
Is End-to-End Integrity Verification Really
End-to-End?

Ahmed Alhussen
Computer Science and Engineering

University of Nevada, Reno
aalhussen@nevada.unr.edu

Batyr Charyyev
Computer Science and Engineering

University of Nevada, Reno
bcharyyev@nevada.unr.edu

Engin Arslan
Computer Science and Engineering

University of Nevada, Reno
earslan@unr.edu

Abstract—End-to-end integrity verification is proposed to im-
prove reliability of file transfers by comparing the checksum
of files at source and destination servers. However, state-of-the-
art implementation of end-to-end integrity verification fails to
detect silent data corruption that may happen during disk writes
since checksum computation at the destination server could read
cached copy of files from main memory when file size is small.
In this work, we show that existing integrity verification methods
fail to capture silent disk errors and present an application-level
solution to improve the reliability of integrity verification.

I. INTRODUCTION

As data transfer rates are rapidly increasing, traditional in-
tegrity verification mechanisms fall short to detect corruption.
For example, TCP checksum fails to detect errors once in 16
million to 10 billion packets [1]. As a result, researchers ob-
served up to 5% data corruption for file transfers in 100 Gbps
network [2]. End-to-end integrity verification is introduced to
avoid silent data corruption by comparing the checksum of
files at source and destination servers. However, state-of-the-
art integrity verification algorithms could miss disk write errors
since checksum computation reads files from cache memory
when they are recently written to disk and copy of them are
kept in the memory.

Potential solutions to this problem include (i) clearing cache
before checksum computation and (ii) bypassing main memory
for file reads. However, the first solution could have detrimen-
tal impact on system performance and requires root access.
On the other hand, bypassing cache memory is discouraged
due to poor I/O performance.

II. PROPOSED SOLUTION

In this work, we propose a Secure Integrity Verification
Algorithm (SIVA) that delays checksum computation of a
file to avoid reading from the memory. When multiple files
are transferred, first transferred files are evicted from cache
memory after some time due to limited capacity of the
memory. SIVA exploits this cache eviction policy of operating
systems and delays the checksum computation of a file to
guarantee that its pages are no longer present in the main
memory. That is, SIVA will not compute checksum of a file
right after its transfer. Instead, it will wait until the file’s pages
are no longer expected to be present in the memory such that
when checksum process attempts to read the file, it has to read
it from disk.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 100 200 300 400 500 600

Reading Faulty Blocks

C
a
c
h
e
 H

it
 C

o
u
n
t

Time (s)

File-LevelPipelining
Block-LevelPipelining

SIVA

Fig. 1: SIVA keeps cache hits small to detect disk errors.

We compared SIVA against state-of-the-art solutions for
end-to-end integrity verification; file-level pipelining and
block-level pipelining [3] as shown in Figure 1. File-level
pipelining [4] overlaps checksum computation of a file with
the transfer of another file to optimize multi-file transfers.
Block-level pipelining divides large files into blocks and
overlaps transfer of a block with a checksum of another block
to improve the benefit of pipelining when files in dataset are
in different size. We used a dataset with five files (four files
with 1-5 GB size and one with 20GB size). We monitored
cache hit values of the algorithms while transfer is running
and injected a fault for a randomly chosen block of each file
during disk writes operation. We marked the times when file-
level pipelining processed corresponding blocks of files. We
injected same faults for SIVA and block-level pipelining as
well but did not mark in the figure for the sake of simplicity.

We observed that block-level pipelining could not catch any
of the faults while file-level pipelining only caught one out of
five faults since both operate on memory copy of the blocks.
SIVA, however, captured all the faults since its cache hit values
are always very small due to reading files from the disk. On
the other hand, delaying checksum computation of files causes
SIVA to take longer than other algorithms. Hence, SIVA leads
to 11% increase in checksum computation time compared to
block-level pipelining in exchange of increasing reliability of
integrity verification.

III. CONCLUSION

In this work, we showed that state-of-the-art integrity
verification solutions fail to capture silent disk write errors
and proposed application-level solution, SIVA, to improve
reliability. Preliminary results show that SIVA can capture
disk write errors in return of small increase in checksum
computation time.

REFERENCES

[1] J. Stone and C. Partridge, “When the CRC and TCP checksum disagree,”
in ACM SIGCOMM computer communication review, vol. 30, no. 4.
ACM, 2000, pp. 309–319.

[2] R. Kettimuthu, Z. Liu, D. Wheeler, I. Foster, K. Heitmann, and F. Cap-
pello, “Transferring a Petabyte in a Day,” Future Generation Computer
Systems, 2018.

[3] S. Liu, E.-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka, “Towards
optimizing large-scale data transfers with end-to-end integrity verifica-
tion,” in Big Data (Big Data), 2016 IEEE International Conference on.
IEEE, 2016, pp. 3002–3007.

[4] “Globus,” https://www.globus.org/.

