
University of Nevada 
Reno 

 
 
 
 
 
 
 
 
 

Efficient Vehicle Tracking and 
Classification for an Automated Traffic 

Surveillance System 
 
 
 
 
 
 
 
 

A thesis submitted in partial fulfillment of the 
requirements for the degree of Master of Science 

in Computer Science 
 
 
 
 
 

by 
 
 
 

Amol A. Ambardekar 
 
 

Dr. Mircea Nicolescu, Thesis Advisor 
 
 
 

December, 2007



 

 
 
 
 

We recommend that the thesis 
prepared under our supervision by 

 
AMOL A. AMBARDEKAR 

 
entitled 

 
Efficient Vehicle Tracking and Classification  

for an Automated Traffic Surveillance System 
 

be accepted in partial fulfillment of the  
requirements for the degree of 

 
MASTER OF SCIENCE 

 
 
 

Mircea Nicolescu, Ph.D., Advisor 
 
 

George Bebis, Ph.D., Committee Member 
 

 
Monica Nicolescu, Ph.D., Committee Member  

 
 

Mark Pinsky, Ph.D., Graduate School Representative 
 
 

Marsha H. Read, Ph. D., Associate Dean, Graduate School 
 
 

December, 2007 

 
THE GRADUATE SCHOOL 



 i

Abstract 

 As digital cameras and powerful computers have become wide spread, the number 

of applications using vision techniques has increased enormously. One such application 

that has received significant attention from the computer vision community is traffic 

surveillance. We propose a new traffic surveillance system that works without prior, 

explicit camera calibration, and has the ability to perform surveillance tasks in real time. 

Camera intrinsic parameters and its position with respect to the ground plane were 

derived using geometric primitives common to any traffic scene. We use optical flow and 

knowledge of camera parameters to detect the pose of a vehicle in the 3D world. This 

information is used in a model-based vehicle detection and classification technique 

employed by our traffic surveillance application. The object (vehicle) classification uses 

two new techniques − color contour based matching and gradient based matching. We 

report good results for vehicle detection, tracking, and vehicle speed estimation. Vehicle 

classification results can still be improved, but the approach itself gives thoughtful insight 

and direction to future work that would result in a full fledged traffic surveillance system. 
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Chapter 1. Introduction 
 
 The rapidly increasing capacity of digital storage, computation power and the 

recent innovations in video compression standards [1] lead to a strong growth of  

available video content. Digital cameras, which were novelty items in the 80’s, have 

become ubiquitous in the last two decades. This has led to cheaper and better video 

surveillance systems. The video data stored by these systems needs to be analyzed, which 

is generally done by humans on need-to-know basis (e.g., as a forensic tool after a bank 

robbery). This undermines the ability of video surveillance as an active real time 

observer. Video Content Analysis (VCA) algorithms address this problem. For video 

surveillance, this technology can be used to effectively assist security personnel. State-of-

the-art VCA systems comprise object detection and tracking, thereby generating location 

data of key objects in the video imagery of each camera. Classification of the detected 

objects is commonly done using the size of the object, where simple camera calibration is 

applied to compensate for the perspective.  

Visual traffic surveillance has attracted significant interest in computer vision, 

because of its tremendous application prospect. Efficient and robust localization of 

vehicles from an image sequence (video) can lead to semantic results, such as “Car No. 3 

stopped,” “Car No. 4 is moving faster than car No. 6.” However, such information can 

not be retrieved from image sequences as easily as humans do. For any video surveillance 

problem, effective segmentation of foreground (region of interest in image) and 

background plays a key role in subsequent detection, classification and tracking results. A 

traffic surveillance system needs to detect vehicles and classify them if possible. 
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Generating vehicle trajectories from video data is also an important application and can 

be used in analyzing traffic flow parameters for ATMS (Advanced Transportation 

Management Systems) [2]. Information such as gap, headway, stopped-vehicle detection, 

speeding vehicle, and wrong-way vehicle alarms can be useful for Intelligent 

Transportation Systems [3]. 

The rest of this thesis is organized as follows. Chapter 2 discusses the previous 

work related to different video surveillance systems and their components. Chapter 3 

gives an overview of our approach for a traffic surveillance system. In chapter 4, we give 

implementation details. Experimental results of the proposed technique are presented in 

Chapter 5. Chapter 6 discusses the conclusions and presents future directions of work. 
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Chapter 2. Previous Work 
 
2.1 Foreground Object Detection 
 
 Foreground object detection is the backbone of most video surveillance 

applications. Foreground object detection is mainly concerned with detecting objects of 

interest in an image sequence. Fig. 2.1 shows an example of foreground object detection. 

Fig. 2.1(a) is the original image and Fig. 2.1(b) is the detected foreground using the 

algorithm discussed in [4]. 

  
                                    (a)                                                             (b) 

Fig. 2.1 Foreground object detection using the algorithm discussed in [4]. 
(a) Original Image 

(b) Foreground detected shown in white 
 

As shown in Fig. 2.1, not everything we want to be detected as foreground is 

detected. If we slightly modify the parameters, we might be able to get more objects 

detected, but this would also increase false positives due to quasi-stationary backgrounds 

such as waving trees, rain, snow, and artifacts due to specular reflection. There is also a 

problem of shadows for outdoor scenes. Researchers have developed many methods to 

deal with foreground object detection. The simplest one is taking consecutive frame 
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difference. It works well when the background is stationary, which is not the case of 

video surveillance.  

In one of the earliest research efforts [15] the foreground object is detected by 

subtracting the current picture from the stored background picture, and then applying a 

threshold to the resulting difference image. The method obviously fails if the background 

is dynamic. Recently, it has become popular to model the pixel-wise color distribution of 

the background through statistical methods. Parametric methods for example assume a 

parametric model for each pixel in the image, and then try to classify it as foreground or 

background using this model. The simplest one of these approaches is assuming Gaussian 

probability distribution for each pixel [7, 12]. Then, this model (mean and variance) is 

updated with the pixel values from the new images (frames) in the image sequence 

(video). After the model has accrued enough information (generally after few frames), the 

decision is made for each pixel. If a pixel  (x,y) satisfies 

)),((),(),( yxStdCyxMeanyxI ×<−  (2.1) 

where I(x,y) is pixel intensity, C is a constant, Mean(x,y) is the mean, Std(x,y) is the 

standard deviation, it is marked as background pixel. If it does not satisfy (2.1), it is 

marked as foreground pixel.  

A single 3D Gaussian model for each pixel in the scene is built in [7], where the 

mean and covariance of the model were learned in each frame. These methods that 

employ a single Gaussian work well when the background is relatively stationary. 

However, the task becomes difficult when the background contains shadows and moving 

objects (e.g., wavering tree branches). The probability distribution of such background 

can not be captured using a single Gaussian.  
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This obviously led researchers to methods that use more than one Gaussian 

(Mixture of Gaussians (MoG)) to address the multi-modality of the underlying 

background [5, 6]. In MoG, the colors from a pixel in a background object are described 

by multiple Gaussian distributions. Good foreground object detection results were 

reported by applying MoG to outdoor scenes. Further investigations showed that MoG 

with more than two Gaussians can degrade the performance in foreground object 

detection [8, 9]. There was also a problem of determining number of Gaussians to be 

used to get optimal results. 

The background variation model employed in W4 [10] is a generalization of the 

Gaussian model. In [11], Toyama et al. employed a linear Wiener filter to learn and 

predict color changes in each background pixel through the video. The linear predictor 

can model both stationary and moving background objects. The weakness of this method 

is that it is difficult to model non-periodical background changes. 

In methods that explicitly model the background density estimation, foreground 

detection is performed by comparing the estimated probabilities of each pixel with a 

global threshold or local thresholds. Also, in these methods, there are several parameters 

that need to be estimated from the data to achieve accurate density estimation for 

background. However, most of the times this information is not known beforehand. 

Non-parametric methods do not assume any fixed model for probability 

distribution of background pixels. In [3], Li et al. proposed a novel method using a 

general Bayesian framework which can integrate multiple features to model the 

background for foreground object detection. However, it is prone to absorb foreground 

objects if they are motionless for a long time. Also, parameter selection plays a big role in 
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getting optimal results for a set of image sequences. El Gammal et al. proposed a non-

parametric kernel density estimation for pixel-wise background modeling without making 

any assumption on its probability distribution [13]. This method is known to deal with 

multimodality in background pixel distributions without determining the number of 

modes in the background. In order to adapt the model a sliding window is used in [14]. 

However the model convergence is critical in situations where the illumination suddenly 

changes. Kim et al. in [29] proposed a layered modeling technique in order to update the 

background for scene changes. Tavakkoli et al. proposed a new approach for foreground 

region detection using robust recursive learning in [20]. In [26], support vector machines 

were used to recover a background estimate that can be used to classify the pixels into 

foreground and background. Since no sample of foreground regions is present in the 

training steps of this approach, it explicitly addresses the single-class classification 

problem in foreground region detection. 

Kalman filters have also been used to perform foreground object detection. In 

[16], each pixel is modeled using a Kalman filter. In [21], a robust Kalman filter is used 

in tracking explicit curves. A robust Kalman filter framework for the recovery of moving 

objects’ appearance is proposed in [22]. However, the framework does not model 

dynamic, textured backgrounds. 

All these methods address the problem of segmentation given a dynamic 

background. However, they do not take advantage of inter-pixel correlation and global 

appearance. In [17], Hsu et al. use region-based features (e.g., block correlation) to detect 

foreground object(s). Change detection between consecutive frames is achieved via block 
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matching; thus, the foreground object(s) can only be detected at a coarse scale unless a 

multi-scale based approach is used. 

If a stereo camera is used, depth information can be recovered from the scene. 

Background subtraction methods that rely only on depth are used in [18]. These methods 

may turn out to be unreliable when the foreground objects are too close to the 

background. Combined use of depth and color is proposed in [19]. However, the 

approach assumes the background scene is relatively static. In addition, only indoor 

experimental testing was reported. 

Motion-based approaches have also been proposed. Some researchers utilized the 

optical flow to solve this problem [23, 24]. The optical flow model is effective on small 

moving objects. In [25], Wixson proposed an algorithm to detect salient motion by 

integrating frame-to-frame optical flow over time; thus, it is possible to predict the 

motion pattern of each pixel. The saliency measure is then computed to detect the object 

locations. This approach assumes that the object tends to move in a consistent direction 

over time, and that foreground motion has different saliency. This algorithm may fail 

when there is no obvious difference between the motion fields of the foreground and 

background. In general, there are some drawbacks of using motion as a foreground object 

detector: calculation of optical flow consumes too much time and the inner points of a 

large homogeneous object (e.g. a car with single color) can not be featured with the 

optical flow.  

Some approaches exploit spatio-temporal intensity variation. For instance [27, 28] 

employ analysis of XT or YT video slices. By detecting the translational blobs in these 

slices, it is possible to detect and track walking people and recognize their gait. If both 
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foreground and background objects exhibit periodic motion, the method may perform 

inaccurately. 

2.2 Camera Calibration 

From a mathematical point of view, an image is a projection of a three 

dimensional space onto a two dimensional space. Geometric camera calibration is the 

process of determining the 2D-3D mapping between the camera and the world coordinate 

system [30]. Therefore, obtaining the 3D structure of a scene depends critically on having 

an accurate camera model. In the case of a simple pin-hole camera, 6 extrinsic (the 

position and orientation of camera in some world coordinate system) and 4 intrinsic 

parameters (principal point, focal length and aspect ratio) describe full camera 

calibration.  

Much work has been done, starting in the photogrammetry community and more 

recently in computer vision. We can classify those techniques roughly into two 

categories: photogrammetric calibration and self-calibration. In photogrammetric 

calibration approaches, calibration is performed by observing a calibration object whose 

geometry in 3D space is known with very good precision. Calibration can be done very 

efficiently using this approach [46]. Self-calibration techniques do not use any calibration 

object. A camera is moved in a static scene and images are taken with fixed internal 

parameters; the rigidity of the scene provides sufficient information to recover calibration 

parameters [47]. 

Initial efforts in camera calibration employed full-scale non-linear optimization to 

do camera calibration [31, 32, 33]. It allows easy adaptation of any arbitrarily complex 
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yet accurate model for imaging. Faig’s method is a good representative of these methods 

[32]. High accuracy could be achieved using these methods, but they require a good 

initial guess and a computationally intensive non-linear search. Direct Linear 

Transformation (DLT), developed by Abdel-Aziz et al. required only linear equations to 

be solved [34]. However, it was later found that, unless lens distortion is ignored, full 

scale non-linear search is needed. 

Although the equations governing the transformation from 3D world coordinates 

to 2D image coordinates are nonlinear functions of intrinsic and extrinsic camera 

parameters, they are linear if lens distortion is ignored. This information made it possible 

to compute a perspective transformation matrix first using linear equations [35, 36, 37]. 

The main advantage of these methods is that they eliminate nonlinear optimization. 

However, lens distortion can not be modeled using these methods and the number of 

unknowns in linear equations is generally much larger than the actual degrees of freedom. 

Other methods such as two-plane methods [38, 39] and geometric techniques [40] have 

also been employed. 

The calibration model [41] presented by Tsai was the first camera calibration 

model that included radial geometric distortion, yet using linear computation methods 

and coplanar groups of points for calibration. However, it is constrained by having an 

incidence angle of at least 30 degrees. Batista et al. presented a new method that does not 

have such restriction [42].  

If images are taken by the same camera with fixed internal parameters, 

correspondences between three images are sufficient to recover both the internal and 

external parameters which allow us to reconstruct 3D structure up to a similarity [48, 49]. 
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Traditionally, the structure-from-motion problem used low-level geometric entities (or 

features) such as points and lines with hardly any geometric constraints. Although 

theoretically sound, these methods suffer from two main disadvantages. First, they 

usually require a large number of features to achieve robustness; and second, because 

there are no constraints among the features, errors in localizing these features in the 

image propagate to the structure unnoticed [50]. 

Sturm et al. introduced a general algorithm for plane-based calibration that can 

deal with an arbitrary number of views and calibration planes [43]. Worrall et al. 

presented an interactive tool for calibrating a camera that is suitable for use in outdoor 

scenes [44]. They used this interactive tool to calibrate traffic scenes with acceptable 

accuracy. In [45], Wang et al. presented a camera calibration approach using vanishing 

lines. Masoud et al. presented a method that uses certain geometric primitives commonly 

found in traffic scenes in order to recover calibration parameters [50]. 

2.3 Video Surveillance 

 Video surveillance applications are interested in the real-time observation of 

humans or vehicles in some environment (indoor, outdoor, or aerial), leading to a 

description of the activities of the objects within the environment. A complete video 

surveillance system typically consists of foreground segmentation, object detection, 

object tracking, human or object analysis, and activity analysis. There are different 

approaches suggested in the literature for video surveillance. This section presents an 

overview of some of the most important approaches. 
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Pfinder [7] (developed by MIT Media Lab) has evolved over several years and 

has been used to track a person in a large room size space. It uses a multi-class statistical 

model of color and shape to obtain a 2D representation of head and hands in a wide range 

of viewing conditions. Pfinder has been successfully used in many applications. In 

Spfinder [52] which is an extension of Pfinder, a wide baseline stereo camera is used to 

obtain 3D models. Spfinder has been used in a smaller desk-area environment to capture 

accurate 3D movements of head and hands. 

KidRooms [53] is a tracking system based on “closed world regions.” These are 

regions of space and time in which the specific context of what is in the regions is known. 

These regions are tracked in real-time domains where object motions are not smooth or 

rigid and where multiple objects are interacting. It was one of the first multi-person, fully 

automated, interactive, narrative environment ever constructed using non-encumbering 

sensors. Rehg et al. developed Smart Kiosk [54] to detect and track people in front of a 

kiosk. It uses both color information, face detection, and stereo information for detection. 

However, when people are very close to the kiosk, it can only track a single person. 

Olson et al. developed a general purpose system [55] for moving object detection and 

event recognition. They detected moving objects using change detection and tracked 

them using first-order prediction and nearest-neighbor matching. It is designed for indoor 

surveillance and it cannot handle small motions of background objects. It is a single 

person tracking system. 

CMU developed a distributed system that allows a human operator to monitor 

activities over a large area using a distributed network of active video sensors [56]. Their 

system detects moving targets using the pixelwise difference between consecutive image 
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frames. A classification metric is applied to these targets to classify them into categories 

such as human, human group, car, and truck using shape and color analysis, and these 

labels are used to improve tracking using temporal consistency constraints. MIT's system 

[58], [59] uses a distributed set of sensors, and adaptive tracking to calibrate distributed 

sensors, classify detected objects, learn common patterns of activity for different object 

classes, and detect unusual activities. W4 [10] employs a combination of shape analysis 

and tracking to locate people and their parts (head, hands, feet, torso) and to create 

models of people's appearance so that they can be tracked through interactions such as 

occlusions. It can determine whether a foreground region contains multiple people and 

can segment the region into its constituent people and track them. 

The CMU Cyberscout distributed surveillance system [51] consists of a collection 

of mobile and stationary sensor systems designed to detect, classify and track moving 

objects in the environment in real-time. ObjectVideo VEW (Video Early Warning) 

product [101] detects objects in real-time video and determines basic activity information 

such as object type (human, vehicles, etc) object trajectory, and interactions with other 

objects. Recently, Duque et al. presented a video surveillance system (OBSERVER) that 

detects and predicts abnormal behaviors aiming at the intelligent surveillance concept 

[102]. 

2.4 Vehicle Detection and Classification 

The detection of vehicles has been receiving attention in the computer vision 

community because vehicles are such a significant part of our life. Papageorgiou and 

Poggio [59] presented a general method for object detection applied to car detection in 
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front and rear view. The system derives much of its power from a representation that 

describes an object class in terms a dictionary of local, oriented, multiscale intensity 

differences between adjacent regions that are computed using a Haar wavelet transform. 

They used an example-based learning approach that implicitly derives a model of an 

object class by training a SVM (Support Vector Machine) classifier using a large set of 

positive and negative examples. Rajagopalan et al. [60] modeled the distribution of car 

images by learning higher order statistics (HOS). Training data samples of vehicles are 

clustered and the statistical parameters corresponding to each cluster are estimated. 

Clustering is based on an HOS-based decision measure which is obtained by deriving a 

series expansion for the multivariate probability density function in terms of the Gaussian 

function and the Hermite polynomial. Online background learning is performed and the 

HOS-based closeness of a testing image and each of the clusters of car distribution and 

background distribution is computed. Then it is classified into car or background. 

Schneiderman and Kanade [61] took a view-based approach. They built one individual 

detector for each of the coarsely quantized viewpoints. Then, they used the histograms of 

some empirically chosen wavelet features and their relative locations to model the car 

and non-car distribution assuming the histograms are statistically independent. 

Vehicle detection in aerial images is relatively constrained by the viewpoint and 

the resolution. In the work of Burlina et al. [62] and Moon et al. [63], a vehicle is 

modeled as a rectangle of a range of sizes. A Canny-like edge detector is applied and 

GHT (Generalized Hough Transform) [62] or convolution with edge masks [63] are used 

to extract the four sides of the rectangular boundary. Zhao et al. [64] presented a system 

to detect passenger cars in aerial images along the road directions where cars appear as 
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small objects. They started from psychological tests to find important features for human 

detection of cars. Based on these observations, they selected the boundary of the car 

body, the boundary of the front windshield, and the shadow as the features. They used a 

Bayesian network to integrate all features and finally use it to detect cars. If the vehicle 

needs to be detected from a video stream, then motion cues can be utilized. In a static 

camera configuration, moving objects can be detected by background subtraction, while 

for a moving camera an image stabilizer is needed first. In situations of closely moving 

objects, a moving blob may not correspond to one single object. Therefore, a more 

detailed analysis similar to the technique in static image car detection should be 

employed. 

Vehicle classification is an inherently difficult problem. Chunrui et al. developed 

a new segmentation technique for classification of moving vehicles [65]. They used 

simple correlation to get the desired match. The results shown in the paper are for the 

lateral view of the vehicles and no quantitative results were given. Gupte et al. [66] 

proposed a system for vehicle detection and classification. The tracked vehicles are 

classified into two categories: cars and non-cars. The classification is based on vehicle 

dimensions and is implemented at a very coarse granularity – it can only differentiate cars 

from non-cars. The basic idea of [66] is to compute the length and height of a vehicle, 

according to which a vehicle is classified as a car or non-car. Avely et al. [67] used a 

similar approach where the vehicles are classified on the basis of length using an 

uncalibrated camera. However, this method also classifies the vehicles into two coarse 

groups – short vehicles and long vehicles. In order to achieve a finer-level classification 

of vehicles, we need to have a more sophisticated method that can detect the invariable 
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characteristics for each vehicle category considered. Towards this goal, a method is 

developed by Zhang et al. [68]. In their work they used a PCA-based vehicle 

classification framework. They implemented two classification algorithms - Eigenvehicle 

and PCA-SVM to classify vehicle objects into trucks, passenger cars, vans, and pick-ups. 

These two methods exploit the distinguishing power of Principal Component Analysis 

(PCA) at different granularities with different learning mechanisms. Though the methods 

themselves are interesting, the results fail to achieve high accuracy. The performance of 

such algorithms also depends on the accuracy of vehicle normalization. As shown in their 

paper, such methods can not classify the vehicles robustly. Koch et al. [69] used infra-red 

video sequences and a multinomial pattern matching algorithm [70] to match the 

signature to a database of learned signatures to do classification. They started with a 

single-look approach where they extract a signature consisting of a histogram of gradient 

orientations from a set of regions covering the moving object. They also implemented a 

multi-look fusion approach for improving the performance of a single-look system. They 

used the sequential probability ratio test to combine the match scores of multiple 

signatures from a single tracked object. Huang et al. [71] used hierarchical coarse 

classification and fine classification. The accuracy of the system was impressive, but they 

only used lateral views of the vehicles for testing.  Ji et al. used a partial Gabor filter 

approach [72]. Their results are very good, but they also limited their testing to lateral 

views. In [73], Santhanam and Rahman introduced a new matching algorithm based on 

eigendimension for classifying car and non-car. 

Ma et al. developed a vehicle classification approach using modified SIFT 

descriptors [74]. Wijnhoven et al. [75] introduced a new metric to classify cars and non-
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cars. However, their paper does not discuss how useful this metric is for classifying 

vehicles. Morris et al. [76] evaluated different classification schemes using both vehicle 

images and measurements. Then, they used the most accurate of these learned classifiers 

and integrated it into tracking software. Hsieh et al. [77] introduced a new classification 

algorithm based on features as simple as “size” and a new feature “linearity” to classify 

vehicles. They have produced impressive results, but the question of retrieving the 

“linearity” feature in frontal view remains unanswered. 

2.5 Vehicle Tracking 

Over the years researchers in computer vision have proposed various solutions to 

the automated tracking problem. These approaches can be classified as follows: 

Blob Tracking. In this approach, a background model is generated for the scene. 

For each input image frame, the absolute difference between the input image and the 

background image is processed to extract foreground blobs corresponding to the vehicles 

on the road. Variations of this approach have been proposed in [66, 78, 79]. Gupte et al. 

[66] perform vehicle tracking at two levels: the region level and the vehicle level, and 

they formulate the association problem between regions in consecutive frames as the 

problem of finding a maximally weighted graph. These algorithms have difficulty 

handling shadows, occlusions, and large vehicles (e.g., trucks, and trailers), all of which 

cause multiple vehicles to appear as a single region. 

Active Contour Tracking. A closely related approach to blob tracking is based 

on tracking active contours representing the boundary of an object. Active contour-based 

tracking algorithms [80, 81] represent the outline of moving objects as contours, which 
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are updated dynamically in successive frames. Vehicle tracking using active contour 

models has been reported by Koller et al. [81], in which the contour is initialized using a 

background difference image and tracked using intensity and motion boundaries. 

Tracking is achieved using two Kalman filters, one for estimating the affine motion 

parameters, and the other for estimating the shape of the contour. An explicit occlusion 

detection step is performed by intersecting the depth ordered regions associated with the 

objects. The intersection is excluded in the shape and motion estimation. Also, results are 

shown on image sequences without shadows or severe occlusions, and the algorithm is 

limited to tracking cars. 

These algorithms provide efficient descriptions of objects compared to blob 

tracking. However, these algorithms have drawbacks, such as they do not work well in 

the presence of occlusion and their tracking precision is limited by a lack of precision in 

the location of the contour. The recovery of the 3D pose of an object from its contour in 

the image plane is a demanding problem. A further difficulty is that active contour-based 

algorithms are highly sensitive to the initialization of the tracking, making it difficult to 

start the tracking automatically. 

3D Model-Based Tracking. Model-based tracking algorithms localize and 

recognize vehicles by matching a projected model to the image data. For visual 

surveillance in traffic scenes, 3D model-based vehicle-tracking algorithms have been 

studied widely and 3D wire-frame vehicle models were adopted [82, 83, 84, 85]. 

Some of these approaches assume an aerial view of the scene which virtually 

eliminates all occlusions [85] and match the three-dimensional wireframe models for 

different types of vehicles to edges detected in the image. In [84], a single vehicle is 
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successfully tracked through a partial occlusion, but its applicability to congested traffic 

scenes has not been demonstrated. Tan et al. [86] proposed a generalized Hough 

transformation algorithm based on single characteristic line segment matching an 

estimated vehicle pose. Further, Tan et al. [87] analyzed the one-dimensional correlation 

of image gradients and determine the vehicle pose by voting. Pece et al. [88] presented a 

statistical Newton method for the refinement of the vehicle pose, rather than the 

independent 1-D searching method. Kollnig and Nagel [89] proposed an image-gradient-

based algorithm in which virtual gradients in an image are produced by spreading the 

binary Gaussian distribution around line segments. Under the assumption that the real 

gradient at each point in the image is the sum of a virtual gradient and the Gaussian white 

noise, the pose parameters can be estimated using the extended Kalman filter. 

The main advantages of vehicle-localization and tracking algorithms based on 3D 

models can be stated as they are robust even under interference between nearby image 

motions, they naturally acquire the 3D pose of vehicles under the ground plane constraint 

and hence can be applied in cases in which vehicles greatly change their orientations. 

However, they also have some disadvantages, such as the requirement for 3D models, 

high computational cost, etc. 

Markov Random Field Tracking. An algorithm for segmenting and tracking 

vehicles in low angle frontal sequences has been proposed by Kamijo et al. [90]. In their 

work, the image is divided into pixel blocks, and a spatiotemporal Markov random field 

(ST-MRF) is used to update an object map using the current and previous image. This 

method is known to track vehicles reliably in crowded situations that are complicated by 

occlusion and clutter. One drawback of the algorithm is that it does not yield 3D 
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information about vehicle trajectories in the world coordinate system. In addition, in 

order to achieve accurate results the images in the sequence are processed in reverse 

order to ensure that vehicles recede from the camera. The accuracy decreases by a factor 

of two when the sequence is not processed in reverse, thus making the algorithm 

unsuitable for on-line processing when time-critical results are required. 

Feature Tracking. Feature-based tracking algorithms perform the recognition 

and tracking of objects by extracting elements, clustering them into higher level features, 

and then matching the features between images. They have been applied in several 

systems [80, 91, 92, 93, 93, 94]. These algorithms can adapt successfully and rapidly, 

allowing real-time processing and tracking of multiple objects. Also, they are useful in 

situations of partial occlusions, where only a portion of an object is visible. The task of 

tracking multiple objects then becomes the task of grouping the tracked features based on 

one or more similarity criteria.  

Beymer et al. [91] proposed a feature tracking-based approach for traffic 

monitoring applications. In their approach, point features are tracked throughout the 

detection zone specified in the image. Feature points which are tracked successfully from 

the entry region to the exit region are considered in the process of grouping. Grouping is 

done by constructing a graph over time, with vertices representing subfeature tracks and 

edges representing the grouping relationships between tracks. In [92], Fan et al. used the 

features in a dependence graph-based algorithm that includes a variety of distances and 

geometric relations between features. This method can handle occlusion and overlapping. 

However, it needs time-consuming searching and matching of graphs, so it cannot be 

used in real-time tracking. The system proposed by Kanhere et al. [94] automatically 
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detects and tracks feature points throughout the image sequence, estimates the 3D world 

coordinates of the points on the vehicles, and groups those points together in order to 

segment and track the individual vehicles. Experimental results shown in their paper 

demonstrated the ability of the system to segment and track vehicles in the presence of 

occlusion and perspective changes.  

Overall, these algorithms claim to have low computational cost compared to other 

tracking algorithms. However, they too have a number of drawbacks. The recognition 

rate of vehicles using two-dimensional image features is low, because of the nonlinear 

distortion due to perspective projection, and the image variations due to movement 

relative to the camera. Also, they generally are unable to recover the 3D pose of vehicles.  

Color and Pattern-Based Tracking. Chachich et al. [95] used color signatures 

in quantized RGB space for tracking vehicles. In this work, vehicle detections are 

associated with each other by using a hierarchical decision process that includes color 

information, arrival likelihood and driver behavior (speed, headway). In [96], a pattern-

recognition based approach to on-road vehicle detection has been studied in addition to 

tracking vehicles from a stationary camera. The camera is placed inside a vehicle looking 

straight ahead, and vehicle detection is treated as a pattern classification problem using 

Gabor features. Classification was done using support vector machines (SVMs). 
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Chapter 3. Overview 
 
 Before presenting the details of the actual system, this section explains the 

different parts of the system and their relationship with each other. Fig. 3.1 shows 

different parts of our traffic video surveillance system in the form of a block diagram. 

 
Fig. 3.1 Traffic video surveillance system overview. 

Camera calibration. Camera calibration is an important part of most computer vision 

systems. Here we used an un-calibrated camera to capture the video sequence. Camera’s 

intrinsic parameters (e.g. focal length) and its position in the world coordinate system are 

not known in advance. All these parameters are determined using geometric primitives 

commonly found in traffic scenes. Using these parameters, ground plane rectification can 
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be done. If a pixel in the image appears on the ground plane, its 3D coordinates can be 

found in the world reference frame. 

Background modeling and foreground object detection. Background modeling for 

traffic video surveillance needs to meet certain requirements. It needs to be fast and it 

needs to be able to handle quasi-stationary backgrounds. This part of the system detects 

the moving objects (blobs) regardless of whether they present a vehicle or non-vehicle. 

The overall accuracy of the system depends on robust foreground object detection. 

Vehicle pose estimation using optical flow. Optical flow algorithms estimate the motion 

of each pixel between two image frames. We use optical flow to estimate how different 

blobs are moving. Assuming that the vehicles tend to move in the forward direction, 

optical flow gives a good estimate to how vehicles are oriented. This information is used 

by the reconstruction module to obtain a 3D model of the vehicle with the right 

orientation. 

Reconstruction using synthetic camera. After the camera parameters are known, we 

use these parameters to construct a synthetic camera using OpenGL [97]. 3D models are 

also created in OpenGL for the classes of vehicles for which we want to do classification. 

Using the information from vehicle pose estimation module and the foreground object 

detection module, we re-project the 3D wire-frame model back onto the image. 

Edge Detection. We detect the edges using the Canny edge detector in the regions where 

the objects were found by the foreground object detection module. These edges are used 

in the vehicle detection and classification module. 

Vehicle detection and classification. For this part, we developed two different routines 

to match a 3D wire frame model with the detected edges. The first routine uses a simple 
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color contour technique. The second routine uses a more sophisticated Gaussian based 

matching technique that also takes into consideration the gradient. 

Vehicle Tracking. This part of the system tracks the blobs. It also tries to correct the 

errors from foreground object detection module. It also keeps record of the tracks and 

their 3D world coordinates in each frame. 

Traffic Parameter Collection. This module collects and displays information such as 

the number of active tracks (vehicles), instantaneous velocity of a vehicle, class of a 

vehicle, and average velocity of a vehicle during the entire time when it was in camera’s 

field of view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24

Chapter 4. Description of Our Approach 
 
4.1 Camera Calibration and Synthetic Camera Modeling 

 As discussed earlier, camera calibration is a very important part of many 

computer vision systems. Accuracy of the calibration dictates the accuracy of the overall 

system. It is equally important that the calibration process should be simple and need not 

require special calibration objects. This is more important in a video surveillance system 

where installation of camera is done outside the laboratory. And one can not expect to 

carry a calibration object everywhere. Even if one does, that solves the problem of 

calibrating intrinsic camera parameters. We would still need to know information such as 

height of the camera from the ground plane and its orientation with respect to the ground 

plane. If the intrinsic parameters of the camera were known from precise calibration done 

in lab, one might still need to re-calibrate the camera (e. g., zoom might need to be 

changed on-site, considering the on-site requirements and constraints). Also, if one wants 

to process offline the video that was taken from an unknown camera at an unknown 

location, we want to determine the camera parameters from the video sequence itself. 

This requires that a self calibration approach needs to be performed. Fortunately, traffic 

scenes generally provide enough geometric primitives to do this on-site. 

 We propose a method that is similar to the methods discussed in [44] and [50]. If 

we know the vanishing points of the ground plane in perpendicular directions, we can 

estimate the intrinsic and extrinsic parameters of the camera up to scale. The geometric 

primitives that are required to complete camera calibration are as follows: 
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Fig. 4.1 Geometric primitives. Red lines are lane structures commonly found in traffic 
scenes. Blue lines are normal (to lane structure), horizontal, and parallel lines. Magenta 
curly braces are examples of point-to-point distances. 
 
Lane Structure. A lane structure is central to any traffic scene. By lane structure, we 

mean a set of parallel lines on the ground plane. Fig. 4.1 shows an example of lane 

structure (red lines). 

Normal, Horizontal, and Parallel Lines. These can represent poles, building comer 

edges, and pedestrian crossings (e.g., zebra crossings), among other things. They are all 

perpendicular to a lane structure. Another way to get these normal directions can be by 

assuming that certain lines given by user input as discussed in [50] to be representing 

parallel lines. Once camera parameters are computed, they are used to back-project a 3D 

model on the ground plane. The resemblance of this model to an actual vehicle gives an 
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estimate as how good the initial estimate for normal parallel lines was, so that it can be 

corrected accordingly. Fig. 4.1 shows an example of normal, horizontal and parallel lines 

(blue lines). 

Point-to-Point Distances. These primitives can be obtained from knowledge about the 

road structure (e.g., length of lane markings) or by performing field measurements 

between landmarks on the ground. Another way of obtaining these measurements is by 

identifying the make and model of a vehicle from the traffic video and then looking up 

that model's wheelbase dimension and assigning it to the line segment in the image 

connecting the two wheels. Yet another way can be by detecting pedestrian and 

estimating his/her height for calibration. Fig. 4.1 shows the examples of point to point 

distances (magenta curly braces). 

 The next step after finding the lane structure and normal, horizontal and parallel 

lines is to find the vanishing points in their respective directions. These two vanishing 

points define a vanishing line (horizon) for the ground plane. Fig. 4.2 gives the graphical 

representation of the vanishing points and a vanishing line for the image shown in Fig. 

4.1. 

 

 

Fig. 4.2 Graphical representation of the vanishing points and a vanishing line (horizon). 

Vanishing 
point 

Vanishing line 

Vanishing 
point 
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 If only two distinct lines are known, they are enough to estimate the vanishing 

point in that direction. However, in general, we have more than two lines for the lane 

structure and we can estimate the position of the vanishing point more precisely. If the 

two points on a line are p1 = (x1,y1,1) and p2 = (x1’,y1’,1) in homogeneous coordinates, 

then the equation of the line is given by a1x+b1y+c1 = 0. Equation of the line can be 

written in terms of coefficients (a1,b1,c1) = p1×p2, where × represents cross-product. If we 

have multiple parallel lines in the same direction, then the system of equations can be 

written as, 
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 This over-determined system of equations is solved using SVD (Singular Value 

Decomposition) to best estimate the coordinates (x,y) of the vanishing point. 

 If the input primitives include a lane structure and two or more normal lines or 

two or more horizontal lines, two vanishing points in orthogonal directions are computed 

as above. These points are sufficient to compute four of the five camera parameters. The 

remaining parameter (camera height) can then be computed as a scale factor that makes 

model distances similar to what they should be. The following describes these steps in 

detail. To better understand the position of camera coordinate system with respect to the 

world coordinate system, Fig. 4.3 can be referred. The X-Y plane of the world coordinate 

system refers to the ground plane coordinate system. 
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Fig. 4.3 World and camera coordinate system. 

First, we compute the focal length from the two vanishing points. Without loss of 

generality, let vx and vy be the two vanishing image points corresponding to the ground's 

X- and Y-axes. Also, based on our assumptions on the camera intrinsic parameters, let 

0

0

0
0 ,
0 0 1

u
A v

α
α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.2) 

where, α is the focal length in pixels, and (u0, v0) is the principal point. 

In the camera coordinate system, px = A-1[vx 1]T and py = A-1[vy 1]T are the 

corresponding vectors through vx and vy respectively (i.e., they are parallel to the 

ground's X- and Y-axes, respectively). Since px and py are necessarily orthogonal, their 

inner product must be zero: 

py . px = 0. (4.3) 
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 This equation has two solutions for the focal length α. The desired solution is the 

negative one and can be written as [50]: 

( ).( )x yv D v Dα = − − − −  (4.4) 

where, D = [u0 v0]T is the principal point. The quantity under the root is the negative of 

the inner product of the vectors formed from the principal point to each one of the 

vanishing points. Note that in order for the quantity under the root to be positive, the 

angle between the two vectors must be greater than 90 degrees. Next, the rotation matrix 

can now be formed using normalized px, py, and pz, (the latter computed as the cross 

product of the former two) as follows: 

[ ]x y zR p p p= . (4.5) 

 To check the validity of R, the inner product of R and RT can be computed to 

make sure that it is I (the identity matrix). 

Finally, the scale (i.e., camera height) is determined. Using the point-to-point 

distances, we can write an over-determined system of equations to solve for displacement 

(height) and the scaling factor.  

Therefore, the camera calibration matrix M can be written as follows: 

[ 1 2 3 4]M M M M M= ,  (4.6) 

where, M1, M2, M3, M4 are column vectors.  

The transformation between ground plane and image plane is a simple 

homography H which can defined as, 

[ 1 2 4]H M M M= , (4.7) 
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whereas H-1 defines the transformation from image plane to the ground plane. So, if the 

image point p = [x,y,1] in homogeneous coordinates is known, then the ground plane 

coordinates (3D world coordinates with z=0) can be found by the following equation: 

1P H p−= . (4.8) 

 After determining the camera calibration parameters, it is important to construct a 

synthetic camera in OpenGL that can re-project 3D models back onto the image plane. 

OpenGL synthetic camera takes four parameters: the 3D world coordinates of the point Q 

on the ground plane where the principal axis intersects the ground plane, the aspect ratio 

of the image, the field of view of the camera, and the vertical (up) vector YC in world 

coordinate system. Fig. 4.4 shows the geometrical representation these parameters. 

 

 

Fig. 4.4 Geometrical representation of synthetic camera parameters. 
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 The X- and Y- coordinates of the point Q can be determined using equation (4.8). 

The Z-coordinate of the point Q is –height (-h), as can be seen from Fig. 4.3. The aspect 

ratio of the image is given by the ratio (Image width/Image height). The field of view of 

the camera is given by, 

1 .2cos ( )Q Rfov
Q R

−= ,  (4.9) 

where coordinates for R are determined in a similar way as Q, and Q.R is the inner 

product between Q and R. The vertical (up) vector YC in the world coordinate system is 

given by: 

(( ) )
(( ) )C

R Q QY
R Q Q
× ×

=
× ×

.  (4.10) 

4.2 Background Modeling and Foreground Object Detection 

This is another important aspect of many video surveillance systems. It is very 

important that this module detects the relevant details of the scene while excluding 

irrelevant clutter. It also needs to be fast for real-time processing of video sequences. 

We propose to use an adaptive background model for the entire region of 

awareness, and for segmenting the moving objects that appear in foreground. Our 

approach involves learning a statistical color model of the background, and process a new 

frame using the current distribution in order to segment foreground elements. The 

algorithm has three distinguishable stages: learning stage, classification stage and post-

processing stage. Fig. 4.5 shows the pseudo-code of our algorithm. 
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Fig. 4.5 Background modeling and foreground object detection algorithm. 

Load ROI template 
For each frame at time t 

1. Learning Stage (Process this stage every C frames) 
 For each pixel (u,v) in ROI template 
   If I(u,v) > TROI  

  then 
         Process pixel (u,v) in current frame 

  - Update mean for each channel (Red, Green and   
    Blue) 

      mean(u,v) = (1-LR)*mean(u,v)+LR*I(u,v)  
    - Calculate variance (σ2) for each channel 
      var(u,v) = (1-LR*LR)*var(u,v)+ 
                 (LR*(I(u,v)-mean(u,v)))2 
      If var(u,v) < min_var 
      then 
        var(u,v) = min_var 

  2. Classification Stage 
 For each pixel (u,v) in ROI template 
   If I(u,v) > TROI  

  then 
         Process pixel (u,v) in current frame 

  - If for each channel  
    I(u,v)-mean(u,v)<T*(var(u,v))0.5 
    then 

        FGt(u,v) = 0 %Background 
       else  
        FGt(u,v) = 1 %Foreground 
  else 
    FGt(u,v) = 0 %Background 

  3. Post-processing Stage 
     For each pixel (u,v) in detected foreground 

  Look into M×M neighborhood and count number of    
  foreground pixels k. 
  If k<Tneig 
  then 
    FGt(u,v) = 0 %Background 
Do connected component analysis and create a list of 
blobs %foreground objects 
For each blob j 
  If Area(blob(j))<min_Area 
    Assign blob j to background %remove it from  
                                %foreground           
                                %object list 
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Learning stage. In this stage the background model is estimated using pixel values from 

consecutive frames. We use all the channels (red, green, and blue) of a color image to 

increase the robustness. We assume that the pixel values tend to have Gaussian 

distribution and we try to estimate the mean (m) and variance (σ2) of the distribution 

using consecutive frames.  

As we use a very simple technique for background modeling, it might not be able 

to deal with quasi-stationary backgrounds like trees etc. as well as many other 

sophisticated techniques would (e.g. MOG [5, 6]). Therefore we use the inherent 

information available to us for the traffic scenes. As we assume a fixed camera position 

we can declare the region of interest (ROI) in the scene where vehicles will appear. Fig. 

4.6 gives an example of traffic scene and its corresponding ROI template. One more 

advantage of using a ROI template is that it reduces the overall area to process for 

foreground object detection, hence speeding the algorithm.  

        
(a)                                                                        (b) 

Fig. 4.6 An example of traffic scene and its corresponding ROI template. 
(a) Traffic scene. 
(b) ROI template. 

To account for the most recent changes in the scene, we use the term learning rate 

(LR) which tries to accommodate the scene changes faster into the background model. 
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This kind of strategy can help in dealing with sudden light changes in traffic scenes due 

to clouds etc. Also, it removes the requirement of restarting the background model 

estimation process after a fixed time period. The learning method proposed here does not 

need to store historical data other than background itself, reducing the overall memory 

requirements. We also use one more threshold here, namely the minimum variance 

(min_var). For pixels whose variance is very small, there is very little fluctuation at that 

pixel location so far. However if a sudden change occurs at that location which might not 

be significant globally, then that pixel will wrongly be classified as foreground. 

Parameter min_var removes this problem. The learning stage is run for a fixed number of 

frames initially without doing any foreground detection. Generally a couple hundred 

frames are more than enough to capture the background model. Subsequently, the 

background model is updated every C (a fixed number) frames. The value of C depends 

on the frame rate (frames per second - fps) of the video sequence. We found 

experimentally that fps/5 works well without substantial loss of details, when fps is 30. 

The speed of the algorithm increases substantially by reducing the number of times the 

background model needs the updating. The main advantage of using such a simple 

technique is that it is relatively fast. 

Classification stage. In this stage we classify the image pixels into foreground and 

background pixels based on background model. As discussed earlier, we assume 

Gaussian distribution for image pixels. Fig. 4.7 gives an example of a Gaussian 

distribution and how a pixel is classified. 
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Fig. 4.7 Pixel classification into foreground and background. 

 As discussed earlier, classification is done only in the ROI. If a new pixel value is 

too far away from the mean pixel value for that pixel location according to the 

background model, it is classified as foreground. The value of T can be modified to 

reduce the classification errors. 

Post-processing stage. The classification stage labels the pixels in foreground and 

background classes. In this stage, we try to correct any errors from the classification stage 

and create a list of foreground objects by grouping the pixels using connected 

components analysis. 

 First, we remove any isolated pixels from the foreground. We found that doing so 

decreases the processing time for the connected component analysis that follows it. After 

the connected component analysis, we create a list of blobs (foreground objects). This list 

is then processed to remove the blobs with very small area. We found that generally blobs 

with area less than 60 pixels don’t prove to be much helpful in subsequent processing for 

vehicle detection and classification. Therefore, at the end of this stage we have the list of 

foreground objects that might or might not be vehicles. 

m-T.σ m+T.σm

Background 

Foreground Foreground 
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 Fig. 4.8 shows an example of detected foreground. 

     
(a)                                                                       (b) 

Fig. 4.8 An example of detected foreground. 
(a) Original image. (b) Detected foreground. 

4.3 Vehicle Pose Estimation Using Optical Flow 

 We need to estimate the pose of a vehicle for further processing (i.e., vehicle 

detection and classification). We use a pyramidal Lucas and Kanade optical flow 

technique [98] as implemented in OpenCV [99]. Details of the implementation can be 

found in the OpenCV reference manual [100]. Fig. 4.9 shows the pseudo-code of the 

algorithm used for vehicle pose estimation. 

 Our algorithm has two stages: optical flow estimation and pose estimation. In the 

first stage, we calculate the pyramidal Lucas and Kanade optical flow for the detected 

foreground regions. We observed that without any loss of accuracy, we can estimate the 

optical flow after every Tof frames. This serves two purposes: it increases the speed of the 

algorithm as we don’t have to calculate optical flow for every frame and the substantial 

relative motion between blobs results in robust optical flow detection. The value of Tof 

depends on the frame rate (frames per second - fps) of the video sequence. We found that 
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Tof = fps/10 works well for the video sequences we worked on. If some modification of 

Tof is needed, then it can be done on-site to improve the outcome. 

 
Fig. 4.9 Algorithm for vehicle pose estimation using optical flow. 

 In the next stage, we find the average optical flow vector for every blob. The 

optical flow feature vectors corresponding to a blob are averaged to get the optical flow 

average vector vavg that represents the orientation of the blob. If no vector corresponding 

to a blob is found, the blob is removed from the subsequent processing. Then, the angle α 

between the vector vavg and the positive Y-axis (both in 3D world coordinate system) is 

calculated. However, the vector vavg is represented in the image plane coordinate system. 

For each foreground frame at time t 
  1. Optical flow estimation stage 
    If mod(t,Tof)=0 
    then 
      - Pop the first frame f1 from the buffer BF  
      - Grab current frame f2 and save it at top of   
        buffer BF 
      - Find optical flow from f1 to f2 using pyramidal   
        Lucas-Kanade algorithm 
      - Save feature vectors v representing optical flow 
  2. Pose estimation stage 
    For each blob B in the list 
      For each feature vector v found by optical flow 
        If v Є B 
        then 
          - Add v to blob B’s vector list 
      If size(vector list)=0 
      then 
        - remove the blob from subsequent processing 
      else 

  - Find average vector vavg and save it with 
    Blob B’s information 
- Find angle α of vavg w.r.t. positive Y-axis in   
  3D world coordinate system 
- Find 3D world coordinates of the center of   
  Blob B 
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Therefore, we need to convert it to the 3D world coordinate system using homography 

(discussed earlier in section 4.1) before finding the angle. This resolves the problem of 

finding the orientation of a blob. To tackle the problem of finding the location of a blob 

in the 3D world coordinate system, we assume that the center of a blob represents the 

center of an actual object and all blobs are on the ground plane. Under these assumptions, 

the 3D world coordinates (location) of an object can be calculated using the homography. 

Fig. 4.10 shows an example of the average optical flow vectors (red arrows) found for 

three vehicles in the image. 

 
Fig. 4.10 Average optical flow vectors (red arrows). 

Therefore, at the end of this module, we have location and orientation (angle with 

respect to positive Y-axis) of all the moving blobs (vehicles or non-vehicles) in the 

current frame. 
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4.4 Reconstruction Using Synthetic Camera 

 We already discussed in section 4.1 how to configure an OpenGL synthetic 

camera so that it can imitate the functionality of the actual camera. We developed four 

vehicle models for four classes respectively. They are car, SUV (Sports Utility Vehicle), 

pickup truck and bus. Fig. 4.11 shows the 3D wire-frame models. These models are 

rotated and translated using the output of vehicle pose estimation module. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.11 3D wire-frame models. 
(a) Car. (b) SUV.  (c) Pickup truck. (d) Bus. 

4.5 Vehicle Detection and Classification 

 There are different methods developed aimed at vehicle detection and 

classification. We have reviewed some of them in section 2.4. Here, we propose two 
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novel methods for vehicle detection and classification. We have incorporated the 

detection problem as a part of the classification problem. When the matching score for 

any class of vehicle is lower than some threshold then the object is classified as non-

vehicle. The two classification algorithms proposed in this work are a color contour 

algorithm and a gradient based contour algorithm. 

 Before presenting the details of both algorithms, we examine what inputs these 

algorithms take. From the foreground object detection module, we have the foreground 

frame as shown in Fig. 4.8. Both algorithms try to match object edges with the 3D wire 

models. If there are multiple blobs (objects) in an image, we need to segment the blobs 

before matching so that only one blob is present in an image. Therefore, if there are n 

blobs in an image, we create n separate images with only one blob present in each image. 

Then, we use canny edge detector to detect the object edges. Fig. 4.12 shows an example 

of such detected edges for a vehicle. This edge template is then matched with the 3D 

wire-frame models of the four vehicle classes. However, before doing this matching we 

need to rotate and translate the models such that they overlap the actual position of the 

vehicle in the image (refer to section 4.4 for more details). After matching is done for all 

classes, the best match is assigned as the class of the vehicle under consideration. If the 

matching score for all classes is less than some threshold Tmatch, then we classify the 

object as non-vehicle. Fig. 4.13 shows the pseudo code algorithm for the vehicle 

detection and classification module. 
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Fig. 4.12 Detected edges of a vehicle. 

(a) Original frame. 
(b) Blob edge template. 

 
Fig. 4.13 Algorithm for vehicle detection and classification. 

Color contour matching algorithm. As discussed earlier, the inputs to this algorithm are 

the object edge template and the 3D wire-frame template. We create color contour 

For each foreground frame at time t 
  - Detect edges in original frame and save it in edge    
    frame EF 
  - For each blob B in the foreground object list 
    - Segment blob B from the foreground frame and save   
      it in BF 
    - Blob (object) edge template BET = EF AND BF  
                                        %(Fig. 4.12) 
    - Retrieve pose information PI for blob B 
    - maxScore = Tmatch 
    - Detected Class DC = non-vehicle 
    - For each class C of vehicle 
      - Reproject 3D wire-frame model of class C of  
        vehicle on model edge template MET using pose PI 

- Do matching between BET and MET %Color Contour   
  and get matching score MS(C)   %algorithm or 
  for class C                    %gradient based     
                                 %matching           
                                 %algorithm 
- If MS(C)>Tmatch AND MS(C)>maxScore 
  then 
- maxScore = MS(C) 
- detected Class DC = C 
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templates using these two templates and then match them by XORing to get matching 

template and score. While creating a color contour template for a model edge template, 

we use only black color. Fig. 4.14 shows an example of color templates and 

corresponding matching template. In Fig. 4.14 (a) black contour represents the area 

closest to the actual edges, red contour represents area closer to the actual edges and so 

on. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.14 Color contour templates and matching templates. 
(a) Color contour template for object edge template 
(b) Color contour template for 3D wire frame model 

(c) Matching template derived after XORing (a) and (b) 

Matching template as shown in Fig. 4.14 (c) gives an estimate of how close the 

3D wire-frame model is to the edges of the object. Matching score is calculated by 
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counting the number of different color pixels present in the matching template. Table 1 

gives the scoring mechanism used in the algorithm. This matching score is then 

normalized using the matching score obtained by XORing the object edge template with 

itself. 

Table 4.1 Matching score description 
Color Description Score 
Black The edges are closest to each other 10 
Red The edges are closer to each other 7 
Green The edges are close to each other 4 
Blue The edges are not far away from each other 2 
White Missing or extra pixels -2 
Gray Missing or extra pixels -2 

 

The accuracy of the algorithm can be increased by changing the matching scores 

and/or changing the radii of the color contours. The advantage of this algorithm is that it 

is fast. However, it lacks the ability to take into consideration the edge direction while 

doing template matching. Therefore, it gives false positives when a lot of edges are 

detected in the object edge template. 

Gradient based matching algorithm. To deal with the problems encountered in 

the color contour matching algorithm, we propose a gradient based matching algorithm. 

In this algorithm we first calculate the gradient of the edges in both templates (object 

edge template and model edge template) using a 3×3 Prewitt mask. Then matching is 

done on the basis of gradient magnitude and direction.  

We create two separate templates for each object edge template and model edge 

template. One of these templates contains the gradient magnitude values (magnitude 

template − MT) and other one contains edge direction information (direction (angle) 

template − DT). The values at location (i, j) in magnitude and direction template are 
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calculated using a Gaussian mask of size m×m (i, j) (m=7 is used in our implementation). 

Therefore all the edge points in the neighborhood of size m×m (centered at location (i, j)) 

contribute to the magnitude and direction values depending on their distance from pixel 

(i, j). Then, matching template MAT is derived using MT and DT of the blob edge 

template (BET) and model edge template (MET) using following equation: 

( , ) ( , )* ( , )*cos( ( , ) ( , ))BET MET BET METMAT i j MT i j MT i j DT i j DT i j= − . (4.11) 

 The matching score is calculated by using matching template MAT using 

following equation: 
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where: 

MATself: Matching template obtained by matching BET with itself 

N(BET): No. of edge pixels in blob edge template 

N(MET): No. of edge pixels in model edge template 

Tmatch: Threshold that allows slack in difference between N(BET) & N(MET). 

The benefit of using a gradient based matching is that it takes into consideration 

the edge direction. As can be seen from equation (4.11), if directions are the same cos(0) 

= 1 and if directions are orthogonal cos(90) = 0. While finding the matching score, we 

take into consideration the number of edge pixels available in both BET and MET. We do 
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not scale the matching score down if the difference is less than some threshold Tmatch, but 

it is scaled exponentially if the difference is more than Tmatch. 

4.6 Vehicle Tracking and Traffic Parameter Collection 

 The purpose of this module is to bring temporal consistency between the results 

found by preceding modules. That means it tries to find correspondence between the 

results found at different time instances. The purpose of tracking is to determine that 

object x found in frame at time t at location (x, y, z) is the same object y found in frame 

at time t+1 at location (x’, y’, z’). There are different approaches proposed in literature to 

do object tracking (see section 2.5 for more details). In this work we propose a simple 

tracking algorithm based on blob tracking. The advantage of this algorithm is that it is 

fast. Fig. 4.15 shows the pseudo code of the tracking algorithm. 

 
Fig. 4.15 Algorithm for vehicle tracking 

For each frame in the video sequence 
  For each blob (object) B1 at current time t 
    For each blob (object) B2 in track list 
      Find distance d between centers of B1 and B2 in 3D  
      world coordinate system 
      If d < Tdist 
      then 
        If B2 was updated at current time t 
        then       
          Combine B1 and B2 
        else 
          If B1 and B2 have same pose (angle) 
          then 
            Replace B2 with B1 and update B2’s history  
            information with B1 
      else 
        Add B1 to track list   
  For each blob (object) B1 in track list 
    If B1 was not updated at current time 
    then 
      Remove B1 
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 In terms of traffic parameter collection, we keep record of how each track was 

classified in each frame, the no. of active tracks (vehicles) present at any time, velocity of 

each vehicle at current time, average velocity of each vehicle during the entire time when 

it was visible in the camera’s field of view. The velocity of the vehicle can be found by 

using the tracks’ location information. If a vehicle X was observed at location (x, y, z) in 

3D world coordinates at time frame t, and if the same vehicle X (belongs to the same 

track, assuming tracking was successful) was observed at location (x’, y’, z’) at time 

frame t+τ, then instantaneous velocity is given by, 

2 2 2( ') ( ') ( ')x x y y z z
τ

− + − + −
 (4.13) 

 Even though the proposed tracking algorithm is fast and works well when the 

traffic scene is not crowded with a lot of vehicles, it fails in case of significant occlusion. 

Also, we do not incorporate feature based matching and segmentation of blobs, this might 

lead to merging of tracks and detection and classification errors. 
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Chapter 5. Experimental Results 

 We used our traffic surveillance system to process two video sequences taken 

from two different locations. The first video sequence was taken from University of 

Nevada parking lot at Virginia Street looking down on Virginia street (VS video 

sequence). The second video sequence was taken from University of Nevada parking lot 

at N. Sierra Street looking down on Sierra Street (SS video sequence). 

 The camera calibration process was done offline using Matlab and Mathematica. 

The calibration process needs human inputs such as lane structure identification. The 

parameters obtained from the camera calibration process were fed to the video 

surveillance system that is implemented in C++ using OpenCV.  

Fig. 5.1 and Fig. 5.2 show the correctness of camera calibration and pose 

estimation routines in VS and SS video sequences respectively.  

  

     
Fig. 5.1 Models overlapped onto actual vehicles (VS). 

(a) Original Frame. (b) After overlapping models onto actual vehicles. 
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(a)                                                                         (b) 

Fig. 5.2 Models overlapped onto actual vehicles (SS). 
(a) Original Frame. (b) After overlapping models onto actual vehicles. 

 Fig. 5.3 shows an example of successful tracking. The black SUV that can be seen 

in the right part of the image in Fig. 5.3 (a) is track no. 94. This is frame no. 989 of image 

sequence VS. The same black SUV can be seen in the center of the image in Fig. 5.3 (b) 

with the same track no. 94. This is frame no. 1093 of video sequence VS. The red arrow 

shows how the black SUV moved from frame 989 to frame 1093. Therefore, the black 

SUV was successfully tracked for more than 100 frames. 

     
(a)                                                                    (b) 

Fig. 5.3 Vehicle tracking (VS). 
(a) Frame no. 989 of VS. (b) Frame no. 1093 of VS. 
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 Fig. 5.4 shows another example of successful tracking in the video sequence SS. 

The red car that can be seen in the left part of the image in Fig. 5.4 (a) is track no. 27. 

This is frame no. 625 of image sequence SS. The same red car can be seen in the right 

hand corner of the image in Fig. 5.4 (b) with the same track no. 27. This is frame no. 675 

of video sequence SS.  The red arrow shows how the red car moved from frame 625 to 

frame 675. This proves that the red car was tracked correctly the entire time it was in the 

field of view of camera. 

     
(a)                                                                    (b) 

Fig. 5.4 Vehicle tracking (SS). 
(a) Frame no. 625 of SS. (b) Frame no. 675 of SS. 

 Even though the last two results shown for vehicle tracking show that tracking 

algorithm works perfectly, there are cases when the tracking fails, especially when there 

is occlusion. Fig. 5.5 shows a typical example when the tracking algorithm fails to track a 

car when the car occludes a bigger object (a bus). The car had a track no. 22 and the bus 

had a track no. 18 (Fig. 5.5 (a)). The car lost its track when it occluded the bus partially. 

But, the bus maintained its track (Fig. 5.5 (b)). 
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(a)                                                                    (b) 

Fig. 5.5 Vehicle tracking failure (VS). 
(a) Frame no. 424 of VS. (b) Frame no. 476 of VS. 

 Fig. 5.6 shows a snapshot (frame no. 2261) from the VS video sequence. Fig. 5.6 

(a) shows the original frame with detected models superimposed. Fig. 5.6 (b) shows the 

detected foreground. Fig. 5.6 (c) shows the average optical flow vectors (red arrows). Fig. 

5.6 (d) shows the detected edges.  

 It can be seen from Fig. 5.6 (d) that detecting the class of vehicle on the basis of 

edges only is a difficult task. Even human vision would not be able to classify them 

correctly if only this edge template was provided to him/her. That explains the quite low 

accuracy rates for classification of vehicles. 

 Table 5.1 and Table 5.2 show quantitative results for the video sequences VS and 

SS respectively. The classification results presented here uses gradient based matching. 

Vehicle classes are car-(0), SUV-(1), pickup truck-(2), bus-(3) and non-vehicle-(-1). For 

the patch of street under surveillance in the VS video sequence, the posted speed limit 

was 25 mph, whereas it was 35 mph for the SS video sequence. The average velocity 

found by the traffic surveillance system for different vehicles is in accord with the posted 
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speed limits. We do not have ground truth for vehicle velocities to calculate the accuracy 

and precision of our method.  

       
(a)                                                                     (b) 

 

             
(c)                                                                    (d) 

Fig. 5.6 Traffic surveillance – snapshot (frame no. 2261) from VS. 
(a) Original frame with detected vehicle class models superimposed. 

 (b) Detected foreground. 
(c) Detected optical flow average vectors. 

(d) Detected edges of the foreground. 

 The “Reason for failure” column gives the errors that are not due to classification 

methods failure. Classification of vehicles is a daunting task. Most of the errors are due to 

lack of or incorrect edge detection. We classify the vehicle based on its classification 

results over the entire time when it was on camera’s field of view. We do not take into 

consideration the distance of vehicle from camera. Also, no temporal information about 
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the edges detected in the previous frame is saved that might increase the accuracy. 

Increasing the details in actual models and increasing the number of classes may improve 

the results. However, increasing the number of classes increases the processing time for 

classification. 

Table 5.1 Quantitative Results for the VS video sequence. 
Vehicle 
No. 

Track 
No. 

Actual 
class of 
vehicle 

Maximally 
detected 
class of 
vehicle 

Average 
Velocity (mph)

Reason for failure 

1 1 2 2 29.01  
2 18 3 3 22.70  
3 33 0 0 29.23  
4 94 1 0 32.53  
5 137 1 or 2 1 22.82  
6 195 1 0 27.54  

200 1 -  7 
 200 2 -  

Tracking error 

8 214 2 0 26.02  
9 219 1 0 22.74  
10 221 0 0 23.73  

241 0 0  11 
252 0 0  

Tracking error 

12 282 1 0 34.95  
13 313 0 0 24.73  
14 304 0 0 24.95  
15 394 0 0 26.96  
16 407 0 0 27.88  
17 426 1 1 32.17  
18 445 1 0 24.71  
19 462 1 0 24.40  
20 480 2 2 24.86  
21 539 1 -  Tracking error 
22 557 0 0 24.51  
23 538 1 or 2 0 24.64  
24 572 1 or 2 0 21.52  
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Table 5.2 Quantitative Results for the SS video sequence. 
Vehicle 
No. 

Track 
No. 

Actual 
class of 
vehicle 

Maximally 
detected 
class of 
vehicle 

Average 
Velocity 
(miles/hr) 

Reason for failure 

1 0 2 2 49.37  
2 12 0 0 45.03  
3 26 1 2 36.71  
4 27 0 2 39.37  
5 28 2 2 39.48  
6 30 1 2 43.84  
7 31 0 0 39.37  
8 32 1 0 40.56  
9 35 1 -1  Too many edges detected 
10 38 0 2 42.05  
11 39 2 2 38.54  
12 40 2 2 36.70  
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Chapter 6. Conclusions and Future Work 

 We presented a traffic surveillance system that identifies, classifies and tracks 

vehicles. The system is general enough to be capable of detecting, tracking and 

classifying vehicles while requiring only minimal scene-specific knowledge.  

6.1 Discussion 

We used a camera modeling technique that does not require in-lab calibration. A 

novel technique was presented that can be used to calibrate the camera on-site. We found 

that simple geometric primitives available in the traffic scene could be used to calibrate 

the camera parameters efficiently. The overall accuracy of the camera calibration system 

was good and it can be verified from the re-projected models that match the actual 

position of the vehicles in the image. 

The foreground object detection technique used is fast and found to be reliable. 

The ROI template technique increases the accuracy dramatically by using prior 

knowledge about the scene. Even though this information is needed by the system, it can 

be provided on-site by the user. 

In this work, we have developed 3D models for 4 classes of vehicles – car, SUV, 

pickup truck, and bus. As a part of the project, we developed an API to interface OpenGL 

with OpenCV programs.  

We also developed vehicle tracking based on simple blob tracking. For the video 

sequence VS and SS, the tracking was as high as 90%. It works best when the traffic 

scene is less crowded. We were also able to detect the average vehicle speeds using 

tracking information recorded by tracking module. The tracking information recorded by 
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the tracking module can be used to find the number of vehicles present in the camera’s 

field of view at particular time. It can also be used to find the traffic flow in each 

direction. However, partial occlusion and problems due to shadows may lead to tracking 

errors. 

We found that for the purpose of vehicle detection, the 3D wire-frame models 

used in this work are detailed enough that have given high vehicle detection accuracy. 

Here, vehicle detection means eliminating possibility of detecting non-vehicles 

(pedestrians) as vehicles.  

We developed and used two 3D-model based matching techniques, namely color 

contour matching and gradient based matching. The results for the first technique are not 

given for the reason of a lower classification rate. The second technique also did not 

reach expected accuracy (only about 60%). The benefit of using this technique is that it is 

fast (5 fps without optimization), compared to the different strategies suggested in the 

literature. Also, we did not restrict our view to lateral view with which many researchers 

were successful in getting high accuracy. The classification module did not perform as 

well as expected. The reason for this is that the data available for classification is 

generally noisy. Vehicle classification is the last step after foreground object detection, 

vehicle detection, and pose estimation. Therefore, errors in earlier steps slip in vehicle 

classification. These reasons can be specifically listed as follows: 

• Classification is dependent on tracking such that the class of a vehicle is 

determined by successively classifying the vehicle in consecutive frames and then 

determining the class based on maximally detected class. Therefore, tracking 

errors lead to classification errors. 
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• Poor edge detection may lead to too many or too few edges that might lead to 

classification errors. 

• Errors in pose estimation lead to classification errors. 

• Partial occlusion may lead to classification errors. 

Overall, the system works well as far as foreground object detection, tracking, 

vehicle detection and vehicle speed estimation are concerned. Because, while choosing 

different modules for the system we chose the fastest possible techniques, the system 

works at about 5 fps without any optimization. We believe that it can be optimized to 

work at real-time speed. The classification of vehicles is still a partially solved problem 

that needs further attention. 

 6.2 Directions of Future Work 

Overall, the traffic surveillance system proposed in this work is a step forward in 

the right direction. However, more work needs to be done in order to expand the current 

system into a full fledged traffic surveillance system. Here we suggest some 

improvements that we intend to incorporate in our future work: 

• The background modeling and foreground object detection module can be 

modified to take into consideration the multimodality of the background. A 

technique similar to mixture of Gaussians (MOG) can be used with modifications 

to eliminate shadows. 

• The vehicle classification technique can be modified to do hierarchical 

classification where initial classification is done on the basis of length, width and 

area of blob, followed by further classification with detailed 3D class models. 
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This would reduce the number of classes with which the matching process must 

be repeated. 

• Deformable models can be used that take into consideration various sizes of the 

vehicles (e.g., a full size car can be almost as big as a normal sized pickup truck). 

• The errors in edge detection lead to classification errors. Some kind of temporal 

integrator needs to be used such that edges detected in different frames can be 

integrated to best estimate the actual vehicle edges. 

• Feature based vehicle tracking can be incorporated in the final system with 

occlusion detection. 

• Errors in pose estimation need to be corrected and cross-checked with the history 

of tracking for that particular vehicle. 

• A Kalman filter based vehicle speed estimation system can be included to better 

estimate instantaneous vehicle speed. 

• Scene-specific information can be used in the final system to detect vehicles 

entering a wrong way. If this information is not provided, the system should learn 

the normal paths using tracking history of vehicles. 

• A stereo camera can be used to retrieve depth information which can be useful in 

the vehicle classification process. 

• Segmentation can be used to separate partially occluded objects. 
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