4) the param-
eters predicted by nnx and nny are within the ranges computed
during preprocessing, and (5) the predicted model group is well-
conditioned. Figure 7 illustrates the procedure.

The first two constraints are straightforward to understand:
both the x and y coordinates of the scene group should predict
the same model and aspect. The third constraint implies that both
the x and y coordinates of the scene group should predict the
same model group. The identity of a model group is implicitly
implied by the identity of the neural network associated with
it. The fourth constraint exploits the discriminating power of
the neural networks. If some points in the image group do not
belong to the same object, it is expected that the parameters
predicted by the neural network will not be within the ranges
computed during preprocessing. Experimental results obtained

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 371

here as well as in [31] have shown that the discriminating power
of the neural networks is very good.

The purpose of the last constraint is to rule out scene groups
that have not been produced by well-conditioned model groups.
Assuming that Pgm is the matrix formed by the coordinates of
the points in the model group and Pgs is the matrix formed by the
coordinates of the points in the image group, then Pgm C = Pgs

(see Eq. (13)). Pgs consists of four columns, the first two of
which are the x and y coordinates of the scene group, and the
last one is just a column of 1’s. The third column corresponds
to the transformed x coordinates of the second reference view.
Since objects are recognized from a single unknown image, the
elements of this column are chosen to be the same as the x
coordinates of the group in the second reference view. The matrix
C consists of four columns as well. The first two are set to the
parameters predicted by the neural networks, and the fourth one
is just the vector [0001]T . The third column must be set equal to
the vector [0010]T so that the third column of Pgs is the same as
the third column of Pgm . Pgm can be computed by multiplying Pgs

by C−1. The last constraint simply checks whether the condition
of Pgm =C−1 Pgs is less than a threshold (the same threshold used
during preprocessing).

���������
	�����������������������������	����! !���#"$�%!%!&�����
	���'(��)��*�����)� !���	��#��

In this section, we consider several important issues with re-
gard to the performance of the method: space requirements, ef-
fect of sampling of parameters, and noise tolerance. If we as-
sume N points per reference view and a group size G, there are
NG = (N

G) possible model groups (without considering different
orderings since we use canonical ordering). Let us denote the
number of well-conditioned groups as Ñ G (with Ñ G¿ NG).
If the sampling step used to sample the range of parameter
a j is sa j , j = 1, 2, . . . , k (k= 4), each parameter can assume
na j = ((maxa j −mina j)/sa j + 1) values (mina j ,maxa j corre-
spond to the min and max values of a j). Thus, the number of
transformed views we need to be generate per aspect is NV =∏k

j=1 na j . Not all of these views have to be considered during
preprocessing since some of them correspond to “invalid” views
(i.e., they do not lie entirely within the unit square). Let us de-
note the number of valid views as Ñ V (Ñ V ¿ NV). Each time
a valid view is generated, a hash entry is made for each well-
conditioned group contained in the view. Thus, the total number
of entries that must be stored per model is Am Ñ V Ñ G where Am

is the number of aspects associated with model m. This is the
number of entries to be stored without accounting for noise. If
we choose to account for noise during preprocessing, additional
entries must be stored as we discuss later in this section. For
each group, we also need to store the weights of the neural net-
work associated with the group. Each network has k inputs and
k outputs, that is, k2 weights must be stored.

Let us now turn our attention to the sampling of the para-
meters. If the sampling step sa j is very large, then the sampling

of the space of transformed views will be very coarse. This,
however, will affect recognition since the point coordinates of
the transformed model groups will be very different from the
point coordinates of the actual image groups. As a result, it is
very likely that the actual image groups will access wrong hash
bins during recognition. To investigate this issue more carefully,
we need to be more specific about the function index() which
returns the hash table address. In this paper, the index space
considered is the space of image coordinates. This is different
from other approaches where the space of affine coordinates is
considered instead [4, 13, 14]. The main reason that the affine
space has been considered in other approaches is because it
yields a minimal representation. Although this is indeed true,
an analysis of the effect of sensor noise is more complicated
in this case. Also, the affine space does not allow for account-
ing for sensor noise during preprocessing [32]. Representing the
model groups in the space of image coordinates does not yield a
minimal representation but the analysis for the effect of sensor
noise is easier and it allows to account for sensor noise dur-
ing preprocessing. In our implementation, the dimensionality of
the hash table is equal to the group size G, that is, index() ac-
cepts as input the x or y coordinates of a group and returns a
G-dimensional index.

To demonstrate the indexing procedure, let us assume that
G= 1. In this case, index() implies a quantization of the inter-
val [0,1] plus a linear scaling to ensure that the computed index
fits the dimensions of the hash table (see Fig. 8). Specifically,
the interval [0,1] is partitioned into a number of subintervals,
and a hash bin is assigned to each one of them. The number of
subintervals is determined by the size of the hash table which is
denoted as H . The width of each subinterval will be h= 1/H ,
and the knot points q j , which define the subintervals, will be
q j = j ∗ h, j = 1, 2, . . . , H − 1. If xk is the x coordinate of a
point, then index(xk)= Q(xk)= j if xk ∈ [q∗j − h/2, q∗j + h/2],
with q∗j being the middle point of [q j , q j+1]. In general (G 6= 1),
index() implies a quantization of a hypercube with sides equal
to [0,1]. Assuming that (x1, . . . , xG) are the x coordinates of the
points in a group, a G-dimensional index is computed by follow-
ing the previous procedure for each x coordinate of the group,
that is, index(x1, x2, . . . , xG)= (Q(x1), Q(x2), . . . , Q(xG)).

Let us now assume that the x coordinates of an actual image
group are (x1, x2, . . . , xG) while the x coordinates of a pre-
dicted image group, corresponding to the above actual image
group, are (x̂1, x̂2, . . . , x̂G). The coordinates of the predicted
image group have been obtained by applying the transformation

+-,*.0/213/
Demonstration of the index-generation process.

372 BEBIS ET AL.

x̂i = â1x ′i + â2 y′i + · · · + âk , where x ′i , y′i , . . . , are the coordi-
nates of the model group which has produced the image group
and â1, â2, . . . , âk are the predicted parameters of the algebraic
functions. Let us assume that the actual parameters of the alge-
braic functions are a1, . . . , ak . Then, the x coordinates of the ac-
tual image group are given by xi = a1x ′i + a2 y′i + · · · + ak . The
question is whether the actual and predicted groups access the
same hash bin; that is, whether index(x̂1, x̂2, . . . , x̂G)= index(x1,

x2, . . . , xG). This will be true if Q(x̂i)= Q(xi), k= 1, 2, . . . ,G.
Let us assume that Q(xi)= j . In order for Q(x̂i)= j , we must
have |x̂i − q∗j | ≤ h/2. Let us rewrite |x̂i − q∗j | as

|x̂i − q∗j | = |(x̂i − xi)+ (xi − q∗j)| ≤ |x̂i − xi |+|xi − q∗j |. (26)

Considering the first term only we have

|x̂i − xi |
= |(â1x ′i + â2 y′i + · · · + âk))− (a1x ′i + a2 y′i + · · · + ak)|
= |(â1 − a1)x ′i + (â2 − a2)y′i + · · · + (âk − ak)|
≤ |â1 − a1||x ′i | + |â2 − a2||y′i | + · · · + |âk − ak |

≤ sa1

2
|x ′i |+

sa2

2
|y′i | + · · · +

sak

2
. (27)

Taking into consideration that |x̂i − q∗j | ≤ h/2, we have from
(26) and (27)

|x̂i − q∗j | ≤
sa1

2
|x ′i | +

sa2

2
|y′i | + · · · +

sak

2
+ h/2. (28)

The above inequality implies that in order to ensure that the cor-

���������	�
Some artificial test views.

rect hash bin will not be missed during recognition, we must
account for the sampling error during preprocessing. In particu-
lar, each time an entry is stored in a hash bin, we must also store
a pointer to this entry in the hash bins located around a neigh-
borhood of the indexed hash bin. The size of the neighborhood
can be computed using (28) and depends on the sampling steps
(sa j ’s) and the size of the hash table. Equation (27) allows us
to find the neighborhood for each of the dimensions of the hash
table. Then, we need to consider the union of neighborhoods
over all the dimensions. It should be mentioned that our experi-
mental results have shown that the upper bound given by (28) is
not tight and much smaller bounds (for example, 1/2 of it) have
worked well in our experiments.

Let us now consider the effect of sensor noise. For this, we
assume that there is an uncertainty in the location of the model
points which is at most ne pixels. This means that the true image
point must lie within ne pixels of the actual (noisy) image point.
Taken into consideration that each image is mapped (scaled)
to the unit square before recognition, the maximum distance
corresponding to the scaled image will be ẽ= ne/Ni , assum-
ing images of size Ni × Ni . The question is whether the noisy
coordinates will access the correct hash bin, that is, whether
index(x1, x2, . . . , xG)= index(x̃1, x̃2, . . . , x̃G), where x̃i = xi +
ẽ. In order for this to be true, we must have Q(xi)=Q(x̃i). Let
us consider the difference |x̃i − q∗j |:

|x̃i − q∗j | = |(xi − q∗j)+ ẽ| ≤ |xi − q∗j | + ẽ ≤ h/2+ ẽ.

To account for noise, we need to follow a similar procedure.
In particular, every time an entry is made in the table during
preprocessing, we must also store a pointer to this entry in the

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 373

���������
	
������������������������� ��!�����������"#�$�����%�& �������('��� ���*)+������,

Parameters

Actual parameters (Figure 9(a)) Predicted parameters (Figure 9(a))

a1, a2, a3, a4 −0.08248 −0.15374 0.09463 0.55224 −0.08222 −0.15323 0.09412 0.55223
b1, b2, b3, b4 −0.05775 0.02241 0.13408 0.48342 −0.05732 0.02222 0.13413 0.48313

Actual parameters (Figure 9(b)) Predicted parameters (Figure 9(b))

a1, a2, a3, a4 −0.01866 −0.14224 0.00280 0.46931 −0.01863 −0.14223 0.00280 0.46932
b1, b2, b3, b4 0.07291 0.04679 0.19096 0.44305 0.07288 0.04675 0.19093 0.44299

Actual parameters (Figure 9(c)) Predicted parameters (Figure 9(c))

a1, a2, a3, a4 −0.06960 −0.13060 0.08588 0.53691 −0.07512 −0.13366 0.08039 0.53807
b1, b2, b3, b4 −0.06665 0.02818 0.16177 0.49026 −0.06666 0.02814 0.16176 0.49025

Actual parameters (Figure 9(d)) Predicted parameters (Figure 9(d))

a1, a2, a3, a4 −0.14990 0.08872 0.14231 0.61792 −0.14990 0.08868 0.14231 0.61792
b1, b2, b3, b4 −0.21708 −0.12707 0.01205 0.55004 −0.21713 −0.12714 0.01200 0.54999

hash bins located in a neighborhood around the indexed hash bin.
It should be mentioned, however, that some of these pointers
might have been already stored in the appropriate hash bins
during the previous step which accounts for sampling error.

-�-�.0/21436587+9;:$<0:=9>7@?�AB5DC0E�1436F0G

In this section, we demonstrate the proposed approach using
both artificial and real 3D objects. The group size used in the
experiments reported here is G= 5. A five-dimensional hash ta-
ble of size 10 × 10 × 10 × 10 × 10 was utilized (h= 1/10).
The step size used to sample the ranges of the parameters was
sa j = 0.05. First, we performed a number of experiments using
the artificial objects shown in Fig. 2. For each object, we gener-
ated a number of test views by choosing the parameters of the
algebraic functions randomly. The test views were normalized
so that their x and y coordinates were in the interval [0, 1]. This
was performed by choosing a random subsquare within the unit
square and by mapping the square enclosing the view (defined
by its minimum and maximum x and y coordinates) to the ran-
domly chosen subsquare. We also added some random noise
in the location of the points to simulate sensor noise. Figure 9
shows some of the test views considered (solid line). In all cases,
recognition was successful and the parameters of the algebraic
functions were recovered very accurately as Table 3 illustrates.
Figure 9 shows the predicted models (dashed line) back-projected
onto the test views. The number of hypotheses verified in each
case is shown in Table 4. To demonstrate the significance of the
hypothesis evaluation procedure discussed in Section 9, Table 4
shows the number of hypotheses verified using (third column)
and without using (second column) the five conditions men-
tioned in Section 9.

Next, we performed a number of experiments using the real
3D objects shown in Figs. 10a–10f. For each object, we consid-

ered a particular aspect and we captured two different pictures
of the object (reference views). Both reference views have many
features in common; however, the first view is different from the
second in that the object has undergone translation and rotation.
Next, we applied a corner and junction detector [33] in order to
extract the interest points of the views. Figures 10g–10l show
the common interest points considered in each case (the lines
connecting the corners have been added to enable visualization).

Then, the reference views were preconditioned and the range
of values for the parameters of the algebraic functions were
computed. Table 5 shows the ranges computed for each object.
Table 6 shows the number of well-conditioned groups chosen,
the number of points represented in the groups, and the number
of views Ñ V considered during preprocessing.

Some of the scenes used in our recognition experiments are
shown in Fig. 11. First, the interest points were detected using
the same corner detector [33]. Nonimportant interest points were
removed manually. Then, scene groups are chosen and used to
access the hash table and establish hypotheses. In the current
implementation, the scene groups are selected randomly dur-
ing recognition. This is of course very inefficient. However, our
main objective here is to demonstrate the usefulness of alge-
braic functions of views within indexing-based object recogni-
tion. There is no doubt that some kind of grouping will be very

���������
H
I ���� '��$��JLK�M�N���O��$%��%

Hypotheses

Without using (1)-(5) Using (1)–(5)

Fig. 9(a) 12888 45
Fig. 9(b) 50907 65
Fig. 9(c) 107603 186
Fig. 9(d) 20257 61

374 BEBIS ET AL.

���������
	
������������������������ �!�#"%$&��'%(*),+�-&./�0���"�1 2�'3�0��� ���45��46�� ����7846�9�"3:

Ranges of values

range of a1 range of a2 range of a3 range of a4

model1 [−0.41933 0.41933] [−0.36234 0.36234] [−0.42926 0.42926] [0.0 1.0]
model2 [−0.44177 0.44177] [−0.45138 0.45138] [−0.43368 0.43368] [0.0 1.0]
model3 [−0.42321 0.42321] [−0.41114 0.41114] [−0.37975 0.37975] [0.0 1.0]

crucial to the performance of our method or to the performance
of indexing-based approaches in general. In all cases, the mod-
els present in the scene were recognized correctly. Figure 11
shows the recognized models back-projected on the test scenes.
Also, Table 6 shows the actual and predicted parameters of the
algebraic functions in each case.

;�<�=�>�?�@A>�B8CED�F#?�@GD

In this paper, we proposed a new approach for indexing-based
object recognition using algebraic functions of views. The pro-
posed approach has a number of advantages. First, it requires a
small number of reference views. Most importantly, recognition
does not depend on the similarity between novel and reference
views. Second, verification becomes simpler. This is because

H�I#J�K�LNMOK
Real model objects.

candidate models can now be back-projected onto the scene by
applying a linear combination on a small number of reference
views of the models. Finally, the approach is more general and
extendible. This is because algebraic functions of views exist
over a wide range of transformations and projections.

To understand more clearly the strengths and weaknesses of
the proposed approach, we discuss next a number of impor-
tant issues. The first issue has to do with the camera model
being used in this work. From our discussion in Section 2, the
camera model being used here is based on the assumption of
orthographic projection which is only an approximation of per-
spective projection. Although we have not performed a care-
ful analysis on the sensitivity of our method to the assumption
of orthographic projection, we believe that the performance of
the method will degrade gradually as soon as more and more

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 375

���������
	
�������������������������������� �!�#"�$�%'&�����()&#����� � �!&���%!*����,+-����(.����/�%

Example data

points
NG Ñ G NV Ñ V Ñ V Ñ G represented

model1 11628 16 102060 3991 63856 16/19
model2 11628 16 136458 3344 53504 17/19
model3 26334 14 102816 2851 39914 20/22

perspective distortions are introduced. In fact, some comments
on the effect of perspectivity can be found in [16] (page 1002).
It is reported in [16] that the effect of perspectivity appears to be
quite limited. Specifically, the linear combination scheme was
tried to objects with ratio of distance-to-camera to object-size
down to 4 : 1 with only minor effects on the results.

Another issue is the issue of self-occlusion. Indeed, the com-
bination of views method assumes that the objects are transpar-
ent [17–19]. To deal with self-occlusion, the hash table must be
built using reference views from different viewpoints. However,
it should be emphasized that this is not the same as using ref-
erence view from every possible viewpoint [5]. The key issue

0�1�2.3�4�4�3
Real scenes and recognition results.

in using algebraic functions of views is that correct recogni-
tion can be established as long as there are scene groups which
are contained in at least two reference views. In other words,
recognition does not depend on the similarity between novel
and reference views. As a result, a small number of reference
views should be sufficient. In this paper, we have demonstrated
the proposed approach using reference views associated with a
specific aspect of the model objects only. In other words, we
have made sure that the views to be recognized contain com-
mon groups of points with the reference views. The question of
course is how to choose a smaller number of reference views
which allow viewpoint-independent recognition. One idea is to
capture a large number of reference views and then apply some
kind of an elimination procedure. This problem is by no means
a simple one and more effort is required to deal with it.

Finally, it is important to consider the issue of generating
realistic views both during preprocessing and recognition. By
realistic view we mean a view that can be obtained using a prac-
tical camera-object setting. In the current implementation, every
transformed view is considered during preprocessing as long as
it is valid, that is, as long as it lies within the unit square. Disre-
garding views which are not realistic has two advantages: first of
all, space will be saved during preprocessing and, second, time
will be saved during recognition. Although we are not dealing

376 BEBIS ET AL.

���������
	
��������������������������������������� �!�����#"%$ &������'(������)

Parameters

Actual parameters (Figure 11(a)) Predicted parameters (Figure 11(a))

a1, a2, a3, a4 0.03704 0.19696 0.04488 0.63449 0.03700 0.19692 0.04485 0.63446
b1, b2, b3, b4 −0.12358 0.05752 0.01046 0.53638 −0.12353 0.05757 0.01051 0.53644

Actual parameters (Figure 11(b)) Predicted parameters (Figure 11(b))

a1, a2, a3, a4 −0.05899 0.25588 0.00348 0.60012 −0.05899 0.25586 0.00345 0.60009
b1, b2, b3, b4 0.11146 0.00472 0.00298 0.47189 0.11190 0.00550 0.00161 0.47198

Actual parameters (Figure 11(c)) Predicted parameters (Figure 11(c))

a1, a2, a3, a4 −0.05758 0.25394 0.00120 0.60300 −0.05636 0.25418 −0.00063 0.60274
b1, b2, b3, b4 0.09407 0.00413 0.00021 0.38442 0.09410 0.00416 0.00025 0.38447

Actual parameters (Figure 11(c)) Predicted parameters (Figure 11(c))

a1, a2, a3, a4 0.01682 0.13225 −0.00602 0.62491 0.01682 0.13228 −0.00601 0.62492
b1, b2, b3, b4 −0.08168 0.03142 0.000150 0.68023 −0.08168 0.03146 0.00018 0.68026

Actual parameters (Figure 11(d)) Predicted parameters (Figure 11(d))

a1, a2, a3, a4 −0.08481 0.06358 −0.03732 0.61571 −0.08480 0.06357 −0.03733 0.61572
b1, b2, b3, b4 −0.05666 −0.04054 0.01670 0.52448 −0.05660 −0.04049 0.01673 0.52454

with this issue here, we believe that one way to deal with this
problem is by imposing certain constraints on the parameters of
the algebraic functions. Note that since we assume general 3D
linear transformations, these constraints might have to be object
specific.

For future research, we plan to extend the proposed approach
to the case of perspective projection. For this, we plan to use the
algebraic functions proposed in [20, 21]. In specific, Shashua
[20, 21] has shown that perspective views of an object can be
expressed as a nonlinear combination of two orthographic views
of the object. The extension will be carried out along the lines of
the current approach. There are some important differences be-
tween the orthographic and perspective case. The most important
is that the algebraic functions of views involve eight parameters
in the case of perspective projection. This means that the space
of transformed views will contain many more views in this case.
In this case, it will be of fundamental importance to consider
realistic views only. Another approach might be to find new al-
gebraic functions involving more views but less parameters. It
might be also worth experimenting with the algebraic functions
proposed in the case of paraperspective projection [13]. In this
case, the algebraic functions look essentialy the same as those
in the orthographic case; however, the parameters must satisfy
now certain contraints. Also, different neural network models
must be used for the prediction of the parameters of the alge-
braic functions. In the case of orthographic projection, one-layer
models were used since the combination of views is linear in this
case. However, in the case of perspective projection, two-layer
models must be used since the combination of views is non-
linear.

�+,+,-%.0/21435

We have shown in Section 5 that WC = λW−1
P . In this case,

C has the form λVP W−1
P V T

C . It is important now to choose λ
in a way such that the resulting transformation matrix C is
a valid transformation matrix. Since the last column of C is
equal to [0 0 0 1]T , the following equation should be satisfied:
VP WC (vC

4)T = [0 0 0 1]T . We proceed by splitting the above
problem into two subproblems:

WC
(
vC

k

)T = z, (16)

and

VP z = [0 0 0 1]T . (17)

VP is known from the SVD analysis of P . The idea is to solve for
z first (Eq. (17)) and then solve for (vC

k)T (Eq. (16)). In solving
(16), we need to consider an additional constraint: the magnitude
of the solution vector (vC

k)T must be equal to 1:

(
vC

k1

)2 +
(
vC

k2

)2 + · · · +
(
vC

kk

)2 = 1. (18)

This is a direct consequence of the orthonormality of VC . Assum-
ing that the elements of WC arewC

ii , i = 1, 2, . . . , k, the solutions
of (16) are

vC
k1 =

z1

wC
11

, vC
k2 =

z2

wC
22

, . . . , vC
kk =

zk

wC
kk

. (19)

INDEXING BASED ON ALGEBRAIC FUNCTIONS OF VIEWS 377

Substituting these expressions into (18) we have

(
z1

wC
11

)2

+
(

z2

wC
22

)2

+ · · · +
(

zk

wC
kk

)2

= 1

or

(
z1

∏

i 6=1

wC
ii

)2

+
(

z2

∏

i 6=2

wC
ii

)2

+ · · · +
(

zk

∏

i 6=k

wC
ii

)2

=
(

k∏

i=1

wC
ii

)2

. (20)

Thus, the singular values of C must satisfy (20). From (15),
wC

ii = λ/wP
ii , i = 1, 2, . . . , k. Substituting wC

ii in (20) and solv-
ing for λ we have

(
z1

∏

i 6=1

λ
/
wP

ii

)2

+
(

z2

∏

i 6=2

λ
/
wP

ii

)2

+ · · · +
(

zk

∏

i 6=k

λ
/
wP

ii

)2

=
(
λ

/
k∏

i=1

wP
ii

)2

or

λ =
(

k∏

i=1

wP
ii

)

×

√√√√√
(

z1

/∏

i 6=1

wP
ii

)2

+
(

z2

/∏

i 6=2

wP
ii

)2

+ · · · +
(

zk

/∏

i 6=k

wP
ii

)2

,

(21)

where only the positive values of λ have been considered since
the sign of λ affects the sign of the singular values which must
be positive.

Next, the rest elements of VC need to be determined. A sim-
ple way to determine them is by assuming that VC is a matrix
from a class of matrices which are known to be orthogonal. For
example, we can assume that VC is a Householder matrix [30].
A Householder matrix H is defined as

H =

1− 2d2
1 −2d1d2 · · · −2d1dk

−2d2d1 1− 2d2
2 · · · −2d2dk

· · · · · · · · · · · ·
−2dkd1 −2dkd2 · · · 1− 2d2

k

 , (22)

where d is a unit vector and d j , j = 1, 2, . . . , k, are its compo-
nents. The elements of H are fully determined by the elements
of d. The components of d can be determined by setting the
elements of the last row of H equal to the elements of the last

row of VC , (i.e., vC
k). In specific, d j ’s can be determined as

1− 2d2
k = vC

kk or dk = ±
√

1− vC
kk

2
(23)

−2dkdk−1 = vC
k(k−1) or dk−1 = −

vC
k(k−1)

2dk
(24)

”
”
”

−2dkd1 = vC
k1 or d1 = −

vC
k1

2dk
. (25)

Either the positive or negative dk value can be used (the positive
value has been considered here). It can be easily verified that the
vector d, whose components are determined by (23)–(25), is a
unit vector.

�������������	�
���

1. R. Chin and C. Dyer, Model-based recognition in robot vision, Computing
Surveys 18(1), 1986, 67–108.

2. E. Grimson and T. Lozano-Perez, Localizing overlapping parts by searching
the interpretation tree, IEEE Pattern Anal. Mach. Intelligence 9(4), 1987,
469–482.

3. D. Huttenlocher and S. Ullman, Recognizing solid objects by alignment
with an image, Int. J. Computer Vision 5(2), 1990, 195–212.

4. Y. Lamdan, J. Schwartz, and H. Wolfson, Affine invariant model-based
object recognition, IEEE Trans. Robotics Automation 6(5), 1990, 578–589.

5. Y. Lamdan, J. Schwartz, and H. Wolfson, On recognition of 3D objects
from 2D images, in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1407–1413, 1988.

6. G. Bebis, M. Georgiopoulos, and N. da Vitoria Lobo, Learning geomet-
ric hashing functions for model based object recognition, in Fifth Interna-
tional Conference on Computer Vision (ICCV-95), June 1995, pp. 543–548,
M.I.T., Cambridge, MA.

7. T. Breuel, Indexing of visual recognition from large model base, AI Memo
1108, MIT, Artificial Intelligence Lab., August 1990.

8. C. Rothwell, A. Zisserman, D. Forsyth, and J. Mundy, Planar object recog-
nition using projective shape representation, Int. J. Computer Vision 16,
1995, 57–99.

9. A. Califano and R. Mohan, Multidimensional indexing for recognizing
visual shapes, IEEE Pattern Anal. Mach. Intelligence 16(4), 1994, 373–
392.

10. D. Weinshall, Model-based invariants for 3D vision, Int. J. Computer Vision
10(1), 1993, 27–42.

11. C. Olsen, Probabilistic indexing for object recognition, IEEE Pattern Anal.
Mach. Intelligence 17(5), 1995, 518–522.

12. D. Clemens and D. Jacobs, Space and time bounds on indexing 3D mod-
els from 2D images, IEEE Pattern Anal. Mach. Intelligence 13(10), 1991,
1007–1017.

13. D. Jacobs, Space efficient 3D model indexing, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 439–444,
1992.

14. D. Jacobs, Matching 3D models to 2D images, Int. J. Computer Vision,
1997.

15. J. Ben-Arie, The probabilistic peaking effect of viewed angles and dis-
tances with application to 3D object recognition, IEEE Pattern Anal. Mach.
Intelligence 12(8), 1990, 760–774.

378 BEBIS ET AL.

16. S. Ullman and R. Basri, Recognition by linear combination of models, IEEE
Pattern Anal. Mach. Intelligence 13(10), 1991, 992–1006.

17. R. Basri, Recognition by combinations of model views: alignment and
invariance, in Applications of Invariance in Computer Vision (J. Mundy,
A. Zisserman, and D. Forsyth, Eds.), pp. 435–450, 1994.

18. R. Basri and S. Ullman, The alignment of objects with smooth surfaces,
Computer Vision, Graphics, Image Processing: Image Understand. 57(3),
1993, 331–345.

19. R. Basri, Paraperspective≡ affine, Technical report, Dept. of Applied
Mathematics, The Weizmann Institute of Science.

20. A. Shashua, Algebraic functions for recognition, IEEE Trans. Pattern
Anal. Mach. Intelligence 17(8), 1995, 779–789.

21. A. Shashua, Trilinearity in visual recognition by alignment, in Third Euro-
pean Conference on Computer Vision (ECCV’94), pp. 479–484, 1994.

22. O. Faugeras and L. Robert, What can two images tell us about a third
one?, in Third European Conference on Computer Vision (ECCV’94),
pp. 485–492, 1994.

23. A. Sugimoto and K. Murota, 3-D object recognition by combination of
perspective images, SPIE Image Modeling 1904, 1993.

24. W. Press et al., Numerical Recipes in C: The Art of Scientific Program-
ming, Cambridge University Press, Cambridge, UK, 1990.

25. R. Moore, Interval Analysis, Prentice-Hall, New York, 1966.

26. D. Jacobs, Recognizing 3D Objects Using 2D Images, Ph.D thesis, Dept.
of Electrical Engineering and Computer Science, MIT, 1992.

27. A. Neumaier, Interval Methods for Systems of Equations, Cambridge Univ.
Press, Cambridge, UK, 1990.

28. E. Hansen and R. Smith, Interval arithmetic in matrix computations:
Part II, SIAM J. Numerical Anal. 4(1), 1967.

29. G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathe-
matical Computations, Chap. 9, Prentice Hall, New York, 1977.

30. G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins Univ.
Press, Baltimore, 1989.

31. G. Bebis, M. Georgiopoulos, N. da Vitoria Lobo, and M. Shah, Learning
affine transformations of the plane for model based object recognition, in
13th International Conference on Pattern Recognition (ICPR-96), Vienna,
Austria, August 1996.

32. W. Grimson, D. Huttenlocher, and D. Jacobs, A study of affine match-
ing with bounded sensor error, Int. J. Computer Vision 13(1), 1994,
7–32.

33. S. Smith and J. Brady, SUSAN: A new approach to low level image pro-
cessing, DRA technical report TR95SMS1, Department of Engineering
Science, Oxford University, 1995.

