PRACSYS group: Physics-aware Research for Autonomous Computational SYStems

Kostas E. Bekris

Workshop on Progress and Open Problems in Motion Planning, IROS
30 September 2011
Asymptotically Near-Optimal Planning

Asymptotic Optimal k-PRM*: connect new samples with approx. $\log n$ neighbors, where n is the number of nodes in the roadmap.

Asymptotic Near-Optimal Roadmap: The t-spanner of k-PRM*
- A t-spanner is a sparse subgraph
- For every shortest path in the original graph
 - There is a path in the spanner that is no longer than t times the original length

$[kPRM^* - Karaman, Frazzoli '10$]

$[Marble, Bekris IROS '11$]
Asymptotically Near-Optimal Planning

- Start with the asymptotically optimal k-PRM*
- Interleave an incremental spanner algorithm
- Result: An asymptotically near-optimal planner
 - Smaller average increase in path length than the stretch factor
 - Sparse roadmap with smaller memory footprint
 - Faster construction and online query resolution

Challenge: Finite size roadmaps with near-optimality guarantees
Issues arising from the lack of an appropriate metric:

- **Optimal metric**: cost-to-go function
- **Often used**: Euclidean distance in configuration space

Bias due to gravity and drift

- $q_1 = 0$ $q_2 = 0$
- $q_1 = \pi/2$ $q_2 = \pi/2$

After 5000 iterations the goal region is not reached

Use an offline-learned roadmap with gaps to guide RRT online

[Li, Bekris ICRA ‘10]

PCA-RRT

[Li, Bekris ICRA ‘11]
Improving Planning with Dynamics

3-link Acrobot:
• All joints actively controlled (AAA mode)

- Regular RRT
- PCA-RRT

[Li, Bekris ICRA ‘10]

[Li, Bekris ICRA ‘11]

Direction: Efficient Asymptotically Optimal Planning with Dynamics
(i.e., no steering function, metric issue)
Safe Replanning with Dynamics

Examples of problems that require replanning:
- Unexpected or dynamic obstacles
- Decentralized motion coordination
- Sensor-based applications

Challenge: Inevitable Collision States

Proposed replanning schemes that minimize the cost of safety checking using contingency plans
Safe Decentralized Replanning

Communication-based solution

Rice University Collaborators

Devin Grady

Mark Moll

Lydia Kavraki
Safe Decentralized Replanning

[Grady, Bekris, Kavraki WAFR ’10]
Decentralized Deconfliction

Considering also control-based and reactive solutions for decentralized deconfliction and providing liveness guarantees:

30 Airplanes

[Krontiris, Bekris IROS ’11]

Challenge: Communication-less solution with liveness properties
How can agents move on a graph from an initial assignment to a goal assignment without two of them occupying the same node simultaneously?

- NP-Complete problem in the general case
- Coupled methods: complete but intractable
- Decoupled methods: efficient but incomplete

Provided a method that is:
 - complete but suboptimal,
 - for a minor relaxation of the problem: at least two nodes of the graph have to be free.
 - has polynomial complexity $O(n^4)$

[Luna, Bekris IJCAI, IROS ’11]
Complete & Tractable Multi-Robot Path Planning

![Graphs showing computation time and ratio against number of robots]

Challenge: Transfer framework to the continuous case

Efficient and Complete Centralized Multi-Robot Path Planning

Ryan Luna and Kostas E. Bekris

University of Nevada, Reno
Dept. of Computer Science and Engineering
IROS 2011
Thank you for your attention!

We appreciate the support of the following agencies:

• the National Science Foundation (CNS 0932423),
• the National Aeronautics and Space Administration,
• the Office of Naval Research,
• the Nevada NASA Space Grant Consortium and
• the University of Nevada, Reno (VPR, COEN, CSE)