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Abstract

Theintegratedprocessing-decodingetwork modelof St. JohnandMcClelland(1990)wasrevisedto allow extracting
the predicatecontentof complex sentenceslirectly from anincomingstreamof word tokens. Theinput streamwas
presentedo the network without any syntacticmarkupsuchasbracletization,andthe extractionwasdonewithout
ary explicit emulationof stacking segmentationpr othersuchoperationghatareordinarily associateavith parsing
asentenceThelack of suchexplicit syntacticoperationslloweda simulatecheuralnetwork of minor compleity to
betrainedto thetaskundera simpleregimen.

1 Introduction

Variouschallengesxist for any cognitive model of languageprocessingand scalablesolutionssuitablefor usein
simulatedneuralnetworks have beenslow in arriving. Evensucha basicmatterasrepresentindinguistic objectshas
beenall but a shav-stopper andalthoughneuralnetworks offer a numberof desirableprocessing:apabilities they
facespecialchallengesvhenusedto modelthe cognitive operationof processinggomplex linguistic objects.

Representationf linguistic objectsin the staticstructureof a simulatedneuralnetwork is difficult becausef the
variety in the lengthand complexity of the objects. Variablelength presentdtself whetherprocessingsoundsinto
morphemesmorphemesnto words,wordsinto sentencer sentencesto discoursesVariablecomplexity presents
itself in the lattertwo categories(at least),andis a factorregardlessof whetherthe objectsunderconsideratiorare
viewedin termsof form or content.

For a network that processesentencesyariablelengthis anissueprimarily relatingto the inputs and variable
compleity is anissueprimarily relatingto the outputs. Somesort of recurreng seemgo be the mostcommonway
of addressingariableinput length,with the activationsin a recurrentiayer converging toward a staticrepresentation
of awholeasits elementsarefed into the network piecavise (EIman1990). Thereseemto betwo majorapproaches
to addressingrariablecompleity in the output: one extractswell-integratedchunksof the objectasthey become
available,so thatthe whole is never explicitly representedh staticform (Miikkulainen 1996); the otherusessome
form of coercionto force the formation of a static,compressedepresentationf the whole asa whole Within this
latter category therehave beenmodelsproducingcompressedepresentationsoth of syntactic(Pollack1988)andof
semantiqSt. JohnandMcClelland1990)structuresThe experimentseportecherein sectiond wereaninvestigation
into the utility androbustnes®f staticsemantiaepresentationsreatedby sucha compressiorschemeor modestly
comple sentences.

*Thisresearclwassupportedn partby the TexasHigher EducationCoordinatingBoardundergrantARP-444.
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Evenwith representations hand,processingbjectsof variablecompleity canchallengethe designof a net-
work modelandraisequestionsof cognitive plausibility for the solution. Among the modelsmentionedabove, for
example theRAAM (Pollack1988)requiredexplicit specificatiorof constituenbracletizationin thetrainingset,and
SPEC(Miikkulainen 1996)requiredexplicitly trainingmodularcomponentso performhiddentasks.Theexperiment
reportedherein section5 attemptedo bypassthe former problemby using semantictargets,which are potentially
derivablefrom the ervironmentby a learner andto bypassthe latter problemby making do without overt modules
andexplicit hiddentasksaltogether To statethesegoalsmoreclearly: anattemptwasmadeto processentenceby
directtransductiorfrom representationsf their surfaceform to representationef their semanticcontentin orderto
testthe hypotheseshat syntacticstructuresare information-bearingstructuesandthatinformationcan be extracted
fromsud structueswithoutovertly performinga traditional syntacticparse

2 TheCorpus

2.1 Sentencesand Semantic Representations

In orderto control the length and compleity of the sentencedata, a hand-generatedorpuswas usedfor all the
experimentsreportedhere. The corpusconsistedf recordspairing the plaintext of a sentencevith a setof shallow
semantiaepresentationgor the contentof its variousclauses.The plaintext was specifiedin the corpusasa simple
list of wordswithout capitalizationor punctuationasshovn in sentencégl).

(1) thepiratethatchasedhemonkey sav theparrot

The semanticrepresentationfor the individual clauseswere specifiedaslists of fillers for the relevant thetaroles
(Chafel970;Co0k1989),givenin theorderAGENTACT PATIENT BENEFICIARY to makethemeasyto read.The
shallov semantiaepresentation®) and(3) illustratethefillers appropriatdor thetwo clausef sentencgl).

(2) PIRATE SEEPARROT —
(3) PIRATE CHASEMONKEY —

Thedashesn representation&) and(3) indicatedthattheverbsin thoseclauseslid notmake referenceo anythingin
the BENEFICIARY thetarole. In this corpusthe BENEFICIARY slotwasapplicableonly to clauseswith ditransitve
verbs,suchastherelative clausein sentenc€4). The semantiaepresentatiofor thatsentences givenin (5) and(6).

(4) thepiratethatgave the parrotto the captainsav the monkey
(5) PIRATE SEEMONKEY —
(6) PIRATE GIVE PARROT CAPTAIN

Clauseswith intransitive verbs,suchasthe simplesentencé?), lackeda PATIENT aswell asa BENEFICIARY, and
sohadthedashasthefiller for boththeseroles,asshavn in semantiaepresentatioks).

(7) thecaptainran

(8) CAPTAIN RAN — —

As illustratedby sentencé€4) andthe associatedemantiaepresentatiom (5) and(6), the agumentstructuref the
variousclausesn a sentencareindependenbf oneanother For the connectionistimplementatiorit wasnecessary
to provide a constannumberof slotsfor eachclausesufiicient for any clausein the corpus.In theimplementationa
dashwastreatedasjust anothersemanticsymbol,with its own uniquenumericrepresentation.

Thefillers in the semantiaepresentationserespecifiedn all-capsandwithoutinflections.In futureexperiments
we planto parseout overtandimplicit inflectionsin the plaintext asfillers for additionalmarkupslotsto be addecto
the semantiaepresentationsAll-caps were usedto indicatethat the modeldistinguishesdetweerthe lexical words
in the surfaceform of a sentencendthe semanticsymbolsevoked by thosewords. As describedn section3 below,
aword andthe associategymbolhadindependentepresentationi& the connectionistimplementationandlearning
the arbitraryassociatiorbetweenvordsandsymbolswasoneof the challengedor the network. The useof separate
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representationsf wordsandsymbolsis anelaboratiorof thenotionof identityconstaintsin St.John(1992),andwas
includedin the corpusfor the purposeof cognitive modellingof the humanability to learnsuchassociations.

Sucha setof shallov semantiaepresentationgivesno indicationof the relationbetweenthe variousclausesn
a sentencea sentencesuchas (1) was simply taken to make two independenbut simultaneouslyalid assertions
aboutthe pirate, namelythosespecifiedn the shallowsemantiaepresentation&) and(3). Specifyingmorecomplex
semantiaelationsbetweerclausess left for futurework.

The definite article the playedno semanticrole in the currentcorpus;it was not contrastedwith the indefinite
article norwith ary of thedemonstraties,but ratherwasusedasa notionallyunmarledform to allow constructiorof
completesentencefor the parsingexperimentdescribedn sectionb.

2.2 Content of the Corpus
The lexicon allowed expressingvarious simple statementsabout curious eventsin a tropical paradise(table 1).
Sentencesvere formedfrom the wordsin the lexicon accordingto a setof rulesaboutwhich nounscould sene as

Tablel: Lexicon for thetoy corpus. Thefunctionwordsthat, the andto wereusedto build complete
sentencefrom thewordsin thetable.

Common | Intransitve Transitve Ditransitive
Nouns Verbs Verbs Verbs
captain fled caught gave
monkey flew chased shaved
parrot ran heard sold

pirate sav

thesubject/AGENT for thevariousverbs.(As the corpuscontainecheithermiddle nor passve verbs thegrammatical
subjectalwaysidentifiedthe semanticAGENT.)

Modestly complex sentencesvereformedby allowing ary or all of the nounsin a matrix clauseto be modified
by relative clauses.Suchclausesmight be of eitherthe subjectextractedor objectextractedtype, asillustratedin
sentencdragmentg9) and(10) respectiely.

(9) ...thatsawvw themonkey...
(10) ...thatthemonkey saw...

Additional syntacticvariety was provided by allowing variationsin word order that allow the indirect objectsof
ditransitive verbsto appeaseitherwith or withoutthe prepositiornto, asillustratedin sentencéragmentq11) and(12).

(11) ...garetheparrotto thecaptain...
(12) ...gavethecaptaintheparrot...

The experimentsdescribedbelov were basedon a corpusof 310 sentencesreatedby this grammar The corpus
includedintransitve, monotransitre, andditransitive verbs,andallowed multiple relative clauseger sentenceaver
agingc. 1.9 each for atotal of 598 clausesbut without nestingclausesnorethanonedeep?

1In particular sentencewith relative clausesuchasthe onein sentencél) might be expectedo appeain discourseontets wherethe matrix
clausecorveys new informationandthe relative clausecorveys old information. Semanticmaterialsharedbetweensuchclausess co-indexed
in the discourseallowing an anaphoricunification processto integratethe nev materialinto a growing representationf the discourse.Taking
sentencgl) asan example,if a discoursehaspreviously establishedhat, say (PIRATE;7 CHASE MONKEY —) andthe nev sentenceasserts
that (PIRATE; SEEPARROT —) A (PIRATE; CHASE MONKEY —), it is a straightforvard guessthat: = 17 andthusthat (PIRATE;7 SEE
PARROT —). A numberof othersemanticclause-relationsanbe posited suchascontingncyor cause-and-&ct for thepresenit shouldmerely
be notedthat specificationof the semanticrelation betweenclauseswill be differentfrom and perhapsmore complex thanthe purely syntactic
notionsof matrix clauseandsubodinateclause

2Embeddingswere limited to a single layer becauseof the combinatorialexplosion of possibilitiesoffered by even sucha limited lexicon
andgrammaticalstructure. Nor wasit possible,in a hand-generatedorpus,to exhaustall sentencepossibilitieseven with this limited depthof
embeddingsExceptwherenotedotherwisen thetext, coveragewasvery nearlyexhaustve for simplesentenceandfor complex sentencesising

3



3 TheArchitecture

The architectureusedfor the experimentswas a modificationof that usedby St. Johnand McClelland (1990) for
forming gestaltsemantiaepresentationfor single-clausesentencesln thatarchitecturewo relatedbut functionally
distinctnetworkswerejoinedtogetheywith a sharechiddenlayer servingsimultaneoushasthe outputof oneandthe
input of the other(figure 1).

PREVIOUS GESTALT E \3 [the busdriver] [was given
' [the rose] [by the teacher]

Figurel: Architecture of the St. John and McClelland’s (1990) conjoined processing/decoding

networks. A single PROBE layeris usedto querythe gestalt. A sentencas fed into the processing
network onegrammaticakonstituentat a time to form the gestalt. Oncethe gestalthasbeenformed,

a probeproducesa responsat the output. The probecanquerythefiller for a given semantiaole, or

viceversa.

In St. Johnand McClelland’s architecturethe upstreamProcessingNetwork had the task of learningto extract
a distributed, case-basedemanticrepresentationwhich the authorscalled the sentencegestalt from anincoming
streamof sentenceonstituents.The downstreamDecodingNetworkhadthe taskof learningto extractthe bindings
betweerspecificsemantiaolesandtheirfillers from this gestaltrepresentationBy conjoiningthetwo sub-netverks,
St. Johnand McClellandwere able to sidestephe usualrequiremenbf providing static targetsfor the Processing
Network ratherthanhaving their valuesspecifiedin the training set,the sentenceepresentationm the gestaltlayer
wereformedby coercingthemto satisfya performanceequirrmentimposedby the decodingnetwork. For example,
asshawn in figure 1, the constituentof the sentencehe busdriverwas giventhe roseby teader werefed into the
processingnetwork sequentiallyto form a gestaltrepresentationf the sentenceafterwhich a probewith a constituent
suchastheteather mustreturntherole playedby thatconstituentn thesentencéor vice versa).Trainingthe network
with the sentenceandprobesforcedthe network to form suitablegestaltsor the sentencem their corpus.

A shortcomingof thearchitecturday in its inability to copewith sentencesonsistingof morethanasingleclause.
For example with asentencasuchasexample(13), probingwith therole agentshouldproperlyrespondvith thefiller
monley for the matrix clause put with piratefor therelative clause?

(13) themonkey thatthe piratechasedsaw the parrot

only the transitive verbs. Due to the combinatorialexplosion, the spaceof possiblesentencesisingthe intransitve andditransitve verbsis less
denselysampledhanthatof the sentencessingonly thetransitve verbs.Deeperembeddingsndbettermanagedsamplingsof possible-sentence
spaceareon the agenddor future work, which will usea machine-generatecbrpus. Note, however, thatevenin thelong termwe do not aim at
parsingembedding$o anunboundedlepth— rather the capabilitiesof themodelshouldbe similar to the obsered capabilitiesof humans.

3SinceSt. JohnandMcClellanddid not make anovert distinctionbetweeriexical word andsemanticsymbolin theirmodel,| eschev usingthe
all-capsconventiondescribedn section2.1 whenreferringto thefillers for his PROBE andRESPONSHayers.
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Similarly, probingwith the filler monley shouldproperlyrespondwith the role agentfor the matrix clause but with
patient for the relative clause. As the architecturemadeno provision for distinguishingbetweenclausesin such
circumstanceghemodelwasnot capableof dealingwith multi-clausesentences.

Generallyfollowing a suggestiorin St. John(1992),the architecturevas modifiedin an attemptto addresghat
limitation. In the revisedarchitecturethe DecodingNetworkwasprovided with multiple probeinputs,onefor each
slotin the shallav semantiaepresentationspecifiedby the corpus(figure 2). However, only a singlerespons@utput

— the pirate that gave the parro
PREVIOUS HIDDEN LAYER L to the captain saw the monke

PARROT

Figure2: Architecture of the enhanced network. The enhancedetwork provides multiple probe
layers, allowing disambiguatiorof queriesrelatingto specificclausesn a multi-clausesentence A
sentencés fed into the processingietwork oneword at attime to form the gestalt;oncethe gestalthas
beenformed, a queryis fed into the four probeinputsandthe responseo that queryappearon the
network’s output. Thefigure shaws onepossiblequeryfor sentencé4).

wasprovided: the DecodingNetworks taskwasto learnto “fill in the blank” for a singleslotin a shallov semantic
representationwhen the probeswere loadedwith numericrepresentationsf the fillers appropriatefor a specific
clause pneof whichwasreplacedy aquerymarkerindicatingtheslotto befilled. | call suchaprobesetaquery. For

example,asshown in figure 2, the wordsof sentencg4) werefed into the ProcessingNetworksequentiallyto form a

gestaltrepresentationf the sentenceafterwhich probesbasedn the semantiaepresentationsf the sentences two

clauses(5) and(6), mustproducethe appropriateesponse.

The query marker that replacesan individual role filler in a queryis indicatedin the figure andthe examples
below by a questionmarkin the positionof the slotto befilled. For purpose®f implementatiorit wastreatedasyet
anothersemanticsymbol,sinceit hadto fit into the probelayers,which weredesignedo acceptthe representations
of the ordinary semanticsymbols. However, the query marker was never requiredto appeaiin the responseutput,
andthuswasnot consideredvhendeterminingwhich symbolan actualoutputmostnearlyresembled.The numeric
representatiorior the query marker was given a value of all-zerosso that it would not contribute anything to the
activationlevelsin the hiddenlayerof the DecodingNetwork

Unlike the original model, the revised architecturewas only expectedto provide role fillers in responseo such
gueriesjt never providedslotnames As anexampleof aquery recallthatthe two clauseof sentencg13) shouldbe
associatedavith the semantidillers (MONKEY SEEPARROT —) and(PIRATE CHASEMONKEY —). Thuswhen
probedwith either(? SEEPARROT —) or (PIRATE CHASE ? —), theresponseshouldbe MONKEY.

Notice thatwith four semantiaolesper clause eachclauseallows for four distinct query-responspairs,eachof
which mustpotentiallyappealin atraining setfor full coverageof the sentence Thusthe corpusprovideda pool of
2392trainingexamplesfor the 598 clausesn the310sentences.

Units in the input, probe, and responsdayerswere designedto hold valuesin the range[0.0, 1.0], and units
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in hiddenlayersheld valuesin the range[-1.0, 1.0] for easeof learning(Haykin 1994). The logistic function was
usedto squashactivationsat the responseutput,andthe hyperbolictangentfunctionwasusedto squashactivations
in the hiddenlayers. Recurreng was managedy meansof a simple copy-back,asin a simple recurrentnetwork
(Elman1990);all otherconnectionsvere“full” connectionsgesignedo betrainedfrom initially randomweightsby
backpropagation.

Theinputlayerof the ProcessindNetworkaccepted sequencef word representationsncodinghe plaintext of a
sentencé. Simpleorthogonatepresentationsereusedfor thewords,with oneunitin eachword setto 1.0andtherest
to 0.0. Similarly, the probeandresponsédayersof the DecodingNetworkacceptedandyieldedsimple orthogonally
codedrepresentationfor the semanticsymbols,so that the output of the trained network could be interpretedas
confidencevalues(RenalsandRohwer1990).

Thesizesof theinput, probe,andresponsédayerswerethusdictatedby the sizeof thelexicon. As thevocahulary
never exceededl? lexical wordsand15 semanticsymbols the largestinput layer usedin the experimentsvasof 17
unitsandthelargestprobeandresponséayerswereof 15 units®

After exploratory experiments,the size of the gestaltlayer was fixed at 15 units and the hiddenlayer in the
DecodingNetworkwasfixedto 150units. Therecurrentiayerin the ProcessingNetworkwasalsosetto 150 unitsfor
the grammasprocessingxperimentsdescribedn section5, andit worked well enoughin the taskthat no tweaksto
its sizehave yetbeentested.

Whena network with this architecturehasbeentrainedsuccessfullyit is possibleto obtainwell-formed gestalt
semantiaepresentationsf individual sentenceby cycling thewordsof the plaintext throughthe ProcessingNetwork
and extracting the activationsfrom the gestaltlayer after the end of the sentence.To facilitate the generationof
sentencegestaltsandto allow the experimentgo focuson the capabilitiesof the Processingand Decodingnetworks
in isolation,thelogical distinctionbetweerthetwo sub-netverkswasreified by providing routinesallowing activation
valuesto be loadedinto, extractedfrom the gestaltlayer asneededandallowing the two sub-netverksto betrained
andoperateceitherindependenthpr in conjunction.

4 Experiment | : Distributed Semantic Representations

The first setof experimentsconcentratedn the propertiesof representationtghat could be inducedin the gestalt
layerby trainingthe DecodingNetworkin isolation. Theseexperimentsvereaimedat finding out whetherthedesired
gestaltrepresentationsouldbeformedfor multi-clausesentenceandwhetherthe DecodingNetworkcouldbetrained
to extractinformationfrom themselectvely, decouplingthis processrom thetaskof parsingthe word sequences.

Gestaltrepresentationfor sentencen the corpuswere createdandrefinedasfollows. The plaintext of each
sentenceavasfed oncethroughthe untrainedProcessingNetwork without backpropagatiorforming whatamounted
to awild guessat arepresentatioffior the sentencen the gestaltlayer Eachsuchrepresentationvassaved (andthe
recurrentlayer cleared)beforeproceedingo the next sentence Thereaftethe ProcessingNetworkwasignoredand
work continuedusingthe DecodingNetworkalone. Using the saved guessessinitial valuesfor the gestaltsentence
representationghe decodingnetwork wastrainedin isolationandthe FGREPmechanisnwasusedto coercethem
towardmorefelicitousvalues(MiikkulainenandDyer 1989,1991). Sincetheinputs(the gestaltrepresentationsyere
modifiedduringthistrainingprocessherewasno obviousway to testfor generalizatiorio unseerinputs,sotheentire
corpuswasusedfor bothtrainingandtesting.

For this procedurey wasa constant).1, a wasa constant).9, andthe FGREPIearningratewas0.1 x . The
network wastrainedfor 500 epochsand the experimentwas repeatedvith four differentrandomseeds. The seed
controlledboth generatiorof the initial randomweightsfor the network andsortitionin the orderof presentatiorof
the training examples. The orderof presentatiowasscrambledoy queryratherthanby sentenceso thatnumerous
gueriespertainingto a single sentenceavould not appearsuccessiely within an epoch. Whentestedon the gestalt
representationsesultingfrom the FGREPping,for one seedthe trained network gave an incorrectresponsdor a

4Theinputsto St. Johnand McClellands original network were encodingsfor phrase-sizea&hunksof sentencesatherthan encodingsfor
individual words,considerablyeducingtherequirednumberof passeshroughthe recurrentayerwhenprocessin@ sentenceSincetheenhanced
architecturausedindividual wordsfor its inputs,it requiredasmary as13 passeshroughtherecurrentayerfor thelongersentences.

515 units: 14 for thesymbolsassociateavith thewordsin table1, and1 morefor thenull symbolindicatedby the dash.Thosewordsservinga
strictly grammaticafunction,that, the andto, did not have associatedemanticsymbolsasthey werenotdirectly associateavith specificfillersin
the case-rolestructures The querymarler, beingrepresentetby all-zeros,did not participatein the orthogonakepresentationf the symbols,and
sodid notrequireanadditionalunit for its representation.



singleoneof the2392queriesfor theotherthreeseedsherewereno errorsin thetrainednetworks® Reasonabljigh
confidencevalueswere obtainedregularly aswell, namelyoutputvalues> 0.8 for the correctanswerand< 0.2 for
all otherpossibleanswersFen exceptionsverefound;indeed themostcommonresultswereboundedy the stricter
values0.85and0.15.

Theutility of therepresentationsreatedn theseexperimentsvastestedby examiningthe similarity of indepen-
dently createdrepresentationfor similar content. If the representationgeneratedy this procedureareto sere as
gestaltsemantiaepresentation®r sentenced is essentiathatsentencebearingthe samecontentbe associatedvith
very similar representationsyithout regardto word-ordervariationsin the the plaintext. The similarity properties
of the representationgeneratedy the experimentweretestedthroughclusteranalysisyielding a similarity treefor
the 310 sentence the corpus. Thoughthe resultingtree of similarity relationshipsdoesnot captureall the possi-
ble dimensionof similarity betweenthe sentence the training data,it sometimesevealsstriking successeskor
instancethe closestpair of representationis the clustertreecorrespondetb sentence$l4) and(15),

(14) thepiratesav the monkey thatcaughtthe parrot

(15) themonkey thatthe piratesav caughtthe parrot

Sincetheserepresentationwere associatedvith differentsentenceshey werecreatedstored,andrefinedindepen-
dently by the training algorithm. However, their clause-lgel case-roldillers areidentical,namelythosein the setof

shallov semantiaepresentationshovn in (16) and(17). Underthe simplifying assumption®f the model,the close
similarity of therepresentationfor thetwo sentencess preciselythe correctbehavior.

(16) PIRATE SEEMONKEY —
(17) MONKEY CATCH PARROT —

Otherminimal clustersshoved additionalsentencesf varying degreesof similarity pairedoff in the samefashion.
Theresults,thoughqualitatve, seemto show that similar sentencesesultin similar representationsuggestinghat
the gestaltscanindeedbe usefulastargetsfor sentencerocessing The experimentin section5 provedto beamore
demandingestof the utility of therepresentations.

5 Experiment |l : TheVirtual Parse

A differentsort of experimenttestedthe ability of the ProcessingNetworkto learnto transducehe plaintext of a
sentencénto gestaltrepresentationsuchasthosecreatedyy the experimentslescribedn sectiord, andto generalize
thatability to previously unseerexamples.This experimentwasconductedasfollows.

A subsebf the sentence the corpuswasrandomlyselectedo sere asa training set,anda disjoint subsef
similar sizewasrandomlyselectedo sere asa validationset. The remainingsentencesvereresered asatestset.
In afirst phaseof training, thosequeriespertainingto the sentencesf the training set(only) were usedto train the
DecodingNetworkby a modificationof the proceduredescribedn section4, asdescribedbelow, andafter training
was completethe resultinggestaltrepresentationfor thosesentencesvere saved for useastargetsfor training the
Processing\Networkindependentlyn a secondphase.

Thetrainingin thefirst phasevasdoneaccordingo the proceduralescribedn sectiord, exceptthatthe Decoding
Networkwastestedonthetrainingexamplesevery 10t trainingepoch andtrainingwasstoppedvhenall queriesvere
answeredaorrectlyor whenanarbitraryceiling of 5000epochdhadbeenreachedwhichereroccurredirst. (As before,
sincethe FGREPmechanismmodifiedthe input representationastraining progressedit did not make senseo use
theunmodifiedrepresentationsf thevalidationsetto controltrainingfor this phaseof theexperiment.)A snapshoof
theweightsandFGREPpedjestaltrepresentationsassased afterary testthatshovedanimprovementn thenumber

6When countingthe numberof correct responsesiereand belawv, the network’s responsawas identified as the semanticsymbol having the
representatioslosestin Euclideandistanceo the actualactivationsin the RESPONSHayer
Of interest— andpossiblyof substantiaimportance— is thefactthatapplyinganidenticaltrainingregimento anetwork wheretheinitial values
of the gestaltrepresentationsere generatedandomly(ratherthanby passingthe plaintext throughthe untrainedProcessingNetworR resulted
in anerrorratewell over two ordersof magnitudehigherthanthat describedabore. For example,training for 500 epochsresultedin an average
of 87.7 errorsacrosshreedifferentrandomseedqvs. an averageof 0.25for the methoddescribedn the text), andtraining for 1000epochsstill
resultedn anaverageof 113.0underthe samecircumstancesdt is temptingto concludethatthe surfaceformsof the sentenceencodehe semantic
informationin robustenougha form thatsomeof theinformationstructureis presered evenafter“filtering” by the untrainedProcessindNetwork
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of queriesansweredtorrectly In caseswvherethe ceiling wasreachedthe snapshotvasusedto restorethe weights
andgestaltrepresentationt® the stateproviding the bestperformanceptherwisethefinal weightsandrepresentations
wereretained.Thesamedearningparametersvereusedasbefore.

For eachtraining epochin the secondphaseof training, eachsentencen the training sethadits newly formed
gestaltrepresentatioffixed asa targetin the gestaltiayerwhile the representationsf the wordsin the plaintext were
propagatedequentiallythroughtherecurrentProcessingNetwork,without backpropagationntil the endof the sen-
tencehadbeenreachedAt theendof thesentencéheProcessindNetwork(only) wastrainedonceby backpropagation
andthe recurrentlayer was clearedbeforeproceedingo the next sentence.This processvasinterruptedat regular
intervals for testingthroughputon the sentenceén the validation set— thatis, for eachsentencen the validation
setthe representationsf the wordsin the plaintext were propagatedequentiallythroughthe recurrentProcessing
Networkwithout trainingit, the resultingactivationsin the gestaltlayer were held fixed while all queriespertaining
to the currentsentenceveretried sequentiallyin the DecodingNetworkwithout training,andthe numberof incorrect
responseg/asaccumulatedTraining continueduntil suchateston thevalidationsetresultedn moreerrorsthanhad
the previoustest,at which point it wasterminatedo avoid overtraining. A final testwasthenrun on the previously
unseenestset andperformancestatisticsverecollected.

This procedurdor trainingthe ProcessingNetworkwasdoneusinga constant; of 0.001andanca of 0.1. Valida-
tion testsweremadeevery 5000" epoch with anabsolutdimit of 50,000trainingepochs Theentireexperimentwvas
repeatedvith trainingandvalidationsetseachconsistingof 1, 2, 5, 10, 15, 20, and25 percentof the sentence the
corpus,with theremainingsentenceseseredfor testing,andeachsuchvariantwasrepeatedive timeswith different
randomseeds The performancesn throughputwith thetestsetaregivenin figure 3.’

6 Discussion

The resultsof the experimentswere generallyencouraging. Even so, a few caveatsarein orderwith respectto

scalability For instance,continueduse of orthogonalrepresentationfor the lexical words and semanticsymbols
cannotbe sustainedn the scaleof a realisticlexicon, and evenfor this toy corpusthe size of a hiddenlayer was
allowedto grow relative to the sizeandnumberof the probeinputsholding the symbolrepresentationGsdescribed
in section3 above). Allowing suchgrowth in thelayerson both sidesof a full connectiorgeneratesnorethanlinear
growth in a network’strainingtime, andcannotbe sustainedo arbitrarysizes.

Incrementdo the compleity of thetraining datahada similar effect. For example,whenthefirst few sentences
with ditransitive verbswerefirst addedo the corpus,afourthfiller hadto beaddedo all existing clausestructureso
thatall training exampleswould matchthe architecturewith the fourth probelayeradded eventhoughit wasthe null
filler thatwasrequiredfor all theseexisting clauses.In additionto the incrementof trainingtime resultingfrom the
additionof new connectiongo the network, a new queryhadto begeneratedor eachclausesothatthe new fillers for
thefourth slot couldbe probedfor. This causedhe numberof trainingexamplesto grow by % evenbeforereckoning
in thosefor the new sentencesThusit maybethatit wasthe growth in the network architectureandin the numberof
training examplesthatallowed the modelto maintainits performancevhenthe new compleity demandwvasplaced
onit. Someof this growth canbe managedn future experimentsby limiting training to a randomlyselectedsubset
of alarge corpusimplicit in atoy grammay sothatthe rangeof lexical andstructuralpossibilitiesis well represented
withoutthe hugecorpusneededor exhaustve coverage.

For the parsingexperimentreportedn section5, however, overall trainingtime increasedt aratelessthanlinear
with the increasean sizeof thetraining set. It may be possibleto attribute this to the regularitiesin the structureof
languageif unlike examplesreinforceeachotherratherthancounteractinggachotherduringtraining. Whatever the
explanation thetrendis contraryto ordinaryexpectationsvhile traininganetwork, andmaybodewell for longerterm
scalability

Developingandworking with thecorpusalsorevealedproblemshathave notyetbeenaddressetb ary significant
extentby the model. Oneis the matterof identifying the contentof a representatiomwithout prior knowledgeof what

7To be more specific,the percentagefisted were actually the probabilitiesthata given sentencevould be selectedor the training set(or the
validationset). Theactualsizesof thesesetsthusvariedsomevhataroundthenominalsizegivenby the percentagesSincearandomseedgoverned
this selectionprocessandvarying the seedwasusedto ensurehatdifferentsetsof sentencesereselectedor eachof thefive runswith the same
probabilityparametertherewasno assurancéhatthetrainingsets(northevalidationsets)weredisjoint betweertherunswith differentseedsCare
wastaken, howvever, to ensurehatthetraining, validation,andtestsetsweredisjoint within a givenrun.
N.B.— The averageseportedin the table were not weightedaccordingto the actual numberof sentencein the testsets;they aremerelya
simpleaverageof the errorratesof thefive instance®f eachnotional setsize.

8



100% T
98.6%

90% T

80% T

Unseen Queries Answered Correctly

70% T T
(63.9%)

1% 2% 5% 10% 15% 20% 25%
Percentage of Corpus Used for Training

Figure3: Degree of generalization on throughput testing. Theresultsshavn arethe averagesuccess
ratesfor five independentlyandomizedrunson eachof the indicatedtraining setsizes. Training on
arelatively small subsebf the corpusallowedthe systemto learnto performthe semantigparsewith
highreliability.

it is. It may be possibleto modify the modelso thatinformationcanbe extractedby meansof lesscompleteor less
specificqueries suchasby working from the generalto the particular sothata representatioganbe identifiedin a
relatively few steps.

The quality of generalizatioron the throughputexperimentwasa pleasansurprise therewasno expectatiornthat
suchgoodperformancevouldbeobtainedby suchasimpleprocessoandtrainingregimen.No scalabilityexperiments
weredonefor the grammarprocessarandit remainsto be seenhow well longersentencesand deeperembeddings
maybelearnedbut sincethemodeldoesnotaspireto managinginbounde@&mbeddingshereseemso bereasonable
hopethatit canbetrainedto succeean sentencesf a complexity similarto thoseregularly managedy humans.

It mayin factbe possibleto modelsomeaspectf the traditional performance/competendtstinctiondirectly
by meansof this or a similar architecture. Performancdimitations on a network are a familiar phenomenon.In
the currentcaseit may be expectedthat excessvely long sentencesvould causea compoundingof errorsdueto
repeateghasseshroughtherecurrentayeruntil theactivationpatternsarescrambledeyondinterpretationpr perhaps
a sufficiently complex sentencevould saturatethe ability of the gestaltlayerto maintainsuperimposedlause-leel
patterns. Detectingcompetenceén the network will be a more subtlechallenge. It is the very natureof simulated
neuralnetworks to learnassociation@mongthe elementsn their training sets,andit may reasonablybe expected
thatthis network “noticed” thatwheneer, say RUN filled the ACT slot, thenull symbolmustnecessarilyill boththe
PATIENT andBENEFICIARY slots. Otherfillers for ACT will have their own setsof optionsandrestrictions.If the
network did learntheseasexpected,t hasin somesensdearnedthe argumentstructue of the verbsassociatedvith
the variouspossiblefillers of the ACT slot. A carefully plannedexperimentmay be ableto extractthis information
directly from the weightsin the trainednetwork, thoughadmittedly our knowledge-atraction capabilitiesare still
quite limited. How the network might have acquiredcompetenceavith respecto otherpatternssalientin the corpus,
suchasthefactsthatarny nouncanbemodifiedby arelative clauseandthatthe objectsof aditransitve verbmayhave
their orderreversed,dependingon the presenceor absencef the prepositionto, is lesseasilyvisualized;but this is
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a promisingareafor furtherresearchsinceobsenation of thetrainednetwork indicatesthatit did make useof these
regularitieswhengeneralizingts performanceo previously unseersentences.

Theseobsenationsbearon whatis perhapghe mostinterestingpropertyof the network, namelythe overtdisplay
of discreteswitching behaviorin a static architectureoperatedby meansof weightedconnections. For example,
successfullyprobinga given gestaltrepresentatiomwith differentqueriesrequiresthe network to performthelogical
equivalentof extracting the informationfrom a “dif ferentpart” of the representation.Given the representatiorof
sentencg18), which containsthe information schematizedn (19) and (20), a successfubecodingnetwork must
be ableto switch betweenthe responseMMONKEY, SEE,and PARROT when probedwith (? SEE PARROT —),
(MONKEY ? PARROT —), and (MONKEY SEE ? —), respectiely. It mustalso, of course,be ableto switch
betweerthe variouselementof the sentences secondclausestructureaswell, andevenbe ableto determinewhich
clauseto extracttheanswerfrom.

(18) themonkey thatsaw the parrotchasedhe captain
(19) MONKEY CHASECAPTAIN —
(20) MONKEY SEEPARROT —

Suchpatternamay, of coursepelearnedby roteif presenin thetrainingset;but theability to generalizéhe behaior
to previously unseerexamplesin thethroughputiestsseemso indicatethatthe DecodingNetworkis enactinga state
switch basedhot only on the positionof the querymarker, but alsoon the presencer absencef somesignalin the
gestaltlayer

More interestingyet is the behaior of the network undervariationsin word order For otherwiseidenticalsen-
tencescontainingthe variantsshavn in (9) and(10) or in (11) and(12), the ProcessingNetworkmustpropagatehe
informationforward— regardles®f which clauset occursin — to thegestaltayeranddepositit therein aform that
the DecodingNetworkcaninterpretasa signalrequiringswappingof thefillers for therolesAGENT andPATIENT
or PATIENT andBENEFICIARY whenprobingfor thosefillers onthevariantsentences.

7 Conclusion

The representatiomxperimentsseemto indicatethat this or somerelatedmodelwill make it possibleto coercea
suitablestaticrepresentatioffor the varying complexity of linguistic objectssuchassentencesThe modelpromises
to scalewell in termsof architecturalelementsand numberof training epochs,though substantialpruning of the
numberof examplesin large corporareflectingcomplex grammarswill still be neededn orderto retainreasonable
training times. The experimentsraisequestionsaboutthe robustnesof the representationanderambiguity anda
substantiathallengeremainswith respecto thetaskof extractinginformationfrom arepresentatiowithouta priori
informationregardingits content.However, underthe controlledervironmentof the modelthe representationseem
to becorvenientandreliableenoughto sene astargetsfor furtherexperimenton sentence-processitaskswhile the
known problemsareinvestigatedurther.

The sentencerocessingxperimentswere successfubeyond expectationwhile usingan extraordinarily simple
architectureandtraining regimen. They offer hopethatfurther experimentswill bearout the hypothesesiponwhich
themodelwasbuilt, andoffer theimmediatechallenge®f learningto processa corpusof greatersizeandcomplexity
while shaving pointsoff theerrorrates.Meanwhilea betterinstrumented/ersionof the modelanda bettercontrolled
corpuswill offer the opportunityto comparethe model’s behaior to obsenablehumanbehaior andbegin a process
of empiricalcorrectionto the anatomyof the model.
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