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Object tracking using Mean Shift (MS) has been attracting considerable attention recently. In this paper, we try to deal with
one of its shortcoming. Mean shift is designed to find local maxima for tracking objects. Therefore, in large target movement
between two consecutive frames, the local and global modes are not the same as previous frames so that Mean Shift tracker
may fail in tracking the desired object via localizing the global mode. To overcome this problem, a multibandwidth procedure is
proposed to help conventional MS tracker reach the global mode of the density function using any staring points. This gradually
smoothening procedure is called Multi Bandwidth Mean Shift (MBMS) which in fact smoothens the Kernel Function through a
multiple kernel-based sampling procedure automatically. Since it is important for us to have less computational complexity for
real-time applications, we try to decrease the number of iterations to reach the global mode. Based on our results, this proposed
version of MS enables us to track an object with the same initial point much faster than conventional MS tracker.

1. Introduction

Using a kernel function as a density estimator are methods
in image processing which drew much attention. Object
tracking [1–7] with MS is a nonparametric technique, intro-
duced in [8–10]. Actually, it is a mode detector algorithm in
the density distribution space. This method assigns weights
to the pixels within a window. It is proposed that MS
iteration step size can be adapted [9]. It also said MS and
Newton algorithm are connected [11]. MS is utilized in
object tracking as an alternative for particle filtering tracking
[2, 12, 13]. The Kernel scale can also be updated [3]. To avoid
changes in target representation, multiple kernel functions
can be used in order to maintain the pixel location values
[5, 7, 14]. Another way toward using a kernel function is
similarity function [15]. The main problems with MS: The
first is failure caused in rapid movement of an object in two
consecutive frames; the second is that MS is a local optimiz-
ing technique, that is, we should not expect to localize the
global and optimal mode; the third is slow tracking. In fact,
MS searching procedure is initialized by the tracked object in
the last frame. Flattening the optimization surface (created
by windowing around the initial point) is used to handle

sampling method through finding the global maximum [16–
18]. The multi-bandwidth kernel function can flatten the
cost function (i.e., Likelihood Surface) to avoid local modes
rather than global one. Through increasing the bandwidth
of the kernel, all modes will be unified into one main mode
whose peak location is the nearest point to the global optimal
mode as we desired. Then, by using the convergence point
of this mode of unified likelihood surface, the first step will
be easily modified through MS iterations. The bandwidth
determines the degree of flatness of the surface. In this way,
the number and the position of modes are being evolved and
changed slowly. Lower computational cost is more desirable
in real-time tracking. Using nearest neighbor of a sample in
MS iteration and kd-tree to reduce the number of nearest
neighbors decrease the cost [1, 19]. The density distribution
is described through clustering the feature space also to lessen
the cost [20]. Quasi-Newton is also then put forward to
linearize the rate of convergence [11, 21]. Many attempts
have been made to enhance the efficient bound optimization
algorithm [22–24]. Our proposed method can detect an
object globally. This technique can prevail over the recent
methods and also extend the last technical efforts [25]. This
paper is summarized as follows: an overview and reviewing
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analysis over MS is given in Section 2. The proposed Method
will be elaborated along with enhancement of MS iterations
in detecting the global mode of cost function in Section 3.
Implementation of the proposed method and how faster this
proposed method can function are revealed in Section 4.
Using color as feature, automatic initialization, how to cope
with background problem, and being a self-localizer are all
stated with experimental results in Section 5. At the end, the
conclusion comes in Section 6.

2. Mean Shift

The conventional and original version is a nonparametric
kernel density estimator

̂fK (x) = 1
n

n
∑

i=1

KH(x − xi). (1)

According to (1), KH(x) = |H|−(1/2) K(H−(1/2)x) where
K is a kernel function (i.e., here Gaussian function) with
2D bandwidth as H ∈ Rd×d, which is equal to H = h2I
(i.e., identity matrix) [9, 10]. In this way, we can have kernel
estimator as
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formulated through the following equation:

̂∇ fK (x) ≡ ∇ ̂fK (x) = 2ck
h2cg
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)
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(
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) − x,

(3)

K(x) is kernel function and its gradient is g(x). Here mG(x)
is a vector created by MS procedure. These equations result
in:

x ←−
∑n

i=1 xig
(

‖(x − xi)/h‖2
)

∑n
i=1 g

(

‖(x − xi)/h‖2
) . (4)

In this paper, it is proposed to use multiple bandwidths
in a conventional mean shift tracker (i.e., a broad bandwidth
tracking a larger motion). A broad bandwidth played the
central role to help tracking a larger motion. Due to the
smoothness incorporated by the large bandwidth, the fixed
point iteration can track due to converging faster. It is argued
that the bandwidths can be automatically obtained. However,
it can be seen below the overall algorithm for choosing effect
of the algorithm in detail. The algorithm is also shown and
explained below. Since we are dealing with an automatic
bandwidth selection, the optimal bandwidth is the main
and final goal after smoothening likelihood surface (i.e., cost
function). The optimal bandwidth is the bandwidth in which

global mode and other local modes are clear enough to
seek (i.e., initial state of likelihood surface) and in the same
bandwidth seeking about the global mode will take place by
MBMS (Multi-Bandwidth Mean Shift).

In fact, there are a variety of ways to select the optimal
bandwidth for an automatic optimal bandwidth selecting
procedure but in this automatic procedure, first we calculate
the optimal bandwidth according to [26, 27] in order to
have a minimum AMISE (i.e., Asymptotic Mean Integrated
Square Error) as introduced in [26, 27], AMISE is a an
estimate of distance between two different densities for
evaluating the performance of a kernel density estimator
[28]. Having found the optimal bandwidth, we mean to find
a large bandwidth sufficiently enough through the proposed
MB (i.e., Multi-Bandwidth) procedure. By sufficiently this
large bandwidth, we desire a bandwidth which is much larger
than the optimal bandwidth with the minimum AMISE.

This large bandwidth is meant to create a unimodal
likelihood surface which is consisting of a single mode. This
mode will be used by Mean Shift procedure in the first run. It
does not matter whether this mode is global or not. Having
found the final location of this mode using Mean Shift helps
us achieve finally the global mode via the MB procedure in
the optimal bandwidth (i.e., very last selected bandwidth)
using MS iterations.

Having observed the above equations, therefore we can
have now the optimal bandwidth at the last stage of MBMS,
in which all modes especially global mode are clear. If we use
three or four times as much as the optimal bandwidth as you
can see in 1D and 2D likelihood surfaces (i.e., Cost Function)
Figures 1 and 2, we will have a unimodal surface then. By
detecting this lonely single mode, the closest point in the best
basin of attraction, we can reach the real global mode in more
stable way without facing any other local mode.

3. The Proposed Method

Monotonic decrease of bandwidth ends to h0 as the
experimental optimal bandwidth. Figure 1 shows a one-
dimensional Gaussian mixture with some modes which are
all going to be unified and to change into a unimodal
surface via the bandwidth increasing trend [29].With a
multi-bandwidth process, it will lead to the evolution of
modes as illustrated in Figure 1. In this way, seeking the
global mode would not be trapped in the local modes. The
algorithm and the procedure are very simple as you see in
the Figure 1. The great advantage of this method is that the
starting point location is not important at all. This paper is
based specifically on Gaussian kernel due to its monotonicity
[30]. The optimal bandwidth is h0. The Gaussian kernel can
also be transformed to reduce the cost [29, 31, 32].

There is also a method to find the minima instead of
maxima [33]. In order to find an important mode among
others, variable selection of bandwidth is utilized [34]. In
our work, we can guarantee the tracking with the proper
and manual bandwidth selection but it also can be extended
through automatic estimation of bandwidth using some
features like the target region variance [4]. At the largest
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Figure 1: One-dimensional Gaussian mixture surface changes with the bandwidth: 500, 1000, 1500, 2500, 3500, 5500, 7500, and 15500.

bandwidth, we have a unimodal surface. Via MS iteration
the convergence at the largest bandwidth (unimodal) will be
easily achieved as it illustrated in Figure 2. It is mainly argued
that there are multiple bandwidths in the proposed method.
However, it is shown how these multiple bandwidths collab-
orate during bandwidth selection procedure in MBMS (i.e.,
Multi-Bandwidth Mean Shift). Here, the strategy of the use
of these multiple bandwidth selection is given below.

MBMS algorithm:

(1) selecting the sequence of bandwidth hm as m =
M, . . . , 0 (i.e., Multi-bandwidth smoothening proce-
dure),

(2) a starting location for first MB (multi-bandwidth)

procedure and converge using hm in ̂fhM ,K (·) which
is x̂(M) using MS (Mean Shift),

(3) we run MS for each hm (i.e., indicated in 1) to get
the convergence position x̂(m) with the initial position
x̂(m+1), this means that the convergence position
achieved in previous bandwidth. Finally, reaching x̂(0)

means that we have located the global mode on the
likelihood surface (i.e., Cost Function).

4. The Improved MS

Multi-bandwidth selecting and utilizing cost us some delay
and computational burden. MS is proved to be a quadratic
bound optimization according to [6, 9, 11]. This algorithm is
an ascending approach with adaptable iteration size. In MS,
no default parameter is needed to be set at first. It has been
reasoned that a Gaussian mixture model can be optimized by
fixed-point bound optimization method [35]. This method

is also applicable to the surface created by other kernel
functions [24]. Because of its speed, the bound optimization
algorithms has a slow convergence [22–24]. Suppose that the
similarity function for two frames is defined with ρ(x, x(κ))
so that the adaptable step size can be determined as

x(κ+1) = x(κ) + β
[

arg max
x

ρ
(

x, x(κ)
)

− x(κ)
]

. (5)

β is a learning rate as you see above. If we want a
more reliable convergence, it should be 0 < β < 2 as
proved and generalized in [22, 24]. In our work, it is set
β = 1, then it begins initializing and running MS iteratively.
Gaussian kernel function is helping us because its gradient
equals to the original function so that their application in
weight assignment and flattening the surface with the same
bandwidth is quite similar [28]. This analysis is validated by
our experimental results.

4.1. Experimental Result. We run the two algorithms for the
same data sets and insert the results in Table 1 and Figures 4
and 5. The starting point is initialized in different location. As
you see the improved MS achieves better results than original
MS and we can claim that it functions even faster than PF [30,
36]. The proposed algorithm outperforms MS in number
and step-size of iterations. It can be also compared with the
Quasi-Newton method implemented in [21, 37–39]. This
developed MS is implemented in MATLAB programming
space and is run in an Asus notebook inside Vista windows
Pentium 2 GHz CPU. The proposed MS is more different
than conventional MS. In comparison with other linear
bound fixed-point optimization algorithms such as Quasi-
Newton [21], our proposed method is more accurate and
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Figure 2: Two-dimensional Gaussian mixture surface changes with the bandwidth: [0.13 0;0 0.13], [1.3 0;0 1.3], [2.6 0;0 2.6], and [6.5 0;0
6.5].
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Figure 3: Continued.
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The bandwidth increase effect on the location of modes in an optimization surface with resolution 10∗10 between frames 45 and 55
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Figure 3: Continued.
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The bandwidth increase effect on the location of modes in an optimization surface with resolution 20∗20 between frames 45 and 55
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Figure 3: Continued.
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(c) The bandwidth increase effect on the location of modes in an optimization surface with resolution 30∗30 between frames 45 and 55
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Figure 3

robust. Because of the possibility of overshooting due to
sufficiently large step-size occurrence this method can also
be utilized and adopted in clustering through segmentation,
since it is potential enough to gather patterns into a cluster as
a global and local mode.

5. Tracking Application and Implementation

Implementing the algorithm and the experimental result on
an object is represented in a normalized rectangle region as
the target region. We choose color as feature in target model
p and target candidate q region. As it is clear, we should
measure the similarity between the two selected regions
in two consecutive frames through similarity measurement
criteria ρ̂(x) = ρ(q̂, p̂(x)) such as Bhattacharyya, Kullback-
Leibler or Matusita, respectively in [2, 4, 5, 40, 41]. The
pixel of rectangle region {yi}ni=1 are being assigned weight
according to their distance from the center of normalized
circle surrounded in the rectangle, less weight and value
they have through Gaussian function distribution. Via the
weighted pixels, their colors in RGB scale will be extracted.
Then the color would be sorted into m Bin histogram with
their weight, consequently their value would be summed up
in their R, G and B color bins of the histogram. This process
is followed in both target model and candidate regions

p̂u(x) = 1
c

n
∑

i=1

k
(
∥

∥yi
∥

∥
2
)

δ
((

b
(

yi
)− u)), (6)

p and q are the normalized density value of the target
model and candidate. Each pixel value {yi}ni=1 is converted
into histogram bin via its color accompanied by its weight.
The similar process is performed upon the both target model
and candidate. With the initial point x the tracking proce-
dure started through approximating the distance between the

place and location of the object in the two consecutive frames
Δx. Then the new location of object would be found and
object is tracked

Δx∗ = arg max
Δx

ρ
(

q̂, p̂(x∗ + Δx)
)

. (7)

Using the Tailor expansion, the linear first-order exten-
sion helps us solve the optimization problem efficiently
via MS iteration at the initial point x through extending
similarity [2, 5].

5.1. Location Approximation. Conventional MS cannot seek
a global mode in presence of local mode due to the fixed-
bandwidth which is created by rapid motion, illumination
changes, clutter and occlusion as shown in Figure 3. In our
experiment, it does not matter for improved MS the initial
point to start. It can easily locate the target fast. In the
examples, there may be different number of bandwidth but
entirely they are 4 or 3 for all tracking sequences as clarified
in Figure 3. We are using color as feature but of course it
is possible to be taking advantage of other features as well
like motion and orientation. If we do not use the multi-
bandwidth procedure, most of the searches will end to local
modes unless they are initially located at the closest basin
points to the global mode in Figure 3. Using the broad
bandwidth kernel function at first MS run will let us find this
closest basin point near to the global mode.

5.2. Object Location and Track. Entirely all of the methods
in object tracking, ever written and proposed could have
covered some of the weak points in this field, but there are
some common problems in all of them: All have problem
in finding the object location in large distance movement
between two successive frames. The starting-point for them
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(a) Top is cost function surface between frame 91 and 92. Black-colored clutter in background, below images, created some local modes in the
surface

(b) Frames 88, 89, 90, 91, and 92 show us a tracking failure due to the black-colored clutter in background

Figure 4: Top is cost function surface between frame 91 and 92.

all is very important to track the object correctly. Background
problem such as clutter, occlusion, and illumination changes
can completely influence the tracking path and cause failure
exactly as illustrated in Figure 4. They are not really capable
to self-recovering from their failure due to the same local
modes existing in Figure 4(a). It failed in tracking as shown
in Figure 4(b).

The conventional MS has all of these problems described
above as well. In our work, we have enabled the tracker to
be robust enough in different initial points in an image by
considering the efficiency and efficacy of bandwidth varia-
tion of kernel function through adaptive step-size iteration.

We are actually utilizing an object detector incorporated
in localizing procedure to recover from any failure when
occurred. It was also previously proposed to use a detector
for Particle filtering tracking-based [42]. By choosing a
broad bandwidth we try to pass other local modes to reach
the basin of attraction for the desired global mode. Some
implementation problems:

The multi-bandwidth tracker starts in a 3 or 4 bandwidth
shifting iteration in an MS procedure. It is worth to say
that through using color as feature so that there may be
some unwanted modes created just because of the difference
between two points color values [43] which may cause a local
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Frame 88 Frame 89 Frame 90

Frame 91 Frame 92

Figure 5: Multi-bandwidth tracker did not fail to track in this cluttered sequence (multimodal surface).

(a)

Frame 1 Frame 14 Frame 17 Frame 26 Frame 33

(b)

Figure 6: Top row: MS, Bottom Row: MBMS.

mode that cause the MS seeker to be trapped in its basin of
attraction. Through a modification in color histogram value,
we can increase the step-size adaptively. If we want to have
faster mode seeking so in a trade off balance we may lose
some accuracy as well. Recently it has been proposed that
we can also add some accuracy with a little more time of
computation [44]. We have to increase our computational
cost due to larger bandwidth kernel windowing in a frame.
As explained, this algorithm was applied to application of
an object tracking with faster mode seeking results [36] as
shown in Table 1(a) and 1(b).

The most important problem of the proposed method
is that the series of bandwidth selection is manual, but
we can be looking for some issues to be proposing an
automatic selector of bandwidth using some features, but in
this paper, we are using manually multi-bandwidth series to
track correctly as illustrated in Figure 5.

Figure 6. In this circle tracking scenario, MS fails to track
the circle due to getting distracted by the dotted square (i.e.,
a local mode) but in the same Frame(17) while the MBMS
(i.e., the proposed method) is successfully tracking the circle
in spite of square distraction in that frame. As can be seen in
(Frame 26), MS tracker is unable to track successfully as the
circle is moved in front of the square.

Figure 8. In this Bus tracking scenario, MS fails to track
the Bus due to getting distracted by the similar color clutters
(i.e., two local modes) while the MBMS (i.e., the proposed
method) is successfully tracking the bus in spite of clutter
distraction in these frames. As can be seen in MS tracker is
unable to track successfully as the bus is moved in front of
the same color clutters.

Figure 10. In this hand tracking scenario, MS (a) fails to
track the hand due to getting distracted by the face (i.e., a
local mode) but in the same frame (140) while the MBMS
(i.e., the proposed method) (b) is successfully tracking the
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Figure 7: Left plot: Error from the GT (i.e., Ground Truth is zero state), Right plot: Similarity with Target (GT has 100% similarity).
Compared to the real GT (i.e., Ground Truth), we can observe that MBMS successfully performs circle tracking through the entire sequence.

(a) (b)

Figure 8: Frames: 1, 52,79,82,90,110, left column: MS, right column: MBMS.

hand in spite of face distraction in that frame. As can be seen
in ((a)-frame 260) MS tracker is unable to track successfully
as the hand is moved in front of the face. Compared to
the real GT (i.e., Ground Truth) in (c), we can observe
that MBMS successfully tracks the hand through the entire
sequence.

Definitely, we can observe that MBMS successfully
performs better hand tracking through the entire sequence
with lower number of iterations than MS.

At Table 2-Comparison of Number of Iterations for
Convergence for 1D and 2D data set. The Initial Location For
Each Run Is Shown in the Second Column.
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Figure 9: Left plot: Error from the GT (i.e., Ground Truth is zero state), Right plot: Similarity with Target (GT has 100% similarity).
Compared to the real GT (i.e., Ground Truth), we can observe that MBMS successfully performs bus tracking through the entire sequence.

(a) MS

(b) MBMS

(c) GT

Figure 10: Frames: 1, 140, 260, 290.

(1) Data set no. 1 (1D synthetic data). A total of 1000
data points are drown with equal probability from
four normals: N(3,1), N(1,1), N(0,1), and N(−2,1)

(2) Data set no. 2 (2D synthetic data). A total of
1050 bivariate data points are drown with equal
probability from three normals
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Figure 11: Top plot: Iteration number for MS while tracking the hand in Figure 10(a), Bottom plot: Iteration number for MBMS while
tracking hand in Figure 10(b).

Table 1

(a) The step size iterations between frame 88 and 89.

Algorithm Step-size x Step-size y Center in Frame 88 Center in Frame 89

Standard MS 0.0040 −0.0006 106 106

Multi-Bandwidth 0.0027 −0.007 58 58

(b) It shows the step size iterations between frame 89 and 90 in seven iteration but different step sizes for standard method and proposed one.

Algorithm
Step-size Center position of square 90

x y x y

Standard −0.1353 0.0006 104.5116 58.0067

Multi-bandwidth −0.0889 −0.0192 105.0216 57.7888

Standard −0.0881 −0.0002 103.5420 58.0048

Multi-bandwidth −0.0640 −0.0199 104.3180 57.5700

Standard −0.0515 0.0200 102.9758 58.2248

Multi-bandwidth −0.0449 −0.0037 103.8240 57.5298

Standard −0.0754 0.0185 102.1470 58.4286

Multi-bandwidth −0.0613 −0.0138 103.1495 57.3778

Standard −0.0082 0.0169 102.0563 58.6143

Multi-bandwidth −0.0278 −0.0121 102.8439 57.2442

Standard −0.0197 0.0023 101.8392 58.6395

Multi-bandwidth −0.0265 −0.0193 102.5524 57.0324

Standard 0.0124 0.0181 101.8392 58.6395

Multi-bandwidth −0.0101 −0.0107 102.5524 57.0324

Table 2: Comparison of Number of Iterations for Convergence for 1D and 2D data set.

Data set Initial
Number of iterations

MBMS MS

data set #1
0 33 51

1 36 77

3 21 33

data set #2
(−5,20) 22 34

(−10,16) 21 29

(20,10) 23 35

6. Conclusion

A new kernel-based object tracking framework is proposed.
The contribution is mainly the use of a prior large bandwidth
for a priori tracking followed by the estimated tracking. This

framework is robust to noise and clutters so that it can
escape from many local maxima. This tracking algorithm
(i.e., MBMS) can converge faster than does the conventional
kernel-based object tracking (i.e., MS). However, there are
still some problems, and some weaknesses which are to
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be later clarified and reparaphrased. Many results can be
analyzed theoretically. This paper as a reference can be much
helpful for later extension of this work. The experimental
results above must have illustrated this approach perfor-
mance. As shown in above database, it can also be concluded
that in rapid motion of an object, large displacement between
two adjacent frames occurs which will lead MS to a failure in
tracking an object. By means of multi-bandwidth proposal,
we can be improving MS in recovering from the failure
by incorporating a detector in localization process called
multi-bandwidth kernel functionality. In comparison with
conventional MS and other techniques like [1] and fast
transforming the Gaussian mixture [7, 29], the speed of
convergence has increased and the number of iterations
has decreased in contrast with an enhancement in each
step-size iteration. Object tracking is an important issue
in Artificial Intelligence. Its worldwide usages in robotic
engineering, Machine Intelligence, Computer Vision, and
Human-Computer Interface (HCI) are well-known through-
out the world of engineering sciences. In the future, this
method can be extended to the more automatic bandwidth
selector equipped with several other features to track objects
in many varieties of applications inside the industry.
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