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Abstract. We attack the problem of recognizing real, planar objects
from two-dimensional, intensity images taken from arbitrary viewpoints
using genetic algorithms. More specifically, we use genetic algorithms to
search for a geometric mapping that brings subsets of points comprising
the model and subsets of points comprising the scene into alignment.
The genetic algorithm searches the image space and we compare different
encodings and operators on a set of three increasingly complex scenes.
Our preliminary results are promising with exact and near exact matches
being found reliably and quickly.

1 Introduction

Recognizing objects from images is one of the most important and challeng-
ing problems in computer vision with many practical ramifications in modern
manufacturing and autonomous navigation. During the last two decades, there
have been a variety of proposed approaches to tackle this problem. The most
successful approach has been model-based object recognition[2] (MBR) which
relies on a rather constrained environment and the existence of a set of prede-
fined model objects. Given an unknown scene, model-based recognition has two
goals: (1) identify a set of features from the unknown scene which approximately
match a set of features from a known view of a model object and (2) recover the
geometric transformation that the model underwent (called pose recovery). In
practical applications, recognition is considerably complicated due to (1) occlu-
sions — where some model features have no corresponding image features and (2)
unknown objects in the scene — where some image features have no correspond-
ing model features. Moreover, the number of possible correspondences between
model and image features grows exponentially with the number of features and
there is usually little a priori knowledge to limit this number.

Genetic algorithms (GAs) are stochastic, parallel search algorithms based
on the mechanics of natural selection, the process of evolution [5, 4]. GAs were
designed to efficiently search large, nonlinear, poorly-understood search spaces
where expert knowledge is scarce or difficult to encode and where traditional
optimization techniques fail. As such, GAs appear well suited for searching the
large, poorly-understood spaces that arise in object recognition. This paper uses
a set of three increasingly complex recognition problems to test the efficacy of
genetic algorithms at finding these correspondences and recognizing real, planar



objects from arbitrary viewpoints. Canonical genetic algorithms are usually good
at improving average fitness over time We thus expected the GA to be able to
perform a rough alignment of the model with the scene. In fact, our experimental
results demonstrate that the genetic algorithm finds almost exact matches in the
case of scenes with little occlusion while it finds near-exact matches when scenes
with more occlusion are considered. Although near-exact matches might not
solve the recognition problem completely, they are very useful in reducing the
search space to a limited domain. Then, a local optimization technique can be
used for finding an exact match. The preliminary stage of rough alignment may
help prevent such local methods from reaching a local minimum instead of the
global one.

The next section provides a short introduction to model-based object recogni-
tion and can be skipped by those already familiar with this area. Subsequently,
Section 3 describes our experiments and the genetic algorithm encoding, op-
erators, and parameters. Section 4 presents our results and analyses. The last
section provides conclusions and directions for future work.

2 Model-Based Object Recognition

Recognition approaches usually operate in one of the following two spaces: the
image space or the transformation space. Image-space based techniques proceed
by first extracting a collection of image features. Then, a correspondence between
these features and a set of previously extracted model features is hypothesized.
The hypothesis determines the position and orientation of the model. Then the
hypothesis is verified by projecting the model onto the scene using the computed
transformation to find how well the model maps onto the scene. We are usually
interested in finding the largest pairing of model and image features for which
there exists a single geometric transformation, mapping each model feature to
its corresponding image feature. Since there is often no a priori knowledge of
which model features correspond to which scene features, recognition through
matching can be too computationally expensive, even for relatively simple scenes.
Assuming m model features and n image features, we have p = m x n possible
pairs, which implies that searching for the largest pairing of model and image
features is exponential in p.

Transformation-space based techniques deal with the space of possible geo-
metric transformations (poses) between model and image features. The objective
is to determine a transformation in the space of possible transformations which
would maximize the number of model points aligned with image points. Again,
a problem with this approach is the computational cost due to the large number
of possible transformations. We do not consider transformation space techniques
in this paper.

2.1 Affine Transformations

Under the assumption of weak perspective projection (i.e., orthographic pro-
jection plus scale), two different views of the same planar object are related



through an affine transformation [6, 1]. Specifically, let us assume that each
model is characterized by a set of “interest” points (p1,ps,ps,---,Pm), Corre-
sponding, for example, to curvature extrema or curvature zero-crossings of the
model’s boundary contour[8]. Let us now consider two images of the same pla-
nar object obtained from different viewpoints, and a point p = (z,y) in the first
image with its corresponding point p' = (2',%') in the second image. Then, the
coordinates of p' can be expressed in terms of the coordinates of p as follows:

p'=Ap+b

where A is a non-singular 2 x 2 matrix and b is a two-dimensional vector. Fig-
ure 1(b)-(d) show affine transformed views of the planar object shown in Fig-
ure 1(a). These views were generated by transforming the known view using the
affine transformations shown in Table 1.

Table 1. Affine transformation parameters for Figure 1

Parameters Fig 1(b) Fig 1(c) Fig 1(d)

ai1,a12,b1 10.992, 0.130, -0.073 |-1.010, -0.079, 1.048|0.860, 0.501, -0.255

as1,a22, b2 -0.379, -0.878, 1.186| 0.835, -0.367, -.253 |0.502, -0.945, 0.671

Assuming planar objects, we need at least three matches between model and
scene points to derive a transformation that aligns the model with the scene.
With M model points and S image points, the maximum number of possible
alignments is of the order of O(M?3S?). Errors due to noise however, imply
that we usually need more than three matches to accurately compute the affine
transformation with least squares approaches used to reduce errors.

We used genetic algorithms to search the space of possible matches between
model and scene points with different encodings and operators. We describe our
encodings and methodology in the next section.

3 Methodology

For testing, we captured three scenes, Scenel, Scene2, and Scene3, with the
object to be recognized being increasingly occluded in each of the three scenes.
Scene2 and Scene3 are shown in Figure 2. Scenel was the model itself and is
shown in Figure 5. Our selection strategy was cross generational. Assuming a
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Fig.1. (a) a known view of a planar object. (b)-(d) Affine transformed views of the
same object generated through the affine transformations parametrized in Table 1. The
two axes are the z and y coordinate axes

population of size N, the offspring double the size of the population and we
select the best N individuals from the combined parent-offspring population for
further processing[3]. This kind of selection does well with small populations
and leads to quick convergence (sometimes prematurely). We also linearly scale
fitnesses to try maintain a constant selection pressure.

3.1 Encoding

A simple encoding scheme where the identity of the points to be matched made
up the alleles in the genotype gave good results on all three scenes. The param-
eters are provided in the next section. Our first encoding is shown in Figure 3.
Since three pairs of points are needed to compute an affine transformation,
the chromosome contains the binary encoded identities of the three pairs of
points. The model or object to be recognized was defined by 19 points requiring
[log219] = 5 bits per point while the scene had between 19 and 45 points and
required either 5 or 6 bits per point. We did not check for repeated points and
used simple two-point crossover and point mutation.

We also used a second encoding where the chromosome represents a vector
whose indices corresponded to scene points and whose contents identify matching
model points. Figure 4 pictorially describes this encoding and shows that the first
scene point matches the fifth model point, the second scene point matches the
19" model point, while the third scene point is not matched by any model point.
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Fig. 2. Scenes used in our recognition experiments along with their extracted bound-
aries and interest points.
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Fig. 3. Encoding 1 where the chromosome contains the binary encoded points to be
matched between the model and scene

Scene Points 1 2 345 6 45
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Fig.4. Encoding 2 where the chromosome is a vector whose indices identify scene
points and whose contents define matching model points.



Since the number of scene points (5) is usually greater than the number of model
points, M, we use allele values greater than M to indicate non-matched scene
points. Thus the third scene point does not match any model point (22 is greater
than 19). This sequential representation is very similar to that for the traveling
salesperson problem and allows us to use the PMX crossover operator and swap
mutation [7]. Note that in this sequential encoding we only consider the first
three matches in computing the transformation.

3.2 Fitness Evaluation

We evaluate fitness of individuals by computing the backprojection error (BE)
between the model and scene. That is, to evaluate the goodness of the match
specified by an individual, we first compute the parameters of the affine trans-
formation which maps the encoded model points to the encoded scene points.
Recall that we only consider the first three matches in computing the transfor-
mation. Alternatively, a transformation can also be computed using all point
matches represented in the chromosome using a least-squares scheme, however,
we have restricted ourselves to only three point matches since the search space
is much smaller in this case.

After the transformation has been computed, we apply it to all the points
of the model in order for us to backproject the model onto the scene. Finally,
we compute the error, BE, between the backprojected model and the scene.
To compute BE, for every model point we find the closest scene point and we
compute the distance dj between these two points. Then, the backprojection
error is

M
BE =) (dj)*
i=1
Since we need to maximize fitness but minimize the error, our fitness function is

Fitness = 10000 — BE

which changes the minimization problem to a maximization problem for the GA.

4 Results

All genetic algorithm parameters were identical except for the population size
and running time. We used a crossover probability of 0.95, a mutation probability
of 0.05, and a scaling factor of 1.2. Population sizes were set to 100, 400, and
500 for scenes Scenel, Scene2, and Scene3 respectively. We ran the GA ten (10)
times with different random seeds. Performance plots indicate that the GA very
quickly gets close to the correct mapping and then spends most of its time
making little progress.

Figure 5 shows a solution found by the GA for the simple test problem of
trying to find an identity mapping (the scene and model are the same). Since the
GA found the optimal mapping, the transformed model and the scene overly each



Fig. 5. Solution found by the GA on scene Scenel

other and present a single outline. Both encodings always found exact mappings.

Figure 6 (left) shows the best and worst solutions found by the GA on Scene2
for the simple binary encoding with two point crossover. Although an exact
match was not found, the GA reliably finds acceptable matches. Figure 6 (right)
displays best and worst solutions for the sequential encoding with PMX crossover
and indicates little qualitative difference in results.

Fig. 6. Best and worst solutions found by the GA on Scene2 with a simple binary
encoding and 2-point crossover (left) and with a sequential encoding and PMX (right).

Scened results are displayed in Figure 7. This scene is a little deceptive in



Fig.7. Best and worst solutions found by the GA on Scene3 with a simple binary
encoding and 2-point crossover (left) and with a sequential encoding and PMX (right).

that there is more that one possible place that matches the business end of the
pliers. The GA with sequential encoding converged to a wrong mapping twice
out of the ten runs. Figure 8 shows these solutions. The binary encoded GA
always converged around the right mapping.

Fig. 8. Deceptive mapping found by the GA with sequential encoding on scene Scene3

Table 2 provides a summary of our results. The first column specifies the
scene. The second, third, and fourth columns help describe the size of the test
problems. These columns list (in order) the number of scene points (S), the
number of possible combinations taking three scene points at a time (Ss3), and



the size of the search space. The last two columns indicate GA effort in terms of
the number of matches explored and the corresponding fraction in the searched
space.

In our experiments the number of model points, M = 19. Thus the number

of possible triplets, M3
19
M; = ( 3 ) = 969

The order of points matters in computing the total number of possible matches
between model and scene points and is thus given by the expression

Total number of matches = 3! x M3 x S3

Referring again to Table 2, the third column computes S, the fourth column lists
the total number of possible matches, and the last two columns indicate the aver-
age number of matches the GA searched through (GAmatches), for each encoding.
The number within parenthesis calculate (Total number of matches/G Apmatches)
which is the fraction of the space searched by the GA.

Table 2. Summary of results

Scene |Scene Points|Ss <S> 3IM3Ss GApatches (fraction)|GAqatches (fraction)

Problem Size|| Binary Encoding |Sequential Encoding

Scenel 19 969 5,633,766 1800 (0.0003) 980 (0.0001)
Scene2 40 9880 57,442,320 47800 (0.0008) 45600 (0.0008)
Scene3 45 14190 82,500,660 133250 (0.0016) 71318 (0.0009)

Summarizing, although both encodings allow the GA to find good solutions
reliably and quickly, the binary encoded GA seems to provide better quality.
The sequential encoding takes less time but sometimes converges to the wrong
solution.

5 Conclusions and Future Work

In this paper, we considered using genetic algorithms for recognizing real, pla-
nar, objects assuming that the viewpoint is arbitrary. Our experimental results



demonstrate that genetic algorithms are a viable tool for efficiently searching
the space of possible matches between model and scene points.

One limitation of the current approach is that we do not consider geometric
constraints. For example, interest points which correspond to curvature zero-
crossings can be classified as negative-to-positive or positive-to-negative zero
crossings depending on how the curvature changes sign. We can use this infor-
mation to bias genetic algorithm search. Another limitation is that we only look
at recognition problems that entail the recognition of a single model in a num-
ber of scenes. However, in practical model-based object recognition applications,
more than one model may need to be recognized in scenes. In future research
we plan to deal with the above issues, compare performance when searching in
transformation space, and work on recognizing real three dimensional objects.
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